FN ISI Export Format VR 1.0 PT J AU Nagy, DL Bottyan, L Deak, L Szilagyi, E Spiering, H Dekoster, J Langouche, G TI Synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 34 AB Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers. CR AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ALP EE, 1993, PHYS REV LETT, V70, P3351 ANDREEVA MA, 1999, J ALLOY COMPD, V286, P322 BARON AQR, 1994, PHYS REV B, V50, P10354 BERNSTEIN S, 1963, PHYS REV, V132, P1625 BORN M, 1970, PRINCIPLES OPTICS, P51 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 BOTTYAN L, 1999, UNPUB CARBONE C, IN PRESS CHUMAKOV AI, 1999, HYPERFINE INTERACT, V123, P427 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1999, CONDENSED MATTER STU, P151 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1996, PHYS REV B, V53, P6158 FERMI E, 1946, PHYS REV, V70, P103 GROTE M, 1991, EUROPHYS LETT, V14, P707 HANNON JP, 1985, PHYS REV B, V32, P5068 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P545 KIESSIG H, 1931, ANNLN PHYS, V10, P715 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KULCSAR K, 1971, P INT C MOSSB SPECTR, P594 LAX M, 1951, REV MOD PHYS, V23, P287 MAJOR M, 1999, CONDENSED MATTER STU, P165 NAGY DL, 1997, CONDENSED MATTER STU, P17 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1999, MOSSBAUER SPECTROSCO, P323 NIESEN L, 1998, PHYS REV B, V58, P8590 NOTERMANN FC, 1992, PHYS REV B, V46, P10847 ROHLSBERGER R, 2000, HYPERFINE INTERACT, V125, P69 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SPIERING H, 2000, HYPERFINE INTERACT, V125, P197 SPIERING H, 1985, HYPERFINE INTERACT, V24, P737 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 353 EP 361 PG 9 JI Hyperfine Interact. PY 2000 VL 126 IS 1-4 GA 323TL J9 HYPERFINE INTERACTIONS UT ISI:000087581000053 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Biquadratic interlayer exchange coupling in epitaxial Fe/Si/Fe SO JOURNAL OF APPLIED PHYSICS NR 13 AB We have studied the biquadratic exchange coupling in epitaxially grown Fe/Si/Fe. The temperature and thickness dependence of the biquadratic coupling strength were determined unambiguously by fitting the easy- and hard-axis magneto- optical Kerr effect loops. The origin of the biquadratic coupling can be fully understood in terms of Slonczewski's loose spins mechanism. (C) 2000 American Institute of Physics. [S0021-8979(00)31208-7]. CR BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KOHLHEPP JT, 1997, MATER RES SOC SYMP P, V475, P593 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 TC 0 BP 5452 EP 5454 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200252 ER PT J AU Dubowik, J Stobiecki, F Szymanski, B Kudryavtsev, YV Grabias, A Kopcewicz, M TI Complex magnetic structure of strongly coupled Fe/Si multilayers SO ACTA PHYSICA POLONICA A NR 8 AB Fe/Si multilayers with strong bilinear and biquadratic couplings were investigated. A complex structure revealed by the Mossbauer spectroscopy corresponds to multimode ferromagnetic resonance spectra in a non-saturated state. Simple dispersion relations for antiferromagnetic coupled bilayer structures are shown to be inapplicable to the Fe/Si multilayers with a strong biquadratic component to the antiferromagnetic bilinear coupling. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3032 FREDRIKZE H, 1997, PHYSICA B, V234, P498 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 WIGEN PE, 1994, MAGNETIC MULTILAYERS, P183 TC 0 BP 451 EP 454 PG 4 JI Acta Phys. Pol. A PY 2000 PD MAR VL 97 IS 3 GA 299HN J9 ACTA PHYS POL A UT ISI:000086193100022 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Origin of biquadratic exchange in Fe/Si/Fe SO PHYSICAL REVIEW LETTERS NR 21 AB The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. CR ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BRUNO P, 1995, PHYS REV B, V52, P411 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MA P, 1997, PHYS REV B, V56, P9881 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 VANDERHEIJDEN PAA, 1999, PHYS REV LETT, V82, P1050 TC 0 BP 1812 EP 1815 PG 4 JI Phys. Rev. Lett. PY 2000 PD FEB 21 VL 84 IS 8 GA 285HK J9 PHYS REV LETT UT ISI:000085383500044 ER PT J AU Ihara, N Narushima, S Kijima, T Abeta, H Saito, T Shinagawa, K Tsushima, T TI Magnetic properties and magnetoresistance of granular evaporated Fe/Si films SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 45 AB Fe (3.4 Angstrom) and Si (6 Angstrom) are evaporated alternately onto silica substrates to realize a granular structure. The substrate temperature T-s during the evaporation is changed from 100 K to 623 K to vary the film structures. The specimens of T-s greater than or equal to room temperature (RT) are superparamagnetic at RT, which suggests a granular structure. Magnetoresistance (MR) at RT is negative (resistivity decreases with increasing magnetic field H) for all specimens. It is thought that the negative MR is attributable to the granular structure. On the other hand, at 77 K a positive MR linear with H (not H-2) up to 50 kOe is observed for all specimens. The linear dependence on H of the positive MR may be due to the nonuniformity in the granular structure. The positive MR itself and the change of the sign of MR from negative to positive with decreasing temperature have not been observed in conventional granular systems such as Co- Ag and Co-Al-O. CR BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRODSKY MH, 1970, PHYS REV B, V1, P2632 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHANTRELL RW, 1978, IEEE T MAGN, V14, P975 CHIEN CL, 1993, J APPL PHYS, V73, P5309 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1998, IN PRESS J APPL PHYS ENDO Y, 1998, IN PRESS PHYS REV B ENDO Y, 1997, J MAGN SOC JPN, V21, P541 FUJIMORI H, 1995, MAT SCI ENG B-SOLID, V31, P219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRANQVIST CG, 1976, J APPL PHYS, V47, P2200 HIGHMORE RJ, 1995, J MAGN MAGN MATER, V151, P95 HUNT MB, 1994, PHYS REV B, V50, P14933 IHARA N, 1999, J MAGN SOC JPN, V23, P85 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KINBARA A, 1979, HAKUMAKU, P39 KITTEL C, 1963, QUANTUM THEORY SOLID, PCH12 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MASSALSKI B, 1990, BINARY ALLOY PHASE D, P1771 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MITANI S, 1997, J MAGN MAGN MATER, V165, P141 SAITO Y, 1998, J PHYS SOC JPN, V67, P1138 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, 1996, J APPL PHYS, V79, P4776 STROUD D, 1976, PHYS REV B, V13, P1434 TASSIS DH, 1998, J APPL PHYS, V84, P2960 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONHELMOLT R, 1994, PHYS STATUS SOLIDI B, V182, PK25 WALSER P, 1998, PHYS REV LETT, V80, P2217 XIA K, 1997, PHYS REV B, V56, P14901 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 0 BP 6272 EP 6281 PG 10 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 1999 PD NOV VL 38 IS 11 GA 261ZT J9 JPN J APPL PHYS PT 1 UT ISI:000084041800021 ER PT J AU Bobo, JF Kikuchi, H Redon, O