FN ISI Export Format VR 1.0 PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Biquadratic interlayer exchange coupling in epitaxial Fe/Si/Fe SO JOURNAL OF APPLIED PHYSICS NR 13 AB We have studied the biquadratic exchange coupling in epitaxially grown Fe/Si/Fe. The temperature and thickness dependence of the biquadratic coupling strength were determined unambiguously by fitting the easy- and hard-axis magneto- optical Kerr effect loops. The origin of the biquadratic coupling can be fully understood in terms of Slonczewski's loose spins mechanism. (C) 2000 American Institute of Physics. [S0021-8979(00)31208-7]. CR BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KOHLHEPP JT, 1997, MATER RES SOC SYMP P, V475, P593 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 TC 0 BP 5452 EP 5454 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200252 ER PT J AU Chizhik, AB Fronc, K Gnatchenko, SL Merenkov, DN Zuberek, R TI Formation of noncollinear spin configurations during magnetization reversal in multilayered Fe/Si films SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 8 AB Magnetization reversal processes in Fe/Si multilayered films have been studied by means of the longitudinal magneto-optical Kerr effect at room temperature. The multilayers have been grown by DC sputtering on the single-crystal GaAs substrate. The Kerr effect curves had areas with an invariable or slightly varying rotation and had different remanent rotation value in the zero magnetic field for different directions of the magnetic field in the film plane. The observed features are related to the formation of stable and metastable noncollinear spin configurations. The experimental results are explained in the framework of the theory, which takes into account the competition between the bilinear exchange term on the one hand and the biquadratic exchange or cubic magnetic anisotropy terms on the other hand. (C) 2000 Elsevier Science B.V. All rights reserved. CR FRONC K, IN PRESS FULLERTON EE, 1996, PHYS REV B, V53, P5112 GNATCHENKO SL, 1998, J MAGN MAGN MATER, V186, P139 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOSTYUCHENKO VV, 1997, J MAGN MAGN MATER, V176, P155 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 ZUBEREK R, 1995, J MAGN MAGN MATER, V139, P157 TC 0 BP 19 EP 24 PG 6 JI J. Magn. Magn. Mater. PY 2000 PD APR VL 213 IS 1-2 GA 305FQ J9 J MAGN MAGN MATER UT ISI:000086529100004 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Origin of biquadratic exchange in Fe/Si/Fe SO PHYSICAL REVIEW LETTERS NR 21 AB The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. CR ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BRUNO P, 1995, PHYS REV B, V52, P411 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MA P, 1997, PHYS REV B, V56, P9881 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 VANDERHEIJDEN PAA, 1999, PHYS REV LETT, V82, P1050 TC 0 BP 1812 EP 1815 PG 4 JI Phys. Rev. Lett. PY 2000 PD FEB 21 VL 84 IS 8 GA 285HK J9 PHYS REV LETT UT ISI:000085383500044 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Demokritov, SO TI Biquadratic interlayer coupling in layered magnetic systems SO JOURNAL OF PHYSICS D-APPLIED PHYSICS NR 75 AB An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90 degrees orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BINASCH G, 1989, PHYS REV B, V39, P4828 BURGLER DE, 1997, PHYS REV B, V56, P4149 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 COCHRAN JF, 1994, ULTRATHIN MAGNETIC S, V2, P222 COWACHE C, 1996, PHYS REV B, V53, P15027 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, IN PRESS DEMOKRITOV SO, 1993, J MAGN MAGN MATER, V126, P291 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1995, J MAGN MAGN MATER, V148, P187 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 ELMERS HJ, 1995, PHYS REV B, V52, P696 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FILIPKOWSKI ME, 1994, J APPL PHYS, V76, P7090 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FUCHS P, 