FN ISI Export Format VR 1.0 PT J AU Xi, HW White, RM TI Coupling between two ferromagnetic layers separated by an antiferromagnetic layer SO PHYSICAL REVIEW B NR 50 AB We have investigated the interlayer exchange coupling between two ferromagnetic (FM) layers mediated by an antiferromagnetic (AF) layer. We have extended Slonczewski's "proximity magnetism" idea in the trilayers by including an AF magnetocrystalline anisotropy and considering interfacial exchange coupling that is influenced by the interface roughness. Using a continuum model we obtain the rotation behavior of the AF moments during FM magnetization reversal. The results are discussed within the context of the "proximity magnetism" model. The FM magnetization behavior and the interlayer coupling are strongly dependent on the interfacial exchange coupling and the AF thickness, compared with the AF domain wall energy sigma(W) and the wall length delta(W), respectively. A study of the exchange anisotropy in FM/AF bilayers is also presented. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERKOWITZ AE, 1999, J MAGN MAGN MATER, V200, P552 CASTRO J, 1999, PHYS REV B, V60, P10271 CHUI ST, 1997, PHYS REV LETT, V78, P2224 DAUGHTON JM, 1999, J MAGN MAGN MATER, V192, P334 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FUJIWARA H, 1999, IEEE T MAGN, V35, P3082 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 HEIM DE, 1994, IEEE T MAGN, V30, P316 HEINRICH B, 1993, ADV PHYS, V42, P523 HENRY Y, 1996, PHYS REV LETT, V76, P1944 HUTCHINGS MT, 1970, J PHYS C, V3, P307 HUTCHINGS MT, 1972, PHYS REV B-SOLID ST, V6, P3447 IJIRI Y, 1998, PHYS REV LETT, V80, P608 JACOBS IS, 1963, MAGNETISM, V3, P323 KHAPIKOV AF, 1998, PHYS REV LETT, V80, P2209 KOON NC, 1997, PHYS REV LETT, V78, P4865 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI C, 1987, J APPL PHYS, V62, P3047 MAURI D, 1987, J APPL PHYS, V62, P2929 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MOROZOV AI, 1999, PHYS SOLID STATE+, V41, P1130 NEEL L, 1988, SELECTED WORKS L NEE, P469 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PURCELL ST, 1992, PHYS REV B, V45, P13064 RUBINSTEIN M, 1999, J APPL PHYS, V85, P5880 SCHLENKER C, 1968, J PHYS-PARIS, V2, P157 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHULTHESS TC, 1999, J APPL PHYS, V85, P5510 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SOEYA S, 1995, J APPL PHYS, V77, P5838 STILES MD, 1999, PHYS REV B, V59, P3722 TAKANO K, 1998, J APPL PHYS, V83, P6888 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TSANG C, 1994, IEEE T MAGN, V30, P3801 VANDERHEIJDEN PAA, 1999, PHYS REV LETT, V82, P1020 XI H, IN PRESS IEEE T MAGN XI H, UNPUB XI HW, 2000, J APPL PHYS, V87, P4960 XI HW, 2000, PHYS REV B, V61, P80 XI HW, 1999, PHYS REV B, V60, P14837 YAN SS, 1999, PHYS REV B, V59, P11641 TC 0 BP 3933 EP 3940 PG 8 JI Phys. Rev. B PY 2000 PD AUG 1 VL 62 IS 6 GA 343XN J9 PHYS REV B UT ISI:000088727900054 ER PT J AU Yartseva, NS Yartsev, SV Uzdin, VM Demangeat, C TI Interface defects and formation of non-collinear magnetic ordering in Fe/Cr multilayers SO COMPUTATIONAL MATERIALS SCIENCE NR 9 AB Non-collinear magnetic structure of Fe/Cr multilayers was investigated within the framework of Periodic Anderson model (PAM) in mean field approximation for Coulomb repulsion on sites. Self-consistent calculations were performed for the superlattices with different step width at the interface. It is shown that due to frustration in the interface region the ground state corresponds to non-collinear orientation of magnetic moments near steps. This non-collinear ordering penetrates on a large distance from the interface both in Fe and Cr layers and leads to the non-collinear magnetic coupling between Fe layers through the Cr spacer. Angle between magnetic moments of Fe slabs depends strongly not only on the thickness of the Cr spacer but also on the interface structure at atomic scale. It is found that only very specific types of the interface defects with plural frustrations can give out-of- plane orientation of magnetic moments. (C) 2000 Elsevier Science B.V. All rights reserved. CR CHOI YJ, 1999, PHYS REV B, V59, P10918 FREYSS M, 1996, PHYS REV B, V54, P12677 KLINKHAMMER F, 1996, J MAGN MAGN MATER, V161, P49 KNABBEN D, 1997, J ELECTRON SPECTROSC, V86, P201 PANACCIONE G, 1997, PHYS REV B, V55, P389 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 UZDIN VM, 1998, COMP MATER SCI, V10, P211 UZDIN VM, 1999, J MAGN MAGN MATER, V198, P469 UZDIN VM, 1999, PHYS REV B, V59, P1214 TC 0 BP 468 EP 472 PG 5 JI Comput. Mater. Sci. PY 2000 PD JUN VL 17 IS 2-4 GA 337NE J9 COMPUT MATER SCI UT ISI:000088367300067 ER PT J AU Uzdin, VM TI Distribution of magnetic moments and hyperfine fields for Fe/Cr multilayers with different interface roughness SO COMPUTATIONAL MATERIALS SCIENCE NR 14 AB Distribution of d-electron magnetic moments has been calculated within the Periodic Anderson Model (PAM) for Fe/Cr superlattices with various interface roughness. Special random algorithms were developed for the modelling of stepped interfaces with different average size of the steps as well as for the modelling of interface alloying. Self-consistent calculation of magnetic moment distribution for alloyed interfaces show strong correlation with hyperfine fields (hff) on Fe nuclei, measured by the Mossbauer spectroscopy. It allows one to correlate the hff with specific environment of interfacial Fe atoms and leads to the essential correction of the empirical approach for the interpretation of Mossbauer spectra. New criterion for the testing of smoothness of the interface using Mossbauer data is suggested. (C) 2000 Elsevier Science B.V. All rights reserved. CR CHOI YJ, 1999, PHYS REV B, V59, P10918 COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341 DUBEL SM, 1981, J MAGN MAGN MATER, V23, P214 FREYSS M, 1997, PHYS REV B, V56, P6047 HEINRICH B, 1996, J APPL PHYS, V79, P4518 KAZANSKY AK, 1995, PHYS REV B, V52, P9477 KLINKHAMMER F, 1996, J MAGN MAGN MATER, V161, P49 KOPCEWICZ M, 1999, J APPL PHYS, V85, P5039 SCHAD R, 1998, EUROPHYS LETT, V44, P379 SCHROR H, P 15 INT C MAGN FILM, P40 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UZDIN VM, 1999, PHYS REV B, V59, P1214 ZUKROWSKI J, 1996, J MAGN MAGN MATER, V145, P57 TC 0 BP 477 EP 482 PG 6 JI Comput. Mater. Sci. PY 2000 PD JUN VL 17 IS 2-4 GA 337NE J9 COMPUT MATER SCI UT ISI:000088367300069 ER PT J AU Yan, SS Grunberg, P Mei, M TI Magnetic phase diagrams of the trilayers with the noncollinear coupling in the form of the proximity magnetism model SO JOURNAL OF APPLIED PHYSICS NR 18 AB The magnetic phase diagrams of Fe/Mn/Fe trilayers with the noncollinear interlayer coupling in the form of the proximity magnetism model were theoretically studied. The C+-C- phase diagram in the remanent magnetization state predicts very rich spin configurations. The H-C+ and H-C- phase diagrams show that the spin configurations of Fe/Mn/Fe trilayers depend strongly on the external magnetic field, the anisotropy of Fe layers, and the coupling coefficients C+ and C-. Our experimental results of noncollinear spin configurations of Fe/Mn/Fe trilayers strongly support the magnetic phase diagrams based on the proximity magnetism model. (C) 2000 American Institute of Physics. [S0021-8979(00)00914-2]. CR ALMEIDA NS, 1995, PHYS REV B, V52, P13504 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P159 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FONSECA TL, 1998, PHYS REV B, V57, P76 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 KOSTYUCHENKO VV, 1998, PHYS REV B, V57, P5951 NORTEMANN FC, 1992, PHYS REV B, V46, P10847 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 WANG RW, 1994, PHYS REV LETT, V72, P920 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAN SS, 1999, PHYS REV B, V59, PR1164 TC 0 BP 983 EP 987 PG 5 JI J. Appl. Phys. PY 2000 PD JUL 15 VL 88 IS 2 GA 329DA J9 J APPL PHYS UT ISI:000087889800060 ER PT J AU Levchenko, VD Morosov, AI Sigov, AS TI Phase diagram of a thin ferromagnetic film on the surface of an antiferromagnet SO JETP LETTERS NR 8 AB Magnetic characteristics of a thin ferromagnetic film on the surface of an antiferromagnet are examined. Due to the roughness of the film-substrate interface, the system is frustrated, giving rise to domain walls of new type. The distributions of the order parameters in the domain walls are studied by mathematical modeling, and the phase diagram is obtained. (C) 2000 MAIK "Nauka/Interperiodica". CR ARIAS R, 1999, PHYS REV B, V59, P11871 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 ESCORCIAAPARICIO E, 1999, PHYS REV B, V59, P11892 ESCORCIAAPARICIO E, 1998, PHYS REV LETT, V81, P2144 FREYSS M, 1997, PHYS REV B, V56, P6047 LEVCHENKO VD, 1998, J EXP THEOR PHYS+, V87, P985 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TC 0 BP 373 EP 376 PG 4 JI Jetp Lett. PY 2000 VL 71 IS 9 GA 326TF J9 JETP LETT-ENGL TR UT ISI:000087751000007 ER PT J AU Bebenin, NG Ustinov, VV TI Spin-wave frequencies in a superlattice with biquadratic exchange in magnetic field SO FIZIKA METALLOV I METALLOVEDENIE NR 16 CR BEBENIN NG, 1997, FIZ MET METALLOVED+, V84, P29 BEBENIN NG, 1996, FIZ MET METALLOVED+, V82, P39 BEBENIN NG, 1997, J MAGN MAGN MATER, V165, P468 BEBENIN NG, 1996, J MAGN MAGN MATER, V161, P65 BRUNO P, 1995, PHYS REV B, V52, P411 DEGENNES PG, 1960, PHYS REV, V118, P141 DROVOSEKOV AB, 1999, J MAGN MAGN MATER, V198, P455 DROVOSEKOV AB, 1998, PISMA ESKP TEOR FIZ, V67, P690 GUREVICH AG, 1994, MAGNITNYE KOLEBANIYA NAGAEV EL, 1988, MAGNETIKI SLOZHNYMI RAMIREZ AP, 1997, J PHYS-CONDENS MAT, V9, P8171 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 USTINOV VV, 1995, FIZ MET METALLOVED+, V80, P71 USTINOV VV, 1996, PHYS REV B, V54, P15958 TC 0 BP 19 EP 23 PG 5 JI Fiz. Metallov Metalloved. PY 2000 PD MAR VL 89 IS 3 GA 309ND J9 FIZ METAL METALLOVED UT ISI:000086773100003 ER PT J AU Schepper, W Diplas, K Reiss, G TI 3D-simulations of magnetic structures in af-coupled multilayers with pinholes SO JOURNAL OF APPLIED PHYSICS NR 5 AB For antiferromagnetically (af) coupled Py (Ni81Fe19\Cu)- multilayers lattice calculations have been used already for the investigation of pinholes in GMR elements. The very thin spacer layer (< 10 Angstrom) is sensitive against pinholes as a link between the magnetic layers. Additional coupling through the pinhole modifies drastically the af-coupling between the magnetic layers and leads to strong changes in the M(H) and Delta R/R(H) curves. Improved lattice calculations with large grids offer the opportunity, to study effects of geometry in layers structured laterally. (C) 2000 American Institute of Physics. [S0021-8979(00)86608-6]. CR BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 FULGHUM DB, 1995, PHYS REV B, V52, P13436 KIKUCHI H, 1997, IEEE T MAGN, V33, P3583 MARROWS CH, 1998, J MAGN MAGN MATER, V184, P137 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TC 0 BP 6597 EP 6599 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800232 ER PT J AU Schreyer, A Schmitte, T Siebrecht, R Bodeker, P Zabel, H Lee, SH Erwin, RW Majkrzak, CF Kwo, J Hong, M TI Neutron scattering on magnetic thin films: Pushing the limits (invited) SO JOURNAL OF APPLIED PHYSICS NR 33 AB Neutron scattering has been the scattering technique of choice for the analysis of magnetic structures and their dynamics for many decades. The advent of magnetic thin film systems has posed new challenges since such samples have inherently small scattering volumes. By way of examples, recent progress in the application of neutron scattering for the study of both magnetic structure and dynamics in magnetic thin film systems will be presented. First, a combined high angle neutron scattering and polarized neutron reflectivity investigation of the magnetic order of Cr and its influence on the exchange coupling between the Fe layers in Fe/Cr superlattices is discussed. It is shown that in the whole thickness range up to 3000 Angstrom, the magnetic structure is governed by frustration effects at the Fe/Cr interfaces. Second, it is demonstrated that it is now possible to investigate the dynamic properties of magnetic thin films with neutron scattering. Unlike, e.g., Brillouin light scattering, inelastic neutron scattering provides access to large portions of the Brillouin zone. First results on spin wave excitations in a Dy/Y superlattice are presented. (C) 2000 American Institute of Physics. [S0021-8979(00)92908-6]. CR 1986, LAND ZAHL FUNKT NAT BINDER K, 1983, PHASE TRANSITIONS CR, P1 BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1998, PHYS REV LETT, V81, P914 BODEKER P, 1998, PHYSICA B, V248, P115 DOSCH H, 1992, SPRINGER TRACTS MODE, V126 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1989, LIGHT SCATTERING SOL, V5 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, P195 HEINRICH B, ULTRATHIN MAGNETIC S, V1 HILLEBRANDS B, 1994, ULTRATHIN MAGNETIC S, V1, P258 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HONG M, 1987, J APPL PHYS, V61, P4052 KWO J, 1988, NTO ASI SERIES B, V13, P337 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MCMORROW DF, 1993, PHYSICA B, V192, P150 NICKLOW RM, 1971, PHYS REV LETT, V26, P140 SALOMON MB, 1986, PHYS REV LETT, V56, P259 SAPRIEL J, 1989, SURF SCI REP, V10, P189 SCHMITTE T, 1999, EUROPHYS LETT, V48, P692 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 1998, PHYSICA B, V248, P349 SCHREYER A, UNPUB SHI ZP, 1997, PHYS REV LETT, V78, P1351 SIEBRECHT R, 1999, PHYSICA B, V2672, P207 SIEBRECHT R, THESIS RUHR U BOCHUM SIEBRECHT R, UNPUB SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SQUIRES GL, 1978, INTRO THERMAL NEUTRO TC 0 BP 5443 EP 5448 PG 6 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200250 ER PT J AU Zabel, H Siebrecht, R Schreyer, A TI Neutron reflectometry on magnetic thin films SO PHYSICA B NR 22 AB The current interest in the magnetism of ultrathin films is driven by their manifold applications in the nano-technology area, for instance as magnetic field sensors or as devices for information storage. Neutron scattering has played a dominant role for the determination of spin structures, phase transitions, and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. In the field of thin film magnetism, polarized neutron reflectivity (PNR) at small wave vectors can provide precise information on magnetization vectors in the film plane and on their variation from plane to plane. Therefore, neutron scattering remains the only method which allows to unravel the magnetization in thin films and superlattices independent of their thickness and depth below the surface. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Some new developments will be discussed. (C) 2000 Elsevier Science B.V. All rights reserved. CR BODEKER P, 1998, PHYS REV LETT, V81, P914 BONI P, 1999, PHYSICA B, V267, P320 DIENY B, 1994, J MAGN MAGN MATER, V136, P335 FELCHER GP, 1981, PHYS REV B, V24, P1595 FELCHER GP, 1999, PHYSICA B, V267, P154 FELCHER GP, 1993, PHYSICA B, V192, P137 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 IJIRI Y, 1998, PHYS REV LETT, V80, P608 JIANG JS, PREPRINT MAJKRZAK CF, 1996, PHYSICA B, V221, P342 MAJKRZAK CF, 1995, PHYSICA B, V213, P904 MUHGE T, 1977, PHYS REV B, V55, P8945 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 NOGUES J, 1999, PHYS REV B, V59, P6984 NOGUES J, 1996, PHYS REV LETT, V76, P4624 SCHREYER A, 1996, J PHYS SOC JAPAN SA, V65, P13 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 2000, UNPUB J MAGN MAGN MA SINHA SK, 1988, PHYS REV B, V38, P2297 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TOPERVERG BP, 2000, PHYSICA B, V276 USTINOV VV, 1996, PHYS REV B, V54, P15958 TC 0 BP 17 EP 21 PG 5 JI Physica B PY 2000 PD MAR VL 276 GA 303FZ J9 PHYSICA B UT ISI:000086413000006 ER PT J AU Tulchinsky, DA Unguris, J Celotta, RJ TI Growth and magnetic oscillatory exchange coupling of Mn/Fe(001) and Fe/Mn/Fe(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 31 AB The magnetic ordering and the interlayer exchange coupling in Mn and Fe/Mn wedge structures grown epitaxially on Fe(0 0 1) whisker substrates were investigated using scanning electron microscopy with polarization analysis (SEMPA). In bare Mn/Fe(0 0 1) samples, the magnetization of the top Mn layer is collinear with the Fe magnetization, and oscillates between ferromagnetic and antiferromagnetic alignment as the Mn thickness increases. The period of the oscillation is two layers of Mn, consistent with the growth of an antiferromagnetic Mn wedge. The bare Mn behaves very much like antiferromagnetic Cr, however the magnetic coupling in the Fe/Mn/Fe(0 0 1) sandwich structures is very different. For Mn thicknesses greater than four layers, the coupling between the top Fe layer and the Fe whisker substrate is not collinear. Between 4 to 8 layers of Mn, the direction of the top Fe in- plane magnetization lies at an angle of 60-80 degrees relative to the magnetization of the Fe substrate. Beginning at the 9th Mn layer, the direction of the coupling oscillates, with a two- layer period, between 90 degrees - phi and 90 degrees + phi, where phi is sample dependent. Values of phi between 10 and 30 degrees were observed. (C) 2000 Published by Elsevier Science B.V. All rights reserved. CR ANDRIEU S, 1998, PHYS REV B, V57, P1985 ARROT AS, 1990, KINETICS ORDERING GR BAND A, 1996, REV SCI INSTRUM, V67, P2366 BOUARAB S, 1995, PHYS REV B, V52, P10127 DAVIES A, IN PRESS DRESSELHAUS J, 1997, PHYS REV B, V56, P5461 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FUCHS P, 1996, PHYS REV B, V54, P9304 HEINRICH B, 1987, J VAC SCI TECHNOL A, V5, P1935 KERN R, 1979, CURRENT TOPICS MAT S, V3, PCH3 KIM SK, 1996, PHYS REV B, V54, P5081 KREBS JJ, 1996, J APPL PHYS, V79, P4525 KRUGER P, 1996, PHYS REV B, V54, P6393 MONCHESKY T, 1999, J MAGN MAGN MATER, V198, P421 PFANDZELTER R, 1997, SURF SCI, V389, P317 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, PR2 PURCELL ST, 1992, PHYS REV B, V45, P13064 RADER O, 1997, PHYS REV B, V56, P5053 ROTH C, 1995, PHYS REV B, V52, P15691 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WALKER TG, 1993, PHYS REV B, V48, P3563 WU RQ, 1996, J MAGN MAGN MATER, V161, P89 WU RQ, 1995, PHYS REV B, V51, P17131 YAN SS, 1999, PHYS REV B, V59, P11641 TC 0 BP 91 EP 100 PG 10 JI J. Magn. Magn. Mater. PY 2000 PD MAR VL 212 IS 1-2 GA 294GW J9 J MAGN MAGN MATER UT ISI:000085904400013 ER PT S AU Hillebrands, B TI Brillouin light scattering from layered magnetic structures SO LIGHT SCATTERING IN SOLIDS VII NR 351 CR ALMEIDA NS, 1988, PHYS REV B, V38, P6698 AMENT WS, 1955, PHYS REV, V97, P1558 ANDERSON GW, 1994, P SOC PHOTO-OPT INS, V2140, P112 ARTMAN JO, 1957, PHYS REV, V105, P62 AZEVEDO A, 1992, J MAGN MAGN MATER, V104, P1039 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAINS GS, 1993, J MAGN MAGN MATER, V126, P329 BARNAS J, 1989, J MAGN MAGN MATER, V82, P186 BAUER M, 1997, PHYS REV B, V56, PR8483 BAUER M, 1998, PHYS REV LETT, V81, P3769 BAUMGART P, 1991, J MAGN MAGN MATER, V93, P225 BAUMGART P, 1989, MATER RES SOC S P, V151, P199 BERENBAUM I, 1970, THIN SOLID FILMS, V5, P187 BERGER A, 1992, PHYS REV LETT, V68, P839 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLAND JAC, 1992, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1992, ULTRATHIN MAGNETIC S, V1 BOOTH JG, 1987, IEEE T MAGN, V23, P3494 BOROVIKROMANOV AS, 1986, J MAGN MAGN MATER, V54-7, P1181 BOROVIKROMANOV AS, 1980, J PHYS C SOLID STATE, V13, P879 BOROVIKROMANOV AS, 1976, JETP LETT+, V23, P649 BOROVIKROMANOV AS, 1982, PHYS REP, V81, P351 BOUFELFEL A, 1988, SOLID STATE COMMUN, V68, P201 BOYLE JW, 1997, J APPL PHYS, V82, P4453 BOYLE JW, 1996, J MAGN MAGN MATER, V156, P33 BOYLE JW, 1997, J PHYS IV, V7, P497 BOYLE JW, 1996, PHYS REV B, V53, P12173 BRILLOUIN L, 1922, ANN PHYS, V17, P88 BRUNO P, 1988, J PHYS F MET PHYS, V18, P1291 BRUNO P, 1988, J PHYS-PARIS, V49, P1645 BUTTNER O, 1998, IEEE T MAGN, V34, P1381 BUTTNER O, 1999, PHYS REV LETT, V82, P4320 CAMLEY RE, 1979, J APPL PHYS, V50, P7779 CAMLEY RE, 1983, PHYS REV B, V27, P261 CAMLEY RE, 1981, PHYS REV B, V23, P1226 CAMLEY RE, 1980, PHYS REV B, V22, P5420 CAMLEY RE, 1978, PHYS REV B, V18, P4821 CAREY MJ, 1993, J APPL PHYS, V73, P6892 CARLOTTI G, 1997, J MAGN MAGN MATER, V165, P424 CELINSKI Z, 1991, J APPL PHYS, V70, P5870 CELINSKI Z, 1990, PHYS REV LETT, V65, P1156 CHANG NS, 1979, APPL PHYS LETT, V35, P352 CHANG PH, 1978, SOLID STATE COMMUN, V27, P617 CHAPPERT C, 1988, J APPL PHYS, V64, P5736 CHERIF SM, 1999, J APPL PHYS, V85, P5477 CHERIF SM, 1997, J MAGN MAGN MATER, V175, P228 CINAL M, 1994, PHYS REV B, V50, P3754 COCHRAN JF, 1991, J APPL PHYS, V69, P5206 COCHRAN JF, 1988, J APPL PHYS, V64, P6092 COCHRAN JF, 1988, J APPL PHYS, V63, P3814 COCHRAN JF, 1997, J MAGN MAGN MATER, V169, P1 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 COCHRAN JF, 1988, J MAGN MAGN MATER, V73, P299 COCHRAN JF, 1988, J PHYS-PARIS, V49, P1671 COCHRAN JF, 1995, MAT RES S P, V384, P131 COCHRAN JF, 1992, PHYS REV B, V45, P4676 COCHRAN JF, 1990, PHYS REV B, V42, P508 COCHRAN JF, 1986, PHYS REV B, V34, P7788 COCHRAN JF, 1994, ULTRATHIN MAGNETIC S COTTAM MG, 1995, HIGH FREQUENCY PROCE COTTAM MG, 1991, IEEE T MAGN, V27, P5489 COTTAM MG, 1983, J PHYS C SOLID STATE, V16, P1573 COWEN JA, 1997, J MAGN MAGN MATER, V165, P383 COWEN JA, 1995, J MAGN MAGN MATER, V156, P163 CRAIK DJ, 1995, MAGNETISM PRINCIPLES DABOO C, 1994, J APPL PHYS, V75, P5586 DABOO C, 1995, J MAGN MAGN MATER, V148, P262 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DEMEANGEAT C, 1977, PHYS REV B, V16, P2321 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, J PHYS-CONDENS MAT, V6, P7145 DEMOKRITOV SO, 1997, J APPL PHYS, V81, P4466 DEMOKRITOV SO, 1993, J MAGN MAGN MATER, V126, P291 DENBROEDER FJA, 1987, J APPL PHYS, V61, P4317 DENBROEDER FJA, 1991, J MAGN MAGN MATER, V93, P562 