Snoeck, E Piecuch, M White, RL TI Pinholes in antiferromagnetically coupled multilayers: Effects on hysteresis loops and relation to biquadratic exchange SO PHYSICAL REVIEW B NR 31 AB We present a micromagnetic study of the influence of ferromagnetic bridges between consecutive ferromagnetic layers in antiferromagnetically coupled multilayers. The model is compared with experimental results for hysteresis loops obtained from the multilayer systems Co-Cu and FeNi-Ag. The presence of pinholes in Cu-Co multilayers is confirmed by transmission electron microscopy. We demonstrate that low densities of ferromagnetic pinholes in such multilayers are sufficient to give rise to significant deviations from the expected bilinear interlayer coupling and modify the observed interlayer: oscillatory exchange coupling. The effects of pinholes can be simulated in certain cases by biquadratic exchange coupling, and we propose a magnetic phase diagram which correlates the apparent bilinear and biquadratic couplings to the pinholes density, size, and interlayer exchange strength. [S0163-1829(99)14529-6]. CR ARROTT AS, 1991, J MAGN MAGN MATER, V93, P571 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 BOBO JF, 1993, J MAGN MAGN MATER, V121, P291 BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689 BOBO JF, 1993, MATER RES SOC S P, V313, P467 BOBO JF, 1994, MATER RES SOC SYMP P, V343, P423 BOUAT S, COMMUNICATION BROWN WF, 1962, MAGNETOSTATIC PRINCI BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 DEMOKRITOV S, 1993, PHYS REV B, V49, P720 DIENY B, 1991, PHYS REV B, V43, P1297 FUJIWARA H, 1995, J MAGN MAGN MATER, V140, P519 FUJIWARA H, 1994, J MAGN MAGN MATER, V135, PL23 FULGHUM DB, 1995, PHYS REV B, V52, P13436 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 HEINRICH B, 1993, ADV PHYS, V42, P523 KIKUCHI H, 1997, IEEE T MAGN, V33, P3583 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KREBS JJ, 1996, J APPL PHYS, V79, P4525 MASSENET O, 1966, IEEE T MAGN, V2, P533 NEEL L, 1962, CR HEBD ACAD SCI, V255, P1676 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PERSAT N, 1997, J APPL PHYS, V81, P4748 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SPENCE JC, 1981, EXPT HIGH RESOLUTION TC 2 BP 4131 EP 4141 PG 11 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100060 ER PT J AU Moroni, EG Wolf, W Hafner, J Podloucky, R TI Cohesive, structural, and electronic properties of Fe-Si compounds SO PHYSICAL REVIEW B NR 68 AB Phase stability, structural, and electronic properties of iron silicides in the Fe3Si, FeSi, and FeSi2 compositions are investigated by first-principle density-functional calculations based on ultrasoft pseudopotentials and all-electron methods. Structural stabilization versus spin-polarization effects are discussed at the Fe3Si composition, while for epsilon-FeSi and beta-FeSi2 we investigate their structural properties and the corresponding semiconducting band properties. All the computed results are analyzed and compared to available experimental data. The stability of the bulk phases, the lattice parameters, the cohesive energies and magnetic properties are found to be in good agreement with experiment when using the generalized gradient approximations for the exchange-correlation functional. Density-functional calculations are unable to account for the small bulk modulus of epsilon-FeSi despite that the computed lattice constant and internal atomic positions coincide with the experimental results. Both