FN ISI Export Format VR 1.0 PT Journal AU Vavassori, P Grimsditch, M Fullerton, EE TI Biquadratic exchange coupling in an unequal Fe/Cr/Fe(100) trilayer SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 34 AB we have investigated the magnetic properties of a (100)- oriented unequal trilayer, Fe(45 Angstrom)/Cr(30 Angstrom)/Fe(15 Angstrom), by means of Brillouin light scattering and magnetization measurements. The experimental results show that this sample highlights the effect of biquadratic coupling which aligns the magnetization of the Fe layers at 90 degrees to each other. We extracted the bilinear and biquadratic coupling strengths by fitting the experimental results with a theory that treats the static and dynamic responses on an equal footing. Our results confirm that the model describes both the static and dynamic properties even when the magnetization of the layers is aligned at 90 degrees. The coupling strengths, and their temperature dependence, are discussed and compared with other results reported in the literature, (C) 2001 Elsevier Science B.V. All rights reserved. CR AZEVEDO A, 1998, J MAGN MAGN MATER 2, V177, P1177 AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BARNAS J, 1993, J MAGN MAGN MATER, V123, PL21 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BRUNO P, 1994, J APPL PHYS, V76, P6972 CHESMAN C, 1998, PHYS REV B, V58, P101 COCHRAN JF, 1990, PHYS REV B, V42, P508 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 ENDO Y, 1999, PHYS REV B, V59, P4279 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FROM M, 1994, J APPL PHYS, V75, P6181 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1999, PHYS REV B, V59, P14520 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 KABOS P, 1994, J APPL PHYS, V75, P3553 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 REZENDE SM, 1998, J APPL PHYS, V84, P958 REZENDE SM, 1999, J APPL PHYS 2B, V85, P5892 SANDERCOCK JR, 1982, LIGHT SCATTERING SOL, V3, P173 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1999, J MAGN MAGN MATER, V200, P322 STRIJKERS GJ, 2000, PHYS REV LETT, V84, P1812 ZABEL H, 1999, J PHYS-CONDENS MAT, V11, P9303 TC 0 BP 284 EP 292 PG 9 JI J. Magn. Magn. Mater. PY 2001 PD FEB VL 223 IS 3 GA 399NA J9 J MAGN MAGN MATER UT ISI:000166818200013 ER PT Journal AU Lazar, L Jiang, JS Felcher, GP Inomata, A Bader, SD TI Oscillatory exchange bias in Fe/Cr double superlattices SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 17 AB In the [Fe/Cr](AF)/Cr-x/[Fe/Cr](F) double superlattices consisting of a ferromagnetic Fe/Cr superlattice on top of an antiferromagnetic Fe/Cr superlattice, the exchange coupling between the superlattices is determined by the thicknesses (x of the Cr spacer layer. The oscillating behavior of the exchange bias field of a series of (211)-oriented Fe/Cr double superlattices was determined by superconducting quantum interference device (SQUID) and magneto-optic Kerr effect (MOKE) measurements. For x > 13 Angstrom a negative strongly oscillating character of the exchange bias was observed. At very thick x the exchange bias vanishes. The most immediate result is the fact that the exchange bias field is always negative, regardless of the sign of the coupling between the ferromagnetic and the antiferromagnetic superlattices. The detailed dependence of the exchange bias field as a function of the intersuperlattice thickness of Cr is explained in terms of the interaction between the two superlattices in collinear configuration. (C) 2001 Elsevier Science B.V. All rights reserved. CR FULLERTON EE, 1993, PHYS REV B, V48, P15755 JIANG JS, 2000, PHYS REV B, V61, P9653 KIWI M, 1999, EUROPHYS LETT, V48, P573 KNELLER EF, 1991, IEEE T MAGN, V27, P3588 KOON NC, 1997, PHYS REV LETT, V78, P4865 LEIGHTON C, 1999, PHYS REV B, V60, P12837 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 NOGUES J, 1996, PHYS REV LETT, V76, P4524 OHKOSHI M, 1985, IEEE TRANSL J MAGN J, V1, P37 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TANG C, 1984, J APPL PHYS, V55, P2226 TEVELTHUIS SGE, 2000, APPL PHYS LETT, V77, P2222 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 TC 0 BP 299 EP 303 PG 5 JI J. Magn. Magn. Mater. PY 2001 PD FEB VL 223 IS 3 GA 399NA J9 J MAGN MAGN MATER UT ISI:000166818200015 ER PT Journal AU Bezerra, CG de Araujo, JM Chesman, C Albuquerque, EL TI Magnetization in quasiperiodic magnetic multilayers with biquadratic exchange coupling SO JOURNAL OF APPLIED PHYSICS NR 28 AB A theoretical study of the magnetization curves of quasiperiodic magnetic multilayers is presented. We consider structures composed by ferromagnetic films (Fe) with interfilm exchange coupling provided by intervening nonferromagnetic layers (Cr). The theory is based on a realistic phenomenological model, which includes the following contributions to the free magnetic energy: Zeeman, cubic anisotropy, bilinear, and biquadratic exchange energies. The experimental parameters used here are based on experimental data recently reported, which contain sufficiently strong biquadratic exchange coupling. (C) 2001 American Institute of Physics. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BEZERRA CG, 1999, PHYS REV B, V60, P9264 BEZERRA CG, 1999, PHYSICA A, V267, P124 BEZERRA CG, 1998, PHYSICA A, V255, P285 BEZERRA CG, 1997, PHYSICA A, V245, P379 CHESMAN C, 1998, PHYS REV B, V58, P101 DEOLIVEIRA PMC, 1996, PHYSICA A, V227, P206 FOLKERTS W, 1992, J MAGN MAGN MATER, V111, P306 GALLAGHER WJ, 1997, J APPL PHYS 2A, V81, P3741 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HORST R, 1995, HDB GLOBAL OPTIMIZAT KIRKPATRICK S, 1983, SCIENCE, V220, P671 KOHMOTO M, 1987, PHYS REV B, V35, P1020 KOHMOTO M, 1987, PHYS REV LETT, V58, P2436 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PRESS WH, 1998, NUMERICAL RECIPES QUILICHINI M, 1997, REV MOD PHYS, V69, P277 REZENDE SM, 1998, J APPL PHYS, V84, P958 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951 SORENSEN ES, 1990, PHYS REV B, V42, P754 STEINHARDT PJ, 1997, PHYSICS QUASICRYSTAL TURBAN L, 1994, J PHYS A-MATH GEN, V27, P6349 VASCONCELOS MS, 1998, J PHYS-CONDENS MAT, V10, P5839 VASCONCELOS MS, 1998, PHYS REV B, V57, P2826 VASCONCELOS MS, 1999, PHYSICA A, V268, P165 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 2286 EP 2292 PG 7 JI J. Appl. Phys. PY 2001 PD FEB 15 VL 89 IS 4 GA 397HY J9 J APPL PHYS UT ISI:000166688300045 ER PT Journal AU Chemam, F Bouabellou, A Halimi, R TI Effect of substrate temperature on the structural and magnetic properties of Fe/Ag superlattices SO THIN SOLID FILMS NR 8 AB In the present work, Fe/Ag superlattices were grown by molecular beam epitaxy (MBE) on MgO(001) single crystal substrates maintained at room temperature or at 423 K during the deposition. The structural properties were carried out using small and high angle X-ray diffraction techniques. The magnetic hysteresis loops with the magnetic field applied parallel or perpendicular to the plane of the films were measured by a superconducting quantum interference device (SQUID) magnetometer in the temperature range 5-300 Ii. A comparison of the obtained results showed that the heating of MgO substrates leads to a strong interdiffusion and causes a significant modification of structural and magnetic properties of Fe/Ag superlattices. (C) 2000 Elsevier Science B.V. All rights reserved. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHARLTON T, 1999, PHYS REV B, V59, P11897 DINUNZIO S, 1996, THIN SOLID FILMS, V279, P180 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GLADYSZEWSKI G, 1998, THIN SOLID FILMS, V319, P44 LAIRSON BM, 1993, APPL PHYS LETT, V62, P639 SCHREYER A, 1995, PHYS REV B, V52, P16066 TC 0 BP 266 EP 268 PG 3 JI Thin Solid Films PY 2000 PD DEC 22 VL 380 IS 1-2 GA 392CU J9 THIN SOLID FILMS UT ISI:000166393700073 ER PT Journal AU te Velthuis, SGE Jiang, JS Felcher, GP TI Switching of the exchange bias in Fe/Cr(211) double- superlattice structures SO APPLIED PHYSICS LETTERS NR 15 AB The reversal of the direction of the exchange bias in a "double-superlattice" system which consists of an Fe/Cr antiferromagnetic (AF) superlattice which is ferromagnetically coupled with an Fe/Cr ferromagnetic (F) superlattice through a Cr spacer layer, is observed. Magnetometry and polarized neutron reflectometry show that a switch in the bias direction occurs at a field (similar to 447 Oe) well below the field (14 kOe) necessary to saturate the AF superlattice and well below the field (2 kOe) where the AF superlattice initiates a spin- flop transition. The switching of the exchange bias cannot be explained in terms of a model of uniform rotation, but rather by breakdown into domains and reversal of the AF layers. The transparency of magnetic behavior of the double superlattice may be useful in understanding the behavior of traditional exchange bias systems. (C) 2000 American Institute of Physics. [S0003- 6951(00)00240-0]. CR DANTAS AL, 1999, PHYS REV B, V59, P1223 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 JIANG JS, 2000, J VAC SCI TECHNOL 1, V18, P1264 JIANG JS, 2000, PHYS REV B, V61, P9653 LAAR L, UNPUB MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 NOGUES J, 2000, PHYS REV B, V61, PR6455 RAKHMANOVA S, 1998, PHYS REV B, V57, P476 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 1 BP 2222 EP 2224 PG 3 JI Appl. Phys. Lett. PY 2000 PD OCT 2 VL 77 IS 14 GA 357WZ J9 APPL PHYS LETT UT ISI:000089524900048 ER PT Journal AU Diaz-Ortiz, A Sanchez, JM Moran-Lopez, JL TI Phase transitions in confined antiferromagnets SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH NR 23 AB Confinement effects on the phase transitions in antiferromagnets are studied as a function of the surface coupling v and the surface field h for b.c.c.(110) films. Unusual topologies for the phase diagram are attained for particular combinations of v and h. It is shown that some of the characteristics of the finite-temperature behavior of the system are driven by its low-temperature properties and consequently can be explained in terms of a ground-state analysis. Cluster variation free energies are used for the investigation of the finite temperature behavior. CR BINDER K, 1992, J CHEM PHYS, V96, P1444 BINDER K, 1983, PHASE TRANSITIONS CR DIAZORTIZ A, 1997, COMP MATER SCI, V8, P79 DIAZORTIZ A, IN PRESS DIAZORTIZ A, 1998, PHYS REV LETT, V81, P1146 DIAZORTIZ A, 1998, SOLID STATE COMMUN, V107, P285 DOSCH H, 1992, CRIT PHENOMENA SURFA, V126 DOWBEN PA, 1990, SURFACE SEGRETATION DREWITZ A, 1997, PHYS REV LETT, V78, P1090 EVANS R, 1990, J PHYS-CONDENS MAT, V2, P8989 FISHER ME, 1981, J CHEM PHYS, V75, P5857 FULLERTON EE, 1993, PHYS REV B, V48, P15755 KEFFER F, 1973, PHYS REV LETT, V31, P1061 KIKUCHI R, 1951, PHYS REV, V81, P998 LEIDL R, 1998, PHYS REV B, V57, P1908 MICHELETTI C, 1997, J PHYS A-MATH GEN, V30, PL233 MICHELETTI C, 1999, PHYS REV B, V59, P6239 MILLS DL, 1968, PHYS REV LETT, V20, P18 NAKANISHI H, 1983, J CHEM PHYS, V78, P3279 NAKANISHI H, 1982, PHYS REV LETT, V49, P1565 TRALLORI L, 1998, PHYS REV B, V57, P5923 TRALLORI L, 1994, PHYS REV LETT, V72, P1925 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 389 EP 394 PG 6 JI Phys. Status Solidi B-Basic Res. PY 2000 PD JUL VL 220 IS 1 GA 344PV J9 PHYS STATUS SOLIDI B-BASIC RE UT ISI:000088768800069 ER PT Journal AU Heinrich, B TI Magnetic nanostructures. From physical principles to spintronics SO CANADIAN JOURNAL OF PHYSICS NR 93 AB A brief summary of underlying principles governing ultrathin film magnetic nanostructures and magnetoelectronics will be presented. The presentation will be based more on physical intuition than on rather complex physical and mathematical models in order to bring this new and rapidly expanding field to a broad audience. The success of this field has been based on the ability to create new structures in which interfaces play a crucial role. Three major phenomena have strongly affected progress in the development of new magnetic materials based on ultrathin films: (a) interface anisotropies; (b) interlayer exchange coupling; and (c) magneto-electron transport. The great progress in the study of ultrathin film multilayers and films patterned with submicrometre lateral geometries has led to a new class of electronic devices whose operation is based upon the spin-polarized character of the electronic carriers. "Magnetoelectronics and spintronics" are terms used to mark the development of very small spin-polarized electronic devices. Some latest developments in magnetic sensors and magnetic RAM will be presented to emphasize the importance of spintronics in the emerging technologies of the 21st century. CR 1997, WALL STREET J 1110, P88 AIGN T, 1998, PHYS REV LETT, V81, P5656 ALBRECHT M, 1992, J MAGN MAGN MATER, V113, P207 ALLENSPACH R, 1998, APPL PHYS LETT, V73, P3598 ARNOLD CS, 1997, REV SCI INSTRUM, V68, P4112 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1990, PHYS REV B, V42, P8110 BASS J, 1999, J MAGN MAGN MATER, V200, P274 BERKOWITZ AE, 1999, J MAGN MAGN MATER, V200, P552 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BROWN WF, 1963, MICROMAGNETICS BRUNO P, 1995, PHYS REV B, V52, P411 CAI M, 1997, J APPL PHYS 2B, V81, P5200 CAMLEY RE, 1997, J APPL PHYS, V82, P3058 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 CHAPPERT C, 1991, J APPL PHYS, V64, P5736 CHIKAZUMI S, 1986, PHYSICS MAGNETISM CHOI BC, 1999, J MAGN MAGN MATER, V198, P345 CHUI ST, 1995, J APPL PHYS, V78, P3965 COEHOORN R, 1991, PHYS REV B, V44, P9331 DAHLBERG ED, 1995, KPHYS TODAY APR DAUGHTON J, 1994, IEEE T MAGN, V30, P4608 DAUGHTON JM, 1997, J APPL PHYS 2A, V81, P3758 DEBOECK J, 1999, PHYS WORLD 0427 DONG ZW, 1997, APPL PHYS LETT, V71, P1718 EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85 EGELHOFF WF, 1997, J APPL PHYS, V82, P6142 ENDERS A, 1999, J APPL PHYS 2B, V85, P5279 FARLE M, 1998, REP PROG PHYS, V61, P755 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P109 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRADMAN U, 1993, HDB MAGNETIC MAT, V7, PCH1 GRUETTER P, 1992, ULTRAMICROSCOPY, V47, P393 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1998, CAN J CHEM, V76, P1595 HEINRICH B, 1991, J APPL PHYS, V70, P5769 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HEINRICH B, 1993, MATER RES SOC S P, V313, P485 HEINRICH B, 1989, MATER RES SOC S P, V151, P177 HEINRICH B, 1999, PHYS REV B, V59, P14520 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1988, PHYS REV B, V38, P12879 HJORTSTAM O, 1997, PHYS REV B, V55, P15026 HNUBERT A, 1998, MAGNETIC DOMAINS ANA JULLIERE M, 1975, PHYS LETT A, V54, P225 JUNGBLUT R, 1994, J APPL PHYS, V75, P6659 KAWAKAMI RK, 1999, PHYS REV LETT, V82, P4098 KOIKE K, 1984, JPN J APPL PHYS PT 2, V23, PL187 KOON NC, 1997, PHYS REV LETT, V78, P4865 LEE JY, 1997, PHYS REV B, V56, PR5728 MACDONALD JR, 1951, P PHYS SOC LOND A, V64, P968 MANKOS M, 1995, ELECT HOLOGRAPHY MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MERTIG I, 1999, REP PROG PHYS, V62, P237 MESERVEY R, 1970, PHYS REV LETT, V25, P1270 MONCHESKY TL, 1999, PHYS REV B, V60, P10242 MONSMA DJ, 1995, PHYS REV LETT, V74, P5260 MOODERA JS, 1999, J MAGN MAGN MATER, V200, P248 MOODERA JS, 1995, PHYS REV LETT, V74, P3273 OEPEN HP, 1999, CURR OPIN SOLID ST M, V4, P217 OEPEN HP, 1997, PHYS REV B, V55, P2752 OEPEN HP, 1991, SCANNING MICROSCOPY, V5, P1 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1999, J APPL PHYS 2B, V85, P5828 PARKIN SSP, 1994, ULTRATHIN MAGNETIC S, P178 PIERCE DT, 1994, PHYS REV B, V49, P14564 POCKHIL T, 1999, MOSC INT S MAGN JUN PRINZ GA, 1998, SCIENCE, V282, P1660 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SANDER D, 1999, REP PROG PHYS, V62, P809 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 SHI J, 1999, APPL PHYS LETT, V74, P2525 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3127 STANKIEWICZ A, 1999, CRIT REV OPT SCI CR, V72, P181 STILES MD, 1993, PHYS REV B, V48, P7238 SWAGTEN HJM, 1997, NATO ASI 2, V49, P471 TAKANO K, 1998, J APPL PHYS 2, V83, P6888 TANG C, 1994, IEEE T MAGN, V30, P3801 TEHRANI S, 1999, IEEE T MAGN 1, V35, P2814 TEHRANI S, 1999, J APPL PHYS 2B, V85, P5822 TSYMBAL EY, 1998, PHYS REV B, V58, P432 UNGURIS J, 1990, CHEM PHYSICS SOLID S, V8, P239 VANHOVE MA, 1980, SURF SCI, V92, P489 VICTORA RH, 1993, J APPL PHYS, V73, P6415 WANG Y, 1990, PHYS REV LETT, V65, P2732 ZEPER WB, 1991, J APPL PHYS, V70, P2264 ZHENG M, 1999, J APPL PHYS 2A, V85, P5060 TC 0 BP 161 EP 199 PG 39 JI Can. J. Phys. PY 2000 PD MAR VL 78 IS 3 GA 342FK J9 CAN J PHYS UT ISI:000088634400002 ER PT Journal AU Gupta, A Paul, A Chaudhari, SM Phase, DM TI Effect of interface roughness on GMR in Fe/Cr multilayers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 35 AB Effect of interfacial roughness on Giant Magnetoresistance (GMR) in Fe/Cr Multilayers has been studied by simultaneously depositing multilayers on a set of float glass substrates prepared with varying rms surface roughness. Morphological and other microstructural features of different multilayers are similar except for the interfacial roughness, thus allowing one to separate out the effect of interface roughness. GMR measurements on these multilayers show that increasing interfacial roughness causes GMR to decrease nonlinearly. GMR tends to saturate to a constant value for higher interfacial roughnesses because of the fact