DENBROEDER FJA, 1988, PHYS REV LETT, V60, P2769 DEWAMES RE, 1970, J APPL PHYS, V41, P987 DIENY B, 1991, J APPL PHYS, V69, P4774 DJEMIA P, 1997, J MAGN MAGN MATER, V165, P428 DUTCHER JR, 1988, J APPL PHYS, V63, P3464 DUTCHER JR, 1994, LINEAR NONLINEAR SPI DUTCHER JR, 1989, PHYS REV B, V39, P10430 ELACHI C, 1975, IEEE T MAGN, VMA11, P36 ELMERS HJ, 1990, APPL PHYS A-MATER, V51, P255 ENGEL BN, 1992, APPL SURF SCI, V60-1, P776 ENGEL BN, 1991, J APPL PHYS, V70, P5873 ENGEL BN, 1991, PHYS REV LETT, V67, P1910 ENGLAND CD, 1991, J APPL PHYS, V69, P5310 ERCOLE A, 1997, J APPL PHYS, V81, P5452 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 ERCOLE A, 1998, PHYS REV B, V58, P345 FALCO CM, 1984, J PHYS-PARIS, V45, P499 FASSBENDER J, 1994, J APPL PHYS, V76, P6100 FASSBENDER J, 1995, J MAGN MAGN MATER, V148, P156 FASSBENDER J, 1993, J MAGN MAGN MATER, V121, P270 FASSBENDER J, 1998, PHYS REV B, V57, P5870 FASSBENDER J, 1992, PHYS REV B, V46, P5810 FEDORENKO AI, 1971, PHILOS MAG, V24, P55 FLEURY PA, 1968, PHYS REV, V166, P514 FLEURY PA, 1967, PHYS REV LETT, V18, P658 FLEURY PA, 1966, PHYS REV LETT, V17, P84 FROM M, 1994, J APPL PHYS, V75, P6181 FROM M, 1993, J APPL PHYS, V73, P6754 FUJIWARA H, 1983, J MAGN MAGN MATER, V31-4, P809 FUSS A, 1992, J MAGN MAGN MATER, V103, P221 GRADMANN U, 1986, APPL PHYS A-MATER, V39, P101 GRADMANN U, 1993, HDB MAGNETIC MAT, V7 GRIFFITHS JHE, 1946, NATURE, V158, P670 GRIMSDITCH M, 1993, J PHYSICS, V5, P369 GRIMSDITCH M, 1997, PHYS REV B, V56, P2617 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRIMSDITCH M, 1983, PHYS REV LETT, V51, P498 GRIMSDITCH M, 1979, PHYS REV LETT, V43, P711 GRIMSDITCH M, 1989, SPRINGER SERIES TOPI, V66, P285 GROSS E, 1930, NATURE, V126, P201 GRUNBERG P, 1985, J APPL PHYS, V57, P3673 GRUNBERG P, 1982, J APPL PHYS, V53, P2078 GRUNBERG P, 1992, J MAGN MAGN MATER, V106, P1734 GRUNBERG P, 1982, J MAGN MAGN MATER, V28, P319 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1977, PHYS REV LETT, V39, P1561 GRUNBERG P, 1989, TOP APPL PHYS, V66, P303 GRUNBERG PA, 1985, PROG SURF SCI, V18, P1 GU E, 1995, PHYS REV B, V52, P14704 GUBBIOTTI G, 1995, MATER SCI FORUM, V195, P215 GUBBIOTTI G, 1995, P NAT SCH NEW DEV MA GUBBIOTTI G, 1997, PHYS REV B, V56, P11073 GUBBIOTTI G, 1996, SIC TECHNOLOGIA, V25, P75 GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P724 GULYAEV YV, 1981, SOV PHYS-SOLID STATE, V23, P2138 GULYAEV YV, 1980, SOV PHYS-SOLID STATE, V22, P1651 GUNTHERODT G, 1994, PHILOS MAG B, V70, P767 GURNEY BA, 1991, INT C MAGN FILMS SUR HARZER JV, 1991, J APPL PHYS, V69, P2448 HARZER JV, 1992, J MAGN MAGN MATER, V104, P1863 HARZER JV, 1993, MATER RES SOC S P, V313, P387 HEIN DW, 1991, TOXICOL METHOD, V1, P44 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1989, APPL PHYS A-MATER, V49, P473 HEINRICH B, 1988, J APPL PHYS, V63, P3863 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HEINRICH B, 1989, MATER RES SOC S P, V151, P177 HEINRICH B, 1993, NATO ADV SCI INST SE, V309, P175 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1990, PHYS REV LETT, V64, P673 HELLWEGE KH, 1984, LANDOLTBORNSTEIN, V18 HICKEN RJ, 1996, J APPL PHYS, V79, P4987 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 HICKEN RJ, 1995, J MAGN MAGN MATER, V145, P278 HICKEN RJ, 1994, PHYS REV B, V50, P6143 HILL M, 1993, ADOPTION FOSTERING, V17, P17 HILLEBRANDS B, 1994, ACTA PHYS POL A, V85, P179 HILLEBRANDS B, 1989, APPL PHYS A-MATER, V49, P589 HILLEBRANDS B, IN PRESS JAP J APPL HILLEBRANDS B, 1997, J APPL PHYS, V81, P4993 HILLEBRANDS B, 1991, J APPL PHYS, V69, P938 HILLEBRANDS B, 1988, J APPL PHYS, V63, P3880 HILLEBRANDS B, 1987, J APPL PHYS, V61, P4308 HILLEBRANDS B, 1991, J MAGN MAGN MATER, V93, P211 HILLEBRANDS B, 1996, PHYS REV B, V53, P10548 HILLEBRANDS B, 1993, PHYS REV B, V47, P6126 HILLEBRANDS B, 1990, PHYS REV B, V42, P6839 HILLEBRANDS B, 1990, PHYS REV B, V41, P530 HILLEBRANDS B, 1988, PHYS REV B, V37, P9885 HILLEBRANDS B, 1987, PHYS REV B, V36, P2450 HILLEBRANDS B, 1986, PHYS REV B, V34, P9000 HILLEBRANDS B, 1999, REV SCI INSTRUM, V70, P1589 HILLEBRANDS B, 1996, SCI TECNOLOGIA, V25, P24 HILLEBRANDS B, 1994, ULTRATHIN MAGNETIC S HOFFMAN F, 1970, J APPL PHYS, V41, P1022 HOFFMANN F, 1970, PHYS STATUS SOLIDI, V41, P807 HURBEN MJ, 1995, J MAGN MAGN MATER, V139, P263 HYOMI K, IN PRESS J MAGN MAGN HYOMI K, 1999, J MAGN MAGN MATER, V198, P528 JANTZ W, 1983, IEEE T MAGN, V19, P1859 JESSER WA, 1968, PHILOS MAG, V17, P461 JESSER WA, 1967, PHYS STATUS SOLIDI, V19, P95 JOKITOV VG, 1980, J MAGN MAGN MATER, V15, P809 JUNGBLUT R, IN PRESS JUNGBLUT R, 1994, J APPL PHYS, V75, P6659 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KABOS P, 1994, J APPL PHYS, V75, P3553 KABOS P, 1984, PHYS REV B, V29, P6396 KABOS P, 1994, PHYS REV LETT, V72, P2093 KABOS P, 1984, PHYS REV LETT, V53, P1962 KARANIKAS JM, 1991, J APPL PHYS, V69, P6120 KERKMANN D, 1989, SOLID STATE COMMUN, V72, P963 KHOTIKOV VG, 1977, JETP LETT+, V26, P360 KITTEL C, 1958, PHYS REV, V110, P1295 KITTEL C, 1948, PHYS REV, V73, P155 KITTEL C, 1947, PHYS REV, V71, P270 KOLODIN PA, 1996, J MAGN MAGN MATER, V161, P199 KONG SH, 1992, PHYS REV B, V45, P12297 KOWALEWSKI M, 1995, MATER RES SOC SYMP P, V384, P171 KOWALEWSKI M, 1993, PHYS REV B, V47, P8748 KRAMS P, 1991, J APPL PHYS, V69, P5307 KRAMS P, 1993, J MAGN MAGN MATER, V121, P483 KRAMS P, 1994, PHYS REV B, V49, P3633 KRAMS P, 1992, PHYS REV LETT, V69, P3674 KRISHNAN R, 1984, IEEE T MAGN, V20, P1264 KUENY A, 1984, PHYS REV B, V29, P2879 KURZAWA R, 1986, SOLID STATE COMMUN, V60, P777 LANDAU LD, 1960, ELECTRODYNAMICS CONT LEEUWEN RV, 1990, J APPL PHYS, V67, P4910 LEGALL H, 1971, PHYS STATUS SOLIDI B, V46, P467 LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LIGHTHILL MJ, 1965, J I MATH APPL, V1, P269 LITSCHKE H, 1992, J MAGN MAGN MATER, V104, P1807 LIU X, 1996, J APPL PHYS, V79 LIU X, 1994, J APPL PHYS, V75, P7021 LIU X, 1996, PHYS REV B, V53 LORENZ R, 1995, J PHYS CHEM MATTER, V7, P253 MACCIO M, 1994, PHYS REV B, V49, P3283 MALOZEMOFF AP, 1979, J APPL PHYS, V50, P4821 MALOZEMOFF AP, 1979, J APPL PHYS, V50, P5896 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MANDELSHTAM LI, 1926, ZH RUSS FIZ KHIM, V58, P381 MANDELSTAM L, 1930, Z PHYS, V60, P334 MASSALSKI TB, 1986, BINARY ALLOY PHASE D MATHIEU C, 1997, APPL PHYS LETT, V70, P2912 MATHIEU C, 1994, IEEE T MAGN, V30, P4434 MATHIEU C, 1998, J APPL PHYS, V83, P2863 MATHIEU C, 1997, J MAGN MAGN MATER, V175, P10 MATHIEU C, 1998, PHYS REV LETT, V81, P3968 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MENDIK M, 1992, SOLID STATE COMMUN, V84, P951 MERMIN ND, 1966, PHYS REV LETT, V17, P1133 MILLS DL, 1981, PROGR OPTICS 19, V47 MILLS DL, SURFACE SPIN WAVES M, P84 MOCK R, 1987, J PHYS E SCI INSTRUM, V20, P656 MOGHADAM A, 1994, IEEE T MAGN, V30, P769 MOOSMULLER H, 1991, J APPL PHYS, V69, P5721 MORIYA T, 1967, J PHYS SOC JPN, V23, P163 MOSCA DH, 1991, J MAGN MAGN MATER, V94, P1 MUIR WB, 1991, J MAGN MAGN MATER, V93, P229 MURAYAMA A, 1991, IEEE T MAGN, V27, P5064 MURAYAMA A, 1991, J APPL PHYS, V69, P5661 MURAYAMA A, 1990, J APPL PHYS, V67, P410 MURAYAMA A, 1994, J MAG SOC JAPAN, V18, P265 MURAYAMA A, 1999, J MAGN MAGN MATER, V198, P372 MURAYAMA A, 1998, PHYS REV B, V58, P8596 NEEL L, 1954, J PHYS RADIUM, V15, P225 NIEDOBA H, 1996, PHYS STATUS SOLIDI A, V158, P259 NORTEMANN FC, 1993, PHYS REV B, V47, P3225 OEPEN HP, 1993, J APPL PHYS, V73, P6186 OEPEN HP, 1992, J MAGN MAGN MATER, V121, P490 OTAKE T, 1990, J APPL PHYS, V67, P3456 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PATTON CE, 1984, PHYS REP, V103, P251 PEARSON RF, 1979, EXPT MAGNETISM, V1 PECHAN MJ, 1995, PHYS REV B, V52, P3045 PETROFF F, 1991, PHYS REV B, V44, P5355 PINI MG, 1991, MICROSCOPIC ASPECTS, P349 POGOSOVA IS, 1994, J APPL PHYS, V76, P908 PRINZ GA, 1982, J APPL PHYS, V53, P2087 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RAASCH D, 1994, J APPL PHYS, V76, P1145 RADO GT, 1988, J APPL PHYS, V63, P3885 RADO GT, 1987, J APPL PHYS, V61, P4262 RADO GT, 1959, J PHYS CHEM SOLIDS, V11, P315 REZENDE SM, 1997, PHYS REV B, V55, P8071 REZENDE SM, 1991, PHYS REV B, V44, P7062 ROBERTS DJ, 1996, J MAGN MAGN MATER, V156, P293 ROJDESTVENSKI IV, 1993, J APPL PHYS, V73, P7001 ROJDESTVENSKI IV, 1993, PHYS REV B, V48, P12768 ROUSSIGNE Y, 1995, J MAGN MAGN MATER, V148, P213 ROUSSIGNE Y, 1995, PHYS REV B, V52, P350 RUPP G, 1985, APPL PHYS A-MATER, V37, P73 RUPP G, 1984, J MAGN MAGN MATER, V45, P404 SANDERCOCK J, 1971, P 2 INT C LIGHT SCAT, P9 SANDERCOCK JR, 1978, IEEE T MAGN, V14, P442 SANDERCOCK JR, 1979, J APPL PHYS, V50, P7784 SANDERCOCK JR, 1970, OPT COMMUN, V2, P73 SANDERCOCK JR, 1972, PHYS REV LETT, V28, P237 SANDERCOCK JR, 1974, SOLID STATE COMMUN, V15, P1715 SANDERCOCK JR, 1973, SOLID STATE COMMUN, V13, P1729 SANDERCOCK JR, 1982, TOP APPL PHYS, V51, P173 SAURENBACH F, 1989, THIN SOLID FILMS, V175, P317 SCHEURER F, 1993, PHYS REV B, V48, P9890 SCHILBERG M, 1993, J MAGN MAGN MATER, V121, P303 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 SEAVEY MH, 1958, PHYS REV LETT, V1, P168 SESHADRI SR, 1979, IEEE T MICROW THEORY, V27, P199 SHEN YR, 1966, PHYS REV, V143, P372 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SPORL K, 1990, J MAGN MAGN MATER, V83, P91 SRINIVASAN G, 1985, APPL PHYS LETT, V47, P759 SRINIVASAN G, 1987, IEEE T MAGN, V23, P3718 SRINIVASAN G, 1986, IEEE T MAGN, V22, P996 SRINIVASAN G, 1985, IEEE T MAGN, V21, P1797 SRINIVASAN G, 1988, J APPL PHYS, V63, P3344 SRINIVASAN G, 1988, J APPL PHYS, V63, P3817 SRINIVASAN G, 1987, J APPL PHYS, V61, P2318 SRINIVASAN G, 1987, J APPL PHYS, V61, P4120 STAMPS RL, 1997, J APPL PHYS, V81, P4485 STAMPS RL, 1991, J APPL PHYS, V69, P5718 STAMPS RL, 1991, J MAGN MAGN MATER, V93, P616 STAMPS RL, 1996, PHYS REV B, V54, P4159 STAMPS RL, 1994, PHYS REV B, V49, P339 STAMPS RL, 1993, PHYS REV B, V47, P5072 STAMPS RL, 1991, PHYS REV B, V44, P5095 STAMPS RL, 1991, PHYS REV B, V44, P12417 STAMPS RL, 1991, PHYS REV B, V43, P3532 STEIGERWALD DA, 1987, SURF SCI, V192, P887 STEVENS KWH, 1975, MAGNETIC OXIDES STILES MD, 1993, PHYS REV B, V48, P7238 STOECKLEIN W, 1988, PHYS REV B, V38, P6847 SUBRAMANIAN S, 1995, PHYS REV B, V52, P10194 SUCKSMITH W, 1954, P ROY SOC LOND A MAT, V225, P362 SWIATEK P, 1987, J APPL PHYS, V61, P3753 TSCHOPP S, 1997, J APPL PHYS, V81, P3785 TSUTSUMI M, 1977, APPL PHYS LETT, V31, P779 TSUTSUMI M, 1976, IEEE T MICROWAVE THE, P224 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VALSTYN EP, 1962, PHYS REV, V128, P2078 VANLEEUWEN R, 1990, J APPL PHYS, V67, P4910 VENITSKII VN, 1978, JETP LETT+, V27, P222 VENITSKII VN, 1979, SOV PHYS JETP, V50, P934 VERNON SP, 1984, PHYS REV B, V29, P4439 VOHL M, 1989, PHYS REV B, V39, P12003 WANG DS, 1994, J MAGN MAGN MATER, V129, P237 WANG RW, 1996, PHYS REV B, V53, P2627 WETTLING RKW, 1986, MAGNETIC THIN FILMS, P69 WETTLING W, 1979, J APPL PHYS, V50, P2030 WETTLING W, 1984, J MAGN MAGN MATER, V45, P364 WETTLING W, 1975, J PHYS C SOLID STATE, V8, P211 WETTLING W, 1983, P INT C SURF STUD LA, P135 WETTLING W, 1983, PHYS REV LETT, V51, P1680 WILBER WD, 1988, J APPL PHYS, V64, P5477 WILBER WD, 1984, J APPL PHYS, V55, P2533 WOLFRAM T, 1972, PROG SURF SCI, V2, P233 XIA H, 1998, PHYS REV LETT, V81, P449 YAFET Y, 1986, PHYS REV B, V33, P6519 YOSHIHARA A, 1994, J APPL PHYS, V75, P1733 YOSHIHARA A, 1989, J APPL PHYS, V66, P328 YOSHIHARA A, 1989, J APPL PHYS, V65, P4968 YOSHIHARA A, 1993, J MAGN MAGN MATER, V126, P333 YOSHIHARA A, 1992, J MAGN MAGN MATER, V104, P1835 YOSHIHARA A, 1996, J PHYS SOC JPN, V65, P1469 YOSHIHARA A, 1994, JPN J APPL PHYS 1, V33, P3927 YOSHIHARA A, 1991, JPN J APPL PHYS 1, V30, P2010 ZEPER WB, 1989, J APPL PHYS, V65, P4971 ZHANG PX, 1986, SOLID STATE COMMUN, V60, P449 ZHOTIKOV VG, 1979, SOV PHYS JETP, V50, P1202 TC 0 BP 174 EP 289 PG 116 SE TOPICS IN APPLIED PHYSICS PY 2000 VL 75 GA BP57N J9 TOP APPL PHYS UT ISI:000085550700003 ER PT J AU Grunberg, P TI Layered magnetic structures in research and application SO ACTA MATERIALIA NR 76 AB An overview is given on the status of research and applications in the field of layered magnetic structures and the historical development is indicated. Currently the research on interlayer exchange coupling giant magnetoresistance and tunnel magnetoresistance is particularly active, therefore the basic understanding of these phenomena, the size of the effects, important issues and applications are discussed in some more detail. (C) 2000 Acta Metallurgica Inc. Published by Elsevier Scientific Ltd. All rights reserved. CR BAE S, 1998, MICROELECTRON RELIAB, V38, P969 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1990, PHYS REV B, V42, P8110 BEAN CP, 1959, STRUCTURE PROPERTIES, P331 BINASCH G, 1989, PHYS REV B, V39, P4828 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BODEKER P, 1998, PHYS REV LETT, V81, P914 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1995, PHYS REV B, V52, P411 BURGLER DE, 1999, PHYS REV B, V60, PR3732 BUTLER WH, 1996, PHYS REV LETT, V17, P3216 CAMARERO J, 1996, PHYS REV LETT, V76, P4428 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1997, J APPL PHYS, V82, P6142 FARADAY M, 1846, PHILOS T ROY SOC LON, V136, P1 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1995, PHYS REV B, V51, P6364 GALLAGHER WJ, 1997, J APPL PHYS, V81, P3741 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 GIRGIS M, UNPUB GRADMANN U, 1968, PHYS STATUS SOLIDI, V27, P313 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HICKEN RJ, 1994, PHYS REV B, V50, P6143 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HJORVARSSON B, 1997, PHYS REV LETT, V79, P901 HUTTEN, 1999, ACTA MAT, V47, P4245 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JULLIERE M, 1975, PHYS LETT A, V54, P225 KLOSE F, 1997, PHYS REV LETT, V78, P1150 KONIG H, 1948, OPTIK, V3, P101 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 KUNDT A, 1884, WIED ANN, V23, P228 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1993, J MAGN MAGN MATER, V121, P242 MIRBT S, 1996, PHYS REV B, V54, P6382 MIYAZAKI T, 1995, J MAGN MAGN MATER, V139, P231 MOODERA JS, 1995, PHYS REV LETT, V74, P3273 MOTT N, 1963, P R SOC, V156, P368 NEEL L, 1954, J PHYS RADIUM, V15, P225 OKUNO S, COMMUNICATION OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PARKIN SSP, 1991, APPL PHYS LETT, V58, P2710 PARKIN SSP, COMMUNICATION PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 PRATT WP, 1991, PHYS REV LETT, V66, P3060 REISS G, 1998, J MAGN MAGN MATER, V184, P281 ROTH C, 1995, PHYS REV B, V52, P15691 ROTTLANDER P, UNPUB SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHAD R, 1999, PHYS REV B, V59, P1242 SHINJO T, COMMUNICATION SHINJO T, 1990, J PHYS SOC JPN, V59, P3061 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STILES MD, 1996, J APPL PHYS, V79, P5805 TAKANASHI K, 1998, APPL PHYS LETT, V72, P737 THOMSON W, 1857, P R SOC LONDON, V8, P546 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VOHL M, 1989, PHYS REV B, V39, P12003 YAN SS, 1999, PHYS REV B, V59, P11641 YAN SS, 1995, PHYS REV B, V52, P1107 ZAHN P, 1998, PHYS REV LETT, V80, P4309 ZOLL S, 1997, EUROPHYS LETT, V39, P323 TC 0 BP 239 EP 251 PG 13 JI Acta Mater. PY 2000 PD JAN 1 VL 48 IS 1 GA 281ZN J9 ACTA MATER UT ISI:000085191500014 ER PT J AU Zabel, H TI Magnetic heterostructures: examples and perspectives SO PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES NR 39 AB Artificial magnetic heterostructures and superlattices have received much attention in recent years because of their scientific and technological relevance. Heterostructures consist of different material layers promising jointly to display physical properties different from any of their single layers. Paramagnetic layers sandwiched between ferromagnetic films are an excellent example of a magnetic heterostructure, since together they display an oscillatory exchange coupling as a function of the paramagnetic spacer thickness not present in any single layer. The strength of the exchange coupling and the oscillation period depend on the details of the Fermi surfaces involved, whereas the overall features of the exchange coupling appear universal. More complex couplings are observed for magnetic superlattices with Cr spacer layers. This is due to the intrinsic spin-density wave state of Cr. Extensive experiments with synchrotron and neutron radiation have recently unravelled the Nt el state of thin Cr layers and proximity effects between Fe and Cr, elucidating the mutual interdependence of the Cr spin structure and the Fe exchange coupling. In Co/Cr superlattices the structural mismatch between hcp Co and bcc Cr adds another complexity, which affects strongly the magnetic anisotropy. Utilizing the different coercivities of Co and Fe layers, spin valve systems can be constructed from Co/Cr/Fe heterostructures. Both the current status and some future perspectives are briefly reviewed here. CR BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1993, PHYS REV B, V47, P2353 BODEKER P, 1998, PHYS REV LETT, V81, P914 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CAMARERO J, 1996, PHYS REV LETT, V76, P4428 DENWALLA S, 1996, PHYS REV, V53, P2474 DONNER W, 1993, PHYS REV B, V48, P14745 ENGEL B, 1991, PHYS REV LETT, V67, P4971 ENTEL P, 1993, PHYS REV B, V47, P8706 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GIBBS D, 1988, PHYS REV B, V37, P562 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HILL JP, 1995, PHYS REV B, V51, P10336 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 METOKI N, 1994, PHYS REV B, V49, P17351 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREIBER F, 1995, PHYS REV B, V51, P2929 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHUMANN FO, 1996, J APPL PHYS, V79, P5635 SCHUMANN FO, 1997, PHYS REV B, V56, P2668 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 SONNTAG P, 1995, PHYS REV B, V52, P7363 TANG W, 1996, J APPL PHYS, V80, P2327 TANG W, 1999, J MAGN MAGN MATER, V191, P45 THEISBROHL K, 1996, PHYS REV B, V53, P11613 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 WASSERMANN EF, 1991, J MAGN MAGN MATER, V100, P346 ZEIDLER T, 1998, J MAGN MAGN MATER, V187, P1 ZEIDLER T, 1996, PHYS REV B, V53, P3256 ZEPER W, 1991, J APPL PHYS, V65, P4971 TC 0 BP 293 EP 306 PG 14 JI Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. PY 2000 PD FEB VL 80 IS 2 GA 282TV J9 PHIL MAG B UT ISI:000085235700017 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Origin of biquadratic exchange in Fe/Si/Fe SO PHYSICAL REVIEW LETTERS NR 21 AB The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. CR ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BRUNO P, 1995, PHYS REV B, V52, P411 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MA P, 1997, PHYS REV B, V56, P9881 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 VANDERHEIJDEN PAA, 1999, PHYS REV LETT, V82, P1050 TC 0 BP 1812 EP 1815 PG 4 JI Phys. Rev. Lett. PY 2000 PD FEB 21 VL 84 IS 8 GA 285HK J9 PHYS REV LETT UT ISI:000085383500044 ER PT J AU Schmitte, T Schreyer, A Leiner, V Siebrecht, R Theis-Brohl, K Zabel, H TI Proximity effect in exchange-coupled Fe/Cr(001) superlattices SO EUROPHYSICS LETTERS NR 36 AB Using temperature-dependent measurements of the magneto-optical Kerr effect. (MOKE) we map out a magnetic phase diagram of Fe/Cr(001) superlattices with Cr-thicknesses between 10 to 45 Angstrom in a temperature range from 10 to 700 K. By comparison with neutron scattering results, we demonstrate the strong correlation between different magnetic phases of the Cr interlayers and the coupling between the Fe lavers. Mie find an enhancement of the Cr Neel temperature as we reduce the Cr thicknesses, indicating a strong proximity effect between the Fe and Cr layers. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINDER K, 1983, PHASE TRANSITIONS CR, P1 BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1998, PHYS REV LETT, V81, P914 BRUNO P, 1991, PHYS REV LETT, V67, P1602 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DINUNZIO S, 1996, THIN SOLID FILMS, V279, P180 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1991, PHYS REV B, V44, P9348 HIRAI K, 1999, PHYS REV B, V59, PR6612 LI DQ, 1997, PHYS REV LETT, V78, P1154 MEERSSCHAUT J, 1998, PHYS REV B, V57, PR5575 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 NIKLASSON AMN, 1999, PHYS REV LETT, V82, P4544 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, IN PRESS J MAGN MAGN RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, UNPUB J APPL PHYS SHI ZP, 1997, PHYS REV LETT, V78, P1351 SIEBRECHT R, 1999, PHYSICA B, V267, P207 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 THEISBROHL K, 1998, PHYS REV B, V57, P4747 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VENUS D, 1996, PHYS REV B, V53, PR1733 ZABEL H, IN PRESS J PHYS COND ZEIDLER T, 1996, PHYS REV B, V53, P3256 TC 1 BP 692 EP 698 PG 7 JI Europhys. Lett. PY 1999 PD DEC VL 48 IS 6 GA 264YJ J9 EUROPHYS LETT UT ISI:000084211100015 ER PT J AU Zabel, H TI Magnetism of chromium at surfaces, at interfaces and in thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 113 AB The spin density wave (SDW) magnetism of thin epitaxial Cr films has recently become the focus of interest because of its mediating role in exchange coupled superlattices. While the incommensurate SDW magnetism and the Neel temperature are well established for bulk Cr, the question arises of how these properties are altered in thin films and superlattices either due to dimensionality effects or due to proximity with the ferromagnetic or paramagnetic boundary layers. After a brief introduction to the basic properties of bulk Cr, this review provides an overview of the SDW magnetism in thin Cr films, starting with surface properties and continuing with the discussion of Cr films of various thickness. The emphasis is more on SDW order in different confined environments than on exchange coupling. The scaling of the Neel temperature with thickness, the critical thickness for the onset of SDW order, the orientation of the SDW wave vector in different environments and the enhancement of SDW order due to proximity effects are extensively discussed. Most important is the role of the interface roughness in case of contact with a ferromagnetic layer. Conflicting results obtained with different experimental techniques are critically reviewed and an interpretation of the SDW order depending on interface quality is proposed. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALLAN G, 1979, PHYS REV B, V19, P4774 ANKNER JF, 1995, J APPL PHYS, V81, P3765 ARROTT A, 1967, PHYS REV, V153, P624 BARBER MN, 1983, PHASE TRANSITIONS CR, V8, P145 BASTOW TJ, 1966, PHYS REV, V141, P510 BAUER E, 1999, J PHYS-CONDENS MAT, V11, P9365 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BERLOWITZ PJ, 1989, SURF SCI, V209, P345 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUGEL S, 1989, PHYS REV B, V39, P1392 BLUGEL S, 1992, PHYS REV LETT, V68, P851 BLUGEL S, 1988, PHYS REV LETT, V60, P1077 BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1998, PHYS REV LETT, V81, P914 BYKOV VN, 1958, DOKL AKAD NAUK SSSR, V4, P1149 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMUYNCK S, 1998, PHYS REV LETT, V81, P2562 ELMERS HJ, 1995, INT J MOD PHYS B, V9, P3115 ESCORCIAAPARICIO E, 1998, PHYS REV LETT, V81, P2144 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12677 FU CL, 1986, PHYS REV B, V33, P1611 FU CL, 1986, PHYS REV B, V33, P1755 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, 1996, PHYS REV B, V54, P9304 FULLERTON EE, 1996, PHYS REV LETT, V17, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1996, PHYSICA B, V221, P370 GIBBS D, 1988, PHYS REV B, V37, P562 GREMPEL DR, 1981, PHYS REV B, V24, P3928 HANF MC, 1989, PHYS REV B, V39, P1546 HILL JP, 1995, PHYS REV B, V51, P10336 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HIRAI K, 1998, J PHYS SOC JPN, V67, P1776 HIRAI K, 1997, J PHYS SOC JPN, V66, P560 HIRAI K, 1993, J PHYS SOC JPN, V62, P690 HIRAI K, 1999, PHYS REV B, V59, PR6612 HUCHT A, 1998, COMMUNICATION IDZERDA YU, 1993, J APPL PHYS, V73, P6204 IDZERDA YU, 1993, PHYS REV B, V48, P4144 JANDELEIT J, 1994, SURF SCI, V319, P287 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 KAZANSKY AK, 1995, PHYS REV B, V52, P9477 KEUNE W, 1996, J APPL PHYS, V79, P4265 KIM SK, 1996, SURF SCI, V349, P160 KLEBANOFF LE, 1986, PHYS REV B, V33, P5301 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KLEBANOFF LE, 1984, PHYS REV B, V30, P1048 KOTANI A, 1975, J PHYS SOC JPN, V38, P974 KREMBEL C, 1990, VACUUM, V41, P460 KUBLER J, 1980, J MAGN MAGN MATER, V20, P277 LAURENT DG, 1981, PHYS REV B, V23, P4977 LAWLER JF, 1996, PHYS REV B, V53, P11159 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 LOVESEY SW, 1984, THEORY NEUTRON SCATT MATTSON J, 1990, MATER RES SOC S P, V160, P231 MEERSSCHAUT J, 1995, J MAGN MAGN MATER, V148, P23 MEERSSCHAUT J, 1998, PHYS REV B, V57, PR5575 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 METOKI N, 1994, PHYS REV B, V49, P17351 MIBU K, 1999, J MAGN MAGN MATER, V198, P689 MIBU K, 1998, J PHYS SOC JPN, V67, P2633 MORI M, 1993, J PHYS-CONDENS MAT, V5, PL77 NAKAJIMA S, 1975, J PHYS SOC JPN, V38, P330 NIKLASSON AMN, 1999, PHYS REV LETT, V82, P4544 NIKLASSON AMN, 1998, THESIS UPPSALA U OHRESSER P, 1996, SURF SCI, V352, P567 OVERHAUSER AW, 1962, PHYS REV, V128, P1437 PFLAUM J, 1999, J MAGN MAGN MATER, V198, P453 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIZZAGALLI L, 1996, PHYS REV B, V54, P12216 ROUYER D, 1995, SURF SCI, V322, P34 ROUYER D, 1994, SURF SCI, V307, P477 SCHEURER F, 1997, PHYS REV B, V56, P13490 SCHMITTE T, 1999, IN PRESS EUROPHYS LE SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SHINN ND, 1988, J VAC SCI TECHNOL A, V6, P597 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 SONNTAG P, 1995, PHYS REV B, V52, P7363 SONNTAG P, 1994, PHYS REV B, V49, P2869 STIERLE A, IN PRESS STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TERAOKA Y, 1977, PHYSICA B & C, V86, P321 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, EUROPHYS LETT, V31, P561 VEGA A, 1995, PHYS REV B, V51, P11546 VENUS D, 1996, PHYS REV B, V53, PR1733 VICTORA RH, 1995, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WERNER SA, 1962, PHYS REV, V155, P528 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 XU ZD, 1995, PHYS REV B, V52, P15393 TC 2 BP 9303 EP 9346 PG 44 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100007 ER PT J AU Bruno, P TI Theory of interlayer exchange interactions in magnetic multilayers SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 122 AB This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations. CR BACK CH, 1997, J APPL PHYS, V81, P5054 BACK CH, 1995, PHYS REV B, V52, P13114 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BOUNOUH A, 1996, EUROPHYS LETT, V33, P315 BRINER B, 1994, PHYS REV LETT, V73, P340 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO P, 1999, CONDMAT9905022 BRUNO P, 1999, EUR PHYS J B, V11, P83 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1999, IN PRESS BRUNO P, 1997, J MAGN MAGN MATER, V165, P128 BRUNO P, 1996, J MAGN MAGN MATER, V164, P27 BRUNO P, 1995, J MAGN MAGN MATER, V148, P202 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1999, MAGNETISCHE SCHICHTS, PCHB8 BRUNO P, 1996, PHYS REV B, V53, P9214 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1996, PHYS REV LETT, V46, P4253 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CARL A, 1995, PHYS REV LETT, V74, P190 CRAMPIN S, 1996, PHYS REV B, V53, P13817 DEMIGUEL JJ, 1991, J MAGN MAGN MATER, V93, P1 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1995, PHYS REV LETT, V75, P1306 DEVRIES JJ, 1996, THESIS EINDHOVEN U T DRCHAL V, 1998, PHILOS MAG B, V78, P571 DRCHAL V, 1996, PHYS REV B, V53, P15036 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FURUKAWA T, 1996, PHYS REV B, V54, P17896 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 HIMPSEL FJ, 1995, J ELECTRON SPECTROSC, V75, P187 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 INOMATA K, 1995, PHYS REV LETT, V74, P1863 IVES AJR, 1994, J APPL PHYS, V75, P6458 JALOCHOWSKI M, 1992, PHYS REV B, V45, P13607 JOHNSON MT, 1993, MATER RES SOC S P, V313, P93 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1994, PHYS REV B, V50, P8954 JONES BA, 1998, IBM J RES DEV, V42, P25 KATAYAMA T, 1993, J MAGN MAGN MATER, V126, P527 KAWAKAMI RK, 1999, PHYS REV LETT, V82, P4098 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIRILYUK A, 1996, PHYS REV LETT, V77, P4608 KLASGES R, 1998, PHYS REV B, V57, PR696 KUDMOVSKY J, 1996, PHYS REV B, V54, P3738 KUDRNOVSKY J, 1998, COMP MATER SCI, V10, P188 KUDRNOVSKY J, 1997, MATER RES SOC SYMP P, V475, P575 KUDRNOVSKY J, 1997, PHYS REV B, V56, P8919 LANG P, 1996, PHYS REV B, V53, P9092 LEE B, 1996, PHYS REV B, V54, P13034 LEE BC, 1995, PHYS REV B, V52, P3499 LI DQ, 1995, PHYS REV B, V51, P7195 LI DQ, 1997, PHYS REV LETT, V78, P1154 LINDGREN SA, 1989, J PHYS-CONDENS MAT, V1, P2151 LINDGREN SA, 1988, PHYS REV B, V38, P3060 LINDGREN SA, 1988, PHYS REV LETT, V61, P2894 LINDGREN SA, 1987, PHYS REV LETT, V59, P3003 LOLY PD, 1983, J PHYS C SOLID STATE, V16, P423 LUCE TA, 1996, PHYS REV LETT, V77, P2810 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1997, PHYS REV B, V56, P11797 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEGY R, 1995, PHYS REV B, V51, P5586 MILLER T, 1988, PHYS REV LETT, V61, P1404 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MUELLER MA, 1990, PHYS REV B, V41, P5214 MUELLER MA, 1989, PHYS REV B, V40, P5845 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1993, PHYS REV LETT, V70, P1771 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, PHYS REV B, V44, P5355 RHYNE JJ, 1995, MAGNETIC MAT, V5, P1 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SEGOVIA P, 1996, PHYS REV LETT, V77, P3455 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMITH NV, 1994, PHYS REV B, V49, P332 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1999, J MAGN MAGN MATER, V200, P322 STILES MD, 1993, PHYS REV B, V48, P7238 SUZUKI Y, 1998, PHYS REV LETT, V80, P5200 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WACHS AL, 1986, PHYS REV B, V33, P1460 WEBER W, 1995, EUROPHYS LETT, V31, P491 WEBER W, 1996, PHYS REV LETT, V76, P3424 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 TC 0 BP 9403 EP 9419 PG 17 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100011 ER PT J AU Smardz, L TI Exchange coupling in Co-Ti layered structures SO SOLID STATE COMMUNICATIONS NR 32 AB The Co-Ti multilayers with constant thickness sublayers and Co- d(Ti)-Ti-Co trilayers with wedge-shaped Ti interlayers were prepared using an ultra high vacuum (5 x 10(-10) mbar) DC-RF magnetron sputtering. The planar growth of the Co and Ti sublayers was confirmed in situ by X-ray photoelectron spectroscopy. The Co sublayers grow in the soft magnetic nanocrystalline phase (with average grain size D << 10 nn) up to a critical thickness d(crit) similar to 3 nm. For a thickness greater than d(crit), the Co sublayers undergo a structural transition to the polycrystalline phase with D > 10 nm. Results show that the Co sublayers are very weakly exchange coupled or decoupled for d(Ti) > 2.7 nn. The rapid decrease of the interlayer exchange coupling could be explained by its strong damping due to the formation of a non-magnetic quasi- amorphous Co-Ti alloy layer at the interfaces. The nanocrystalline Co sublayers with d(Co) = 2.2 nm showed a weak 90 degrees coupling near the transition zone (d(Ti) similar to 2 nm) from ferromagnetic to week antiferromagnetic coupling. (C) 1999 Elsevier Science Ltd. All rights reserved. CR BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BURGLER DE, 1998, PHYS REV LETT, V80, P4983 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DUPAS C, 1990, J APPL PHYS, V67, P5680 EDWARDS DM, 1994, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P7795 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FUCHS P, 1997, PHYS REV B, V55, P12546 GRUNBERG P, 1997, ACTA PHYS POL A, V91, P7 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HAYAKAWA M, 1994, J MAGN MAGN MATER, V134, P287 HERZER G, 1996, J MAGN MAGN MATER, V157, P133 LEE GM, 1999, THIN SOLID FILMS, V341, P165 LEE YP, 1999, J MAGN SOC JPN, V23, P361 MACHIZAUD F, 1989, PHYS REV B, V40, P587 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAMWER K, 1988, PHYS REP, V161, P3 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SHIBA K, 1986, IEEE T MAGN, V22, P1104 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SMARDZ K, 1999, THESIS I MOL PHYSICS SMARDZ L, 1995, J MAGN MAGN MATER, V140, P569 SMARDZ L, 1997, UNPUB 1 INT S SCANN VANLEEUWEN R, 1990, J APPL PHYS, V67, P4910 WU P, 1997, PHYS STATUS SOLIDI A, V161, P125 TC 0 BP 693 EP 698 PG 6 JI Solid State Commun. PY 1999 VL 112 IS 12 GA 256FF J9 SOLID STATE COMMUN UT ISI:000083714700008 ER PT J AU Drovosekov, AB Zhotikova, OV Kreines, NM Kholin, DI Meshcheryakov, VF Milyaev, MA Romashev, LN Ustinov, VV TI Inhomogeneous ferromagnetic resonance modes in [Fe/Cr](n) superlattices with a high biquadratic exchange constant SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS NR 23 AB In a set of [Fe/Cr](n) superlattices, magnetization curves and spectra of ferromagnetic resonance under an in-plane magnetic field have been studied at room temperature. Along with the acoustic branch, several additional branches have been observed in resonance spectra. Resonance spectra have been calculated analytically for a structure with an infinite number of layers and numerically for finite numbers of layers in real samples using a model of biquadratic exchange taking account of the fourth-order magnetic anisotropy. A possibility of describing both static and resonance properties of the system in terms of this model has been demonstrated. (C) 1999 American Institute of Physics. [S1063-7761(99)02311-2]. CR BEBENIN NG, 1997, FIZ MET METALLOVED+, V84, P29 CHIRITA M, 1998, PHYS REV B, V38, P869 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DROVOSEKOV AB, 1999, J MAGN MAGN MATER, V198, P455 DROVOSEKOV AB, 1998, JETP LETT+, V67, P727 FERT A, 1995, J MAGN MAGN MATER, V140, P1 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1991, PHYS REV B, V44, P9348 KREINES NM, 1998, J MAGN MAGN MATER, V177, P1189 LEVCHENKO VD, 1998, J EXP THEOR PHYS+, V87, P985 REZENDE SM, 1998, J APPL PHYS, V84, P958 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 USTINOV VV, 1997, FIZ MET METALLOVED+, V84, P161 USTINOV VV, 1995, FIZ MET METALLOVED+, V80, P71 USTINOV VV, 1996, PHYS REV B, V54, P15958 USTINOV VV, 1999, TECH PHYS LETT+, V25, P459 WIGEN PE, 1992, BRAZ J PHYS, V22, P267 TC 0 BP 986 EP 994 PG 9 JI J. Exp. Theor. Phys. PY 1999 PD NOV VL 89 IS 5 GA 261FC J9 J EXP THEOR PHYS UT ISI:000083997800023 ER PT J AU Morozov, AI Sigov, AS TI New type of domain walls in multilayer magnetic structures SO USPEKHI FIZICHESKIKH NAUK NR 15 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAUER E, 1996, J MAGN MAGN MATER, V156, P1 BRUNO P, 1992, PHYS REV B, V46, P261 CABRERA GG, 1974, PHYS STATUS SOLIDI B, V61, P539 LEVCHENKO VD, 1998, ZH EKSP TEOR FIZ, V114, P1817 LEVY PM, 1997, PHYS REV LETT, V79, P5110 MOROSOV AI, 1995, PISMA ESKP TEOR FIZ, V61, P893 MOROZOV AI, 1999, FIZ TVERD TELA, V41, P1312 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 USTINOV VV, 1996, ZH EKSP TEOR FIZ+, V109, P477 YAFET Y, 1987, PHYS REV B, V36, P3948 YANG ZJ, 1995, PHYS REV B, V52, P4263 TC 0 BP 922 EP 924 PG 3 JI Uspekhi Fiz. Nauk PY 1999 PD AUG VL 169 IS 8 GA 250VY J9 USP FIZ NAUK UT ISI:000083411000008 ER PT J AU Pierce, DT Unguris, J Celotta, RJ Stiles, MD TI Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 90 AB The interplay between interfacial disorder and the antiferromagnetic order in Cr lends to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Tr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr lends to results not explained by the conventional model. For nearly ideal interfaces, the Fe-Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results. (C) 1999 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1997, J APPL PHYS, V81, P3765 ARNOTT AS, 1990, KINETICS ORDERING GR, P321 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, COMMUNICATION COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D, V13, P925 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, J APPL PHYS, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12667 FULLERTON EE, COMMUNICATION FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GEERKEN BM, 1982, J PHYS F MET PHYS, V12, P603 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1999, PHYS REV B, V59, P14520 HEINRICH B, 1991, PHYS REV B, V44, P9348 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEERSSCHAUT J, 1998, THESIS KATHOLIEKE U MIRBT S, 1997, PHYS REV B, V56, P287 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHMIDT CM, 1999, IN PRESS PHYS REV B, V60 SCHREYER A, COMMUNICATION SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 1996, PHYSICA B, V221, P366 SHI ZP, 1994, PHYS REV B, V49, P15159 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 THEISBROHL K, 1998, PHYS REV B, V57, P4747 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, IN PRESS J MAGN MAGN UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VEGA A, 1995, EUROPHYS LETT, V31, P561 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG RW, 1992, PHYS REV B, V46, P11681 WANG Y, 1990, PHYS REV LETT, V65, P2732 WERNER SA, 1967, PHYS REV, V155, P528 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 4 BP 290 EP 321 PG 32 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700019 ER PT J AU Stiles, MD TI Interlayer exchange coupling SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 133 AB The extensive research done on interlayer exchange coupling in transition metal multilayers has resulted in a deep understanding of this coupling and a remarkable agreement between theoretical results and measurements. The coupling between two magnetic layers separated by a non-magnetic spacer layer is mediated by the electrons of the spacer layer. The coupling, which oscillates in sign as a function of the thickness of the spacer layer, is closely related to the well- known RKKY interaction between magnetic impurities. Due to the existence of many high-quality measurements, it has been much more fully developed theoretically than the interaction between impurities. Theory predicts that the periods of the oscillatory coupling should depend on critical spanning vectors of the Fermi surface belonging to the spacer-layer material There is remarkable agreement far the measured periods and those predicted from the Fermi surfaces. There is also substantial agreement between theory and experiment on the strength of the coupling. This review presents the comparison between theory and experiment in some detail. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR ANDERSSON G, 1997, PHYS REV B, V55, P15905 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BIAN X, 1996, J APPL PHYS, V79, P4980 BINASCH G, 1989, PHYS REV B, V39, P4828 BLOEMEN PJH, 1993, J APPL PHYS, V73, P5972 BLOEMEN PJH, 1993, J MAGN MAGN MATER, V121, P306 BLOEMEN PJH, 1994, PHYS REV B, V50, P13505 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUBAKER ME, 1991, APPL PHYS LETT, V58, P2306 BRUNO P, CONDMAT9808091 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1995, J MAGN MAGN MATER, V148, P202 BRUNO P, 1993, J MAGN MAGN MATER, V121, P238 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1996, PHYS REV LETT, V76, P4254 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CEBOLLADA A, 1991, J MAGN MAGN MATER, V102, P25 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 CELINSKI Z, 1991, J MAGN MAGN MATER, V99, PL25 CELINSKI Z, 1990, PHYS REV LETT, V65, P1156 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1993, J MAGN MAGN MATER, V121, P266 COEHOORN R, 1991, PHYS REV B, V44, P9331 COSTA AT, 1997, PHYS REV B, V56, P13697 COSTA AT, 1997, PHYS REV B, V55, P3724 CULLEN JR, 1991, J APPL PHYS, V70, P5879 DEAVEN DM, 1991, PHYS REV B, V44, P5977 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DEVRIES JJ, 1994, J APPL PHYS, V75, P6440 DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306 DRCHAL V, 1996, PHYS REV B, V53, P15036 DUPAS C, 1993, J MAGN MAGN MATER, V128, P361 DURA JA, 1997, PHYS REV LETT, V79, P901 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P775 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FARROW RFC, 1998, IBM J RES DEV, V42, P43 FASSBENDER J, 1992, PHYS REV B, V46, P5810 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRANBERG P, 1998, J MAGN MAGN MATER, V186, P154 GROLIER V, 1993, PHYS REV LETT, V71, P3023 HATHAWAY KB, 1992, J MAGN MAGN MATER, V104, P1840 HEINRICH B, 1999, IN PRESS PHYS REV B, V52 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, P45 HERMAN F, 1991, J APPL PHYS, V69, P4783 HIMPSEL FJ, 1998, IBM J RES DEV, V42, P33 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 HUAI Y, 1992, J APPL PHYS, V72, P2523 INOUE J, 1994, PHYS REV B, V50, P13541 IVES AJR, 1994, J APPL PHYS, V75, P6458 JOHNSON MT, 1995, PHYS REV LETT, V75, P4686 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1997, REP PROG PHYS, V60, P1217 JONES BA, 1998, IBM J RES DEV, V42, P25 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KEAVNEY DJ, 1993, J MAGN MAGN MATER, V121, P283 KIEF MT, 1993, PHYS REV B, V47, P10785 KOELLING DD, 1999, PHYS REV B, V59, P6351 KOELLING DD, 1994, PHYS REV B, V50, P273 KOHLHEPP J, 1992, J MAGN MAGN MATER, V111, PL231 KUDRNOVSKY J, 1997, PHYS REV B, V56, P8919 KUDRNOVSKY J, 1996, PHYS REV B, V54, PR3738 KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125 KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105 LANG P, 1996, PHYS REV B, V53, P9092 LANG P, 1993, PHYS REV LETT, V71, P1927 LATHIOTAKIS NN, 1998, J MAGN MAGN MATER, V185, P293 LEE BC, 1995, PHYS REV B, V51, P316 LENG Q, 1993, J MAGN MAGN MATER, V126, P367 LEVY PM, 1995, J MAGN MAGN MATER, V140, P513 LEVY PM, 1998, PHYS REV B, V58, P5588 LI DQ, 1997, PHYS REV LETT, V78, P1154 LUO Y, 1998, EUROPHYS LETT, V42, P565 MACDONALD AH, 1998, PHYS REV LETT, V81, P705 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1993, J MAGN MAGN MATER, V127, PLI61 MATHON J, 1997, PHYS REV B, V56, P11797 MATHON J, 1995, PHYS REV LETT, V74, P3696 MATTSON JE, 1992, PHYS REV LETT, V68, P3252 MIRBT S, 1996, PHYS REV B, V54, P6382 NIKLASSON AMN, 1995, J MAGN MAGN MATER, V148, P209 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1995, PHYS REV B, V51, P6139 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 OUNADJELA K, 1992, PHYS REV B, V45, P7768 PAPACONSTANTOPO DA, 1986, HDB BOOD STRUCTURE E PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 QIU ZQ, 1992, PHYS REV B, V46, P8659 RHYNE JJ, 1995, HANDB MAG M, V8, P1 RHYNE JJ, 1989, PHYS SCRIPTA, VT29, P31 RUDERMAN MA, 1954, PHYS REV, V96, P99 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1993, PHYS REV B, V47, P15334 SHI ZP, 1994, PHYS REV B, V49, P15159 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STAMM C, 1998, J MAGN MAGN MATER, V177, P1279 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1994, PHYS REV B, V49, P299 SZUNYOGH L, 1996, PHYS REV B, V54, P6430 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1999, J MAGN MAGN MATER, V198, P396 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 WANG Y, 1990, PHYS REV LETT, V65, P2732 WEBER W, 1995, EUROPHYS LETT, V31, P491 WILDBERGER K, 1998, PHYS REV B, V58, P13721 YAFET Y, 1988, J APPL PHYS, V63, P3453 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 YOSIDA K, 1957, PHYS REV, V106, P893 YOU CY, IN PRESS J APPL PHYS ZOLL S, 1997, EUROPHYS LETT, V39, P323 TC 1 BP 322 EP 337 PG 16 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700020 ER PT J AU Fullerton, EE Jiang, JS Bader, SD TI Hard/soft magnetic heterostructures: model exchange-spring magnets SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 60 AB An overview is provided of research on exchange-spring coupled magnetic films and multilayers, including fabrication methods, and the characterization and modeling of the magnetization reversal processes. For coupled hard/soft bilayers and multilayers the deposition process provides nanometer-scale control of thicknesses and magnetic anisotropy. Such magnetic heterostructures provide model systems for studying the exchange hardening mechanism. Recent work on epitaxial SmCo/Fe and SmCo/Co bilayers and superlattices that display many of the characteristic features of exchange-spring magnets is highlighted. Comparison of the experimental results with numerical simulations indicates that the exchange-spring behavior can be understood from the intrinsic parameters of the hard and soft layers. The simulations are extended to realistically estimate the ultimate gain in performance that can potentially be realized in permanent magnets based on the exchange-spring principle. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR ALOMARI IA, 1995, PHYS REV B, V52, P3441 ASTALOS RJ, 1998, PHYS REV B, V58, P8646 BENAISSA M, 1998, IEEE T MAGN, V34, P1204 CABRERA GG, 1974, PHYS STATUS SOLIDI B, V61, P539 CAMLEY RE, 1987, PHYS REV B, V35, P3608 COEHOORN R, 1989, J MAGN MAGN MATER, V80, P101 DAHLBERG ED, 1998, J APPL PHYS, V83, P6893 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DING J, 1994, J APPL PHYS, V75, P75 DING J, 1993, J MAGN MAGN MATER, V124, PL1 FISCHER R, 1995, J MAGN MAGN MATER, V150, P329 FISCHER R, 1998, PHYS REV B, V57, P10723 FISCHER R, 1996, PHYS REV B, V54, P7284 FULLERTON EE, 1998, APPL PHYS LETT, V72, P380 FULLERTON EE, 1997, APPL PHYS LETT, V71, P1579 FULLERTON EE, 1996, APPL PHYS LETT, V69, P2438 FULLERTON EE, 1998, PHYS REV B, V58, P12193 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GIVORD D, 1996, J MAGN MAGN MATER, V159, P71 GOTO E, 1965, J APPL PHYS, V36, P2951 GREGG JF, 1996, PHYS REV LETT, V77, P1580 GRIMSDITCH M, IN PRESS J APPLL PHY GUNTHER L, 1994, PHYS REV B, V49, P3926 HERBST JF, 1991, REV MOD PHYS, V63, P819 JIANG JS, 1998, J APPL PHYS, V83, P6238 KEAVNEY DJ, 1996, IEEE T MAGN, V32, P4440 KIWI M, EXCHANG BIAS MODEL R KNELLER E, 1962, FERROMAGNETISMUS KNELLER EF, 1991, IEEE T MAGN, V27, P3588 LIU JP, 1998, APPL PHYS LETT, V72, P483 LIU JP, 1997, IEEE T MAGN, V33, P3709 LIU JP, 1999, IN PRESS J APPL PHYS LIU JP, 1998, J APPL PHYS, V83, P6608 LIU JP, 1997, J APPL PHYS, V81, P5644 MANGIN S, 1997, EUROPHYS LETT, V39, P675 MANGIN S, 1998, PHYS REV B, V58, P2748 MAURI D, 1987, J APPL PHYS, V62, P3047 MCMICHAEL RD, 1998, PHYS REV B, V58, P8605 MIBU K, 1996, J MAGN MAGN MATER, V163, P75 MIBU K, 1998, PHYS REV B, V58, P6442 NAGAHAMA T, 1998, J PHYS D, V51, P43 NAKAMURA A, 1995, JPN J APPL PHYS, V34, P2308 ODONNELL K, 1997, J APPL PHYS, V81, P6310 PARHOFER SM, 1996, IEEE T MAGN, V32, P4437 RAVE W, 1997, J MAGN MAGN MATER, V171, P69 RUDIGER U, 1998, APPL PHYS LETT, V73, P1298 SABIRYANOV RF, 1998, J MAGN MAGN MATER, V177, P989 SABIRYANOV RF, 1998, PHYS REV B, V58, P12071 SCHREFL T, 1994, PHYS REV B, V49, P6100 SHINDO M, 1997, J APPL PHYS, V81, P4444 SHINDO M, 1996, J MAGN MAGN MATER, V161, PL1 SKOMSKI R, 1993, PHYS REV B, V48, P15812 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STRNAT KJ, 1991, J MAGN MAGN MATER, V100, P38 SUZUKI Y, 1996, PHYS REV B, V53, P14016 THOMPSON DA, 1965, THESIS CARNEGIE I TE WECKER J, 1995, APPL PHYS LETT, V67, P563 WITHANAWASAM L, 1994, J APPL PHYS, V75, P6646 WITHANAWASAM L, 1995, SCRIPTA METALL MATER, V33, P1765 WUCHNER S, 1997, PHYS REV B, V55, P11576 TC 1 BP 392 EP 404 PG 13 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700024 ER PT J AU Krinitsina, TP Kravtsov, EA Lauter-Passiouk, VV Lauter, HJ Popov, VV Romashev, LN Tsurin, VA Burkhanov, AM Ustinov, VV TI Morphology of crystallites and magnetic structure of non- collinear Fe/Cr multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 3 AB Atomic and magnetic structures of Fe/Cr superlattices have been studied by means of polarized neutron reflectometry, X-ray diffraction, electron microscopy and Mossbauer spectroscopy. Peculiarities of structure responsible for the formation of non-collinear magnetic order have been found. (C) 1999 Elsevier Science B.V. All rights reserved. CR FULLERTON EE, 1992, PHYS REV B, V45, P9292 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 USTINOV VV, 1996, PHYS REV B, V54, P15958 TC 1 BP 181 EP 183 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD AUG VL 203 SI SI GA 221EB J9 J MAGN MAGN MATER UT ISI:000081710100056 ER PT J AU Morozov, AI Sigov, AS TI Phase diagram of multilayer ferromagnet-layered-antiferromagnet structures SO PHYSICS OF THE SOLID STATE NR 9 AB This paper discusses the thickness-roughness phase diagram of a three-layer system consisting of two ferromagnetic layers separated by an antiferromagnetic interlayer. It is shown that the stability region of single-domain ferromagnetic layers is determined by the ratio between the width of the atomic steps that appear at the interfaces of the layers during their growth and the thicknesses of the layers, and also by the values of the interlayer and intralayer exchange interactions. A basis is provided for the phenomenological "magnetic closeness" model proposed by Slonczewski, and an expression is obtained for the constants of this model. (C) 1999 American Institute of Physics. [S1063-7834(99)02407-7]. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BRUNO P, 1992, PHYS REV B, V46, P261 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 LEVCHENKO VD, 1998, SOV PHYS JETP, V87, P985 MOROZOV AI, 1995, JETP LETT+, V61, P911 MOROZOV AI, 1997, PHYS SOLID STATE+, V39, P1104 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TC 1 BP 1130 EP 1137 PG 8 JI Phys. Solid State PY 1999 PD JUL VL 41 IS 7 GA 223BG J9 PHYS SOLID STATE UT ISI:000081819400024 ER PT J AU Schmidt, CM Burgler, DE Schaller, DM Meisinger, F Guntherodt, HJ TI Correlation of short-period oscillatory exchange coupling to nanometer-scale lateral interface structure in Fe/Cr/Fe(001) SO PHYSICAL REVIEW B NR 38 AB We investigate Fe/Cr/Fe(001) trilayers grown on AE(001)/Fe/GaAs(001) substrates at different temperatures. By changing the substrate temperature of the bottom Fe film during deposition, but otherwise keeping the preparation parameters constant, we are able to tailor the roughness of the Fe/Cr interfaces. The interfaces are characterized by means of scanning tunneling microscopy (STM). In these differently prepared systems, a clear change of the short-period oscillation amplitude is observed by magneto-optical Kerr effect measurements. A statistical analysis of the STM images allows us to extract the lateral length scale over which the Cr thickness is constant, and it turns out that areas of constant Cr thickness with a diameter larger than 3-4 nm are mandatory for the evolution of short-period oscillations. Two mechanisms are discussed which can explain the observed correlation between structure and magnetism, one linked to the propagation of the coupling through the spacer and the other to the response of the ferromagnetic layers to the transmitted exchange field. [S0163-1829(99)04430-6]. CR AMAR JG, 1995, PHYS REV B, V52, P13801 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, 1998, PHYS REV B, V57, P10035 BURGLER DE, 1997, PHYS REV B, V56, P4149 BURGLER DE, 1996, SURF SCI, V366, P295 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS, V81, P4350 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 LABRUNE M, 1993, IEEE T MAGN, V29, P2569 LAURENT DG, 1981, PHYS REV B, V23, P4977 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 PARKER DJ, 1990, BRIT HEART J, V64, P1 PIERCE DT, 1994, PHYS REV B, V49, P14564 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER R, 1995, J MAGN MAGN MATER, V148, P226 SCHMIDT CM, 1998, THESIS U BASEL SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SLONCZEWSKI JC, 1988, IEEE T MAGN, V24, P2045 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG Y, 1990, PHYS REV LETT, V65, P2732 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1998, NATO ADV SCI I E-APP, V349, P239 TC 1 BP 4158 EP 4169 PG 12 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100063 ER PT S AU Rezende, SM Chesman, C Lucena, MA deMoura, MC Azevedo, A de Aguiar, FM TI Magnetic multilayers: Interlayer coupling in Fe/Cr/Fe SO MAGNETISM, MAGNETIC MATERIALS AND THEIR APPLICATIONS NR 36 AB The exchange coupling between neighboring magnetic lavers in multilayer systems consisting of stacks of ferromagnetic layers separated by nonmagnetic metallic layers plays a central role in the properties of these novel artificially structured materials. Here we review the most common techniques for measuring this coupling, namely magneto-optical Kerr effect magnetometry, Brillouin light scattering and ferromagnetic resonance. The theoretical background for interpreting experimental data in trilayers formed by two magnetic layers separated by a nonmagnetic layer is presented, based on a phenomenological model energy including bilinear and biquadratic exchange couplings, as well as surface, in-plane uniaxial and crystalline cubic anisotropy contributions. Accurate quantitative values for the coupling constants and the other magnetic parameters are measured in the prototype system (100) Fe/Cr/Fe grown by sputtering for several Cr spacer thickness. Consistent values are obtained with all three techniques for both the bilinear (J(1)) and biquadratic (J(2)) exchange coupling constants. In most of the Cr thickness range corresponding to the first antiferromagnetic peak, J(2) follows J(1) with a ratio J(2)/\J(1)\ congruent to 0.1. In the range corresponding to the second antiferromagnetic peak J(2) also follows J(1), but with a much larger ratio J(2)/\J(1)\ congruent to 1.0, indicating that the origin of the biquadratic coupling in the two ranges resides in different mechanisms. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BRUNO P, 1992, PHYS REV B, V46, P261 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 CHESMAN C, IN PRESS PHYS REV B COCHRAN JF, 1988, J APPL PHYS, V64, P6092 DUTCHER JR, 1994, LINEAR NONLINER SPIN, PCH6 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FROM M, 1994, J APPL PHYS, V75, P6181 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1989, TOPICS APPL PHYSICS, V66, PCH8 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1994, ULTRATHIN MAGNETIC S HICKEN RJ, 1995, J APPL PHYS, V78, P6670 HILLEBRANDS B, 1990, PHYS REV B, V41, P530 IVES AJR, 1997, PHYS REV B, V55, P12428 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 KREBS JJ, 1990, J APPL PHYS, V67, P5920 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PRINZ GA, 1995, PHYS TODAY, V48, P58 PURCELL ST, 1991, PHYS REV LETT, V67, P903 REZENDE SM, IN PRESS J APPL PHYS RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WANG Y, 1990, PHYS REV LETT, V65, P2732 WHITE RL, 1992, IEEE T MAGN, V28, P2482 TC 0 BP 64 EP 75 PG 12 SE MATERIALS SCIENCE FORUM PY 1999 VL 302-3 GA BN23T J9 MATER SCI FORUM UT ISI:000081205300009 ER PT J AU Ustinov, VV Tsurin, VA Romashev, LN Ovchinnikov, VV TI Mossbauer spectroscopy of interlayer boundaries in magneto- noncollinear [Fe-57/Cr](12)/MgO (100) superlattices SO TECHNICAL PHYSICS LETTERS NR 15 AB Results are presented of Mossbauer analyses of [Fe- 57/Cr](12)/MgO (100) superlattices. A combined approach was used, based on model calculations and a method of reconstructing the density distribution function P(H-hf) of the hyperfine fields. This procedure allowed us to systematically subtract the subspectra from the different neighborhood configurations of the resonant Fe-57 atom. A detailed structural model was obtained for the Fe-Cr transition region from a "pure" Fe layer to a "pure" Cr layer. A deflection of the magnetic moment of the Fe atoms from the plane of the superlattice layers was identified in the interface of the Fe and Cr layers. The specific magnetic structure of the interface regions with different angular orientations of the magnetic moments of the Fe atoms relative to the plane of the layers (between 0 and 90 degrees) is attributed to the coexistence of strong antiferromagnetic interaction between Fe and Cr atoms and an incommensurate spin density wave in the Cr layers. (C) 1999 American Institute of Physics. [S1063-7850(99)01606-7]. CR ARBUZOV VL, 1991, STRONGLY EXCITED STA, P40 CHANDRA D, 1971, MET T, V2, P511 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 FAWCETT E, 1988, REV MOD PHYS, V60, P209 NIKOLAEV VI, 1985, MOSSBAUER STUDIES FE, P224 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1996, PHYSICA B, V221, P366 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 USTINOV VV, 1995, FIZ MET METALLOVED+, V80, P71 USTINOV VV, 1996, PHYS REV B, V54, P15958 USTINOV VV, 1996, SOV PHYS JETP, V82, P253 UZDIN VM, 1998, COMP MATER SCI, V10, P211 WERTHEIM GK, 1964, PHYS REV LETT, V12, P24 ZABEL H, 1998, J PHYS D APPL PHYS, V31, P656 TC 1 BP 459 EP 461 PG 3 JI Tech. Phys. Lett. PY 1999 PD JUN VL 25 IS 6 GA 211HV J9 TECH PHYS LETT UT ISI:000081155600016 ER PT J AU Cornea, CC Stoeffler, DCA TI Non-collinear magnetic states in FexCo1-x/Mn-n multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 5 AB We study the non-collinear magnetism of FexCo1-x/Mn-n multilayers which are particularly interesting for their experimental behaviour as well as for theoretical reasons because they allow to study the magnetic properties of thin Mn layers with varying boundary conditions by changing the concentration x. For perfect interfaces, even if a non- collinear Mn spacer is obtained for small Fe concentrations when collinear solutions are expected, the interlayer coupling energy follows a parabolic law as a function of the angle between successive ferromagnetic magnetizations. We also examine the role of interfacial monoatomic steps on the magnetic order in such multilayers. (C) 1999 Elsevier Science B.V. All rights reserved. CR CORNEA CC, 1998, COMP MATER SCI, V10, P245 CORNEABORODI CC, 1997, J MAGN MAGN MATER, V165, P450 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FREYSS M, 1996, PHYS REV B, V54, P12677 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TC 0 BP 282 EP 284 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600091 ER PT J AU Monchesky, T Heinrich, B Cochran, JF Klaua, M TI The role of interface alloying on interlayer exchange coupling and the magnetic state of Mn(001) in Fe whisker/Cr/Mn/Fe(001) structures SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 23 AB Fe whisker/Cr/Fe(001) samples can be prepared in a nearly perfect layer by layer growth. It will be shown that the initial reversal of the phase in the short wavelength oscillations of the interlayer exchange coupling is most likely caused by the presence of interface alloying at the Fe/Cr interface. The ability to grow nearly perfect layers of Mn between Cr and Fe layers allows one to investigate the role of a strong intrinsic antiferromagnet, Mn, on the exchange coupling through the weak antiferromagnetic spin density wave in Cr. It will be shown that the Mn layers do not affect the sign of the interlayer exchange coupling. The sign of the exchange coupling is given by the number (parity) of pure Cr atomic layers. These results are consistent with recent theoretical calculations that predict the BCT Mn on Fe is antiferromagnetic with fully compensated (001) atomic planes. (C) 1999 Elsevier Science B.V. All rights reserved. CR BODEKER P, 1998, PHYS REV LETT, V81, P914 BOUARAB S, 1995, PHYS REV B, V52, P10127 COCHRAN JF, 1997, J MAGN MAGN MATER, V169, P1 COCHRAN JF, 1995, J MAGN MAGN MATER, V137, P101 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DRESSELHAUS J, 1997, PHYS REV B, V56, P5461 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FREYSS M, 1997, PHYS REV B, V56, P6047 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS, V81, P4350 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 KEUNE W, UNPUB MOSSBAUER STUD PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PIERCE DT, 1994, PHYS REV B, V49, P14564 RADER O, 1997, PHYS REV B, V56, P5053 SCHURER PJ, 1996, PHYS REV B, V51, P2506 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1993, NATO ADV STUDY I B, V39, P411 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1993, PHYS REV B, V48, P3563 WU RQ, 1995, PHYS REV B, V51, P17131 TC 0 BP 421 EP 424 PG 4 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600133 ER PT J AU Heinrich, B Cochran, JF Monchesky, T Urban, R TI Exchange coupling through spin-density waves in Cr(001) structures: Fe-whisker/Cr/Fe(001) studies SO PHYSICAL REVIEW B NR 53 AB Exchange coupling through a spin-density wave in Fe- whisker/Cr/Fe(001) structures has been studied using Brillouin light scattering (BLS) and magneto-optical Kerr effect (MOKE). The Fe-whisker(001) substrates provide nearly ideal templates: they are characterized by atomic terraces having dimensions in excess of several micrometers. Such templates are essential for the study of short-wavelength exchange coupling which is mediated by the intrinsic spin-density wave in Cr(001). Atomically smooth Cr(001) layers similar to those of the Fe- whisker surfaces can be grown at raised substrate temperatures. Angular resolved auger electron spectroscopy measurements have shown that the Fe-whisker/Cr(001) interfaces are affected by an atom exchange placement mechanism (interface alloying). It will be shown that this interface alloying at the Fe-whisker/Cr interface profoundly affects the behavior of the short- wavelength oscillations. The phase of the short-wavelength oscillations is reversed compared to that expected for the spin-density wave in Cr(001), The strength of coupling is significantly decreased from that obtained from first- principles calculations, and the first crossover to antiferromagnetic coupling occurs at 4 ML. BLS and MOKE have shown unambiguously that the exchange coupling in Fe- whisker/Cr/Fe(001) structures can be described by bilinear and biquadratic terms. Experiments carried out using Cu and Ag atomic layers between the Cr(001) and Fe(001) films, i.e., heterogeneous interfaces, have shown that the exchange coupling in Cr(001) is strongly affected by electron multiple scattering. It will be argued that the exchange coupling through thick (>8 ML) and atomically smooth Cr(001) spacers can be described by localized interactions (Heisenherg type) and by electron multiple-scattering (quantum well state) contributions. This is in good accord with recent first- principle calculations by Mirbt and Johansson. However, interface alloying severely affects the behavior of the exchange coupling for Cr thicknesses less than 8 ML. In this thickness regime the overall coupling exhibits mostly a long- wavelength behavior with a small superimposed short-wavelength contribution. This initial Cr thickness regime is responsible for changes in the phase of the short-wavelength oscillations and for the reduced strength of the exchange coupling due both to the localized and to the multiple-scattering contributions. We have observed no significant dependence of the exchange- coupling strength on the Fe film thickness for samples having the structure Fe-whisker/11Cr/nFe/20Au where n specifies an iron film thickness between 5 and 40 ML. However, preliminary data show that the exchange coupling is significantly increased in specimens for which both sides of the iron film are covered by Cr, i.e., for structures of the form Fe- whisker/11Cr/nFe/11Cr/20Au. It appears that electron resonant states in the iron film play no important role in the strength of the exchange coupling when the iron is bounded on one side by the gold, but that they do become important when the iron film is bounded by Cr on both sides. BLS and MOKE studies on Fe-whisker/Cr/Mn/Fe/(001) samples revealed that the antiferromagnetic state of Mn is composed of compensated (001) atomic plants. The results of the above experimental studies will be compared to recent theories. Points of agreement and of disagreement between the experimental results and recent first- principles calculations will be explicitly pointed out. [S0163- 1829(99)10921-4]. CR ARROTT AS, 1996, J APPL PHYS, V79, P4973 BARNAS J, 1994, J MAGN MAGN MATER, V128, P171 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOUARAB S, 1995, PHYS REV B, V52, P10127 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1995, PHYS REV B, V52, P411 CARBONE C, 1987, PHYS REV B, V36, P2433 CHAMBLISS DD, 1993, J VAC SCI TECHNOL A, V10, P1993 COCHRAN JF, 1997, J MAGN MAGN MATER, V169, P1 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DRESSELHAUS J, 1997, PHYS REV B, V56, P5461 EDWARDS DM, 1993, NATO ADV SCI INST SE, V309, P401 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FREYSS M, 1997, J APPL PHYS, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FRIEDMAN DJ, 1990, J ELECTRON SPECTROSC, V51, P689 FULLERTON EE, 1993, PHYS REV B, V48, P15755 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS, V81, P4350 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HEINRICH B, 1993, NATO ADV SCI INST SE, V309, P175 IGEL T, 1998, PHYS REV B, V58, P2430 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 KEUNE W, COMMUNICATION KOWALEWSKI M, 1995, MATER RES SOC SYMP P, V384, P171 KRUGER P, 1996, PHYS REV B, V54, P6393 MIRBT S, 1997, PHYS REV B, V56, P287 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PARKIN SSP, COMMUNICATION PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RADER O, 1997, PHYS REV B, V56, P5053 SCHNEIDER C, COMMUNICATION SCHNEIDER C, UNPUB SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHROR R, UNPUB SCHURER PJ, 1995, PHYS REV B, V51, P2506 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1993, NATO ADV SCI INST SE, V309, P411 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 UNGURIS J, 1993, NATO ADV SCI INST SE, V309, P101 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1993, PHYS REV B, V48, P3563 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 WU RQ, 1995, PHYS REV B, V51, P17131 TC 5 BP 14520 EP 14532 PG 13 JI Phys. Rev. B PY 1999 PD JUN 1 VL 59 IS 22 GA 204TN J9 PHYS REV B UT ISI:000080780700048 ER PT J AU Yan, SS Schreiber, R Voges, F Osthover, C Grunberg, P TI Oscillatory interlayer coupling in Fe/Mn/Fe trilayers SO PHYSICAL REVIEW B NR 15 AB Fe/Mn/Fe wedged-shape sandwiches were prepared by molecular beam epitaxy under optimal conditions. The interlayer coupling measured by magneto-optic Kerr effect is very strong for thin Mn layers. The canted angle between the magnetization vectors of the two magnetic layers in remanence increases gradually from 0 degrees to about 180 degrees and then gradually reduces to 90 degrees for Mn thicknesses from 0.62 to 1.2 nm. For Mn layer thicknesses in the range between 1.2 and 2.45 nm, the interlayer coupling is always 90 degrees coupling, but its strength oscillates with a short period of about 2 Mn monolayers. The above coupling phenomenon can be well described by the proximity magnetism model. [S0163-1829(99)50618-8]. CR ALBRECHT M, 1997, J MAGN MAGN MATER, V170, P67 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HENRY Y, 1996, PHYS REV LETT, V76, P1944 OSGOOD RM, 1997, PHYS REV B, V55, P8990 PURCELL ST, 1992, PHYS REV B, V45, P13064 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 WALKER TG, 1993, PHYS REV B, V48, P3563 WANG Q, 1995, J APPL PHYS, V78, P1689 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 0 BP R11641 EP R11644 PG 4 JI Phys. Rev. B PY 1999 PD MAY 1 VL 59 IS 18 GA 197HN J9 PHYS REV B UT ISI:000080359500003 ER PT J AU Blaas, C Weinberger, P Szunyogh, L Kudrnovsky, J Drchal, V Levy, PM Sommers, C TI On the orientational dependence of giant magnetoresistance SO EUROPEAN PHYSICAL JOURNAL B NR 21 AB The functional dependence of the giant magnetoresistance (GMR) with respect to the relative angle between the orientations of the magnetization in the magnetic labs of a trilayer system is calculated by using the Kubo-Greenwood formula for electrical transport together with the fully-relativistic spin-polarized screened Korringa-Kohn-Rostoker method for semi-infinite systems and the coherent potential approximation. It is found that the functional dependence of the GMR is essentially of the form (1 - cos phi). CR BANHART J, 1998, PHILOS MAG B, V77, P85 BANHART J, 1998, PHILOS MAG B, V77, P105 BLAAS C, IN PRESS BLAAS C, 1998, PHILOS MAG B, V78, P549 CORTONA P, 1985, PHYS REV A, V31, P2842 DAUGUET P, 1996, PHYS REV B, V54, P1083 DIENY B, 1996, J APPL PHYS, V79, P6370 HSU SY, 1997, PHYS REV LETT, V78, P2652 LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65 MATHON J, 1997, PHYS REV B, V55, P14378 OSWALD A, 1985, J PHYS F MET PHYS, V15, P193 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STEREN LB, 1995, PHYS REV B, V51, P292 VEDYAYEV A, 1994, EUROPHYS LETT, V25, P465 VEDYAYEV A, 1994, PHYS LETT A, V185, P117 VEDYAYEV A, 1997, PHYS REV B, V55, P3728 WANG KS, 1996, PHYS REV B, V54, P11965 WEINBERGER P, 1997, J PHYS I, V7, P1299 WEINBERGER P, 1996, J PHYS-CONDENS MAT, V8, P7677 WEINBERGER P, 1997, PHILOS MAG B, V75, P509 ZHANG S, 1992, PHYS REV B, V45, P8689 TC 0 BP 245 EP 250 PG 6 JI Eur. Phys. J. B PY 1999 PD MAY VL 9 IS 2 GA 203AL J9 EUR PHYS J B UT ISI:000080684800011 ER PT J AU Siebrecht, R Schreyer, A Schmitte, T Schmidt, W Zabel, H TI Investigation of magnetic coupling phenomena in Fe1-xCrx/Cr- superlattices with spin-polarized neutrons SO PHYSICA B NR 19 AB We present the results of temperature dependent measurements of magnetically coupled Fe1-xCrx/Cr-superlattices. These results are supplementary to the ones known for non-collinearly coupled Fe/Cr-superlattices. By systematically varying the Cr concentration x we cover a wide range of the Fe1-xCrx-phase diagram. As an experimental technique spin-polarized neutron reflectivity with spin analysis and high-angle neutron scattering proves to be ideal for this work. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR 1986, LANDOLT BORNSTEIN, P338 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1991, PHYS REV B, V44, P9348 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 PLESHANOV NK, 1994, Z PHYS B CON MAT, V94, P233 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SIEBRECHT R, 1998, PHYSICA B, V241, P169 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1994, APPL PHYS A-MATER, V58, P159 TC 0 BP 207 EP 210 PG 4 JI Physica B PY 1999 PD JUN VL 268 GA 194AZ J9 PHYSICA B UT ISI:000080171100038 ER PT J AU Uzdin, VM Yartseva, NS Yartsev, SV TI Noncollinear magnetism of Fe Cr films and multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 9 AB The noncollinear magnetic structure of Fe overlayers on the stepped Cr substrate is calculated within the framework of a model Hamiltonian approach. Different noncollinear solutions are found by choosing the initial state for the self- consistency procedure. It is shown that for the stepped Fe/Cr interface the ground slate is noncollinear and the distribution of magnetic moment directions is not uniform in both the Fe and Cr layers. The dependence of the angle between the average moment of the Fe overlayer and the average moment of different Cr layers on the thickness of Fe coverage is obtained. (C) 1999 Elsevier Science B.V. All rights reserved. CR BORCZUCH MS, 1997, J MAGN MAGN MATER, V172, P110 FREYSS M, 1996, PHYS REV B, V54, P12677 KAZANSKY AK, 1995, PHYS REV B, V52, P9477 KNABBEN D, 1997, J ELECTRON SPECTROSC, V86, P201 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SPISAK D, 1997, PHYS REV B, V54, P8304 STOEFFLER DCA, 1997, COMP MATER SCI, V8, P182 UZDIN VM, 1998, COMP MATER SCI, V10, P211 UZDIN VM, IN PRESS J MAGN MAGN TC 0 BP 70 EP 72 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD MAY VL 197 GA 195VB J9 J MAGN MAGN MATER UT ISI:000080271900025 ER PT J AU Zvezdin, AK Kostyuchenko, VV TI Field-induced spin-reorientation transitions in magnetic superlattices with uniaxial anisotropy and biquadratic exchange SO PHYSICS OF THE SOLID STATE NR 16 AB Phase transitions induced by an external field are investigated in magnetic multilayer systems with uniaxial anisotropy and biquadratic exchange. A magnetic field directed perpendicular to the plane of the layers changes the effective anisotropy and exchange constants, determining the orientation of the magnetization in the plane of the layers, and can give rise to spin-reorientation transitions. All possible types of such transitions are investigated for the case of uniaxial anisotropy, which differs substantially from the case of cubic anisotropy by the different renormalization of the effective anisotropy constants. (C) 1999 American Institute of Physics. [S1063-7834(99)01803-1]. CR BRUNO P, 1995, PHYS REV B, V52, P411 EDWARDS DM, 1995, J MAGN MAGN MATER, V126, P380 ERICKSON RP, 1993, PHYS REV B, V47, P2626 KOSTYUCHENKO VV, 1997, J MAGN MAGN MATER, V176, P155 KOSTYUCHENKO VV, 1998, PHYS REV B, V57, P5951 NIKITENKO VI, 1997, IEEE T MAGN, V33, P3661 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 POTTER CD, 1994, PHYS REV B, V49, P16055 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 USTINOV VV, 1996, SOV PHYS JETP, V82, P253 TC 0 BP 413 EP 415 PG 3 JI Phys. Solid State PY 1999 PD MAR VL 41 IS 3 GA 185HP J9 PHYS SOLID STATE UT ISI:000079662700018 ER PT J AU Fishman, RS TI Helical spin-density waves in Fe/Cr trilayers with perfect interfaces SO JOURNAL OF APPLIED PHYSICS NR 15 AB Despite the presence of only collinear, commensurate (C) and incommensurate (I) spin-density waves (SDWs) in bulk Cr, the interfacial steps in Fe/Cr multilayers are now believed to stabilize a helical (H) SDW within the Cr spacer. Yet HSDWs were first predicted in an Fe/Cr trilayer with perfect interfaces when the orientation of the Fe moments does not favor C ordering: if the number of Cr monolayers is even (odd) and the Fe moments are pointing in the same (opposite) direction, then a CSDW does not gain any coupling energy. Under these circumstances, a simple model verifies that H ordering is indeed favored over I ordering provided that the Fermi surface mismatch is sufficiently small or the temperature sufficiently high. (C) 1999 American Institute of Physics. [S0021- 8979(99)67508-9]. CR FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P8245 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FISHMAN RS, 1998, UNPUB PHYS REV LETT, V81, P4979 FREYSS M, 1996, PHYS REV B, V54, P12677 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 MIRBT S, 1996, PHYS REV B, V54, P6382 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 0 BP 5877 EP 5879 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2B GA 188NF J9 J APPL PHYS UT ISI:000079853500194 ER PT J AU Rubinstein, M TI Exchange coupling between two magnetic films separated by an antiferromagnetic spacer SO JOURNAL OF APPLIED PHYSICS NR 13 AB An expression for the interaction strength between two magnetic films separated by an insulating antiferromagnet spacer has been derived as a function of temperature and thickness. We consider the mechanism wherein the magnetic interaction between the ferromagnetic layers is mediated by the intervening antiferromagnetic insulator via the Suhl-Nakamura (SN) interaction. The interaction energy per unit area, sigma(SN), is derived as sigma(SN) = 1/8(J(C)(2)/J(AF))(delta/a)exp(- t/delta). Here, J(AF) is the magnetic coupling constant between nearest-neighbor antiferromagnetic spins in the spacer, J(C) is the effective coupling constant (which is greatly reduced from the Heisenberg exchange constant), between the spins in the ferromagnetic film and the nearest-neighbor spins in the antiferromagnetic spacer, t is the separation of the two ferromagnetic plates, and delta is the width of an antiferromagnetic domain wall. This mechanism is the antiferromagnetic analog of the Ruderman-Kittel oscillatory coupling between two magnetic films separated by a normal metal. [S0021-8979(99)67608-3]. CR CHIKAZUMI S, 1964, PHYSICS MAGNETISM LAX B, 1962, MICROWAVE FERRITES F MALOZEMOFF AP, 1997, APPL PHYS, V81, P4996 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 NAKAMURA T, 1958, PROG THEOR PHYS, V20, P542 RUDERMAN MA, 1954, PHYS REV, V96, P99 SCHLENKER C, 1986, J MAGN MAGN MATER, V54-7, P801 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SUHL H, 1959, J PHYS RADIUM, V20, P333 SUHL H, 1958, PHYS REV, V109, P606 SUHL H, 1998, PHYS REV B, V58, P258 WINTER JM, 1961, PHYS REV, V124, P452 TC 1 BP 5880 EP 5882 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2B GA 188NF J9 J APPL PHYS UT ISI:000079853500195 ER PT J AU Hirai, K TI Spin-density wave in Fe/Cr superlattices: A first-principles study SO PHYSICAL REVIEW B-CONDENSED MATTER NR 17 AB A first-principles electronic-structure calculation for Fe/Cr superlattices is presented, where a spin-density-wave order in the Cr layer is considered in addition to an antiferromagnetic one. The interlayer magnetic coupling between ferromagnetic Fe layers is investigated, and the oscillation of the interlayer magnetic coupling with a two-monolayer period of the spacer thickness of the Cr layer is illustrated. The appearance of the spin-density-wave order in the Cr layer, which gives rise to a phase slip of the oscillation. is furthermore demonstrated. [S0163-1829(99)51010-2]. CR FAWCETT E, 1988, REV MOD PHYS, V60, P209 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 HIRAI K, 1998, J PHYS SOC JPN, V67, P176 HIRAI K, 1997, J PHYS SOC JPN, V66, P560 HIRAI K, 1996, J PHYS SOC JPN, V65, P586 HIRAI K, 1993, J PHYS SOC JPN, V62, P690 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MIRBT S, 1996, PHYS REV B, V54, P6382 SCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 TC 4 BP R6612 EP R6615 PG 4 JI Phys. Rev. B-Condens Matter PY 1999 PD MAR 1 VL 59 IS 10 GA 177WG J9 PHYS REV B-CONDENSED MATTER UT ISI:000079233600009 ER PT J AU van der Heijden, PAA Swuste, CHW de Jonge, WJM Gaines, JM van Eemeren, JTWM Schep, KM TI Evidence for roughness driven 90 degrees coupling in Fe3O4/NiO/Fe3O4 trilayers SO PHYSICAL REVIEW LETTERS NR 13 AB The magnetic interlayer coupling of Fe3O4 across NiO is studied using Fe3O4/NiO/Fe3O4 trilayers epitaxially grown on (001) MgO substrates. For NiO thicknesses between 0.7 and 5 nm, the magnetic moments of the two Fe3O4 layers are directed perpendicularly with respect to each other. The 90 degrees coupling strength is determined to be 0.35 +/- 0.08 mJ/m(2) for a 1.4-nm-thick NiO spacer. The 90 degrees coupling can be understood from the effect of an antiferromagnetic spacer in the presence of interface roughness. CR BORCHERS JA, 1995, PHYS REV B, V51, P8276 BRABERS VAM, 1995, HDB MAGNETIC MAT, V8, PCH3 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1994, PHYS REV B, V49, P13231 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FONTIJN WFJ, 1997, THIN SOLID FILMS, V292, P270 GAINES JM, 1997, SURF SCI, V373, P85 SIEVERS AJ, 1963, PHYS REV, V129, P1566 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 VANDERHEIJDEN PAA, 1998, PHYS REV B, V182, P71 VANDERZAAG PJ, 1996, J APPL PHYS, V79, P5103 TC 3 BP 1020 EP 1023 PG 4 JI Phys. Rev. Lett. PY 1999 PD FEB 1 VL 82 IS 5 GA 163PA J9 PHYS REV LETT UT ISI:000078412900038 ER PT J AU Stoeffler, D Cornea, C TI Non-collinear band structure magnetism in FeCo/Mn superlattices SO PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES NR 8 AB We study the non-collinear behaviour of FexCo1-x/Mn-n multilayers. These systems are particularly interesting for their experimental behaviour but also from a theoretical viewpoint because they allow one to study thin Mn layers with varying boundaries conditions by varying the Fe concentration x. In order to determine the vectorial magnetic moments map of complex systems (with more than 100 inequivalent sites) from their electronic structure, we use a tight-binding model and the real space recursion technique. We show that the non collinear magnetism allows to discuss the stability of collinear solutions. For perfect interfaces, even if a non- collinear Mn spacer is obtained for small Fe concentrations when only collinear solutions are expected, the interlayer coupling energy, as a function of the angle between successive ferromagnetic magnetizations, follows a parabolic law. Finally, we examine the role of interfacial monatomic steps on the magnetic order in such multilayers. We show that non-collinear magnetic arrangements are induced by such interfacial imperfections. CR CHAKARIAN V, 1996, J MAGN MAGN MATER, V156, P265 CORNEA CC, 1998, COMP MATER SCI, V10, P245 CORNEABORODI CC, 1997, J MAGN MAGN MATER, V165, P450 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FREYSS M, 1997, J APPL PHYS, V81, P4363 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STOEFFLER DCA, 1997, COMP MATER SCI, V8, P182 TC 0 BP 623 EP 628 PG 6 JI Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. PY 1998 PD NOV-DEC VL 78 IS 5-6 GA 146KF J9 PHIL MAG B UT ISI:000077427300033 ER PT J AU Fishman, RS TI Helical and incommensurate spin-density waves in Fe/Cr multilayers with interfacial steps SO PHYSICAL REVIEW LETTERS NR 22 AB Although absent in bulk transition metals, a noncollinear, helical (H) spin-density wave (SDW) is stabilized by steps at the interfaces in Fe/Cr multilayers. Using the random-phase approximation, we evaluate the phase boundary between the H SDW and the collinear, incommensurate (I) SDW found in bulk Cr. In agreement with neutron-scattering results, the I-to-H transition temperature T-IH is always lower than the bulk Neel temperature T-N and the nodes of the I SDW lie near the Fe-Cr interfaces. While a H SDW with a single +/-pi/2 twist has lower free energy than a I SDW above T-N, H SDW's with larger twists are stable between T-IH and T-N. [S0031-9007(98)07739-4]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BODEKER P, 1998, PHYS REV LETT, V81, P914 BROWN PJ, 1965, P PHYS SOC LOND, V85, P1185 DONATH M, 1991, PHYS REV B, V43, P13164 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P8245 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FISHMAN RS, 1996, PHYS REV LETT, V76, P2398 FISHMAN RS, UNPUB FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HIRAI K, 1996, J PHYS SOC JPN, V65, P586 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 OVERHAUSER AW, 1960, PHYS REV LETT, V4, P462 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SHIBATANI A, 1969, PHYS REV, V177, P984 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 9 BP 4979 EP 4982 PG 4 JI Phys. Rev. Lett. PY 1998 PD NOV 30 VL 81 IS 22 GA 142WT J9 PHYS REV LETT UT ISI:000077223900049 ER PT J AU Schmool, DS Barandiaran, JM TI Ferromagnetic resonance and spin wave resonance in multiphase materials: theoretical considerations SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 49 AB The theory of ferromagnetic resonance (FMR) and spin wave resonance (SWR) is presented for the general case of multiphase ferromagnets. This could be a magnetic multilayer structure or a material with mixed phases of distinct ferromagnetic materials. We discuss the application of the theory to various systems, with a description of amorphous and nanocrystalline materials which have not received much attention with respect to FMR and SWR. In this respect, we treat these materials in a multiphase manner for the first time, where previous FMR measurements on these types of material have been analysed and interpreted as single phase ferromagnets. Although the general theory is applicable to an N phase material, we show the detailed analysis for two phase systems, giving examples of both magnetic multilayers and mixed double phase ferromagnets of the type for mixed nanocrystalline and amorphous magnetic systems. The theory would also be applicable to systems where a magnetic phase is surrounded by a non-magnetic phase, such as co-deposited systems. We also consider, for the first time, the possibility of the existence of standing spin wave modes in mixed phase and granular materials. The adaptability of the general theory to any form of magnetocrystalline anisotropy and interphase interaction is also discussed. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1991, J MAGN MAGN MATER, V102, P319 BARNAS J, 1989, J MAGN MAGN MATER, V82, P186 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CARBONE C, 1987, PHYS REV B, V36, P2433 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 COCHRAN JF, 1992, PHYS REV B, V45, P13096 COCHRAN JF, 1990, PHYS REV B, V42, P508 COEHOORN R, 1991, PHYS REV B, V44, P9331 FERT A, 1992, J MAGN MAGN MATER, V104, P1712 GARITAONANDIA JS, 1998, IN PRESS J PHYS RE B GORRIA P, 1996, J PHYS-CONDENS MAT, V8, P5925 GORRIA P, 1996, THESIS BILBAO GRUNBERG P, 1987, J APPL PHYS, V61, P3756 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 HEINRICH B, 1988, PHYS REV B, V38, P12879 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1993, PHYS SCRIPTA, VT49A, P307 HILLEBRANDS B, 1990, PHYS REV B, V41, P530 IIDA S, 1963, J PHYS CHEM SOLIDS, V24, P625 JACKSON M, 1997, J MAGN MAGN MATER, V170, P22 KAUL SN, 1992, J APPL PHYS, V71, P6090 LAYADI A, 1990, J MAGN MAGN MATER, V92, P143 MAKSYMOWICZ A, 1986, PHYS REV B, V33, P6045 MERCIER D, 1995, J MAGN MAGN MATER, V139, P240 ORUE I, 1994, HYPERFINE INTERACT, V94, P2199 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PASHAEV KM, 1991, PHYS REV B, V43, P1187 PUSZKARSKI H, 1992, PHYS REV B, V46, P8926 PUSZKARSKI H, 1992, PHYS STATUS SOLIDI B, V171, P205 RADO GT, 1959, J PHYS CHEM SOLIDS, V11, P314 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHMOOL DS, IN PRESS J MAGN MAGN SCHMOOL DS, 1998, IN PRESS PHYS REV B SCHMOOL DS, 1994, J MAGN MAGN MATER, V131, P385 SCHMOOL DS, 1994, THESIS YORK SCHMOOL DS, 1997, UNPUB SIRUGURI V, 1992, J PHYS CONDENS MATT, V4, P505 SIRUGURI V, 1996, J PHYS-CONDENS MAT, V8, P4545 SIRUGURI V, 1996, J PHYS-CONDENS MAT, V8, P4567 SKROTSKII GV, 1966, FERROMAGNETIC RESONA SLAWSKAWANIEWSKA A, 1994, PHYS REV B, V50, P6465 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMIT J, 1955, PHILIPS RES REP, V10, P113 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VOHL M, 1989, PHYS REV B, V39, P12003 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 ZHANG Z, 1994, PHYS REV B, V50, P6094 TC 0 BP 10679 EP 10700 PG 22 JI J. Phys.-Condes. Matter PY 1998 PD NOV 30 VL 10 IS 47 GA 146GA J9 J PHYS-CONDENS MATTER UT ISI:000077419900018 ER PT J AU Bodeker, P Hucht, A Schreyer, A Borchers, J Guthoff, F Zabel, H TI Reorientation of spin density waves in Cr(001) films induced by Fe(001) cap layers SO PHYSICAL REVIEW LETTERS NR 22 AB Proximity effects of 20 Angstrom Fe layers on the spin density waves (SDWs) in epitaxial Cr(001) films are revealed by neutron scattering. Unlike in bulk Cr we observe a SDW with its wave vector Q pointing along only one (100) direction which depends dramatically on the film thickness t(Cr). For t(Cr) < 250 Angstrom the SDW propagates out of plane with the spins in the film plane. For t(Cr) > 1000 Angstrom the SDW propagates in the film plane with the spins out of plane perpendicular to the in- plane Fe moments. This reorientation transition is explained by frustration effects in the antiferromagnetic interaction between Fe and Cr across the Fe/Cr interface due to steps at the interface. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BINASCH G, 1989, PHYS REV B, V39, P4828 BOEDKER P, IN PRESS PHYSICA A B DAVIES A, 1996, PHYS REV LETT, V76, P4175 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 DURBIN SM, 1981, J PHYS F MET PHYS, V11, PL223 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FREYSS M, 1997, MRS S P S M SPRING M FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 STIERLE A, 1997, EUROPHYS LETT, V37, P365 STILES MD, 1996, PHYS REV B, V54, P14679 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 THEISBROHL K, 1998, PHYS REV B, V57, P4747 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VENUS D, 1996, PHYS REV B, V53, PR1733 TC 16 BP 914 EP 917 PG 4 JI Phys. Rev. Lett. PY 1998 PD JUL 27 VL 81 IS 4 GA 105CP J9 PHYS REV LETT UT ISI:000075055100045 ER PT J AU Drovosekov, AB Kreines, NM Kholin, DI Meshcheryakov, VF Milyaev, MA Romashev, LN Ustinov, VV TI Ferromagnetic resonance in multilayer [Fe/Cr](n) structures with noncollinear magnetic ordering SO JETP LETTERS NR 20 AB The excitation spectrum in an [Fe/Cr](n) multilayer structure with noncollinear magnetic ordering was studied by the ferromagnetic resonance (FMR) method in the frequency interval 9.5-37 GHz at room temperature. Besides an acoustic branch, several additional modes were observed under parallel excitation of resonance. The FMR spectrum was calculated analytically in a biquadratic exchange model, neglecting in- plane anisotropy, for an infinite number of layers in the structure and numerically for a finite number of layers contained in real samples. It was shown that the observed modes correspond to excitation of standing spin waves with wave vectors perpendicular to the film plane. (C) 1998 American Institute of Physics. [S0021-3640(98)01609-0]. CR AZEVEDO A, 1998, J MAGN MAGN MATER, V177, P1177 BEBENIN NG, 1997, FIZ MET METALLOVED+, V84, P29 BEBENIN NG, 1996, FIZ MET METALLOVED+, V82, P39 BEBENIN NG, 1997, J MAGN MAGN MATER, V165, P468 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1991, J APPL PHYS, V69, P4789 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 KREINES NM, 1998, J MAGN MAGN MATER, V177, P1189 MACCIO M, 1994, PHYS REV B, V49, P3283 REZENDE SM, 1998, J MAGN MAGN MATER, V177, P1213 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 USTINOV VV, 1997, FIZ MET METALLOVED+, V84, P161 USTINOV VV, 1995, FIZ MET METALLOVED+, V80, P71 USTINOV VV, 1996, PHYS REV B, V54, P15958 WIGEN PE, 1992, BRAZ J PHYS, V22, P267 TC 2 BP 727 EP 732 PG 6 JI Jetp Lett. PY 1998 PD MAY 10 VL 67 IS 9 GA 108GT J9 JETP LETT-ENGL TR UT ISI:000075258400016 ER PT J AU Rezende, SM Chesman, C Lucena, MA Azevedo, A de Aguiar, FM Parkin, SSP TI Studies of coupled metallic magnetic thin-film trilayers SO JOURNAL OF APPLIED PHYSICS NR 37 AB Results are reported of a detailed study of static and dynamic responses in symmetric systems consisting of two ferromagnetic films separated by a nonferromagnetic spacer layer. A comparison is made with experimental results for two systems grown by sputter deposition in an UHV chamber, namely, NiFe/Cu/NiFe and Fe/Cr/Fe. First, we present model calculations where the coupling between the magnetic film through magnetic dipolar, bilinear, and biquadratic exchange interactions are fully taken into account, together with surface, in-plane uniaxial, and cubic anisotropies. An analytical expression is given that can readily be used to consistently interpret magnetoresistance, magneto-optical Kerr effect, ferromagnetic resonance, and Brillouin light scattering (BLS) data in such trilayers. Application of the results to BLS data in Ni81Fe19(d)/Cu(25 Angstrom)Ni81Fe19(d), with d = 200 and 300 Angstrom, shows that it is essential to treat the dipolar interaction adequately in moderately thick systems. The results are also applied to interpret very interesting data in Fe(40 Angstrom)/Cr(s)/Fe(40 Angstrom), with 5 Angstrom < s < 35 Angstrom, investigated by the four techniques mentioned above, at room temperature. It is shown that consistent values for all magnetic parameters can be extracted from the data with a theory that treats both static and dynamic responses on equal footing. (C) 1998 American Institute of Physics. [S0021- 8979(98)00913-X]. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BARNAS J, 1993, J MAGN MAGN MATER, V126, P380 BIAN X, 1996, J APPL PHYS, V79, P4980 CAMLEY RE, 1981, PHYS REV B, V23, P1226 CHESMAN C, IN PRESS PHYS REV B CHESMAN C, 1997, J APPL PHYS, V81, P3791 COCHRAN JF, 1990, PHYS REV B, V42, P508 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DUTCHER JR, 1994, LINEAR NONLINEAR SPI, PCH6 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRIMSDITCH MH, 1989, TOPICS APPL PHYSICS, V66, PCH7 GRUNBERG P, 1981, J APPL PHYS, V52, P6824 GRUNBERG P, 1980, J APPL PHYS, V51, P4338 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1989, TOPICS APPL PHYSICS, V66, PCH8 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, PCH3 HILLEBRANDS B, 1990, PHYS REV B, V41, P530 HOFFMAN F, 1970, J APPL PHYS, V41, P1022 HOFFMANN F, 1970, PHYS STATUS SOLIDI, V41, P807 KABOS P, 1994, J APPL PHYS, V75, P3553 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 LAYADI A, 1990, J MAGN MAGN MATER, V92, P143 LUCENA MA, 1997, J APPL PHYS, V81, P4770 REZENDE SM, 1997, PHYS REV B, V55, P8071 ROUSSIGNE Y, 1995, PHYS REV B, V52, P350 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STAMPS RL, 1994, PHYS REV B, V49, P339 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VOHL M, 1989, PHYS REV B, V39, P12003 WIGEN PE, 1992, BRAZ J PHYS, V22, P267 ZHANG Z, 1994, PHYS REV B, V50, P6094 TC 6 BP 958 EP 972 PG 15 JI J. Appl. Phys. PY 1998 PD JUL 15 VL 84 IS 2 GA 108GM J9 J APPL PHYS UT ISI:000075257800045 ER PT J AU Chirita, M Robins, G Stamps, RL Sooryakumar, R Filipkowski, ME Gutierrez, CJ Prinz, GA TI Spin waves and interlayer coupling in CoFe/Mn/CoFe structures SO IEEE TRANSACTIONS ON MAGNETICS NR 4 AB Coupling mechanisms between Co0.75Fe0.25 films separated by Mn layers are investigated using Brillouin light scattering from thermal spin waves. Observed applied field and Mn thickness dependences of acoustic and optic type spin wave frequencies are discussed in terms of exchange coupling and magnetic order in the Mn. CR FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 KREBS JJ, 1996, J APPL PHYS, V79, P4525 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TSCHOPP S, 1997, J APPL PHYS, V81, P3785 TC 0 BP 885 EP 887 PG 3 JI IEEE Trans. Magn. PY 1998 PD JUL VL 34 IS 4 PN 1 GA 101CP J9 IEEE TRANS MAGN UT ISI:000074852300021 ER PT J AU Kowalewski, M Heinrich, B Schulthess, TC Butler, WH TI First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures. SO IEEE TRANSACTIONS ON MAGNETICS NR 13 AB We report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu Spacer thicknesses in the range of 0 T-N by approximate to 150 K for all samples. The biquadratic Interlayer coupling of the Fe layers is enhanced for T-N < T < T-0 and suppressed below T-N. T-0 and T- N are identified with the onset on cooling of inhomogeneous and homogeneous order, respectively, within the spacer layers. The regime of inhomogeneous ordering of the spacer is believed to promote biquadratic coupling because of the dominance of interfacial exchange energies. CR ANKNER JF, IN PRESS J APPL PHYS BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BRUNO P, 1995, PHYS REV B, V52, P411 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FULLERTON EE, 1995, MATER RES SOC SYMP P, V384, P145 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEDGCOCK FT, 1977, J PHYS F MET PHYS, V7, P855 HEINRICH B, 1993, ADV PHYS, V42, P523 KOELLING DD, 1994, PHYS REV B, V50, P273 LI DQ, 1997, PHYS REV LETT, V78, P1154 MAYSTRENKO LG, 1977, PHYS MET METALLOGR, V43, P79 SCHREYER A, UNPUB SHENDER EF, 1996, PHYS REV LETT, V76, P2583 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STILES MD, UNPUB STOEFFLER D, 1996, J MAGN MAGN MATER, V156, P114 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 9 BP 5468 EP 5473 PG 6 JI Phys. Rev. B-Condens Matter PY 1997 PD SEP 1 VL 56 IS 9 GA XW942 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XW94200072 ER PT J AU Bebenin, NG Kobelev, AV Tankeyev, AP Ustinov, VV TI FMR frequencies in multi-layer structures with non-collinear magnetic ordering SO FIZIKA METALLOV I METALLOVEDENIE NR 12 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 DEMOKRITOV SO, 1992, USP FIZ NAUK, V162, P158 EDVARDS DM, 1995, FIZ MET METALLOVED, V79, P3 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1988, PHYS REV B, V38, P12879 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 LENG Q, 1993, J MAGN MAGN MATER, V126, P367 SCHREYER A, 1994, 14 INT C MAGN FILMS, P490 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 USTINOV VV, 1995, PHYS MET METALLOGR, V80, P71 USTINOV VV, 1996, ZH EKSP TEOR FIZ, V109, P1 ZHANG Z, 1994, PHYS REV B, V50, P6094 TC 2 BP 39 EP 47 PG 9 JI Fiz. Metallov Metalloved. PY 1996 PD OCT VL 82 IS 4 GA XM414 J9 FIZ METAL METALLOVED UT ISI:A1996XM41400005 ER PT J AU Burgler, DE Schmidt, CM Schaller, DM Meisinger, F Hofer, R Guntherodt, HJ TI Optimized epitaxial growth of Fe on Ag(001) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 32 AB We report on a comprehensive study of the growth of 5-nm-thick epitaxial Fe(001) films on Ag(001) substrates which are deposited on Fe-precovered GaAs(001) wafers. We characterize the films in situ by scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and depth profiling to obtain information about the geometrical and chemical surface structure. We find that the surface morphology is improved by either growing or postannealing the films at elevated temperatures. During deposition at and above room temperature, however, an atomic exchange process is activated that results in a thin Ag film (up to 1 ML) ''floating'' on top of the growing Fe film. We propose and confirm a growth procedure that yields clean, Ag-free surfaces with a morphology superior to the other films. This optimized recipe consists of two steps: (i) low-temperature growth of the first 2 nm in order to form a diffusion barrier for the Ag substrate atoms, and (ii) high-temperature deposition of the final 3 nm to take advantage of the improved homoepitaxial growth quality of Fe at elevated temperatures. The relevance of these results with respect to magnetic properties of multilayers is discussed. CR BADER SD, 1987, J APPL PHYS, V61, P3729 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BURGLER DE, 1996, SURF SCI, V366, P295 BURGLER DE, UNPUB DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EGELHOFF WF, 1991, MATER RES SOC S P, V229, P27 FARROW RFC, 1993, NATO ADV STUDY I B, V309 GRUNBERG PA, 1993, NATO ADV SCI INST SE, V309, P87 GURNEY BA, 1990, IEEE T MAGN, V26, P2747 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 MASSALSKI TB, 1986, BINARY ALLOY PHASE D, P24 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 NAGL C, 1995, PHYS REV LETT, V75, P2976 PIERCE DT, 1994, PHYS REV B, V49, P14564 ROTH C, 1993, PHYS REV LETT, V70, P3479 SCHMITZ PJ, 1989, PHYS REV B, V40, P11477 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCOFIELD JH, 1976, J ELECTRON SPECTROSC, V8, P129 SEAH MP, 1990, PRACTICAL SURFACE AN, V1, P201 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SMITH JR, 1987, PHYS REV LETT, V59, P2451 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TYSON WR, 1977, SURF SCI, V62, P267 VEGA A, 1994, PHYS REV B, V49, P12797 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZAHN P, 1995, PHYS REV LETT, V75, P2996 TC 10 BP 4149 EP 4158 PG 10 JI Phys. Rev. B-Condens Matter PY 1997 PD AUG 15 VL 56 IS 7 GA XR964 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XR96400095 ER PT J AU Stoeffler, DCA Cornea, CC TI Ordered compounds and magnetic properties of metallic multilayers SO COMPUTATIONAL MATERIALS SCIENCE NR 23 AB In this paper we first give a brief review Of the different methods (first principles and semi-empirical) which can be used for theoretical studies of the magnetic properties of ultra thin sq systems from an electronic structure point of view and we discuss their application domains. Then, we give a few examples of recent works concerning ordered compounds and multilayers. First, we study the role of interfacial ordered compounds on the total magnetisation and the interlayer couplings for Fe/Pd, Ca/Ru and Co/Rh multilayers. We show that (i) the interlayer magnetic couplings in Fe/Pd superlattices are highly sensitive to interfacial mixing and (ii) the preserved magnetism at the Co/Rh interface can explain the strong interlayer couplings measured. Second, we study the magnetic orders in (FexCo1-x)/Mn-n superlattices for various Fe concentrations (x = 1, 3/4, 1/2, 1/4 and 0) of the ferromagnetic ordered compound with the ab initio augmented spherical wave method for collinear orders and with the tight binding real space recursion method for non-collinear orders. In perfect superlattices, we determine the angular dependence of the interlayer magnetic couplings when the magnetization of two successive ferromagnetic layers is rotated. We analyse these results as a function of the strength of the interfacial coupling and compare them to the dependencies given in the literature. CR ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P59 BLUGEL S, 1988, EUROPHYS LETT, V7, P743 BLUGEL S, IN PRESS BLUGEL S, 1992, PHYS REV LETT, V68, P851 BRUNO P, 1995, PHYS REV B, V52, P411 CHAKARIAN V, 1996, PHYS REV B, V53, P11313 FULLERTON EE, 1995, PHYS REV B, V51, P6364 HEINRICH B, COMMUNICATION HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HERMAN F, 1991, J APPL PHYS, V69, P4786 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1994, J APPL PHYS, V75, P6467 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P529 STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P557 STOEFFLER D, 1991, J MAGN MAGN MATER, V93, P386 STOEFFLER D, 1994, PHYS REV B, V49, P299 STOEFFLER D, 1991, PHYS REV B, V44, P10392 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 WILLIAMS AR, 1979, PHYS REV B, V19, P6094 WIMMER E, 1981, PHYS REV B, V24, P864 WU RQ, 1995, PHYS REV B, V51, P17131 ZOLL S, IN PRESS TC 3 BP 182 EP 191 PG 10 JI Comput. Mater. Sci. PY 1997 PD MAY VL 8 IS 1-2 GA XE910 J9 COMPUT MATER SCI UT ISI:A1997XE91000024 ER PT J AU Spisak, D Hafner, J TI Theory of bilinear and biquadratic exchange interactions in iron: Bulk and surface SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 43 AB We present a torque-force approach to the calculation of bilinear and biquadratic exchange interactions in itinerant magnets. Detailed calculations within a real-space tight- binding framework are presented for iron and the (0 0 1)- surface of iron. CR ALDEN M, 1992, PHYS REV B, V46, P6303 ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571 ARAJS S, 1964, J APPL PHYS, V35, P2424 BEER N, 1984, ELECT STRUCTURE COMP CHEN HH, 1973, PHYS REV B, V7, P4284 DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 FISHER ME, 1972, PHYS REV B-SOLID ST, V6, P1889 FROM M, 1994, J APPL PHYS, V75, P6181 GUBANOV VA, 1992, MAGNETISM ELECT STRU GUNNARSSON O, 1976, J PHYS F MET PHYS, V6, P587 HAFNER J, 1994, PHYS REV B, V49, P285 HAYDOCK R, 1980, ADV RES APPL, V35 HEINE V, 1990, EUROPHYS LETT, V12, P545 HEINRICH B, 1991, PHYS REV B, V44, P9348 HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363 HOLDEN AJ, 1982, J PHYS F MET PHYS, V12, P195 JENSEN PJ, 1992, EUROPHYS LETT, V18, P463 JONES RO, 1989, REV MOD PHYS, V61, P689 KROMPIEWSKI S, 1995, J MAGN MAGN MATER, V149, PL251 LANDAU DP, 1990, PHYS REV B, V41, P4633 LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65 LORENZ R, 1995, J PHYS-CONDENS MAT, V7, PL253 LUCHINI MU, 1991, EUROPHYS LETT, V14, P609 NOWAK HJ, 1991, PHYS REV B, V44, P3577 OHNISHI S, 1983, PHYS REV B, V28, P6741 PANTHENET R, 1982, J APPL PHYS, V53, P2029 PECZAK P, 1991, PHYS REV B, V43, P1048 POULSEN UK, 1976, J PHYS F MET PHYS, V6, PL241 RIEDI PC, 1973, PHYS REV B, V8, P5243 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SHIRANE G, 1968, J APPL PHYS, V39, P383 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMALL LM, 1984, J PHYS F MET PHYS, V14, P3041 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STRINGFELLOW MW, 1968, J PHYS C SOLID STATE, V1, P950 TUREK I, 1992, J PHYS-CONDENS MAT, V4, P7257 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 WANG CS, 1981, PHYS REV B, V24, P4364 WEINERT M, 1993, MAGNETIC MULTILAYERS WHITE RM, 1983, QUANTUM THEORY MAGNE YOU MV, 1980, PHYS REV LETT, V44, P1282 TC 5 BP 257 EP 268 PG 12 JI J. Magn. Magn. Mater. PY 1997 PD APR VL 168 IS 3 GA XD001 J9 J MAGN MAGN MATER UT ISI:A1997XD00100005 ER PT J AU Tsetseris, L Lee, B Chang, YC TI Interlayer exchange coupling in Fe/Cr multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 47 AB We investigate the origin of the long-period oscillation of the interlayer exchange coupling in Fe/Cr trilayer systems. Within the stationary phase approximation the periods of the oscillations are associated with extremal vectors of the Fermi sphere of Cr. Using a realistic tight-binding model with spin- orbit interaction we calculate the coupling strength for each extremal vector based on the spin asymmetry of the reflection amplitude for a propagating state impinging from the Cr to Fe layer. We find that for the (001) and (110) growth directions the biggest coupling strength comes from the extremal vector centered at the ellipsoid N of the Fermi surface of Cr. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, J MAGN MAGN MATER, V116, PL13 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 CELOTTA RJ, 1994, J APPL PHYS, V75, P6452 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRAEBNER JE, 1968, PHYS REV, V175, P659 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HASEGAWA H, 1990, PHYS REV B, V42, P2368 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2 HERMAN F, 1963, ATOMIC STRUCTURE CAL HERMAN F, 1991, J APPL PHYS, V69, P4783 LEE BC, 1995, PHYS REV B, V52, P3499 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 LI DQ, 1997, PHYS REV LETT, V78, P1154 MACKINTOSH AR, 1980, ELECTRONS FERMI SURF MIRBT S, 1993, SOLID STATE COMMUN, V88, P331 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PAPACONSTANTOPO DA, 1986, HDB BAND STRUCTURE E PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STILES MD, 1996, AM PHYS SOC, V41, P36 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 WANG Y, 1990, PHYS REV LETT, V65, P2732 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 11 BP 11586 EP 11592 PG 7 JI Phys. Rev. B-Condens Matter PY 1997 PD MAY 1 VL 55 IS 17 GA WY504 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WY50400094 ER PT J AU Gutierrez, CJ Selestino, R Mayanovic, RA Prinz, GA TI Evidence for ''loose spins'' in epitaxial Al/Fe/Al SO JOURNAL OF APPLIED PHYSICS NR 15 AB Polarization-dependent Fe K-edge x-ray absorption fine structure measurements of an Al/Fe/Al(001) trilayer reveal a small tetragonal distortion of the Fe sites with c = 2.863 Angstrom (normal to the film plane) and a = 2.874 Angstrom (in the film plane). This tetragonal distortion is consistent with the formation of Fe1-xAlx alloys in the vicinity of the roughened Fe-Al trilayer interfaces, and agrees with grazing incidence x-ray reflectivity and magnetometry measurements of the trilayer. The deduced alloyed/roughened interfacial regions are the likely source of Fe ''loose spins'' as recently suggested by Slonczewki's biquadratic coupling model for the epitaxial Fe/Al/Fe system. (C) 1997 American Institute of Physics. CR BOZORTH RM, 1978, FERROMAGNETISM, P210 BRADLEY AJ, 1932, P ROY SOC LOND A MAT, V136, P210 DELEON JM, 1991, PHYS REV B, V44, P4146 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 KEMMER K, 1992, NUCL INSTRUM METHODS, V71, P345 KREBS JJ, 1993, J APPL PHYS, V61, P3744 LOXLEY N, 1992, MATER RES SOC S P, V240, P219 PARRATT LG, 1954, PHYS REV, V95, P359 PRINZ GA, 1986, APPL PHYS LETT, V48, P1756 SAYERS DE, 1988, XRAY ABSORPTION PRIN, P211 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 WORMINGTON M, 1992, MATER RES SOC S P, V238, P119 TC 2 BP 5352 EP 5354 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2B GA WV537 J9 J APPL PHYS UT ISI:A1997WV53700243 ER PT J AU Tschopp, S Robins, G Stamps, RL Sooryakumar, R Filipkowski, ME Gutierrez, CJ Prinz, GA TI Observation of magnons by light scattering in epitaxial CoFe/Mn/CoFe trilayers SO JOURNAL OF APPLIED PHYSICS NR 8 AB We report on Brillouin scattering measurements on a CoFe/Mn/CoFe trilayer film characterized by unusually large biquadratic coupling. The magnetic field dependence of the exchange coupled in- and out-of-phase magnons as well as their in-plane directional dependence are determined. The saturation magnetization of the trilayer was measured independently through superconducting quantum interference device magnetometry. The spin wave data is well represented by a generalization of the model that takes into account the antiferromagnetic order in the Mn layer. (C) 1997 American Institute of Physics. CR FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 GUTIERREZ CJ, 1992, APPL PHYS LETT, V61, P2476 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 KREBS JJ, 1996, J APPL PHYS, V79, P452 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STAMPS RL, 1994, PHYS REV B, V49, P339 SUBRAMANIAN S, 1995, PHYS REV B, V52, P10194 TC 3 BP 3785 EP 3787 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2A GA WV536 J9 J APPL PHYS UT ISI:A1997WV53600017 ER PT J AU Heinrich, B Cochran, JF Monchesky, T Myrtle, K TI Role of interfaces in the exchange coupling of Fe/Cr/Fe(001) systems SO JOURNAL OF APPLIED PHYSICS NR 21 AB Exchange coupling has been studied in Fe whisker/Cr/Fe(001) systems that were grown in a perfect layer by layer mode. The exchange coupling through Cr was found to be very sensitive to alloying at the Fe whisker/Cr(00l) interface. It will be shown that the observed reversed phase of the short wavelength oscillations compared to those predicted by ab initio calculations can be caused by alloying at the Fe whisker/Cr(001) interface. In order to test this point, we have grown samples with the Cr/Fe(001) interface intentionally alloyed by codepositing the Cr and Fe atoms during the formation of the last Cr atomic layer. The strength of the exchange coupling has also been investigated in systems fabricated with heterogeneous spacers using bcc Cu(001) and fee Ag(001). Cu and Ag layers have been inserted between the Cr spacer and the Fe(001) film. The strength of the antiferromagnetic coupling was found to be substantially increased due to the presence of Cu at the Cr/Fe(001) interface. It will be argued that the observed increase in the exchange coupling is caused by an increased asymmetry in spin dependent reflectivity at the Cr/Cu/Fe interface. (C) 1997 American Institute of Physics. CR CHAMBLISS DD, 1992, J VAC SCI TECHNOL A, V10, P1993 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1996, PHYS REV LETT, V76, P4175 FU CL, 1986, J MAGN MAGN MATER, V54-7, P777 FULLERTON E, 1996, UNPUB FE CR WORKSH S HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1992, P NATO ADV STUD I B, V309, P175 KOWALEWSKI M, 1995, MATER RES SOC SYMP P, V384, P171 MIRBT S, COMMUNICATION MIRBT S, 1996, UNPUB FE CR WORKSH S PFANDZELTER R, 1996, PHYS REV B, V54, P1 PIRERCE DT, 1994, PHYS REV B, V49, P14564 SCHURER PJ, 1995, PHYS REV B, V51, P2506 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1992, P NATO ADV I B, V309, P411 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1996, UNPUB FE CR WORKSH S UNGURIS J, 1992, P NATO ADV STUD I B, V309, P101 VENUS D, 1996, PHYS REV B, V53, PR1733 TC 9 BP 4350 EP 4352 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2A GA WV536 J9 J APPL PHYS UT ISI:A1997WV53600229 ER PT J AU Freyss, M Stoeffler, D Dreysse, H TI Noncollinear magnetic orders in Fe/Cr superlattices SO JOURNAL OF APPLIED PHYSICS NR 17 AB We calculate in a full self-consistent way the noncollinear distribution of magnetic moments in Fe-5/Cr-n (n=1-6) superlattices by means of a d-band tight-binding model. Self- consistency is obtained on both magnitude and orientation of the moments: only the relative orientation Delta phi between the central moments of two adjacent Fe layers is fixed, the other moments being free to orientate. We find that, when Delta phi is varied from 0 to 180 degrees, the total energy of the system behaves in accordance with the phenomenological proximity magnetism model proposed by Slonczewski only when the Cr thickness is not too small. For very thin Cr layers (n < 2), the behavior is totally different. (C) 1997 American Institute of Physics. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 CADE NA, 1981, J PHYS F MET PHYS, V11, P2399 CORNEABORODI C, UNPUB FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 HEINRICH B, 1993, PHYS REV B, V47, P5077 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KUBLER J, 1988, J PHYS F MET PHYS, V18, P469 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1993, NATO ADV SCI INST SE, V309, P411 UHL M, 1996, PHYS REV LETT, V77, P334 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 4 BP 4363 EP 4365 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2A GA WV536 J9 J APPL PHYS UT ISI:A1997WV53600235 ER PT J AU Stamps, RL Camley, RE Hicken, RJ TI Spin wave frequency shifts in exchange coupled ferromagnet/antiferromagnet structures: Application to Co/CoO SO JOURNAL OF APPLIED PHYSICS NR 14 AB Co/CoO structures have been studied almost exclusively through measurements of hysteresis, and display an enhanced and strongly temperature dependent effective in-plane anisotropy. A recent experimental study demonstrated an alternate way of investigating effects related to the coupling across the interface by measuring frequencies of long wavelength spin waves associated with the Co film, A large increase in frequency of the low frequency spin wave in the Co was observed as the temperature was lowered through the Neel temperature of CoO. We show how these frequency shifts can be understood as an effective interface anisotropy introduced by strong exchange coupling across the Co/CoO interface. This means that spin waves in the Co also include energy contributions from the larger anisotropies experienced by spins in the CoO. The theory is presented and discussed for the Co/CoO interface and other structures. (C) 1997 American Institute of Physics. CR CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 CAREY MJ, 1993, J APPL PHYS, V73, P6892 COCHRAN JF, 1990, PHYS REV B, V42, P508 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 HINCHEY LL, 1986, PHYS REV B, V34, P1689 HINCHEY LL, 1986, PHYS REV B, V33, P3329 LIN X, 1994, J APPL PHYS, V75, P6676 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 NOERTEMANN FC, 1993, PHYS REV B, V47, P11910 PAPANICOLAOU N, 1995, PHYS REV B, V51, P15062 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STAMPS RL, 1996, PHYS REV B, V54, P4159 STAMPS RL, 1994, PHYS REV B, V49, P339 TC 3 BP 4485 EP 4487 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2A GA WV536 J9 J APPL PHYS UT ISI:A1997WV53600284 ER PT J AU Allen, PB TI Magnetism and magnetoresistance in magnetic multilayers SO SOLID STATE COMMUNICATIONS NR 87 AB The discovery of ''giant'' magnetoresistance (GMR) has greatly stimulated the study of arrays of thin magnetic films. This informal review tries to describe recent discoveries and puzzles in the magnetic and transport properties of metallic arrays of ferromagnetic films. (C) 1997 Published by Elsevier Science Ltd. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARDASIS A, 1965, PHYS REV LETT, V14, P298 BARNAS J, 1990, PHYS REV B, V42, P8110 BINASCH G, 1989, PHYS REV B, V39, P4828 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1996, PHYS REV LETT, V76, P4254 BUTLER WH, 1995, PHYS REV B, V52, P13399 BUTLER WH, 1996, PHYS REV LETT, V76, P3216 CAMBLONG HE, 1993, J APPL PHYS, V73, P5533 CAMBLONG HE, 1995, PHYS REV B, V51, P1855 CAMBLONG HE, 1992, PHYS REV LETT, V69, P2835 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 CAMPBELL IA, 1982, FERROMAGNETIC MATERI, V3, P747 CHAKARIAN V, 1996, PHYS REV B, V53, P11313 DAALDEROP GHO, 1994, LTRATHIN MAGNETIC ST, P40 DAALDEROP GHO, 1992, PHYS REV LETT, V68, P682 DAUGUET P, 1996, PHYS REV B, V54, P1083 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEJONGE WJM, 1994, ULTRATHIN MAGNETIC S, V1, P65 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FERT A, 1976, J PHYS F MET PHYS, V6, P849 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FISHMAN G, 1989, PHYS REV LETT, V62, P1302 FREEMAN AJ, 1983, J MAGN MAGN MATER, V31-4, P909 FUCHS K, 1938, P CAMBRIDGE PHIL SOC, V34, P100 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 GALLEGO JM, 1995, PHYS REV LETT, V74, P4515 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GAY JG, 1994, ULTRATHIN MAGNETIC S, V1, P21 GEORGE JM, 1994, PHYS REV LETT, V72, P408 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 GREGG JF, 1996, PHYS REV LETT, V77, P1580 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 HELD GA, 1996, Z PHYS B CON MAT, V100, P335 HOOD RQ, 1992, PHYS REV B, V46, P8287 JARLBORG T, 1982, J APPL PHYS, V53, P8041 JULLIERE M, 1975, PHYS LETT A, V54, P225 KUBO R, 1957, J PHYS SOC JPN, V12, P570 KUDRNOVSKY J, 1996, PHYS REV LETT, V76, P3834 LANG P, 1993, PHYS REV LETT, V71, P1927 LEE SF, 1995, PHYS REV B, V52, P15426 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MERTIG I, 1993, PHYS REV B, V47, P16178 NESBET RK, 1994, J PHYS-CONDENS MAT, V6, PL449 OGUCHI T, 1993, J MAGN MAGN MATER, V126, P519 OKUBO SN, 1994, PHYS REV LETT, V72, P1553 PARDAVIHORVATH M, 1995, MAGNETIC MULTILAYERS, P355 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PARKIN SSP, 1994, ULTRATHIN MAGNETIC S, V2, P148 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 POTTER CD, 1994, PHYS REV B, V49, P16055 PRATT WP, 1991, PHYS REV LETT, V66, P3060 PRINZ GA, 1995, PHYS TODAY, V48, P58 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHEP KM, 1995, PHYS REV LETT, V74, P586 SCHULLER IK, 1994, SOLID STATE COMMUN, V92, P141 SHENDER EF, 1996, PHYS REV LETT, V76, P2583 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SMIT J, 1951, PHYSICA, V17, P612 SMITH NV, 1994, PHYS REV B, V49, P332 SONDHEIMER EH, 1952, ADV PHYS, V1, P1 STILES MD, 1993, PHYS REV B, V48, P7238 TESANOVIC Z, 1986, PHYS REV LETT, V57, P2760 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEDYAYEV A, 1993, J PHYS-CONDENS MAT, V5, P8289 VENUS D, 1996, PHYS REV B, V53, PR1733 WEBER W, 1996, PHYS REV LETT, V76, P3424 WEINERT M, 1995, MAGNETIC MULTILAYERS, P51 WILDBERGER K, 1995, PHYS REV LETT, V75, P509 YAFET Y, 1995, MAGNETIC MULTILAYERS, P19 YAFET Y, 1988, PHYS REV B, V38, P9145 YAFET Y, 1987, PHYS REV B, V36, P3948 YAMASAKI H, 1996, J PHYS-CONDENS MAT, V8, PL399 YAMASHITA J, 1975, J PHYS SOC JPN, V39, P344 YOSIDA K, 1965, PHYS REV LETT, V14, P301 ZAHN P, 1995, PHYS REV LETT, V75, P2996 ZHANG S, 1992, PHYS REV B, V45, P8689 ZHANG XG, 1995, PHYS REV B, V51, P10085 TC 6 BP 127 EP 134 PG 8 JI Solid State Commun. PY 1997 PD APR VL 102 IS 2-3 GA WQ084 J9 SOLID STATE COMMUN UT ISI:A1997WQ08400007 ER PT J AU VanRoy, W Akinaga, H Miyanishi, S Tanaka, K Kuo, LH TI Observation of antiferromagnetic coupling in delta- MnGa/(Mn,Ga,As)/delta-MnGa trilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 18 AB We present the magnetic properties of delta- MnGa/(Mn,Ga,As)/delta-MnGa trilayers. The spacer layer consists of nominally 2 to 19 monolayers (ML) GaAs, but we have indications for an important incorporation of Mn and the possible formation of antiferromagnetic Mn,As. Antiferromagnetic (AFM) coupling is observed for spacer layer thicknesses of 4 to 14 ML GaAs, ferromagnetic (FM) coupling exists outside this region. The largest observed coupling field was -87.0 mT (-870 Oe) at 17 K for a sample with a 12 ML spacer layer, causing a cross-over between both branches of the hysteresis loop and a negative remanence. In one sample (16 ML) the coupling changes from AFM at low temperature to FM at room temperature. CR 1996, J APPL PHYS 2A 2B, V79 AUSTIN AE, 1962, J APPL PHYS, V33, P1356 BITHER TA, 1965, J APPL PHYS, V36, P1501 BRINER B, 1994, PHYS REV LETT, V73, P340 HASEGAWA M, 1968, REV ELEC COMMUN LAB, V16, P605 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 LU XS, 1980, ACTA PHYS SINICA, V29, P469 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OHNO H, 1991, J APPL PHYS, V69, P6103 PRINZ GA, 1990, SCIENCE, V250, P1092 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SZE SM, 1981, PHYSICS SEMICONDUCTO, P21 SZE SM, 1981, PHYSICS SEMICONDUCTO, P276 TANAKA M, 1993, APPL PHYS LETT, V62, P1565 VANROY H, 1996, APPL PHYS LETT, V69, P711 VANROY W, UNPUB YUZURI M, 1960, J PHYS SOC JPN, V15, P1845 TC 4 BP 149 EP 152 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200034 ER PT J AU CorneaBorodi, CC Stoeffler, DCA Gautier, F TI Theoretical study of non-collinear magnetic orders in (FexCo1- x)/Mn-n superlattices SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 9 AB We study the magnetic orders in (FexCo1-x)/Mn-n superlattices for various Fe concentrations (x = 1, 3/4, 1/2, 1/4 and 0) of the ferromagnetic ordered compound with the ab initio Augmented Spherical Wave method for collinear orders and with the tight binding real space recursion method for non-collinear orders. In perfect superlattices, we determine the angular dependence of the interlayer magnetic couplings when the magnetization of two successive ferromagnetic layer is rotated. We analyse these results as a function of the strength of the interfacial coupling and we compare to the dependencies given in the literature. CR ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P59 CHAKARIAN V, 1996, PHYS REV B, V53, P11313 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HERMAN F, 1991, J APPL PHYS, V69, P4786 OUNADJELA K, 1991, EUROPHYS LETT, V15, P875 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1994, PHYS REV B, V49, P299 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 WILLIAMS AR, 1979, PHYS REV B, V19, P6094 TC 7 BP 450 EP 453 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200115 ER PT J AU Bebenin, NG Kobelev, AV Tankeyev, AP Ustinov, VV TI Magnetic resonance frequencies in multilayers with biquadratic exchange and non-collinear magnetic ordering SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 8 AB Magnetic resonance frequencies in a magnetic trilayer or superlattice are theoretically studied. Biquadratic exchange between layers is assumed to be sufficiently strong for non- collinear (canted) magnetic ordering to exist in the multilayer. The optic mode frequency turns out to vanish at the boundary between antiferromagnetic and canted states. It is shown that in the case of longitudinal pumping one can observe the resonance at two different values of magnetic field strength. CR KREBS JJ, 1989, PHYS REV LETT, V63, P1645 LENG Q, 1993, J MAGN MAGN MATER, V126, P367 MAKSYMOWICZ AZ, 1991, J MAGN MAGN MATER, V94, P109 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 USTINOV VV, 1995, PHYS MET METALLOGR, V80, P71 USTINOV VV, 1996, SOV PHYS JETP, V109, P1 ZHANG Z, 1994, PHYS REV B, V50, P6094 TC 7 BP 468 EP 470 PG 3 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200120 ER PT J AU Bruno, P TI Quantum size effects in ultrathin layered magnetic systems SO ACTA PHYSICA POLONICA A NR 86 AB The effect of electron confinement in ultrathin layered magnetic systems is discussed. This leads to quantum size effects which can be observed by photoemission in overlayers. In magnetic multilayers, spectacular oscillatory behavior of the interlayer exchange coupling results from the electron confinement. The quantum size effects manifest themselves also in the magneto-optical properties of ultrathin films. CR BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BENNETT HS, 1965, PHYS REV, V137, PA448 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BOUNOUH A, 1996, EUROPHYS LETT, V33, P315 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO E, 1993, PHYS REV LETT, V71, P181 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, J MAGN MAGN MATER, V116, PL13 BRUNO P, 1996, PHYS REV B, V53, P9214 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CELINSKI Z, 1990, PHYS REV LETT, V65, P1156 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 CLEMENS W, 1992, SOLID STATE COMMUN, V81, P739 COEHOORN R, 1991, PHYS REV B, V44, P9331 DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEVRIES JJ, 1995, PHYS REV LETT, V75, P1306 ECONOMOU EN, 1983, GREENS FUNCTIONS QUA EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 ESAKI L, 1974, REV MOD PHYS, V46, P237 FUUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GEERTS W, 1994, PHYS REV B, V50, P12581 GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585 GROLIER V, 1993, PHYS REV LETT, V71, P3023 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HERMAN F, 1991, J APPL PHYS, V69, P4783 HERMAN F, 1992, MATER RES SOC S P, V231, P195 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1994, PHYS REV B, V50, P8954 KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303 KUBO R, 1956, CAN J PHYS, V34, P1274 KUBO R, 1957, J PHYS SOC JPN, V12, P570 KUBO R, 1985, STAT PHYSICS, V2, PCH3 KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105 LANG P, 1993, PHYS REV LETT, V71, P1927 LEE BC, 1995, PHYS REV B, V52, P3499 LI DQ, 1995, PHYS REV B, V51, P7195 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 MATHON J, 1995, PHYS REV LETT, V74, P3696 MEGY R, 1995, PHYS REV B, V51, P5586 OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RODMACQ B, 1991, EUROPHYS LETT, V15, P503 ROUSSIGNE Y, 1995, PHYS REV B, V52, P350 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1993, PHYS REV B, V47, P15334 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SMITH NV, 1994, PHYS REV B, V49, P332 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1993, PHYS REV B, V48, P7238 SUZUKI Y, 1993, J MAGN MAGN MATER, V121, P539 SUZUKI Y, 1992, PHYS REV LETT, V68, P3355 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VONKLITZING K, 1986, REV MOD PHYS, V58, P519 WANG Y, 1990, PHYS REV LETT, V65, P2732 WEBER W, 1995, EUROPHYS LETT, V31, P491 WEISBUCH C, 1991, QUANTIZED SEMICONDUC YAFET Y, 1987, PHYS REV B, V36, P3948 TC 2 BP 37 EP 54 PG 18 JI Acta Phys. Pol. A PY 1997 PD JAN VL 91 IS 1 GA WG935 J9 ACTA PHYS POL A UT ISI:A1997WG93500005 ER PT J AU Shi, ZP Fishman, RS TI Interplay between spin-density wave and proximity magnetic layers SO PHYSICAL REVIEW LETTERS NR 22 AB A spin-density wave (SDW) is shown to mediate a strongly temperature-dependent magnetic coupling between magnetic proximity layers. For parallel or antiparallel moments in the proximity layers, the order parameters of the SDW oscillate as a function of the spacer thickness with a two monolayer period. The SDW phase transition between incommensurate and commensurate phases can be controlled by flipping the magnetization of one of the proximity layers. CR FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P245 FETTER AL, 1971, QUANTUM THEORY MANY, P426 FISHMAN RS, 1994, PHYS REV B, V50, P4240 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FISHMAN RS, 1996, PHYS REV LETT, V76, P2398 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 HENRY Y, 1996, PHYS REV LETT, V76, P1944 KULIKOV NI, 1982, J PHYS F MET PHYS, V12, P2291 LAURENT DG, 1981, PHYS REV B, V23, P4977 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MIRBT S, 1996, PHYS REV B, V54, P6382 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGRIS J, 1992, PHYS REV LETT, V69, P1125 UNGRIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 WALKER TG, 1992, PHYS REV LETT, V69, P1121 ZHANG Z, 1994, PHYS REV LETT, V73, P336 TC 23 BP 1351 EP 1354 PG 4 JI Phys. Rev. Lett. PY 1997 PD FEB 17 VL 78 IS 7 GA WH917 J9 PHYS REV LETT UT ISI:A1997WH91700039 ER PT J AU Ustinov, VV Bebenin, NG Romashev, LN Minin, VI Milyaev, MA Del, AR Semerikov, AV TI Magnetoresistance and magnetization of Fe/Cr(001) superlattices with noncollinear magnetic ordering SO PHYSICAL REVIEW B-CONDENSED MATTER NR 27 AB We study the magnetization and magnetoresistance of superlattices with biquadratic exchange. The equilibrium states are analyzed on the base of the free energy expression that includes all terms up to the fourth order in components of magnetizations of magnetic sublattices. The con-elation between the magnetization curve and the magnetoresistance for various orientation of magnetic field relative to the film plane is established. The experimental studies are made on the samples of molecular-beam epitaxy grown Fe/Cr superlattices. The positive magnetoresistance was found for the perpendicular-to- plane magnetic field. It is shown that this effect as well as the characteristic features of the magnetization curves are connected with the noncollinear magnetic alignment, which exists in our samples, and the fourth order magnetic anisotropy of unfamiliar type. CR ALMEIDA NS, 1995, PHYS REV B, V52, P13504 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V121, P313 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 CELOTTA RJ, 1995, MRS BULL, V20, P30 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P159 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P187 EDVARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1995, PHYS MET METALLOGR, V79, P1 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MATHON J, 1995, PHYS MET METALLOGR, V79, P5 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 USTINOV VV, 1996, J MAGN MAGN MATER, V156, P179 USTINOV VV, 1995, J MAGN MAGN MATER, V148, P307 USTINOV VV, 1995, J PHYS-CONDENS MAT, V7, P3471 USTINOV VV, 1995, PHYS MET METALLOGR, V80, P71 USTINOV VV, 1996, SOV PHYS JETP, V109, P477 WHITE RL, 1994, IEEE T MAGN, V30, P346 ZHANG Z, 1994, PHYS REV B, V50, P6094 TC 18 BP 15958 EP 15966 PG 9 JI Phys. Rev. B-Condens Matter PY 1996 PD DEC 1 VL 54 IS 22 GA VX718 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VX71800057 ER PT J AU Freyss, M Stoeffler, D Dreysse, H TI Noncollinear order contribution to the exchange coupling in Fe/Cr(001) superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 13 AB By means of a d-band tight-binding Hamiltonian, we calculate the noncollinear distribution of magnetic moments in Fe/Cr superlattices, as a function of the relative orientation Delta phi of the magnetic moments at the center of two adjacent Fe layers. All magnetic moments are computed self-consistently in both magnitude and angle. We find that for thick layers of a Cr spacer, the total energy varies parabolically as a function of Delta phi, in accordance with the phenomenological proximity magnetism model proposed by Slonczewski. However, this model is not entirely satisfied for small Cr thicknesses because of the assumptions made in it. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KUBLER J, 1994, J APPL PHYS, V76, P6694 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHMAUDER H, 1995, J MAGN MAGN MATER, V151, PL1 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 13 BP 12677 EP 12680 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD NOV 1 VL 54 IS 18 GA VT682 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VT68200014 ER PT J AU Slonczewski, JC TI Current-driven excitation of magnetic multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 24 AB A new mechanism is proposed for exciting the magnetic state of a ferromagnet. Assuming ballistic conditions and using WKB wave functions, we predict that a transfer of vectorial spin accompanies an electric current flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer. This spin transfer drives motions of the two magnetization vectors within their instantaneously common plane. Consequent new mesoscopic precession and switching phenomena with potential applications are predicted. CR BERGER L, 1974, J PHYS CHEM SOLIDS, V35, P947 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BULKA B, 1995, J MAGN MAGN MATER, V140, P491 CASTRO JD, 1994, PHYS REV B, V49, P16062 EDWARDS DM, 1995, J MAGN MAGN MATER, V140, P517 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EDWARDS DM, 1991, PHYS REV LETT, V67, P1476 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FRY JL, 1991, J APPL PHYS, V69, P4780 HATHAWAY KB, 1992, J MAGN MAGN MATER, V104, P1840 HEINRICH B, 1991, ADV PHYS, V42, P99 HUNG CY, 1988, J APPL PHYS, V63, P4276 JOHNSON M, 1995, J MAGN MAGN MATER, V140, P21 LEVY PM, 1995, J MAGN MAGN MATER, V140, P485 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MESERVEY R, 1994, PHYS REP, V238, P174 PRATT WP, 1991, PHYS REV LETT, V66, P3060 SALHI E, 1994, J APPL PHYS, V76, P4787 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SORBELLO RS, 1989, PHYS REV B, V39, P4984 STILES MD, IN PRESS STILES MD, 1993, PHYS REV B, V48, P7238 TC 15 BP L1 EP L7 PG 7 JI J. Magn. Magn. Mater. PY 1996 PD JUN VL 159 IS 1-2 GA VH552 J9 J MAGN MAGN MATER UT ISI:A1996VH55200001 ER PT J AU Grimsditch, M Kumar, S Fullerton, EE TI Brillouin light scattering study of Fe/Cr/Fe (211) and (100) trilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 25 AB The magnitude of the bilinear and biquadratic interlayer coupling strengths between Fe layers separated by Cr spacer layers is investigated by means of Brillouin light scattering, magneto-optic Kerr rotation, and magnetoresistance techniques. A data analysis scheme, which treats all three data sets on an equal footing, yields self-consistent anisotropy and interlayer coupling parameters extracted independently from the three techniques. The values of the bilinear and biquadratic coupling strengths are compared for simultaneously grown (211) and (100) Fe/Cr samples. The approach not only provides reliable values for the coupling strengths but also highlights the complementarity of these techniques in uniquely determining the magnetic parameters. CR BLAND JAC, 1994, ULTRATHIN MAGNETIC S COCHRAN JF, 1990, PHYS REV B, V42, P508 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 ELMERS HJ, 1995, PHYS REV B, V52, PR696 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG PA, 1993, MAGNETISM STRUCTURES, P87 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HEINRICH B, 1993, ADV PHYS, V42, P423 HEINRICH B, COMMUNICATION HICKEN RJ, 1995, J APPL PHYS, V78, P6670 HILLEBRANDS B, 1990, PHYS REV B, V41, P530 KABOS P, 1994, J APPL PHYS, V75, P3553 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 KOELLING DD, 1994, PHYS REV B, V50, P273 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 MACCIO M, 1994, PHYS REV B, V49, P3283 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 POTTER CD, 1994, PHYS REV B, V49, P16055 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SANDERCOCK JR, 1982, LIGHT SCATTERING SOL, V3, P173 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMIT J, 1955, PHILIPS RES REP, V10, P113 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 11 BP 3385 EP 3393 PG 9 JI Phys. Rev. B-Condens Matter PY 1996 PD AUG 1 VL 54 IS 5 GA VC596 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VC59600064 ER PT J AU Trallori, L Pini, MG Rettori, A Maccio, M Politi, P TI Mean-field study of surface and interface properties in terms of nonlinear maps SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B NR 95 AB In systems with free surfaces and interfaces, the absence of translational invariance may result in a completely different behavior with respect to the corresponding bulk system, so that many new and interesting phenomena may take place, as for example, the occurrence of a surface reconstruction phenomenon, characterized by an order at the surface different from the one which occurs deep in the sample. This article reviews the mean- field approach to surface and interface properties as a problem in nonlinear dynamics. We focus our attention on magnetic films and superlattices, whose properties are studied in terms of area-preserving maps; the emphasis is put on the effect of the surfaces, which are introduced as appropriate boundary condition, and which let exotic solution become physically relevant, though the infinitely extended system is trivially solvable. The importance of the discreteness of the lattice and of chaotic regimes in the map phase space is stressed. Some specific applications are given: (i) the magnetic field dependence of the ground state of semi-infinite uniaxial antiferromagnets and films, so that the anomalous behavior of the magnetic susceptibility experimentally observed in Fe/Cr(211) superlattices is easily accounted for as related to the chaotic nature of the corresponding map; (ii) the ground state and the temperature dependence of the magnetization of a ferromagnet with an enhanced surface exchange, and with a surface anisotropy favoring the spins to lie perpendicularly to the film plane, while a bulk anisotropy favors an in plane spin configuration. CR ANDERSON FB, 1964, PHYS REV, V136, PA1068 ARNOLD VI, 1968, ERGODIC PROBLEMS CLA ARNOLD VI, 1963, USP MAT NAUK, V18, P5 AUBRY S, 1983, PHSYICS D, V8, P38 AUBRY S, 1983, PHYSICA D, V7, P240 AUBRY S, 1979, SOLITONS CONDENSED M, P264 AUBRY S, 1986, STRUCTURES INSTABILI, P73 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAK P, 1980, PHYS REV B, V21, P5297 BAK P, 1981, PHYS REV LETT, V46, P791 BAK P, 1938, PHYSICS TODAY D BAK P, 1982, REP PROG PHYS, V45, P587 BELOBROV PI, 1994, SOV PHYS JETP, V60, P180 BERGER A, 1994, J MAGN MAGN MATER, V137, PL1 BERGER A, 1995, PHYS REV B, V52, P1078 BINDER K, 1988, PHASE TRANSITIONS CR, V8, PCH1 BLACK RC, 1990, PHYS REV LETT, V65, P1 CAMLEY RE, 1993, J PHYS-CONDENS MAT, V5, P3727 CAMLEY RE, 1988, PHYS REV B, V37, P3413 CARRICO AS, 1994, PHYS REV B, V50, P13453 CARRICO AS, 1992, PHYS REV B, V45, P13117 CHIRIKOV BV, 1979, PHYS REP, V52, P263 CHOU WR, 1986, PHYS REV B, V34, P6219 COQBLIN B, 1977, ELECTRONIC STRUCTURE DURR W, 1989, APPL PHYS A, V49 ELLIOTT RJ, 1961, PHYS REV, V124, P346 FARLE M, 1989, PHYS REV B, V39, P4838 FISHER ME, 1980, PHYS REV LETT, V44, P1502 FRENKEL J, 1938, PHYS Z SOWJETUNION, V13, P1 GREENE JM, 1979, J MATH PHYS, V20, P1183 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HANDLEY RC, 1990, PHYS REV B, V42, P6568 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1 HU X, 1994, PHYS REV B, V49, P3294 ITZYKSON C, 1989, CAMBRIDGE MONOGRAPHS, V2, P118 JANSSEN T, 1983, J PHYS A-MATH GEN, V16, P673 JENSEN MH, 1983, PHYS REV B, V27, P6853 JENSEN PJ, 1987, PHYS REV B, V35, P7306 KAGANOV MI, 1971, ZH EKSP TEOR FIZ, V61, P1679 KAGANOV MI, 1972, ZH EKSP TEOR FIZ+, V62, P1196 KEFFER F, 1973, PHYS REV LETT, V31, P1061 KOLMOGOROV AN, 1954, DOKL AKAD NAUK SSSR, V98, P525 KONG SH, 1992, PHYS REV B, V45, P12297 LEGRAND B, 1990, PHYS REV B, V41, P4422 LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LI DQ, 1993, J PHYS-CONDENS MAT, V5, PL73 LICHTENBERG AJ, 1992, REGULAR CHAOTIC DYNA LUBENSKY TC, 1975, PHYS REV B, V12, P3885 MACCIO M, 1995, PHYS LETT A, V205, P327 MANDELBROT BB, 1977, FRACTALS FORM CHANCE MILLS DL, 1968, PHYS REV, V176, P760 MILLS DL, 1968, PHYS REV, V171, P488 MILLS DL, 1971, PHYS REV B, V3, P3887 MILLS DL, 1973, PHYS REV B, V8, P4424 MILLS DL, 1968, PHYS REV LETT, V20, P18 MOSER J, 1967, MATH ANN, V169, P163 MULHOLLAN GA, 1993, MOD PHYS LETT B, V7, P655 MULHOLLAN GA, 1992, PHYS REV LETT, V69, P3240 NEEL L, 1936, ANN PHYS-PARIS, V5, P232 NORTEMANN FC, 1992, PHYS REV B, V46, P10847 OTT E, 1993, DYNAMICAL SYSTEMS PANDIT R, 1982, PHYS REV B, V25, P3226 PANG AW, 1994, PHYS REV B, V50, P6457 PEYRARD M, 1983, J PHYS C SOLID STATE, V16, P1593 PRADO CPC, 1989, PHYS LETT A, V135, P175 RADO GT, 1982, PHYS REV B, V26, P295 RAU C, 1989, APPL PHYS A-MATER, V49, P579 RAU C, 1988, J PHYS-PARIS, V49, P1627 RAU C, 1986, PHYS REV B, V34, P6347 RETTORI A, 1995, J MAGN MAGN MATER, V140, P639 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHUSTER HG, 1995, DETERMINISTIC CHAOS SELKE W, 1992, PHASE TRANSITIONS CR, V15, PCH1 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TANG H, 1993, PHYS REV LETT, V71, P444 THIAVILLE A, COMMUNICATION THIAVILLE A, 1992, J MAGN MAGN MATER, V113, P161 TOME T, 1988, J PHYS A-MATH GEN, V21, PL311 TOME T, 1986, PHYS REV A, V39, P2206 TRAILORI L, 1995, J PHYS-CONDENS MAT, V7, PL451 TRALLORI L, 1995, J PHYS-CONDENS MAT, V7, P7561 TRALLORI L, 1994, PHYS REV LETT, V72, P1925 TREGLIA G, 1991, PHYS REV B, V44, P5842 VESCOVO E, 1993, PHYS REV B, V48, P7731 VILLAIN J, 1980, J PHYS C SOLID STATE, V13, P3117 VILLAIN J, 1977, J PHYS LETT-PARIS, V38, PL77 WANG RW, 1994, PHYS REV B, V50, P3931 WANG RW, 1994, PHYS REV LETT, V72, P920 WELLER D, 1985, PHYS REV LETT, V54, P1555 YOKOI CSO, 1988, PHYS REV B, V37, P2173 YOKOI CSO, 1985, PHYS REV LETT, V54, P163 TC 4 BP 1935 EP 1988 PG 54 JI Int. J. Mod. Phys. B PY 1996 PD JUL 20 VL 10 IS 16 GA VF606 J9 INT J MOD PHYS B UT ISI:A1996VF60600001 ER PT J AU Fullerton, EE Bader, SD Robertson, JL TI Spin-density-wave antiferromagnetism of Cr in Fe/Cr(001) superlattices SO PHYSICAL REVIEW LETTERS NR 26 AB The antiferromagnetic spin-density-wave (SDW) order of Cr layers in Fe/Cr(001) superlattices was investigated by neutron scattering. For Cr thicknesses from 51 to 190 Angstrom, a transverse SDW is formed for all temperatures below the Neel temperature with a single wave vector Q normal to the layers. A coherent magnetic structure forms with the nodes of the SDW near the Fe-Cr interfaces, and the magnetic coherence length greater than the Cr layer thickness. The results and modeling provide a direct confirmation of the persistence of bulklike antiferromagnetic SDW order in the Cr. CR BORCHERS JA, 1995, PHYS REV B, V51, P8276 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FREEMAN AJ, 1961, ACTA CRYSTALLOGR, V14, P234 FULLERTON EE, 1993, APPL PHYS LETT, V63, P1699 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV B, V45, P9292 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 HILL JP, 1995, PHYS REV B, V51, P10336 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 PECHAN MJ, 1994, J APPL PHYS, V75, P6178 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PONNTAG P, 1995, PHYS REV, V52, P7363 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 TURTUR C, 1994, PHYS REV LETT, V72, P15571 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VEGA A, 1995, PHYS REV B, V51, P11546 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 43 BP 1382 EP 1385 PG 4 JI Phys. Rev. Lett. PY 1996 PD AUG 12 VL 77 IS 7 GA VB330 J9 PHYS REV LETT UT ISI:A1996VB33000048 ER PT J AU Fullerton, EE Adenwalla, S Felcher, GP Riggs, KT Sowers, CH Bader, SD Robertson, JL TI Neutron diffraction and reflectivity studies of the Cr Neel transition in Fe/Cr(001) superlattices SO PHYSICA B NR 32 AB The effects on the interlayer coupling of the Cr Nel transition is studied in Fe/Cr(001) superlattices. The Neel transition is suppressed for Cr layer thickness < 42 Angstrom. For > 42 Angstrom of Cr, the Neel temperature T-N initially increases rapidly and then asymptotically approaches its bulk value with a three-dimensional transition-temperature shirt exponent value of lambda = 1.4 +/- 0.3. Neutron diffraction confirms both the Cr antiferromagnetic order and the existence of the incommensurate, transverse spin density wave whose nesting wave vector is the same as that of bulk Cr. The ordering of the Cr dramatically alters the coupling of the Fe layers. The biquadratic Fe interlayer coupling observed for T > T-N vanishes below T-N as confirmed by polarized neutron reflectivity. The behavior can be understood in terms of finite-size and spin frustration effects at rough Fe-er interfaces. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINDER K, 1983, PHASE TRANSITIONS CR, P1 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FULLERTON EE, 1995, MATER RES SOC SYMP P, V384, P145 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUCKER U, IN PRESS J APPL PHYS RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1996, PHYSICA B, V221, P366 SCHREYER A, 1994, PHYSICA B, V198, P173 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 UNGARIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGARIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, PHYS REV B, V51, P11546 TC 9 BP 370 EP 376 PG 7 JI Physica B PY 1996 PD APR VL 221 IS 1-4 GA UR277 J9 PHYSICA B UT ISI:A1996UR27700056 ER PT J AU Chakarian, V Idzerda, YU Lin, HJ Gutierrez, C Prinz, GA Meigs, G Chen, CT TI Canted coupling of buried magnetic multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 26 AB Soft-x-ray magnetic circular dichroism is used as an element- specific magnetometer to determine the magnetic behavior of a buried 4.3 monolayer Mn filmin a Fe25Co75/Mn/Fe25Co75 trilayer, which exhibits a 90 degrees coupling between the two ferromagnetic films. By measuring element-specific magnetic hysteresis curves for Fe, Co, and Mn along directions parallel and perpendicular to an applied magnetic field, the magnetization behavior of each element is described, indicating an anomalous in-plane canting of the net Mn moment with respect to the Fe and Co moments by 23 degrees. CR ANKNER JF, UNPUB BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 CHAKARIAN V, 1995, APPL PHYS LETT, V66, P3368 CHEN CT, 1993, PHYS REV B, V48, P642 CHEN CT, 1990, PHYS REV B, V42, P7262 CHEN CT, 1992, REV SCI INSTRUM, V63, P1229 CHEN CT, 1989, REV SCI INSTRUM, V60, P1616 FALICOV LM, 1990, J MATER RES, V5, P1299 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 GRUNBERG P, 1985, J APPL PHYS, V57, P3673 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, APPL PHYS LETT, V61, P2476 HEINRICH B, 1993, ADV PHYS, V42, P523 IDZERDA YU, 1994, APPL PHYS LETT, V64, P3503 IDZERDA YU, 1994, NUCL INSTRUM METH A, V347, P134 IDZERDA YU, 1993, PHYS REV B, V48, P4144 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TJENG LH, 1992, J MAGN MAGN MATER, V109, P288 TOBIN JG, 1992, PHYS REV LETT, V68, P3642 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 WU Y, 1992, PHYS REV LETT, V69, P2307 TC 14 BP 11313 EP 11316 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD MAY 1 VL 53 IS 17 GA UK250 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UK25000012 ER PT J AU Krebs, JJ Prinz, GA Filipkowski, ME Gutierrez, CJ TI Interlayer thickness dependence of the strong 90 degrees coupling in epitaxial CoFe/Mn/CoFe trilayers SO JOURNAL OF APPLIED PHYSICS NR 15 AB Trilayers of CoFe/Mn/CoFe(001) have been prepared by molecular beam epitaxy and their magnetic properties measured by magnetometry and ferromagnetic resonance. Very strong near-90 degrees coupling between the CoFe layers, with no evidence for 180 degrees coupling, was found in all but the thickest Mn- Iayer samples. The coupling energy has the form suggested recently for the case when the interlayer itself is antiferromagnetic. An analysis of the ferromagnetic resonance data indicates that the magnitude of the coupling oscillates with the Mn thickness. (C) 1996 American Institute of Physics. CR BORCHERS JA, COMMUNICATION CHAKARIAN V, IN PRESS PHYS REV B FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GUTIERREZ CJ, 1992, APPL PHYS LETT, V61, P2476 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HEINRICH B, 1993, ADV PHYS, V42, P523 IDZERDA YU, COMMUNICATION KREBS JJ, 1990, J APPL PHYS, V67, P5920 KREBS JJ, 1989, J APPL PHYS, V63, P1643 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1994, J APPL PHYS, V75, P6474 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 5 BP 4525 EP 4527 PG 3 JI J. Appl. Phys. PY 1996 PD APR 15 VL 79 IS 8 PN 2A GA UG877 J9 J APPL PHYS UT ISI:A1996UG87700011 ER PT J AU Schreyer, A Ankner, JF Zeidler, T Zabel, H Schafer, M Wolf, JA Grunberg, P Majkrzak, CF TI Noncollinear and collinear magnetic structures in exchange coupled Fe/Cr(001) superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 85 AB The magnetic and structural properties of molecular beam epitaxy grown Fe/Cr(001) superlattices were studied as a function of the growth temperature T-g using polarized neutron reflectometry (PNR) with polarization analysis, magneto-optic Kerr effect (h?OKE), and x-ray-scattering techniques. From MOKE and PNR as a function of external field we fmd strong noncollinear coupling between the Fe layers and a so far unexpected coupling angle of 50 degrees near remanence for a sample grown at T-g=250 degrees C. A detailed discussion of the domain structure of the sample near remanence confirms the modeling. On the other hand, an otherwise equivalent sample grown at room temperature exhibits completely ferromagnetic or uncoupled behavior. Using diffuse x-ray-scattering methods these distinct differences in the magnetic structure are found to be correlated with a growth temperature dependent length scale of constant Cr interlayer thickness l(Cr). We find that l(Cr) increases significantly with T-g. These results are discussed in the framework of current theories of noncollinear exchange. It is demonstrated that the bilinear-biquadratic formalism used so far is inconsistent with the data. The Cr specific proximity magnetism model is discussed which explains the occurrence of noncollinear coupling for systems with Cr interlayer thickness fluctuations on the length scale observed here for T-g=250 degrees C. The model yields an exchange energy different from the bilinear-biquadratic formalism used so far, explaining the asymptotic approach to saturation observed by MOKE. CR ANKNER JF, 1993, MATER RES SOC S P, V313, P761 ANKNER JF, 1992, SPIE C P, V1738, P260 ANKNER JF, 1992, SPRINGER P PHYSICS, V61, P105 BADER SD, 1991, J MAGN MAGN MATER, V100, P440 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V123, PL21 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAND JAC, 1993, J MAGN MAGN MATER, V123, P320 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BODEKER P, 1993, PHYS REV B, V47, P2353 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BURGLER DE, UNPUB CELINSKI Z, 1993, J APPL PHYS, V73, P5966 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FELCHER GP, 1993, PHYSICA B, V192, P137 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1991, PHYS REV B, V44, P9348 HOLY V, 1994, PHYS REV B, V49, P10668 HOSOITO N, 1993, J MAGN MAGN MATER, V126, P255 HOSOITO N, 1992, J PHYS SOC JPN, V61, P300 HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KUROWSKI D, COMMUNICATION LOEWENHAUPT M, 1993, J MAGN MAGN MATER, V121, P173 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, HDB NEUTRON SCATTERI MAJKRZAK CF, 1995, IN PRESS PHYSICA B MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 MAJKRZAK CF, 1989, PHYSICA B, V156, P619 METOKI N, 1993, J MAGN MAGN MATER, V118, P57 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PAYNE AP, 1993, PHYS REV B, V47, P2289 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RAUCH H, 1979, NEUTRON INTERFEROMET, P174 RIBAS R, 1993, J MAGN MAGN MATER, V121, P313 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHLOMKA JP, 1995, PHYS REV B, V51, P2311 SCHREYER A, 1993, J APPL PHYS, V73, P7616 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1994, PHYSICA B, V198, P173 SCHREYER A, 1994, THESIS RUHR U BOCHUM SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TAKANASHI K, 1992, J PHYS SOC JPN, V61, P4148 TAKEDA M, 1993, J MAGN MAGN MATER, V126, P355 UNGURIS J, 1993, J APPL PHYS, V73, P5984 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 WANG Y, 1990, PHYS REV LETT, V65, P2732 WOLF JA, 1993, 2743 FORSCH JUL BER WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1994, PHYSICA B, V198, P156 ZABEL H, 1992, SPRINGER P PHYSICS, V61 TC 59 BP 16066 EP 16085 PG 20 JI Phys. Rev. B-Condens Matter PY 1995 PD DEC 1 VL 52 IS 22 GA TL813 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TL81300060 ER PT J AU SCHREYER, A ANKNER, JF ZEIDLER, T ZABEL, H MAJKRZAK, CF SCHAFER, M GRUNBERG, P TI DIRECT OBSERVATION OF NONCOLLINEAR SPIN STRUCTURES IN FE/CR(001) SUPERLATTICES SO EUROPHYSICS LETTERS NR 19 AB We have studied the non-collinear interlayer exchange coupling in Fe/Cr(001) superlattices as a function of growth temperature using polarized neutron reflectometry with exit beam polarization analysis. We confirm that the occurrence of non- collinear spin structures is correlated with long-range lateral Cr thickness fluctuations, which, in turn, depend on the growth temperature. We find surprisingly strong coupling between the Fe layers. We explain our data using the recently proposed proximity magnetism model instead of the currently used theory of bilinear and biquadratic exchange coupling. CR DEMOKRITOV S, 1994, PHYS REV B, V49, P720 ERICKSON RP, 1993, PHYS REV B, V47, P2626 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1991, PHYS REV B, V44, P9348 KUROWSKI D, COMMUNICATION MAJKRZAK CF, 1991, PHYSICA B, V173, P75 PIERCE DT, 1994, PHYS REV B, V49, P14564 RIBAS R, 1993, J MAGN MAGN MATER, V121, P313 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SCHREYER A, 1995, IN PRESS PHYS REV B, V52 SCHREYER A, 1993, J APPL PHYS, V73, P7617 SCHREYER A, 1994, PHYSICA B, V198, P173 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1994, PHYSICA B, V198, P156 TC 37 BP 595 EP 600 PG 6 JI Europhys. Lett. PY 1995 PD DEC 1 VL 32 IS 7 GA TJ302 J9 EUROPHYS LETT UT ISI:A1995TJ30200010 ER