full-potential and ultrasoft-pseudopotential methods confirm for beta-FeSi2 the indirect nature of the fundamental gap, which is attributed to a transition between Y to 0.6X Lambda being 30% smaller than the experimental gap. Ultrasoft pseudopotential calculations of Fe-Si magnetic phases and of various nonequilibrium metallic phases at the FeSi and FeSi2 composition are presented. These calculations provide nb initio information concerning the stabilization of metallic pseudomorphic phases via high pressures or epitaxy. [S0163-1829(99)05419-3]. CR ANTONOV VN, 1998, PHYS REV B, V57, P8934 BAIN EC, 1924, T AIME, V70, P25 BLOCHL PE, 1994, PHYS REV B, V49, P16223 BOST MC, 1985, J APPL PHYS, V58, P2696 BUSSE H, 1997, SURF SCI, V381, P133 CASTRO GR, 1997, J PHYS-CONDENS MAT, V9, P1871 CHERIEF N, 1989, APPL PHYS LETT, V55, P1671 CHEVRIER J, 1993, EUROPHYS LETT, V22, P449 CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 CLARK SJ, 1998, PHYS REV B, V58, P10389 DEBOER FR, 1988, COHESION METALS, V1 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EISEBITT S, 1994, PHYS REV B, V50, P18330 EPPENGA R, 1990, J APPL PHYS, V68, P3027 FILONOV AB, 1996, J APPL PHYS, V79, P7708 FU C, 1994, PHYS REV B, V49, P2219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GIANNINI C, 1992, PHYS REV B, V45, P8822 HINAREJOS JJ, 1998, PHYS REV B, V57, P1414 JANSEN HJF, 1984, PHYS REV B, V30, P561 JARLBORG T, 1995, PHYS REV B, V51, P11106 JARLBORG T, 1997, REP PROG PHYS, V60, P1305 KITTEL C, 1986, INTRO SOLID STATE PH KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KRESSE G, 1996, COMP MATER SCI, V6, P15 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245 KRESSE G, 1996, PHYS REV B, V54, P11169 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 LAASONEN K, 1993, PHYS REV B, V47, P10142 LOUIE SG, 1982, PHYS REV B, V26, P1738 MADER KA, 1993, PHYS REV B, V48, P4364 MANDRUS D, 1995, PHYS REV B, V51, P4763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MERMIN ND, 1965, PHYS REV, V137, PA1141 MIGLIO L, 1995, APPL PHYS LETT, V67, P2293 MIGLIO L, 1997, EUROPHYS LETT, V37, P415 MIGLIO L, 1995, PHYS REV B, V52, P1448 MONKHORST HJ, 1976, PHYS REV B, V13, P5188 MORONI EG, 1997, PHYS REV B, V56, P15629 MORONI EG, UNPUB MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244 NICULESCU VA, 1983, J MAGN MAGN MATER, V39, P223 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PAULING L, 1948, ACTA CRYSTALLOGR, V1, P212 PAXTON AT, 1990, PHYS REV B, V41, P8127 PERDEW JP, 1992, PHYS REV B, V45, P244 PERDEW JP, 1981, PHYS REV B, V23, P5048 RIZZI A, 1995, PHYS REV B, V51, P17780 RUBLOFF GW, 1983, SURF SCI, V132, P268 SAITOH S, 1981, JPN J APPL PHYS, V20, P1649 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TUNG RT, 1983, PHYS REV LETT, V50, P429 VANDERBILT D, 1990, PHYS REV B, V41, P7892 VILLARS P, 1985, PEARSONS HDB CRYSTAL VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 VONKANEL H, 1996, APPL SURF SCI, V104, P204 VONKANEL H, 1994, PHYS REV B, V50, P3570 VONKANEL H, 1992, PHYS REV B, V45, P13807 WALLART X, 1993, APPL SURF SCI, V70-1, P598 WALLART X, 1994, PHYS REV B, V49, P5714 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WHITE JA, 1994, PHYS REV B, V50, P4954 WILLIAMS AR, 1982, J APPL PHYS, V53, P2019 WOLF W, 1996, THESIS U WIEN WOOD DM, 1985, J PHYS A-MATH GEN, V18, P1343 ZINOVEVA GP, 1974, PHYS STATUS SOLIDI A, V23, P711 TC 2 BP 12860 EP 12871 PG 12 JI Phys. Rev. B PY 1999 PD MAY 15 VL 59 IS 20 GA 200ZW J9 PHYS REV B UT ISI:000080571000025 