1997, PHYS REV B, V55, P12546 FUJIWARA H, 1995, IEEE T MAGN, V31, P4112 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1991, J APPL PHYS, V69, P4789 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 HEINRICH B, 1994, J APPL PHYS, V75, P6187 HEINRICH B, 1993, MAGNETIC ULTRATHIN F, P119 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, P195 HICKEN RJ, 1996, THIN SOLID FILMS, V275, P199 HILLEBRANDS B, 1994, ULTRATHIN MAGNETIC S, V2, P258 HUBERT A, 1998, MAGNETIC DOMAINS INOUE J, 1994, J MAGN MAGN MATER, V136, P233 KOBLER U, 1992, J MAGN MAGN MATER, V103, P269 KREBS JJ, 1996, J APPL PHYS, V79, P4525 KUME M, 1996, J APPL PHYS, V79, P6402 LEAL JL, 1996, J APPL PHYS, V79, P2801 MACCIO M, 1994, PHYS REV B, V49, P3283 MCCORD J, 1993, IEEE T MAGN, V29, P2735 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 NEEL L, 1962, CR HEBD ACAD SCI, V255, P1545 PETTIT K, 1997, PHYS REV B, V56, P7819 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 POULOPOULOS P, 1997, J MAGN MAGN MATER, V170, P57 RIBAS R, 1992, PHYS LETT A, V167, P103 RODMACQ B, 1993, PHYS REV B, V48, P5077 RUCKER U, 1995, J APPL PHYS, V78, P387 RUCKER U, 1996, J MAGN MAGN MATER, V156, P269 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAUER C, 1991, MAGNETIC SURFACES TH, P153 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHWABENHAUSEN J, 1997, PHYS REV B, V55, P15119 SHENDER EF, 1996, PHYS REV LETT, V76, P2583 SLONCZEWSKI JC, 1994, J APPL PHYS, V75, P6474 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SPISAK D, 1997, J MAGN MAGN MATER, V168, P257 TANUMA T, 1995, IEEE T MAGN, V31, P3955 TANUMA T, 1996, SANYO TECHN REV, V28, P90 THEISBROHL K, 1995, MAGNETIC ULTRATHIN F, P165 UNGURIS J, 1991, PHYS REV LETT, V67, P140 YOUNG S, 1996, J MAGN MAGN MATER, V162, P38 ZHANG Z, 1994, PHYS REV LETT, V73, P336 ZOLL S, 1996, J MAGN MAGN MATER, V156, P231 TC 8 BP 925 EP 941 PG 17 JI J. Phys. D-Appl. Phys. PY 1998 PD APR 21 VL 31 IS 8 GA ZM480 J9 J PHYS-D-APPL PHYS UT ISI:000073544400003 ER PT J AU Saito, Y Inomata, K TI Biquadratic coupling contributions to the magnetoresistive curves in Fe/FeSi/Fe sandwiches with semiconductor like FeSi and metallic bcc FeSi spacers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 17 AB Magnetoresistance was investigated in Fe/FeSi/Fe sandwiches with metallic bcc-and semiconductor like FeSi spacers prepared by an ultrahigh-vacuum magnetron sputtering system, enhanced with inductively coupled RF plasma. In the easy axis direction, MR curves at 298 K have a dip around the zero magnetic field for both Fe/FeSi/Fe sandwiches with semiconductor like FeSi and hcc metallic FeSi spacers. On the other hand, MR curves at 10 K exhibit a dip and no anomaly around the zero magnetic field for the Fe/bcc metallic FeSi/Fe and Fe/semiconductor like FeSi/Fe sandwiches, respectively. when the contribution of biquadratic coupling to interlayer exchange coupling is considered, these MR behaviors are well explained. These results support the interlayer exchange coupling model attributed to the biquadratic exchange coupling which outweighs the colinear term at a low temperature in Fe/FeSi multilayers. CR BRUNO P, 1994, PHYS REV B, V49, P13231 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 METOKI N, 1993, J MAGN MAGN MATER, V121, P137 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAITO Y, UNPUB PHYS REV B SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 1 BP 1138 EP 1141 PG 4 JI J. Phys. Soc. Jpn. PY 1998 PD APR VL 67 IS 4 GA ZK389 J9 J PHYS SOC JPN UT ISI:000073315800019 ER PT J AU Lazarev, S Skrinjar, M Kapor, D Stojanovic, S TI On the mean-field theory of magnetic multilayers with bilinear and biquadratic Heisenberg exchange SO PHYSICA A NR 30 AB A system consisting of several layers of magnetic ions interacting by both bilinear and biquadratic Heisenberg exchange is studied within the framework of the mean-field approximation. It is shown that for S = 1 there exist two types of ordering: ferromagnetic and ferroquadrupolar. The stability of phases as the function cf temperature, biquadratic exchange and surface exchange is discussed analytically and numerically and it was shown that similar to bulk samples there appear first-and second-order transitions and a tricritical point may appear depending on system parameters. (C) 1998 Elsevier Science B.V. All rights reserved. CR ADLER J, 1976, J PHYS C SOLID STATE, V9, P2911 ALLEN GAT, 1967, P PHYS SOC LOND, V91, P341 ANDERSON PW, 1959, PHYS REV, V115, P2 BARNAS J, 1993, J MAGN MAGN MATER, V123, PL21 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BARNAS J, 1989, J MAGN MAGN MATER, V82, P186 BASZYNSKI J, 1996, PHYS STATUS SOLIDI A, V153, P179 BROWN EB, 1989, PHYS REV B, V40, P775 CHADDA GS, 1987, PHYS STATUS SOLIDI B, V144, PK133 CHEN HH, 1973, PHYS REV B, V7, P4267 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FERT A, 1992, ULTRATHIN MAGNETIC S HARRIS EA, 1963, PHYS REV LETT, V11, P9 HICKEN RJ, 1996, THIN SOLID FILMS, V275, P199 HUANG NL, 1964, PHYS REV LETT, V12, P275 JOSEPH RI, 1965, PHYS REV A, V138, P1441 KAPOR D, 1994, PHYS LETT A, V192, P413 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 LEVY JCS, 1981, SURF SCI REP, V1, P39 MICNAS R, 1976, J PHYS C SOLID STATE, V9, P3307 NAGAEV EL, 1982, SOV PHYS USP, V25, P31 RODBELL DS, 1963, PHYS REV LETT, V11, P10 RURIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOJAKOVIC Z, 1982, NUMERICAL METHODS LI TIWARI M, 1980, NUOVO CIMENTO B, V58, P323 UNGURIS J, 1991, PHYS REV LETT, V67, P140 UZUNOV DI, 1994, PHYSICA A, V204, P702 TC 3 BP 453 EP 469 PG 17 JI Physica A PY 1998 PD FEB 15 VL 250 IS 1-4 GA ZE082 J9 PHYSICA A UT ISI:000072755900027 ER PT J AU Inomata, K Saito, Y TI Interlayer coupling in Co/Si multilayers SO JOURNAL OF APPLIED PHYSICS NR 6 CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P3518 FULLERTON FE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 TC 0 BP 5344 EP 5344 PG 1 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2B GA WV537 J9 J APPL PHYS UT ISI:A1997WV53700239 ER PT J AU Kohlhepp, J denBroeder, FJA Valkier, M vanderGraaf, A TI Apparent strong biquadratic contributions to the interlayer exchange coupling in Fe/Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 13 AB We have studied the interlayer exchange coupling in sputtered Fe/Si multilayers both by integrating and by depth-sensitive magnetic methods. We find that the degrees of antiferromagnetic alignment of adjacent ferromagnetic layers and their rotation process in an applied magnetic field depend on the position in the multilayer stack. The observed vertical and lateral variations of the coupling properties are able to mimic an apparent strong biquadratic coupling. CR BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 10 BP 431 EP 434 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200110 ER PT J AU Kohlhepp, J Valkier, M vanderGraaf, A denBroeder, FJA TI Mimicking of a strong biquadratic interlayer exchange coupling in Fe/Si multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 29 AB The antiferromagnetic interlayer exchange coupling properties of sputtered Fe/Si multilayers have been studied by magnetometry and spin-polarized neutron reflectometry. Both the degree of antiferromagnetic alignment of adjacent ferromagnetic layers at zero field and the strength of the coupling are found to depend on the position in the multilayer stack. It is shown that these interlayer coupling variations are able to imitate an apparent strong biquadratic coupling. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, IN PRESS J MAGN MAGN KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEKNER J, 1987, THEORY REFLECTION MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANDERGRAAF A, IN PRESS J MAGN MAGN VANWELL AA, 1994, PHYSICA B, V198, P217 VONKANEL H, 1992, PHYS REV B, V45, P13877 TC 9 BP R696 EP R699 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD JAN 1 VL 55 IS 2 GA WD789 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WD78900013 ER