that different multilayers differ mainly in the correlated part of interfacial roughness. CR ASANO Y, 1993, PHYS REV B, V48, P6192 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1996, PHYS REV B, V53, P5449 BARNAS J, 1990, PHYS REV B, V42, P8110 BELIEN P, 1994, PHYS REV B, V50, P9957 BRUNO P, 1995, PHYS REV B, V52, P411 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 COLINO JM, 1996, PHYS REV B, V53, P766 FULLERTON EE, 1993, APPL PHYS LETT, V63, P1699 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 HO EM, 1996, J MAGN MAGN MATER, V156, P65 HOOD RQ, 1994, PHYS REV B, V49, P368 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KELLY DM, 1994, PHYS REV B, V50, P3481 KUDRNOVSKY J, 1996, PHYS REV B, V53, P5152 LAIDLER H, 1996, J MAGN MAGN MATER, V156, P332 MODAK AR, 1994, PHYS REV B, V50, P4232 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 NAKANISHI H, 1993, J MAGN MAGN MATER, V126, P451 PARKIN SSP, 1993, APPL PHYS LETT, V62, P1842 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARKIN SSP, 1990, PHYS REV LETT, V64, P2301 PARRATT LG, 1954, PHYS REV, V95, P359 PETROFF F, 1991, J MAGN MAGN MATER, V93, P95 RENSING NM, 1993, J MAGN MAGN MATER, V121, P436 SCHAD R, 1996, J MAGN MAGN MATER, V156, P39 SCHAD R, 1999, PHYS REV B, V59, P1242 SCHAD R, 1998, PHYS REV B, V57, P13692 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TAKANASHI K, 1992, J PHYS SOC JPN, V61, P1169 TSYMBAL EY, 1996, PHYS REV B, V54, P15314 VELEZ M, 1998, J MAGN MAGN MATER, V184, P275 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 0 BP 2182 EP 2187 PG 6 JI J. Phys. Soc. Jpn. PY 2000 PD JUL VL 69 IS 7 GA 340FQ J9 J PHYS SOC JPN UT ISI:000088522800041 ER PT Journal AU Jiang, JS Felcher, GP Inomata, A Goyette, R Nelson, CS Bader, SD TI Exchange bias in Fe/Cr double superlattices SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 27 AB Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed "double superlattice" structures where a ferromagnetic (F) and an antiferromagnetic (BF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains. (C) 2000 American Vacuum Society. [S0734- 2101(00)02204-1]. CR BRUNO P, 1995, PHYS REV B, V52, P411 CAMLEY RE, 1999, J VAC SCI TECHNOL 1, V17, P1335 DIENY B, 1991, PHYS REV B, V43, P1297 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KIWI M, 1999, EUROPHYS LETT, V48, P573 KOON NC, 1997, PHYS REV LETT, V78, P4865 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 NIKITENKO VI, 1998, PHYS REV B, V57, PR8111 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1990, PHYS REV B, V42, P10583 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 SUHL H, 1998, PHYS REV B, V58, P258 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TANG C, 1984, J APPL PHYS, V55, P2226 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 WANG RW, 1994, PHYS REV LETT, V72, P920 ZABEL H, 1994, PHYSICA B, V198, P156 TC 2 BP 1264 EP 1268 PG 5 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 2000 PD JUL-AUG VL 18 IS 4 PN 1 GA 335ZH J9 J VAC SCI TECHNOL A UT ISI:000088276800044 ER PT Journal AU Vavassori, P Grimsditch, M Fullerton, E Giovannini, L Zivieri, R Nizzoli, F TI Brillouin light scattering study of an exchange coupled asymmetric trilayer of Fe/Cr SO SURFACE SCIENCE NR 10 AB The magnetic response of a (211) oriented asymmetric Fe trilayer [Fe(100 Angstrom)/Cr(9 Angstrom)/Fe(20 Angstrom)/Cr(20 Angstrom)/Fe(20 Angstrom)], in which the thickness of the Cr spacer layers was chosen to produce ferromagnetic coupling (F) between the two thinner Fe layers and antiferromagnetic coupling (AF) between the thicker Fe layer and the adjacent thin one, has been investigated using magnetization and Brillouin light scattering (BLS) measurements. The coupling coefficients, extracted by fitting the BLS and magnetization measurements with a theory treating the static and dynamic response on an equal footing? produced consistent values of the magnetic parameters. Our results confirm that the theoretical model used in interpreting both static and dynamic properties is valid even in systems in which F and AF coupling of the layers are simultaneously present. The theoretical model has also been extended to include the field dependence of the intensity of the Brillouin peaks. The calculated intensities are compared with the BLS spectra at different applied fields. (C) 2000 Elsevier Science B.V. All rights reserved. CR COCHRAN JF, 1988, J MAGN MAGN MATER, V73, P299 COCHRAN JF, 1990, PHYS REV B, V42, P508 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 REZENDE SM, 1998, J APPL PHYS, V84, P958 SANDERCOCK JR, 1982, LIGHT SCATTERING SOL, V3, P173 SMIRNOV VI, 1964, COURSE HIGHER MATH, V4 WETTLING W, 1975, J PHYS C SOLID STATE, V8, P211 TC 1 BP 880 EP 884 PG 5 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200167 ER PT Journal AU Yan, SS Grunberg, P Mei, M TI Magnetic phase diagrams of the trilayers with the noncollinear coupling in the form of the proximity magnetism model SO JOURNAL OF APPLIED PHYSICS NR 18 AB The magnetic phase diagrams of Fe/Mn/Fe trilayers with the noncollinear interlayer coupling in the form of the proximity magnetism model were theoretically studied. The C+-C- phase diagram in the remanent magnetization state predicts very rich spin configurations. The H-C+ and H-C- phase diagrams show that the spin configurations of Fe/Mn/Fe trilayers depend strongly on the external magnetic field, the anisotropy of Fe layers, and the coupling coefficients C+ and C-. Our experimental results of noncollinear spin configurations of Fe/Mn/Fe trilayers strongly support the magnetic phase diagrams based on the proximity magnetism model. (C) 2000 American Institute of Physics. [S0021-8979(00)00914-2]. CR ALMEIDA NS, 1995, PHYS REV B, V52, P13504 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P159 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FONSECA TL, 1998, PHYS REV B, V57, P76 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 KOSTYUCHENKO VV, 1998, PHYS REV B, V57, P5951 NORTEMANN FC, 1992, PHYS REV B, V46, P10847 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 WANG RW, 1994, PHYS REV LETT, V72, P920 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAN SS, 1999, PHYS REV B, V59, PR1164 TC 1 BP 983 EP 987 PG 5 JI J. Appl. Phys. PY 2000 PD JUL 15 VL 88 IS 2 GA 329DA J9 J APPL PHYS UT ISI:000087889800060 ER PT Journal AU Heinrich, B Cochran, JF Monchesky, T Urban, R TI Exchange coupling through spin density wave Cr(001) using Fe whisker substrates SO JOURNAL OF APPLIED PHYSICS NR 21 AB Exchange coupling through spin density wave in Fe whisker/Cr/Fe(001) structures was studied by Brillouin light scattering (BLS) and longitudinal magneto-optical Kerr effect (MOKE) techniques. It will be shown that interface alloying at the Fe whisker/Cr interface profoundly affects the behavior of short wavelength oscillations. The first crossover to antiferromagnetic coupling occurs at 5 monolayers (ML), the phase of short-wavelength oscillations is reversed compared to that expected for the spin density wave in Cr(001), and the strength of coupling is significantly decreased from that obtained from first principle calculations. Using Cu and Ag atomic layers between the Cr(001) and Fe(001) films, heterogeneous interfaces showed that the exchange coupling in Cr(001) is strongly affected by electron multiple scattering. It appears that electron quantum well states in the Fe film play no important role in the strength of the exchange coupling when the Fe film is bounded on one side by Au, but they become important when the Fe film is bounded by Cr on both sides. (C) 2000 American Institute of Physics. [S0021-8979(00)31108-2]. CR BARNAS J, 1994, J MAGN MAGN MATER, V128, P171 BRUNO P, 1993, EUROPHYS LETT, V23, P615 CARBONE C, 1987, PHYS REV B, V36, P2433 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 FREYSS M, 1997, J APPL PHYS 2A, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FULLERTON EE, 1993, PHYS REV B, V48, P15755 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS 2A, V81, P4350 HEINRICH B, 1996, J APPL PHYS 2A, V79, P4518 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1993, NATO ADV SCI INST SE, V309, P175 HEINRICH B, 1999, PHYS REV B, V59, P14520 MIRBT S, 1997, PHYS REV B, V56, P287 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 STOEFFLER D, 1993, NATO ADV SCI INST SE, V309, P411 UNGURIS J, 1993, NATO ADV SCI INST SE, V309, P101 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 0 BP 5449 EP 5451 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200251 ER PT Journal AU Jiang, JS Felcher, GP Inomata, A Goyette, R Nelson, C Bader, SD TI Exchange-bias effect in Fe/Cr(211) double superlattice structures SO PHYSICAL REVIEW B NR 28 AB Shifted hysteresis loops characteristic of the exchange-bias effect between a ferromagnet (F) and an antiferromagnet (AF) are demonstrated in "double-superlattice" structures. Utilizing the well-established oscillatory interlayer exchange coupling in Fe/Cr, we have constructed [Fe/Cr](AF)/Cr/[Fe/Cr](F) double superlattices where Fe/Cr superlattices with appropriate Cr- spacer thickness represent the F and the AF. The double superlattices are (211)-oriented epitaxial films sputter grown on single-crystal MgO(110) substrates. The AF/F interface is coherent compared to conventional exchange-bias interfaces consisting of dissimilar AF and F phases. Magnetization results show that AF/F exchange coupling affects the nucleation of reverse magnetic domains, and that the magnitude of the exchange-bias field is given directly by the classic formula for collinear spin structures. The collinear spin distribution is confirmed by polarized neutron reflectivity. CR BERKOWITZ AE, 1965, J APPL PHYS, V36, P3330 DIENY B, 1991, PHYS REV B, V43, P1297 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KOON NC, 1997, PHYS REV LETT, V78, P4865 KOUVEL JS, 1960, J PHYS CHEM SOLIDS, V16, P132 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 MORAN TJ, 1995, J APPL PHYS, V78, P1887 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1990, PHYS REV B, V42, P10583 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 SPERIOSU V, UNPUB TAKANO K, 1997, PHYS REV LETT, V79, P1130 TANG C, 1984, J APPL PHYS, V55, P2226 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WANG RW, 1994, PHYS REV LETT, V72, P920 ZABEL H, 1994, PHYSICA B, V198, P156 TC 3 BP 9653 EP 9656 PG 4 JI Phys. Rev. B PY 2000 PD APR 1 VL 61 IS 14 GA 303TW J9 PHYS REV B UT ISI:000086441800062 ER PT Journal AU Temst, K Kunnen, E Moshchalkov, VV Maletta, H Fritzsche, H Bruynseraede, Y TI Magnetic order and the spin-flop transition in Fe/Cr superlattices SO PHYSICA B NR 4 AB We have studied the structural and magnetic properties of MBE- prepared epitaxial Fe/Cr(001) oriented superlattices. The samples consist of 20 periods with 25 nm Fe and 1.3 nm Cr individual layer thicknesses. The samples were characterized by X-ray diffraction, while: the magnetic properties were determined by magnetoresistivity, magnetooptical Kerr effect, and polarized neutron reflectivity measurements. The transition from antiparallel to parallel alignment of the magnetizations in adjacent Fe layers was investigated using polarized neutron reflectivity measurements while applying a held parallel to the layers. A spin-flop transition due to the fourfold anisotropy in the Fe layers was observed at a field of 200 Oe. (C) 2000 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 MILLS DL, 1968, PHYS REV LETT, V20, P18 SCHREYER A, 1995, PHYS REV B, V52, P16066 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 684 EP 685 PG 2 JI Physica B PY 2000 PD MAR VL 276 GA 303FZ J9 PHYSICA B UT ISI:000086413000311 ER PT Journal AU Bouziane, T TI Magnetism in ferromagnetic spin-1/2 Ising multilayers SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH NR 46 AB In this work, we study the magnetization profiles of ferromagnetic multilayers consisting of two materials in a sandwich structure (ABA), with ferromagnetic coupling between the films, using an effective field theory with a probability distribution technique that accounts for the self-correlation function. Different exchange interaction terms at the interface are investigated. We present also results on the effect of both the exchange interaction constant in material B and the surface exchange interaction constant on the whole system. CR AGUILERAGRANJA F, 1990, SOLID STATE COMMUN, V74, P155 BAIBICH MN, 1988, PHYS REV LETT, V62, P653 BARNAS J, 1988, J PHYS C SOLID STATE, V21, P1021 BARNAS J, 1988, J PHYS C SOLID STATE, V21, P4097 BARNAS J, 1990, J PHYS-CONDENS MAT, V2, P7173 BARRETO FCS, 1981, FERROELECTRICS, V39, P1103 BARRETO FCS, 1985, PHYSICA A, V129, P360 BINDER K, 1984, PHYS REV LETT, V52, P318 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOUZIANE T, 1999, J MAGN MAGN MATER, V195, P220 BOUZIANE T, 1999, PHYS STATUS SOLIDI B, V214, P387 CALLEN HB, 1963, PHYS LETT, V4, P161 CAMLEY RE, 1993, J PHYS-CONDENS MAT, V5, P3727 CAMLEY RE, 1988, PHYS REV B, V39, P3413 CAMLEY RE, 1988, PHYS REV B, V37, P3413 CAMLEY RE, 1987, PHYS REV B, V35, P3608 CARBONE C, 1987, PHYS REV B, V36, P2433 CHERIFI K, 1991, PHYS REV B, V44, P7733 DURR W, 1989, PHYS REV LETT, V62, P206 ESAKI L, 1970, IBM J RES DEV, V14, P61 EZZAHRAOUY H, 1994, THESIS U MOHAMMED 5 FARLE M, 1987, PHYS REV LETT, V58, P511 FISHMAN F, 1987, PHYS LETT A, V121, P192 FREEMAN AJ, 1983, J MAGN MAGN MATER, V31, P909 FUJIMORI H, 1990, J APPL PHYS, V65, P5716 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRUNBERG P, 1991, J APPL PHYS, V69, P4789 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HAI T, 1991, J MAGN MAGN MATER, V97, P227 HINCHEY LL, 1986, PHYS REV B, V34, P1989 HINCHEY LL, 1986, PHYS REV B, V33, P3329 LEPAGE JG, 1989, PHYS REV B, V40, P3413 LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LIU YH, 1992, J PHYS-CONDENS MAT, V4, P9893 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 ONELLION MF, 1986, PHYS REV B, V33, P7322 PAN F, 1992, J PHYS CONDENS MATT, V4, PL519 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SABER M, 1997, CHINESE J PHYS, V35, P577 SARMENTO EF, 1993, J MAGN MAGN MATER, V118, P133 SHI ZP, 1992, PHYS REV LETT, V69, P3678 STILES MD, 1993, PHYS REV B, V48, P7238 THOMPSON MA, 1985, PHYS REV B, V31, P6832 TUCKER JW, 1994, PHYSICA A, V206, P497 WIATROWSKI G, 1991, PHYS STATUS SOLIDI B, V164, P299 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 0 BP 951 EP 962 PG 12 JI Phys. Status Solidi B-Basic Res. PY 2000 PD FEB VL 217 IS 2 GA 288RJ J9 PHYS STATUS SOLIDI B-BASIC RE UT ISI:000085576800026 ER PT Journal AU Jiang, JS Fullerton, EE Grimsditch, M Sowers, CH Pearson, J Bader, SD TI Epitaxial hard-soft magnetic heterostructures as model exchange-spring magnets SO PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES NR 20 AB We present investigations of the magnetization reversal process in exchange-spring permanent magnets. Utilizing magnetic heterostructures, such as coupled hard-soft bilayers and multilayers whereby the deposition process provides nanometre- scale control of thickness and magnetic anisotropy, we have constructed a model system for studying the exchange hardening mechanism. Comparison of the experimental results with numerical simulations indicates that the exchange-spring behaviour can be understood from the intrinsic parameters of the hard and soft layers. The simulations are extended to estimate realistically the ultimate gain in performance that can potentially be realized in permanent magnets based on the exchange-spring principle. CR BENAISSA M, 1998, IEEE T MAGN 1, V34, P1204 CAMLEY RE, 1987, PHYS REV B, V35, P3608 COEY JMD, 1993, PHYSICA SCRIPTA T, V49, P315 COEY JMD, 1997, SOLID STATE COMMUN, V102, P101 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DING J, 1993, J MAGN MAGN MATER, V124, P1 FULLERTON EE, 1998, APPL PHYS LETT, V72, P380 FULLERTON EE, 1997, APPL PHYS LETT, V71, P1579 FULLERTON EE, 1996, APPL PHYS LETT, V69, P2438 FULLERTON EE, 1998, PHYS REV B, V58, P12193 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GOTO E, 1965, J APPL PHYS, V36, P2951 JIANG JS, 1998, J APPL PHYS 2, V83, P6238 KNELLER EF, 1991, IEEE T MAGN, V27, P3588 MIBU K, 1996, J MAGN MAGN MATER, V163, P75 NAKAMURA A, 1995, JPN J APPL PHYS, V34, P2308 SKOMSKI R, 1993, PHYS REV B, V48, P15812 STRNAT KJ, 1991, J MAGN MAGN MATER, V100, P38 WITHANAWASAM L, 1994, J APPL PHYS, V75, P6646 WUCHNER S, 1997, PHYS REV B, V55, P11576 TC 0 BP 247 EP 256 PG 10 JI Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. PY 2000 PD FEB VL 80 IS 2 GA 282TV J9 PHIL MAG B UT ISI:000085235700013 ER PT Journal AU Costa, AT Castro, JDE Muniz, RB TI Oscillatory exchange coupling between iron layers separated by chromium SO PHYSICAL REVIEW B NR 56 AB The exchange coupling J between Fe layers separated by nonmagnetic Cr is calculated for Fe/Cr/Fe (001) trilayer structures as a function of the spacer thickness N for several temperatures T. It is shown that for perfectly sharp interfaces J(N,T) is entirely dominated by short period oscillations for 0 K less than or equal to T less than or equal to 500 K and N varying from 5 to 50 atomic planes. At zero temperature the amplitude of J decays as N-3/2 for large values of N. This behavior is caused by the particular type of singularity in the nesting of the Cr Fermi which is responsible for one of the dominant short-period oscillations of J(N). A strong temperature dependence of the coupling strength is obtained for some values of N, in excellent agreement with experiments. The effect of interface mixing on J(N) reduces the overall coupling strength, as well as the relative importance of the short period oscillatory components, and causes a phase shift in the oscillations of J(N). [S0163-1829(99)03317-2]. CR ALMEIDA BG, 1998, J MAGN MAGN MATER 2, V177, P1170 AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRUNO P, 1996, PHYS REV LETT, V76, P4254 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1991, PHYS REV B, V44, P9331 COSTA AT, 1997, PHYS REV B, V55, P3724 CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988 DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1992, MATER RES SOC S P, V231, P133 DRCHAL V, 1996, PHYS REV B, V53, P15036 ECASTRO JD, 1996, PHYS REV B, V53, P13306 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FERREIRA MS, 1996, J MAGN MAGN MATER, V154, PL1 FERREIRA MS, 1996, J PHYS-CONDENS MAT, V8, P11259 FREYSS M, 1996, PHYS REV B, V54, P12677 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1997, J APPL PHYS 2A, V81, P4350 HEINRICH B, 1991, PHYS REV B, V44, P9348 KOELLING DD, 1994, PHYS REV B, V50, P273 KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125 KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105 LANG P, 1996, PHYS REV B, V53, P9092 MATHON J, 1997, PHYS REV B, V56, P11797 MATHON J, 1995, PHYS REV LETT, V74, P3696 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1992, J MAGN MAGN MATER, V104, P1819 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 VEGA A, 1995, EUROPHYS LETT, V31, P561 VICTORA RH, 1986, MAGNETIC ELECT PROPE, P25 WANG Y, 1990, PHYS REV LETT, V65, P2732 TC 0 BP 11424 EP 11431 PG 8 JI Phys. Rev. B PY 1999 PD MAY 1 VL 59 IS 17 GA 272CA J9 PHYS REV B UT ISI:000084631900057 ER PT Journal AU Bruno, P TI Theory of interlayer exchange interactions in magnetic multilayers SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 122 AB This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations. CR BACK CH, 1997, J APPL PHYS 2B, V81, P5054 BACK CH, 1995, PHYS REV B, V52, P13114 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BOUNOUH A, 1996, EUROPHYS LETT, V33, P315 BRINER B, 1994, PHYS REV LETT, V73, P340 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO P, 1999, CONDMAT9905022 BRUNO P, 1999, EUR PHYS J B, V11, P83 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1999, IN PRESS BRUNO P, 1997, J MAGN MAGN MATER, V165, P128 BRUNO P, 1996, J MAGN MAGN MATER, V164, P27 BRUNO P, 1995, J MAGN MAGN MATER, V148, P202 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1999, MAGNETISCHE SCHICHTS, PCHB8 BRUNO P, 1996, PHYS REV B, V53, P9214 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1996, PHYS REV LETT, V46, P4253 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CARL A, 1995, PHYS REV LETT, V74, P190 CRAMPIN S, 1996, PHYS REV B, V53, P13817 DEMIGUEL JJ, 1991, J MAGN MAGN MATER, V93, P1 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1995, PHYS REV LETT, V75, P1306 DEVRIES JJ, 1996, THESIS EINDHOVEN U T DRCHAL V, 1998, PHILOS MAG B, V78, P571 DRCHAL V, 1996, PHYS REV B, V53, P15036 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FURUKAWA T, 1996, PHYS REV B, V54, P17896 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 HIMPSEL FJ, 1995, J ELECTRON SPECTROSC, V75, P187 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 INOMATA K, 1995, PHYS REV LETT, V74, P1863 IVES AJR, 1994, J APPL PHYS, V75, P6458 JALOCHOWSKI M, 1992, PHYS REV B, V45, P13607 JOHNSON MT, 1993, MATER RES SOC S P, V313, P93 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1994, PHYS REV B, V50, P8954 JONES BA, 1998, IBM J RES DEV, V42, P25 KATAYAMA T, 1993, J MAGN MAGN MATER, V126, P527 KAWAKAMI RK, 1999, PHYS REV LETT, V82, P4098 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIRILYUK A, 1996, PHYS REV LETT, V77, P4608 KLASGES R, 1998, PHYS REV B, V57, PR696 KUDMOVSKY J, 1996, PHYS REV B, V54, P3738 KUDRNOVSKY J, 1998, COMP MATER SCI, V10, P188 KUDRNOVSKY J, 1997, MATER RES SOC SYMP P, V475, P575 KUDRNOVSKY J, 1997, PHYS REV B, V56, P8919 LANG P, 1996, PHYS REV B, V53, P9092 LEE B, 1996, PHYS REV B, V54, P13034 LEE BC, 1995, PHYS REV B, V52, P3499 LI DQ, 1995, PHYS REV B, V51, P7195 LI DQ, 1997, PHYS REV LETT, V78, P1154 LINDGREN SA, 1989, J PHYS-CONDENS MAT, V1, P2151 LINDGREN SA, 1988, PHYS REV B, V38, P3060 LINDGREN SA, 1988, PHYS REV LETT, V61, P2894 LINDGREN SA, 1987, PHYS REV LETT, V59, P3003 LOLY PD, 1983, J PHYS C SOLID STATE, V16, P423 LUCE TA, 1996, PHYS REV LETT, V77, P2810 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1997, PHYS REV B, V56, P11797 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEGY R, 1995, PHYS REV B, V51, P5586 MILLER T, 1988, PHYS REV LETT, V61, P1404 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MUELLER MA, 1990, PHYS REV B, V41, P5214 MUELLER MA, 1989, PHYS REV B, V40, P5845 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1993, PHYS REV LETT, V70, P1771 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, PHYS REV B, V44, P5355 RHYNE JJ, 1995, MAGNETIC MAT, V5, P1 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SEGOVIA P, 1996, PHYS REV LETT, V77, P3455 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMITH NV, 1994, PHYS REV B, V49, P332 STILES MD, 1996, J APPL PHYS 2B, V79, P5805 STILES MD, 1999, J MAGN MAGN MATER, V200, P322 STILES MD, 1993, PHYS REV B, V48, P7238 SUZUKI Y, 1998, PHYS REV LETT, V80, P5200 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WACHS AL, 1986, PHYS REV B, V33, P1460 WEBER W, 1995, EUROPHYS LETT, V31, P491 WEBER W, 1996, PHYS REV LETT, V76, P3424 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 TC 0 BP 9403 EP 9419 PG 17 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100011 ER PT Journal AU Zvezdin, AK Kostyuchenko, VV TI Nonlinear domain-wall dynamics in a system of two magnetic layers SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS NR 18 AB The nonlinear dynamics of the magnetization in a spin-valve structure is investigated. Equations describing the dynamics of the magnetization in such a structure are obtained. The stability of the solution corresponding to a motionless flat domain wall is investigated. The nonlinear domain-wall dynamics are investigated in the approximation of a strong exchange interaction between the magnetic layers and in the approximation of a large magnetostatic energy. In the former case the nonlinear dynamical equations are shown to be similar to the equations describing the dynamics of the magnetization in a weak ferromagnet, and in the latter case they are similar to the equations of motion of a magnetic vortex (i.e., a vertical Bloch line) in a domain wall. (C) 1999 American Institute of Physics. [S1063-7761(99)01710-2]. CR ALMEIDA NS, 1995, PHYS REV B, V52, P13504 ANDREEV AF, 1980, SOV PHYS USP, V23, P21 BARYAKHTAR VG, 1994, DYNAMICS TOPOLOGICAL BISHOP A, 1981, SOLITONY DEISTVII, P72 BRAUN OM, 1988, J PHYS C SOLID STATE, V21, P3881 KOSEVICH AM, 1983, NONLINEAR MAGNETIZAT KOSTYUCHENKO VV, 1998, PHYS REV B, V57, P5951 LANDAU L, 1935, PHYS Z SOWJETUNION, V8, P153 MALOZEMOFF AP, 1982, MAGNETIC DOMAIN WALL MICHELETTI C, 1997, J PHYS A-MATH GEN, V30, PL233 PAPANICOLAOU N, 1995, PHYS REV B, V51, P15062 SCHREYER A, 1995, PHYS REV B, V52, P16066 TRALLORI L, 1995, J PHYS CONDENS MATT, V7, PL451 WANG RW, 1994, PHYS REV B, V50, P3931 WANG RW, 1994, PHYS REV LETT, V72, P920 ZVEZDIN AK, 1979, JETP LETT, V29, P553 ZVEZDIN AK, 1997, PHYS SOLID STATE, V39, P155 ZVEZDIN AK, 1990, SOV PHYS JETP, V71, P597 TC 0 BP 734 EP 739 PG 6 JI J. Exp. Theor. Phys. PY 1999 PD OCT VL 89 IS 4 GA 254NJ J9 J EXP THEOR PHYS UT ISI:000083618800017 ER PT Journal AU Pierce, DT Unguris, J Celotta, RJ Stiles, MD TI Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 90 AB The interplay between interfacial disorder and the antiferromagnetic order in Cr lends to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Tr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr lends to results not explained by the conventional model. For nearly ideal interfaces, the Fe-Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results. (C) 1999 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1997, J APPL PHYS 2A, V81, P3765 ARNOTT AS, 1990, KINETICS ORDERING GR, P321 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, COMMUNICATION COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D, V13, P925 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, J APPL PHYS 2A, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12667 FULLERTON EE, COMMUNICATION FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GEERKEN BM, 1982, J PHYS F MET PHYS, V12, P603 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1999, PHYS REV B, V59, P14520 HEINRICH B, 1991, PHYS REV B, V44, P9348 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEERSSCHAUT J, 1998, THESIS KATHOLIEKE U MIRBT S, 1997, PHYS REV B, V56, P287 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHMIDT CM, 1999, IN PRESS PHYS REV B, V60 SCHREYER A, COMMUNICATION SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 1996, PHYSICA B, V221, P366 SHI ZP, 1994, PHYS REV B, V49, P15159 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 THEISBROHL K, 1998, PHYS REV B, V57, P4747 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, IN PRESS J MAGN MAGN UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VEGA A, 1995, EUROPHYS LETT, V31, P561 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG RW, 1992, PHYS REV B, V46, P11681 WANG Y, 1990, PHYS REV LETT, V65, P2732 WERNER SA, 1967, PHYS REV, V155, P528 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 13 BP 290 EP 321 PG 32 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700019 ER PT Journal AU Karadamoglou, J Papanicolaou, N TI Surface spin-flop transitions in a classical XYZ chain SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL NR 20 AB A surface spin-flop transition has recently been observed in a multilayer Fe/Cr film (superlattice) that may be effectively described by a classical antiferromagnetic chain with a single- ion anisotropy. In this paper we explore such a transition in a classical spin chain with exchange anisotropy. Our theoretical results may suggest the occurrence of a similar phenomenon in quantum spin chains doped with nonmagnetic ions. CR ASAKAWA H, 1998, PHYS REV B, V57, P8285 GAUDIN M, 1983, FONCTION ONDE BETHE GELFAND MP, 1997, PHYS REV B, V55, P11372 JIMBO M, 1995, NUCL PHYS B, V441, P437 JOHNSON JD, 1972, PHYS REV A, V6, P1613 KAPUSTIN A, 1996, J PHYS A-MATH GEN, V29, P1629 KEFFER F, 1973, PHYS REV LETT, V31, P1061 MICHELETTI C, 1999, IN PRESS PHYS REV B MICHELETTI C, 1997, J PHYS A-MATH GEN, V30, PL233 MILLS DL, 1968, PHYS REV, V171, P488 MILLS DL, 1968, PHYS REV LETT, V20, P18 PAPANICOLAOU N, 1999, J PHYS-CONDENS MAT, V11, P59 PAPANICOLAOU N, 1998, J PHYS-CONDENS MAT, V10, PL131 PAPANICOLAOU N, 1995, PHYS REV B, V51, P15062 RAKHMANOVA S, 1998, PHYS REV B, V57, P476 TRALLORI L, 1995, J PHYS CONDENS MATT, V7, PL451 TRALLORI L, 1998, PHYS REV B, V57, P5923 TRALLORI L, 1994, PHYS REV LETT, V72, P1925 WANG RW, 1996, PHYS REV B, V53, P2627 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 1 BP 3275 EP 3281 PG 7 JI J. Phys. A-Math. Gen. PY 1999 PD MAY 7 VL 32 IS 18 GA 198KY J9 J PHYS-A-MATH GEN UT ISI:000080424200007 ER