ER PT J AU Felcher, GP TI Polarized neutron reflectometry - a historical perspective SO PHYSICA B NR 61 AB Born in the early 1980s to study magnetic films, polarized neutron reflectometry (PNR) has enjoyed growing popularity as witnessed by the number of instruments assembled at neutron research centers. PNR has proved its usefulness by providing information as diverse as the penetration depth of the magnetic field in superconductors and the absolute value of the magnetic moments in ultrathin ferromagnetic layers; yet its widest application has become the study of the magnetic configurations in multilayers. Two types of reflectometers have been constructed: time of flight and crystal analyzer. The relative merits of the two types are discussed in the light of present and future applications, (C) 1999 Published by Elsevier Science B.V. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BLAND JAC, 1996, J APPL PHYS, V79, P6295 BLAND JAC, 1997, J MAGN MAGN MATER, V165, P46 BLAND JAC, 1995, J PHYS-CONDENS MAT, V7, P6467 BLAND JAC, 1998, PHYS REV B, V57, P10272 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1997, PHYSICA B, V234, P458 BODEKER P, 1998, PHYSICA B, V248, P114 BORCHERS JA, 1996, J APPL PHYS, V79, P4762 BORCHERS JA, 1996, PHYS REV B, V54, P9870 CELINSKI Z, 1997, J MAGN MAGN MATER, V166, P6 CLEMENS D, 1996, PHYSICA B, V221, P507 ENDOH Y, 1995, MAT SCI ENG B-SOLID, V31, P57 EVETTS J, 1992, ENCY MAGN SUPERCONDU, P95 FELCHER GP, 1998, APPL PHYS LETT, V72, P2894 FELCHER GP, 1995, NATURE, V377, P409 FELCHER GP, 1993, PHYSICA B, V192, P137 FITZSIMMONS MR, 1998, PHYSICA B, V241, P121 FREDRIKZE H, 1998, PHYSICA B, V248, P157 FRITZSCHE H, 1997, PHYSICA B, V241, P707 FULLERTON EE, 1996, PHYSICA B, V221, P370 GUIMPEL J, 1993, PHYS REV LETT, V71, P2319 HAHN W, 1995, PHYS REV B, V52, P16041 HJORVARSSON B, 1997, PHYS REV LETT, V79, P901 HOPE S, 1997, PHYS REV B, V55, P11422 HOSOITO N, 1996, J MAGN MAGN MATER, V156, P325 IVES AJR, 1996, J MAGN MAGN MATER, V154, P301 JOYCE DE, 1998, PHYSICA B, V248, P152 KLOSE F, 1997, PHYS REV LETT, V78, P1150 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KORNEEV DK, 1996, J PHYS SOC JAPAN SA, V65, P37 KRIST T, 1998, PHYSICA B, V241, P82 KRIST T, 1998, PHYSICA B, V241, P86 LAUTERPASYUK V, 1998, PHYSICA B, V248, P166 LEE J, 1997, J PHYS-CONDENS MAT, V9, PL137 LI Y, 1997, PHYSICA B, V234, P489 LI Y, 1997, PHYSICA B, V234, P492 LUCHE MC, 1995, J MAGN MAGN MATER, V150, P175 MAAZA M, 1996, PHYS LETT A, V218, P312 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1996, PHYSICA B, V221, P342 MAJKRZAK CF, 1995, PHYSICA B, V213, P904 MAO M, 1996, J APPL PHYS, V79, P4769 MCGRATH OFK, 1996, PHYS REV B, V54, P6088 MEZEI F, 1995, PHYSICA B, V214, P898 MEZEI F, 1995, PHYSICA B, V213, P898 NUNEZ V, 1998, PHYSICA B, V241, P148 REKVELDT MT, 1994, MATER SCI FORUM, V154, P163 REYNOLDS JM, 1998, PHYSICA B, V248, P163 SARKISSIAN B, 1995, VACUUM, V46, P1187 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1996, PHYSICA B, V221, P366 SIEBRECHT R, 1998, PHYSICA B, V241, P169 SYROMYATNIKOV V, 1997, PHYSICA B, V234, P575 SYROMYATNIKOV VG, 1998, PHYSICA B, V248, P355 TAPPERT J, 1996, J MAGN MAGN MATER, V158, P317 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P479 YUSUF SM, 1998, J APPL PHYS, V83, P6801 ZHANG H, 1995, PHYS REV B, V52, P10395 TC 0 BP 154 EP 161 PG 8 JI Physica B PY 1999 PD JUN VL 268 GA 194AZ J9 PHYSICA B UT ISI:000080171100028 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER