FN ISI Export Format VR 1.0 PT J AU Vertes, A Klencsar, Z Vanko, G Marek, T Suvegh, K Homonnay, Z Kuzmann, E TI Nuclear techniques in the elucidation of chemical structure SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY NR 77 AB The paper offers three applications of nuclear methods in the research of chemical structure. First, progress in positron annihilation spectroscopy is illustrated by a positron beamline study, which obtained results that are not available through conventional experiments. The positron beam was used for the study of Langmuir-Blodgett (LB) films containing 4-58 layers of arachidic acid and its salts. These measurements have shown that this emerging technique is capable of characterizing even such elusive systems. Second, the potential of Mossbauer spectroscopy to answer current challenges of solid state chemistry are shown in a study on perovskites of recent interest. Eu-151 Mossbauer spectroscopy was used to study the effect of Pr substitution in EuBa2Cu3O7-delta. It was shown that the introduction of Pr into the rare earth site as well as into the Ba site results in the appearance of extra electrons both in the copper oxide planes and at the 4f shell of Eu cations. The observed effects were explained by the hole filling effect of Pr. Finally, a survey is presented on the recently developed techniques for nuclear resonant scattering of synchrotron radiation, an exciting and very rapidly developing extension to conventional Mossbauer spectroscopy. An interesting new result is that nuclear inelastic scattering experiments performed on solutions of Fe-57 complexes show contribution from vibrations rather than from diffusion to the inelastic spectra. CR BARON AQR, 1997, PHYS REV LETT, V79, P2823 BEDNORZ JG, 1986, Z PHYS B CON MAT, V64, P189 BLACKSTEAD HA, 1996, PHYS REV B, V54, P6122 BLACKSTEAD HA, 1995, PHYS REV B, V51, P11830 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 BOTTYAN L, IN PRESS BRANDL D, 1995, THIN SOLID FILMS, V256, P220 BRANDT W, 1960, PHYS REV, V120, P1289 CHU CW, 1988, PHYS REV LETT, V60, P941 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 COUSSEMENT R, 1996, PHYS REV B, V54, P16003 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1996, PHYS REV B, V53, P6158 EIBSCHUTZ M, 1987, PHYS REV B, V35, P8714 FEHRENBACHER R, 1993, PHYS REV LETT, V70, P3471 FELNER I, 1995, SUPERCOND SCI TECH, V8, P121 GERDAU E, 1985, PHYS REV LETT, V54, P835 GHOSH VJ, 1995, APPL SURF SCI, V85, P187 GUAN WY, 1993, PHYSICA C, V209, P19 GUILLAUME M, 1994, J PHYS-CONDENS MAT, V6, P7963 HA DH, 1998, PHYSICA C, V302, P299 HARP GR, 1990, PHYS REV LETT, V65, P1012 IQBAL Z, 1994, PHYS REV B, V49, P12322 KHOMSKII D, 1994, PHYSICA B, V199, P328 KLENCSAR Z, 1998, PHYSICA C, V304, P124 KLENCSAR Z, UNPUB PHYS REV LETT KOHN VG, 1998, PHYS REV B, V58, P8437 KORECKI P, 1999, PHYS REV B, V59, P6139 KORECKI P, 1997, PHYS REV LETT, V79, P3518 KRAMER MJ, 1997, PHYS REV B, V56, P5512 LABBE C, IN PRESS P 34 ZAK SC LANGMUIR I, 1935, KOLLOID Z, V73, P257 LATKA K, 1990, PHYSICA C, V171, P287 MAEDA H, 1988, JPN J APPL PHYS PT 2, V27, P209 MAREK T, 1997, MATER SCI FORUM, V255-, P686 MOOLENAAR AA, 1996, PHYSICA C, V267, P279 MOSSBAUER RL, 1958, Z PHYS, V151, P124 NAGY DL, 1997, CONDENSED MATTER STU, P17 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1999, NATO ASI 3 HIGH TECH, V66, P323 NAROZHNYI VN, 1999, PHYS REV LETT, V82, P461 NIEVA G, 1991, PHYS REV B, V44, P6999 NORTON DP, 1991, PHYS REV LETT, V66, P1537 ODEURS J, 1998, HYPERFINE INTERACT, V113, P455 PARK M, 1996, PHYSICA C, V259, P43 PAULSEN H, 1999, PHYS REV B, V59, P975 POOLE CP, 1995, SUPERCONDUCTIVITY REN YT, 1993, PHYSICA C, V213, P224 ROBERTS GG, 1985, ADV PHYS, V34, P475 SALDIN DK, 1990, PHYS REV LETT, V64, P1270 SCHULTZ PJ, 1988, REV MOD PHYS, V60, P701 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 SHENG ZZ, 1988, NATURE, V332, P55 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1997, PHYS REV B, V55, P5811 SODERHOLM L, 1987, NATURE, V328, P604 STADNIK ZM, 1991, PHYS REV B, V44, P12552 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 SZOKE A, 1986, AIP C P, V147 TEGZE M, 1991, EUROPHYS LETT, V16, P41 TEGZE M, 1996, NATURE, V380, P49 TEGZE M, 1999, PHYS REV LETT, V82, P4847 TOMKOWICZ Z, 1991, PHYSICA C, V174, P71 VANVEEN A, 1997, MATER SCI FORUM, V255-, P76 VANVEEN A, 1990, SLOW POSITRON BEAMS, P171 VERTES A, 1990, MOSSBAUER SPECTROSCO VERTES A, 1979, MOSSBAUER SPECTROSCO WORTMANN G, 1988, PHYS LETT A, V126, P434 WORTMANN G, 1990, SOLID STATE COMMUN, V75, P981 XU ZA, 1997, PHYSICA C, V282, P1197 ZHANG XW, 1995, JPN J APPL PHYS, V34, P330 ZOU Z, 1999, PHYS REV LETT, V82, P462 ZOU ZG, 1997, JPN J APPL PHYS 2, V36, PL18 TC 0 BP 241 EP 253 PG 13 JI J. Radioanal. Nucl. Chem. PY 2000 PD JAN VL 243 IS 1 GA 338JA J9 J RADIOANAL NUCL CHEM UT ISI:000088414700032 ER PT J AU Nagy, DL Bottyan, L Deak, L Szilagyi, E Spiering, H Dekoster, J Langouche, G TI Synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 34 AB Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers. CR AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ALP EE, 1993, PHYS REV LETT, V70, P3351 ANDREEVA MA, 1999, J ALLOY COMPD, V286, P322 BARON AQR, 1994, PHYS REV B, V50, P10354 BERNSTEIN S, 1963, PHYS REV, V132, P1625 BORN M, 1970, PRINCIPLES OPTICS, P51 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 BOTTYAN L, 1999, UNPUB CARBONE C, IN PRESS CHUMAKOV AI, 1999, HYPERFINE INTERACT, V123, P427 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1999, CONDENSED MATTER STU, P151 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1996, PHYS REV B, V53, P6158 FERMI E, 1946, PHYS REV, V70, P103 GROTE M, 1991, EUROPHYS LETT, V14, P707 HANNON JP, 1985, PHYS REV B, V32, P5068 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P545 KIESSIG H, 1931, ANNLN PHYS, V10, P715 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KULCSAR K, 1971, P INT C MOSSB SPECTR, P594 LAX M, 1951, REV MOD PHYS, V23, P287 MAJOR M, 1999, CONDENSED MATTER STU, P165 NAGY DL, 1997, CONDENSED MATTER STU, P17 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1999, MOSSBAUER SPECTROSCO, P323 NIESEN L, 1998, PHYS REV B, V58, P8590 NOTERMANN FC, 1992, PHYS REV B, V46, P10847 ROHLSBERGER R, 2000, HYPERFINE INTERACT, V125, P69 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SPIERING H, 2000, HYPERFINE INTERACT, V125, P197 SPIERING H, 1985, HYPERFINE INTERACT, V24, P737 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 353 EP 361 PG 9 JI Hyperfine Interact. PY 2000 VL 126 IS 1-4 GA 323TL J9 HYPERFINE INTERACTIONS UT ISI:000087581000053 ER PT J AU Shvyd'ko, YV TI MOTIF: Evaluation of time spectra for nuclear forward scattering SO HYPERFINE INTERACTIONS NR 22 AB The computer program MOTIF calculates time dependences for nuclear forward scattering (NFS) of synchrotron radiation and allows fully automatic fits of experimental data. A multiple scattering technique of calculations directly in space and time is used. The source code of MOTIF is written in Fortran 77. It has been worked out since 1993 and tested on several Unix platforms by fitting the NFS time spectra of Fe-57, Sn-119, Eu- 151, Dy-161, and Ta-181 nuclei in various compounds with different time-independent and time-dependent hyperfine interactions. CR 1992, NUCL DATA SHEETS, V67, P195 AFANASEV AM, 1985, PHYS STATUS SOLIDI B, V131, P299 AFANASEV AM, 1963, SOV PHYS JETP, V18, P1139 DEAK L, 1996, PHYS REV B, V53, P6158 GERDAU E, 1986, PHYS REV LETT, V57, P1141 HAAS M, 1997, PHYS REV B, V56, P14082 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KOHN VG, 1998, PHYS REV B, V57, P5788 RANDL OG, 1994, PHYS REV B, V49, P8768 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHVYDKO YV, 1993, EUROPHYS LETT, V22, P305 SHVYDKO YV, 1999, PHYS REV B, V59, P9132 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SHVYDKO YV, 1996, PHYS REV B, V54, P14942 SHVYDKO YV, 1996, PHYS REV LETT, V77, P3232 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STEVENS JG, 1976, MOSSBAUER EFFECT DAT STURHAHN W, 1994, PHYS REV B, V49, P9285 TRAMMELL GT, 1979, PHYS REV B, V19, P3835 TRAMMELL GT, 1978, PHYS REV B, V18, P165 TC 0 BP 173 EP 188 PG 16 JI Hyperfine Interact. PY 2000 VL 125 IS 1-4 GA 288VZ J9 HYPERFINE INTERACTIONS UT ISI:000085586300009 ER PT J AU Spiering, H Deak, L Bottyan, L TI EFFINO SO HYPERFINE INTERACTIONS NR 20 AB The program EFFINO (Environment For FItting Nuclear Optics) evaluates Mossbauer absorption and time spectra both in nuclear forward scattering and in grazing incidence reflection geometry. Time-integral prompt and delayed angular scan spectra are also treated. The time spectra are calculated by Fourier transformation from frequency to time domain. The electric quadrupole and magnetic dipole fields at the nuclear sites are considered static at present. The specimen in both forward scattering and grazing incidence is assumed to be a multilayer, with individual thickness and interface roughness (the latter only for the grazing incidence case at present) and electronic index of refraction. Up to eight different layers plus eight repetition periods of those layers are treated. Each layer may contain zero to eight nuclear sites (zero in all layers being prompt X-ray reflectivity), with their own effective thickness or (for grazing incidence) their own complex nuclear index of refraction. From the forward scattering amplitude, a differential 4 x 4 propagation matrix is constructed for each layer. Several experimental spectra of the same or different type(s) can be fitted simultaneously. Correlations between parameters of the same or of different spectra can be introduced. CR *J GUT U, 1982, AN CHEM AN CHEM AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ANDREEVA MA, 1994, SOV PHYS JETP, V78, P965 ANDREEVA MA, 1986, VESTN MOSK U FIZ AS+, V27, P57 BLUME M, 1968, PHYS REV, V171, P417 BORZDOV GN, 1976, ZH PRIKL SPEKTROSK, V25, P526 DEAK L, 1999, CONDENSED MATTER STU DEAK L, IN PRESS COMMON ANIS DEAK L, 1996, PHYS REV B, V53, P6158 FEDOROV FI, 1976, TEORIA GIROTROPII GRANT RW, 1968, PHYS REV, V171, P417 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1968, PHYS REV, V169, P315 HANNON JP, 1984, PHYS REV B, V32, P5068 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P545 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P554 KULCSAR K, 1971, P INT C MOSSB SPECTR, P594 MULLER EW, 1982, MOSFUN LAB REPORT AN ROHLSBERGER R, 1994, THESIS U HAMBURG SPIERING H, 1978, HYP INTERACT, V120, P265 TC 1 BP 197 EP 204 PG 8 JI Hyperfine Interact. PY 2000 VL 125 IS 1-4 GA 288VZ J9 HYPERFINE INTERACTIONS UT ISI:000085586300011 ER PT J AU Shvyd'ko, YV TI Coherent nuclear resonant scattering of X-rays: Time and space picture SO HYPERFINE INTERACTIONS NR 56 AB The problem of coherent resonant scattering of X-rays by an ensemble of nuclei is solved directly in time and space. In a first step the problem with a single coherently scattered beam is considered - nuclear forward scattering. The wave equation describing the propagation of the radiation through the nuclear ensemble is derived. It is a first order integro-differential equation. Its kernel is a double time function K(t, (t) over tilde) which represents the coherent single scattering response of the nuclear system at time t to excitation at (t) over tilde. The kernel is defined by the character of the interactions the nuclei experience with the environment and by the character of their motion. A general procedure of solution of the wave equation is introduced which is independent of the type of kernel. In a second step the wave equation is generalized to the case of many coherently scattered beams, which is, e.g., the case of nuclear Bragg diffraction. Kernels of the wave equations are derived for some particular cases: collective motion of nuclei in space, thermal lattice vibrations, time-independent hyperfine interactions, and time- dependent hyperfine interactions due to external magnetic-field switching. CR AFANASEV AM, 1963, SOV PHYS JETP, V18, P1139 AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 AKHIEZER AI, 1965, QUANTUM ELECTRODYNAM ALEKSANDROV PA, 1975, SOV PHYS JETP, V40, P360 ALLEN L, 1975, OPTICAL RESONANCE 2 BERESTETSKII VB, 1971, RELATIVISTIC QUANTUM BLUM K, 1981, DENSITY MATRIX THEOR BLUME M, 1968, PHYS REV, V171, P417 BLUME M, 1967, PHYS REV, V165, P446 BURNHAM DC, 1969, PHYS REV, V188, P667 DEAK L, 1996, PHYS REV B, V53, P6158 GERDAU E, 1986, PHYS REV LETT, V57, P1141 HAAS M, 1997, PHYS REV B, V56, P14082 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1968, PHYS REV, V169, P315 HANNON JP, 1985, PHYS REV B, V32, P5068 HANNON JP, 1985, PHYS REV B, V32, P6363 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1973, Z NATURFORSCH A, VA 28, P1351 KAGAN Y, 1968, ZH EKSP TEOR FIZ, V27, P819 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KOHN VG, 1995, J PHYS-CONDENS MAT, V7, P7589 KOHN VG, 1998, PHYS REV B, V57, P5788 LANDAU LD, 1970, QUANTUM MECH NON REL LAUBEREAU A, 1978, REV MOD PHYS, V50, P607 LYNCH FJ, 1960, PHYS REV, V120, P513 MARADUBIN AA, 1971, THEORY LATTICE DYNAM MESSIAH A, 1962, QUANTUM MECH, V2 MITSUI T, 1997, JPN J APPL PHYS 1, V36, P6525 ROHLSBERGER R, 1997, HASYLAB, P933 ROHLSBERGER R, UNPUB PHYS REV LETT SHVYDKO YV, 1994, EUROPHYS LETT, V26, P215 SHVYDKO YV, 1993, EUROPHYS LETT, V22, P305 SHVYDKO YV, HE181 ESRF SHVYDKO YV, 1994, HYPERFINE INTERACT, V90, P287 SHVYDKO YV, 1993, J PHYS-CONDENS MAT, V5, P1557 SHVYDKO YV, 1992, J PHYS-CONDENS MAT, V4, P2663 SHVYDKO YV, 1991, JETP LETT+, V53, P69 SHVYDKO YV, 1991, JETP LETT+, V53, P231 SHVYDKO YV, 1999, PHYS REV B, V59, P9132 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SHVYDKO YV, 1996, PHYS REV B, V54, P14942 SHVYDKO YV, 1995, PHYS REV B, V52, PR711 SHVYDKO YV, 1996, PHYS REV LETT, V77, P3232 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1997, AIP CONF PROC, P323 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 SMIRNOV GV, 1996, PHYS REV LETT, V77, P183 STURHAHN W, 1994, PHYS REV B, V49, P9285 TAKAGI S, 1962, ACTA CRYSTALLOGR, V15, P1311 TRAMMELL GT, 1962, PHYS REV, V126, P1045 TRAMMELL GT, 1978, PHYS REV B, V18, P165 VANBURCK U, 1992, PHYS REV B, V46, P6207 VANHOVE L, 1955, PHYS REV, V55, P190 TC 0 BP 275 EP 299 PG 25 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700007 ER PT J AU Rohlsberger, R TI Theory of X-ray grazing incidence reflection in the presence of nuclear resonance excitation SO HYPERFINE INTERACTIONS NR 37 AB The dynamical theory of nuclear resonant diffraction is applied to the case of grazing incidence reflection. The solution of the dynamical equations is obtained by evaluation of a matrix exponential. This formalism is applied to grazing incidence reflection from arbitrary stratified media. However, the basic formalism is not restricted to this case, but can be used to describe a wide range of diffraction phenomena. This is demonstrated in the case of grazing incidence diffraction from gratings in the n-beam case. Moreover, the theory is extended to describe the influence of surface and boundary roughness. CR AZZAM RMA, 1987, ELLIPSOMETRY POLARIZ BADER S, 1994, ULTRATHIN MAGNETIC S, V2, P297 BANSMANN J, IN PRESS BATTERMAN BW, 1964, REV MOD PHYS, V36, P681 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1, P305 BLUME M, 1985, J APPL PHYS, V57, P3615 BLUME M, 1968, PHYS REV, V171, P417 BORN M, 1978, PRINCIPLES OPTICS BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 DEAK L, 1996, PHYS REV B, V53, P6158 DEBOER DKG, 1991, PHYS REV B, V44, P498 FENG YP, 1993, PHYS REV LETT, V71, P537 GROTE M, 1991, EUROPHYS LETT, V17, P707 HANNON JP, 1968, PHYS REV, V169, P315 HANNON JP, 1985, PHYS REV B, V32, P5068 HANNON JP, 1985, PHYS REV B, V32, P6363 HANNON JP, 1988, PHYS REV LETT, V61, P1245 HANNON JP, 1979, PHYS REV LETT, V43, P636 KROL A, 1988, PHYS REV B, V38, P8579 LAGOMARSINO S, 1996, J APPL PHYS, V79, P4471 LUCAS CA, 1991, EUROPHYS LETT, V14, P343 LUO J, 1993, PHYS REV LETT, V71, P287 NEVOT L, 1980, REV PHYS APPL, V15, P761 NIESEN L, 1998, PHYS REV B, V58, P8590 ROHLSBERGER R, 1994, 9404 DESY HASYLAB ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1994, HYPERFINE INTERACT, V92, P1107 ROHLSBERGER R, 1997, NUCL INSTRUM METH A, V394, P251 ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 SIDDONS DP, 1995, NUCL INSTRUM METH B, V103, P371 SIDDONS DP, 1990, PHYS REV LETT, V64, P1967 SINHA SK, COMMUNICATION STURHAHN W, 1994, PHYS REV B, V49, P9285 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TOLAN M, 1992, EUROPHYS LETT, V20, P223 VIDAL B, 1984, APPL OPTICS, V23, P1794 WANG J, 1992, SCIENCE, V258, P775 TC 0 BP 301 EP 325 PG 25 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700008 ER PT J AU Dekoster, J Degroote, S Meersschaut, J Moons, R Vantomme, A Bottyan, L Deak, L Szilagyi, E Nagy, DL Baron, AQR Langouche, G TI Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy SO HYPERFINE INTERACTIONS NR 23 AB Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Mossbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Mossbauer reflectometry. From the fits of the time spectrum and the resonant theta-2 theta scans a model for the sublayer magnetization of the multilayer is deduced. CR BOST MC, 1985, J APPL PHYS, V58, P2696 BOTTYAN L, UNPUB PHYS REV B BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1996, PHYS REV B, V53, P6158 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1996, PHYS REV LETT, V57, P2442 JACCARINO V, 1967, PHYS REV, V160, P476 LANG P, 1993, PHYS REV LETT, V71, P1927 MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUEFFER R, 1996, HYP INTERACT, V97, P589 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SPIERING H, IN PRESS NUCL RESONA TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 0 BP 39 EP 48 PG 10 JI Hyperfine Interact. PY 1999 VL 121 IS 1-8 GA 236UP J9 HYPERFINE INTERACTIONS UT ISI:000082617800006 ER PT J AU Shvyd'ko, YV TI Nuclear resonance forward scattering of x rays: Time and space picture SO PHYSICAL REVIEW B NR 55 CR AFANASEV AM, 1964, ZH EKSP TEOR FIZ+, V18, P1139 AKHIEZER AI, 1965, QUANTUM ELECTRODYNAM ALEKSANDROV PA, 1975, SOV PHYS JETP, V40, P360 ALLEN L, 1975, OPTICAL RESONANCE 2 BERESTETSKII VB, 1971, RELATIVISTIC QUANTUM BLUM K, 1981, DENSITY MATRIX THEOR BLUME M, 1968, PHYS REV, V171, P417 BLUME M, 1967, PHYS REV, V165, P446 BURNHAM DC, 1969, PHYS REV, V188, P667 DEAK L, 1996, PHYS REV B, V53, P6158 GERDAU E, 1986, PHYS REV LETT, V57, P1141 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 HAAS M, 1997, PHYS REV B, V56, P14082 HANNON JP, 1969, PHYS REV, V186, P306 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1973, Z NATURFORSCH A, VA 28, P1351 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KOHN VG, 1995, J PHYS-CONDENS MAT, V7, P7589 LANDAU LD, 1970, QUANTUM MECH NONRELA LAUBEREAU A, 1978, REV MOD PHYS, V50, P607 LEUPOLD O, 1998, HYPERFINE INTERACT, V113, P81 LYNCH FJ, 1960, PHYS REV, V120, P513 MARADUDIN AA, 1971, THEORY LATTICE DYNAM MESSIAH A, 1962, QUANTUM MECH, V2 MITSUI T, 1997, JPN J APPL PHYS 1, V36, P6525 ROHLSBERGER R, 1997, HASYLAB, P933 ROHLSBERGER R, UNPUB ROHLSBERGER R, 1997, UNPUB HASYLAB ANN RE, P933 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SHVYDKO YV, 1994, EUROPHYS LETT, V26, P215 SHVYDKO YV, 1993, EUROPHYS LETT, V22, P305 SHVYDKO YV, 1994, HYPERFINE INTERACT, V90, P287 SHVYDKO YV, 1993, J PHYS-CONDENS MAT, V5, P1557 SHVYDKO YV, 1992, J PHYS-CONDENS MAT, V4, P2663 SHVYDKO YV, 1991, JETP LETT+, V53, P69 SHVYDKO YV, 1991, JETP LETT+, V53, P231 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SHVYDKO YV, 1996, PHYS REV B, V54, P14942 SHVYDKO YV, 1995, PHYS REV B, V52, PR711 SHVYDKO YV, 1996, PHYS REV LETT, V77, P3232 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97, P51 SMIRNOV GV, 1998, PHYS REV B, V57, P5788 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 SMIRNOV GV, 1996, PHYS REV LETT, V77, P183 STURHAHN W, 1994, PHYS REV B, V49, P9285 TAKAGI S, 1962, ACTA CRYSTALLOGR, V15, P1311 TRAMMELL GT, 1962, PHYS REV, V126, P1045 TRAMMELL GT, 1979, PHYS REV B, V19, P3835 TRAMMELL GT, 1978, PHYS REV B, V18, P165 VANBURCK U, 1992, PHYS REV B, V46, P6207 VANHOVE L, 1955, PHYS REV, V55, P190 WINKLER H, 1998, HYPERFINE INTERACT, V113, P443 TC 6 BP 9132 EP 9143 PG 12 JI Phys. Rev. B PY 1999 PD APR 1 VL 59 IS 14 GA 186WT J9 PHYS REV B UT ISI:000079754300018 ER PT J AU Deak, L Bayreuther, G Bottyan, L Gerdau, E Korecki, J Kornilov, EI Lauter, HJ Leupold, O Nagy, DL Petrenko, AV Pasyuk-Lauter, VV Reuther, H Richter, E Rohloberger, R Szilagyi, E TI Pure nuclear Bragg reflection of a periodic Fe-56/Fe-57 multilayer SO JOURNAL OF APPLIED PHYSICS NR 22 AB Grazing incidence nuclear multilayer diffraction of synchrotron radiation from a periodic stack of alternating Fe-56 and Fe-57 layers was observed. Resonant layer fraction, substrate size, flatness, and surface roughness limits were optimized by previous simulations. The isotopic multilayer (ML) sample of float glass/Fe-57(2.25 nm)/[Fe-56(2.25 nm)/Fe-57(2.25 nm)]X15/Al(9.0 nm) nominal composition was prepared by molecular beam epitaxy at room temperature. Purity structure and lateral homogenity of the isotopic ML film was characterized by magnetometry, Auger electron, Rutherford backscattering, and conversion electron Mossbauer spectroscopies. The isotopic ML structure was investigated by neutron and synchrotron Mossbauer reflectometry. Surface roughness of about 1 nm of the flat substrate (curvature radius > 57 m) was measured by scanning tunneling microscopy and profilometry. A pure nuclear Bragg peak appeared in synchrotron Mossbauer reflectometry at the angle expected from neutron reflectometry while no electronic Bragg peak was found at the same position by x-ray reflectometry. The measured width of the Bragg peak is in accordance with theoretical expectations. (C) 1999 American Institute of Physics. [S0021-8979(99)09201-4]. CR BARON AQR, 1994, PHYS REV B, V50, P10354 BORN M, 1970, PRINCIPLES OPTICS, P51 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 CHUMAKOV AI, COMMUNICATION CHUMAKOV AI, 1991, JETP LETT, V54, P271 CHUMAKOV AI, 1992, JETP LETT+, V55, P509 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1993, CONDENSED MATTER STU, P269 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1996, PHYS REV B, V53, P6158 HANNON JP, 1985, PHYS REV B, V32, P6363 HANNON JP, 1984, PHYS REV B, V32, P5068 KABANNIK VA, 1989, VERSION NUCL RESONAN KIKUTA S, 1989, REV SCI INSTRUM, V60, P2126 KOMEEV DA, 1992, SURFACE XRAY NEUTRON, P213 KOTAI E, 1994, NUCL INSTRUM METH B, V85, P588 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 PASZTI F, 1990, NUCL INSTRUM METH B, V47, P187 PENFOLD J, 1990, J PHYS-CONDENS MAT, V2, P1369 ROHLSBERGER R, 1993, J APPL PHYS, V74, P1933 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TRAMMELL GT, 1977, AIP C P, V38, P46 TC 2 BP 1 EP 7 PG 7 JI J. Appl. Phys. PY 1999 PD JAN 1 VL 85 IS 1 GA 148DM J9 J APPL PHYS UT ISI:000077489200001 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Haas, M Realo, E Winkler, H MeyerKlaucke, W Trautwein, AX Leupold, O Ruter, HD TI Nuclear resonant forward scattering of synchrotron radiation by randomly oriented iron complexes which exhibit nuclear Zeeman interaction SO PHYSICAL REVIEW B-CONDENSED MATTER NR 18 AB An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mossbauer absorber is derived from the theory of gamma optics. It is assumed that the hyperfine splittings present in the Mossbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mossbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a Fe-57 protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ''picket-fence'' porphyrin [Fe(CH3COO)TPpivP](-) in an applied field of 6 T. CR ABRAGAM A, 1951, P ROY SOC LOND A MAT, V205, P135 AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ALP EE, 1995, NUCL INSTRUM METH B, V97, P526 BLUME M, 1968, PHYS REV, V171, P417 BOMINAAR EL, 1992, INORG CHEM, V31, P1845 DEAK L, 1996, PHYS REV B, V53, P6158 EDMONDS AR, 1957, ANGULAR MOMENTUM QUA GERDAU E, 1994, RESONANT ANOMALOUS X, P589 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1968, PHYS REV, V169, P315 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KNESE K, 1995, THESIS U LEIPZIG LEUPOLD O, 1996, ITAL PHY SO, V50, P857 LEUPOLD O, UNPUB REALO E, 1996, ITAL PHY SO, V50, P861 STURHAHN W, 1994, PHYS REV B, V49, P9285 TRAUTWEIN AX, 1991, STRUCT BOND, V78, P1 TC 11 BP 14082 EP 14088 PG 7 JI Phys. Rev. B-Condens Matter PY 1997 PD DEC 1 VL 56 IS 21 GA YJ879 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YJ87900082 ER