FN ISI Export Format VR 1.0 PT J AU Vavra, I Bydzovsky, J Svec, P Derer, J Kambersky, V Frait, Z Lopusnik, R Sturc, P Hilscher, G TI Low-temperature studies of magnetic Fe/FeSi multilayers SO PHYSICA B NR 1 AB Magnetic coupling and magnetoresistance of Fe/FeSi multilayers were investigated in the range 4.2-300 K. From M(T, H) data and FMR measurements the magnetization arrangement of Fe sublayers is discussed. GMR contribution increases with decreasing temperature, but its value is very low. (C) 2000 Elsevier Science B.V. All rights reserved. CR FULLERTON EE, 1996, PHYS REV B, V53, P5112 TC 0 BP 1241 EP 1242 PG 2 JI Physica B PY 2000 PD JUL VL 284 PN 2 GA 320WD J9 PHYSICA B UT ISI:000087423100060 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Study of the barrier height in exchange coupled Fe/Fe1-xSix (x > 0.70) multilayers SO JOURNAL OF APPLIED PHYSICS NR 14 AB Fe/Fe1-xSix multilayers show distinct antiferromagnetic (AF) coupling for a wide spacer composition range 0.50 < x less than or equal to 1.00. As the Si content x increases, the spacer changes from metallic to insulating and the AF coupling strength (J) is significantly enhanced from 0.05 to 1.20 erg/cm(2). We have explained the temperature dependence of the coupling constants J(1) and J(2) in terms of the quantum interference model by taking an unknown energy difference Delta(=U-epsilon(F)) as a fitting parameter, where epsilon(F) is the Fermi level of Fe and U is the potential of the Fe1- xSix. The aim of the present work is to determine the quantity Delta experimentally for the insulating composition range of x > 0.70. The quantity Delta was evaluated both from I-V characteristics and the temperature dependence of the resistivity with the current perpendicular to the sample plane using a crossed electrode geometry junction. It is found that the barrier height increases from 0.15 to 0.70 eV with increasing the Si content x. These values almost agree with the parameter Delta deduced from the temperature dependence of J(1) and J(2). This agreement supports the validity of our previous calculations based on the quantum interference model. (C) 2000 American Institute of Physics. [S0021-8979(00)88708-3]. CR BRUNO P, 1994, J APPL PHYS, V76, P6972 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1999, J APPL PHYS, V85, P5741 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1992, J MAGN MAGN MATER, V17, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1987, J APPL PHYS, V61, P3750 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MESERVEY R, 1982, J APPL PHYS, V53, P1563 SIMMONS JG, 1963, J APPL PHYS, V34, P1793 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 6836 EP 6838 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800308 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Biquadratic interlayer exchange coupling in epitaxial Fe/Si/Fe SO JOURNAL OF APPLIED PHYSICS NR 13 AB We have studied the biquadratic exchange coupling in epitaxially grown Fe/Si/Fe. The temperature and thickness dependence of the biquadratic coupling strength were determined unambiguously by fitting the easy- and hard-axis magneto- optical Kerr effect loops. The origin of the biquadratic coupling can be fully understood in terms of Slonczewski's loose spins mechanism. (C) 2000 American Institute of Physics. [S0021-8979(00)31208-7]. CR BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KOHLHEPP JT, 1997, MATER RES SOC SYMP P, V475, P593 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 TC 0 BP 5452 EP 5454 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200252 ER PT J AU Chizhik, AB Fronc, K Gnatchenko, SL Merenkov, DN Zuberek, R TI Formation of noncollinear spin configurations during magnetization reversal in multilayered Fe/Si films SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 8 AB Magnetization reversal processes in Fe/Si multilayered films have been studied by means of the longitudinal magneto-optical Kerr effect at room temperature. The multilayers have been grown by DC sputtering on the single-crystal GaAs substrate. The Kerr effect curves had areas with an invariable or slightly varying rotation and had different remanent rotation value in the zero magnetic field for different directions of the magnetic field in the film plane. The observed features are related to the formation of stable and metastable noncollinear spin configurations. The experimental results are explained in the framework of the theory, which takes into account the competition between the bilinear exchange term on the one hand and the biquadratic exchange or cubic magnetic anisotropy terms on the other hand. (C) 2000 Elsevier Science B.V. All rights reserved. CR FRONC K, IN PRESS FULLERTON EE, 1996, PHYS REV B, V53, P5112 GNATCHENKO SL, 1998, J MAGN MAGN MATER, V186, P139 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOSTYUCHENKO VV, 1997, J MAGN MAGN MATER, V176, P155 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 ZUBEREK R, 1995, J MAGN MAGN MATER, V139, P157 TC 0 BP 19 EP 24 PG 6 JI J. Magn. Magn. Mater. PY 2000 PD APR VL 213 IS 1-2 GA 305FQ J9 J MAGN MAGN MATER UT ISI:000086529100004 ER PT J AU Dubowik, J Stobiecki, F Szymanski, B Kudryavtsev, YV Grabias, A Kopcewicz, M TI Complex magnetic structure of strongly coupled Fe/Si multilayers SO ACTA PHYSICA POLONICA A NR 8 AB Fe/Si multilayers with strong bilinear and biquadratic couplings were investigated. A complex structure revealed by the Mossbauer spectroscopy corresponds to multimode ferromagnetic resonance spectra in a non-saturated state. Simple dispersion relations for antiferromagnetic coupled bilayer structures are shown to be inapplicable to the Fe/Si multilayers with a strong biquadratic component to the antiferromagnetic bilinear coupling. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3032 FREDRIKZE H, 1997, PHYSICA B, V234, P498 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 WIGEN PE, 1994, MAGNETIC MULTILAYERS, P183 TC 0 BP 451 EP 454 PG 4 JI Acta Phys. Pol. A PY 2000 PD MAR VL 97 IS 3 GA 299HN J9 ACTA PHYS POL A UT ISI:000086193100022 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Origin of biquadratic exchange in Fe/Si/Fe SO PHYSICAL REVIEW LETTERS NR 21 AB The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed. CR ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BRUNO P, 1995, PHYS REV B, V52, P411 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MA P, 1997, PHYS REV B, V56, P9881 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STRIJKERS GJ, 1999, PHYS REV B, V60, P9583 VANDERHEIJDEN PAA, 1999, PHYS REV LETT, V82, P1050 TC 0 BP 1812 EP 1815 PG 4 JI Phys. Rev. Lett. PY 2000 PD FEB 21 VL 84 IS 8 GA 285HK J9 PHYS REV LETT UT ISI:000085383500044 ER PT J AU Carlisle, JA Blankenship, SR Smith, RN Chaiken, A Michel, RP van Buuren, T Terminello, LJ Jia, JJ Callcott, TA Ederer, DL TI Electronic structure and crystalline coherence in Fe/Si multilayers SO JOURNAL OF CLUSTER SCIENCE NR 17 AB Soft x-ray fluorescence spectroscopy has been used to examine the electronic structure of deeply buried silicide thin films that arise in Fe/Si multilayers. These systems exhibit antiferromagnetic (AF) coupling of the Fe layers, despite their lack of a noble metal spacer layer found in most GMR materials. Also, the degree of coupling is very dependent on preparation conditions, especially spacer layer thickness and growth temperature. The valence band spectra are quite different for films with different spacerlayer thickness yet are very similar for films grown at different growth temperatures. The latter result is surprising since AF coupling is strongly dependent on growth temperature. Combining near-edge x-ray absorption with the fluorescence data demonstrates that the local bonding structure in the silicide spacer layer in epitaxial films which exhibit AF coupling are metallic. These results indicate the equal roles of crystalline coherence and electronic structure in determining the magnetic properties of these systems. CR CARLISLE JA, 1995, APPL PHYS LETT, V67, P34 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S JIA JJ, 1992, PHYS REV B, V46, P9446 JIA JJ, 1995, REV SCI INSTRUM, V66, P1394 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NILSSON PO, 1995, PHYS REV B, V52, PR8643 NORDGREN EJ, 1997, J PHYS IV, V7, P9 PERERA RCC, 1989, J APPL PHYS, V66, P3676 RUBENSSON JE, 1990, PHYS REV LETT, V64, P1047 STOHR J, 1992, NEXAFS SPECTROSCOPY VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 0 BP 591 EP 599 PG 9 JI J. Clust. Sci. PY 1999 PD DEC VL 10 IS 4 GA 256AE J9 J CLUST SCI UT ISI:000083701700011 ER PT J AU Walser, P Hunziker, M Landolt, M TI Heat-induced effective exchange coupling in magnetic multilayers with semiconductors SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 35 AB Two ferromagnetic films separated by an amorphous semiconducting spacer layer are exchange coupled across the spacer. The coupling is reversibly temperature dependent with a positive temperature coefficient making such layered systems a 2-D realization of the concept of heat-induced magnetism. By studying ferromagentic Fe layers separated by amorphous Si, Ge, or ZnSe layers we explore the possibilities to generate such an effective exchange coupling and address the question of the mechanism responsible for it. (C) 1999 Elsevier Science B.V. All rights reserved. CR 1991, LANDOLTBERNSTEIN SER, V3 ALBERS A, 1994, PHYSICA B, V194, P1091 BERNASCONI J, 1969, PHYS KONDENS MATER, V10, P224 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BURGLER DE, 1998, PHYS REV LETT, V80, P4983 BUSCH G, 1967, HELV PHYS ACTA, V40, P812 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 FULLERTON EE, 1992, J MAGN MAGN MATER, V17, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIN PK, 1977, CAN J PHYS, V55, P1641 MAGNIN P, 1978, J APPL PHYS, V49, P1709 MAGNIN P, 1978, J PHYS F MET PHYS, V8, P2085 MOTT NF, 1987, CONDUCTION NONCRYSTA MOTT NF, 1979, ELECT PROCESSES NONC NEEL L, 1962, CR HEBD ACAD SCI, V255, P1676 OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHLEBERGER M, UNPUB SCHOLL A, 1998, THESIS U KOLN SIEGBHAN K, 1958, P REH C NUCL STRUCT, P1957 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1992, THESIS ETH ZURICH TOUGAARD S, 1990, J ELECTRON SPECTROSC, V52, P243 WALSER P, 1999, IN PRESS PHYS REV B, V60 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 95 EP 109 PG 15 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700008 ER PT J AU Walser, P Hunziker, M Speck, T Landolt, M TI Heat-induced antiferromagnetic coupling in multilayers with ZnSe spacers SO PHYSICAL REVIEW B NR 22 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. As spacer material we use amorphous ZnSe which is a compound semiconductor and find heat- induced antiferromagnetic coupling in striking similarity to amorphous Si and Ge. In an Fe/alpha-ZnSe/Fe trilayer with spacer thickness between 18 Angstrom and 22 Angstrom the coupling is antiferromagnetic with a positive temperature coefficient. At slightly larger thicknesses between 22 Angstrom and 25 Angstrom we find a reversible transition from ferromagnetic coupling at low temperatures to antiferromagnetic coupling at higher temperatures upon heating. We discuss the reversibly heat-induced effective exchange coupling in terms of localized defect states in the band gap in the vicinity of the Fermi energy. [S0163-1829(99)04230-7]. CR BRINER B, 1993, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETZ ZURICH CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIM PK, 1977, CAN J PHYS, V55, P1641 MOTT NF, 1987, CONDUCTION NONCRYSTA OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHOLL A, 1998, THESIS U KOLN SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 1 BP 4082 EP 4086 PG 5 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100053 ER PT J AU Walser, P Landolt, M TI Heat-induced coupling in multilayers with semiconducting spacers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 11 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. (C) 1999 Elsevier Science B.V. All rights reserved. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1983 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 412 EP 414 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600130 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Interlayer coupling of Fe/Si/Fe trilayers with very thin boundary layers SO JOURNAL OF APPLIED PHYSICS NR 12 AB The interlayer magnetic coupling of a Fe/Si/Fe trilayer shows an analogous feature to that of Fe/Si superlattices. With an increase in Si layer thickness, it oscillates as ferromagnetic (first F), antiferromagnetic (AF), ferromagnetic (second F), and finally reaches a noncoupling (N) state. We have investigated interlayer coupling of Fe/Si/Fe trilayers inserting very thin (1 or 2 ML thick) boundary layers X (X=Ag, Ge, Fe-Si, Ta, etc.). They are expected to suppress interatomic diffusion between Fe and Si layers. Interlayer coupling of Fe/X/Si/X/Fe with negligible interdiffusion is simply F and changes to N as the Si layer thickness increases. Furthermore, Fe/Fe-Si/Fe trilayers which show coupling of first F, AF but not second F, reproduce second F when a Si layer is inserted in the Fe-Si spacer. These results imply that an amorphous Si spacer mediates ferromagnetic coupling between neighboring Fe layers while the first F and the strong AF coupling usually observed in Fe/Si superlattices are caused by diffused crystalline Fe-Si. (C) 1999 American Institute of Physics. [S0021-8979(99)45508-2]. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 NEEL L, 1962, CR HEBD ACAD SCI, V255, P1545 TOSCANO IS, 1992, J MAGN MAGN MATER, V114, PL6 TC 1 BP 5741 EP 5743 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2B GA 188NF J9 J APPL PHYS UT ISI:000079853500152 ER PT J AU Endo, Y Kikuchi, N Kitakami, O Shimada, Y TI Antiferromagnetic coupling in Co/Ge superlattices SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 16 AB We have investigated interlayer coupling of Co/Ge superlattices. The present experiments obviously show that the coupling changes from ferromagnetic (F) to antiferromagnetic (AF) and finally to non-coupling (N) with the increase of Ge layer thickness. This coupling behaviour, as a function of the spacer thickness, is very similar to that of Fe/Si superlattices, although the coupling strength is much smaller than the latter: namely, similar to 0.05 erg cm(-2) for Co/Ge and similar to 1.0 erg cm(-2) for Fe/Si. Precise structural characterization indicates that diffused spacers at Co/Ge interfaces are responsible for the AF coupling. The same coupling behaviour has also been observed in Co/non-magnetic Co-Ge superlattices, where interdiffusion at the interfaces is entirely suppressed. All these results clearly demonstrate that the interlayer coupling between neighbouring Co layers is mediated by non-magnetic Co-Ge spacers. CR BRINER B, 1995, PHYS REV B, V51, P7303 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1999, IN PRESS J APPL PHYS ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP L133 EP L137 PG 5 JI J. Phys.-Condes. Matter PY 1999 PD APR 19 VL 11 IS 15 GA 189PL J9 J PHYS-CONDENS MATTER UT ISI:000079913700001 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Interlayer coupling in Fe/Fe1-xSix superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 28 AB Interlayer coupling has been investigated for a series of Fe/Fe1-xSix (0.4 less than or equal to x less than or equal to 1.0) superlattices. The layer of Fe1-xSix in the lattices is ferromagnetic for x<0.5 and causes ferromagnetic coupling between Fe layers for all spacer thicknesses investigated here. As the Si content increases above x=0.5, the layer becomes nonmagnetic and simultaneously our current in the plane of the sample and current perpendicular to the sample plane measurements suggest that the spacer rapidly changes its conduction property from metallic to highly resistive. Variations of the interlayer magnetic coupling as a function of spacer layer thickness for the spacer compositions above x=0.5 are similar to each other; namely, with an increase of the spacer thickness the interlayer coupling is initially ferromagnetic, then antiferromagnetic, and finally becomes noncoupling. Moreover, the temperature dependence of the bilinear and biquadratic coupling constants, J(1)(T) and J(2)(T) which were obtained by numerical fitting, varies sensitively with x. Assuming that the conduction of the spacers ranges from metallic to insulating as x increases, all these coupling behaviors can be described qualitatively by the quantum interference model formalized by Bruno. Furthermore, we found that the coupling strength is enhanced dramatically with increase of x of Fe1-xSix. [S0163-1829(99)11405-X]. CR BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BRINER B, 1993, PHYS REV LETT, V73, P340 BRUNO P, 1994, J APPL PHYS, V76, P6972 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUBUNOVA EV, 1994, THIN SOLID FILMS, V247, P39 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEBROEDERFJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1987, J APPL PHYS, V61, P3750 HEINRICH B, 1988, PHYS REV B, V38, P12879 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KILPER R, 1995, APPL SURF SCI, V91, P93 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1996, PHYS REV B, V55, PR696 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WANG RW, 1994, PHYS REV LETT, V72, P920 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 7 BP 4279 EP 4286 PG 8 JI Phys. Rev. B-Condens Matter PY 1999 PD FEB 1 VL 59 IS 6 GA 168NP J9 PHYS REV B-CONDENSED MATTER UT ISI:000078699400048 ER PT J AU Tong, LN Pan, MH Wu, J Wu, XS Du, J Lu, M Feng, D Zhai, HR Xia, H TI Magnetic and transport properties of sputtered Fe/Si multilayers SO EUROPEAN PHYSICAL JOURNAL B NR 26 AB The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si; ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either t(Si) greater than or equal to 3 nm for the series [Fe(3 nm)/Si(t(Si))](30) or t(Fe) < 2 nm for the series [Fe(t(Fe))/Si(1.9 nm)](30) multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when alpha-Si layers appear in the spacers. The dependences of MR on t(Si) and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The t(Fe) dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field H-s increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHILDRESS JR, 1992, PHYS REV B, V45, P2855 CHOPRA KL, 1969, THIN FILM PHENOMENA, P345 CLLITY DB, 1978, ELEMENTS XRAY DIFFRA COLINO JM, 1996, PHYS REV B, V54, P13030 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DIENY B, 1992, J PHYS-CONDENS MAT, V4, P8009 DIENY B, 1992, PHYS REV B, V45, P806 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEAUWEN RV, 1990, J APPL PHYS, V67, P4910 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MCGUIRE TR, 1975, IEEE T MAGN, V11, P1018 PARKIN SSP, MAG 90 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 61 EP 66 PG 6 JI Eur. Phys. J. B PY 1998 PD SEP VL 5 IS 1 GA 131HP J9 EUR PHYS J B UT ISI:000076570400009 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Temperature dependence of interlayer coupling in Fe/Si superlattices SO IEEE TRANSACTIONS ON MAGNETICS NR 12 AB We have explored the temperature dependence of the interlayer coupling in Fe/Fe1-xSix superlattices (0.5 less than or equal to x less than or equal to 1). It is found that the Si content of the Fe1-xSix, spacer greatly affects the temperature dependence of the bilinear and biquadratic coupling constants. Neither the "thickness fluctuation" model nor the "loose" spin model proposed by Slonczewski give satisfactory explanations to the temperature-dependent interlayer coupling. Instead, the present experimental results for all spacer compositions can be reproduced very well by the quantum interference model. We discuss the experimental results based on the above interlayer coupling models. CR BRUNO P, 1994, J APPL PHYS, V76, P6972 CHAIKEN A, 1996, PHYS REV B, V53, P5518 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 4 BP 906 EP 908 PG 3 JI IEEE Trans. Magn. PY 1998 PD JUL VL 34 IS 4 PN 1 GA 101CP J9 IEEE TRANS MAGN UT ISI:000074852300028 ER PT J AU Moons, R Degroote, S Dekoster, J Vantomme, A Langouche, G TI Structural characterization of metastable FeSi films and of Fe/FeSi multilayers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 12 AB The structural properties of molecular beam epitaxy (MBE)-grown metastable CsCl-type FeSi (i.e. an iron silicide with the CsCl lattice structure) on Si (1 1 1) and of Fe/FeSi multilayers grown with MBE on MgO (0 0 1) are reported. Rutherford backscattering and channeling spectrometry (RBS-C) combined with X-ray diffraction are used to determine the structure, epitaxy and crystalline quality of the layers. Single metastable CsCl-FeSi layers could be stabilized epitaxially up to a thickness of 62 nm and are found to be twinned with respect to the Si (1 1 1) substrate, Moreover, an extensive study on antiferromagnetically (AF) coupled (Fe/FeSi)(15)/MgO multilayers indicates that the Fe layers are slightly expansively strained while the FeSi spacers are fully relaxed. Further, we could grove that the FeSi spacers in the multilayers have a cubic CsCl lattice structure with a lattice parameter of 0.28 nm. (C) 1998 Elsevier Science B.V. CR APPLETON BR, 1977, ION BEAM HDB MAT ANA BARRETT JH, 1971, PHYS REV B, V3, P1527 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1997, J APPL PHYS, V81, P5349 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1995, MATER RES SOC SYMP P, V384, P183 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FULLERTON EE, 1993, PHYS REV B, V48, P17555 KOHLHEPP J, 1997, PHYS REV B, V55, P696 MICHEL RP, 1995, MATER RES SOC S P, V384, P197 MOONS R, 1998, NUCL INSTRUM METH B, V134, P181 TC 0 BP 268 EP 272 PG 5 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1998 PD MAR VL 138 GA ZW154 J9 NUCL INSTRUM METH PHYS RES B UT ISI:000074380400046 ER PT J AU Demokritov, SO TI Biquadratic interlayer coupling in layered magnetic systems SO JOURNAL OF PHYSICS D-APPLIED PHYSICS NR 75 AB An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90 degrees orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BINASCH G, 1989, PHYS REV B, V39, P4828 BURGLER DE, 1997, PHYS REV B, V56, P4149 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 COCHRAN JF, 1994, ULTRATHIN MAGNETIC S, V2, P222 COWACHE C, 1996, PHYS REV B, V53, P15027 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, IN PRESS DEMOKRITOV SO, 1993, J MAGN MAGN MATER, V126, P291 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1995, J MAGN MAGN MATER, V148, P187 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 ELMERS HJ, 1995, PHYS REV B, V52, P696 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FILIPKOWSKI ME, 1994, J APPL PHYS, V76, P7090 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FUCHS P, 1997, PHYS REV B, V55, P12546 FUJIWARA H, 1995, IEEE T MAGN, V31, P4112 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1991, J APPL PHYS, V69, P4789 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 HEINRICH B, 1994, J APPL PHYS, V75, P6187 HEINRICH B, 1993, MAGNETIC ULTRATHIN F, P119 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1991, PHYS REV B, V44, P9348 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, P195 HICKEN RJ, 1996, THIN SOLID FILMS, V275, P199 HILLEBRANDS B, 1994, ULTRATHIN MAGNETIC S, V2, P258 HUBERT A, 1998, MAGNETIC DOMAINS INOUE J, 1994, J MAGN MAGN MATER, V136, P233 KOBLER U, 1992, J MAGN MAGN MATER, V103, P269 KREBS JJ, 1996, J APPL PHYS, V79, P4525 KUME M, 1996, J APPL PHYS, V79, P6402 LEAL JL, 1996, J APPL PHYS, V79, P2801 MACCIO M, 1994, PHYS REV B, V49, P3283 MCCORD J, 1993, IEEE T MAGN, V29, P2735 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 NEEL L, 1962, CR HEBD ACAD SCI, V255, P1545 PETTIT K, 1997, PHYS REV B, V56, P7819 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 POULOPOULOS P, 1997, J MAGN MAGN MATER, V170, P57 RIBAS R, 1992, PHYS LETT A, V167, P103 RODMACQ B, 1993, PHYS REV B, V48, P5077 RUCKER U, 1995, J APPL PHYS, V78, P387 RUCKER U, 1996, J MAGN MAGN MATER, V156, P269 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAUER C, 1991, MAGNETIC SURFACES TH, P153 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHWABENHAUSEN J, 1997, PHYS REV B, V55, P15119 SHENDER EF, 1996, PHYS REV LETT, V76, P2583 SLONCZEWSKI JC, 1994, J APPL PHYS, V75, P6474 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SPISAK D, 1997, J MAGN MAGN MATER, V168, P257 TANUMA T, 1995, IEEE T MAGN, V31, P3955 TANUMA T, 1996, SANYO TECHN REV, V28, P90 THEISBROHL K, 1995, MAGNETIC ULTRATHIN F, P165 UNGURIS J, 1991, PHYS REV LETT, V67, P140 YOUNG S, 1996, J MAGN MAGN MATER, V162, P38 ZHANG Z, 1994, PHYS REV LETT, V73, P336 ZOLL S, 1996, J MAGN MAGN MATER, V156, P231 TC 8 BP 925 EP 941 PG 17 JI J. Phys. D-Appl. Phys. PY 1998 PD APR 21 VL 31 IS 8 GA ZM480 J9 J PHYS-D-APPL PHYS UT ISI:000073544400003 ER PT J AU Saito, Y Inomata, K TI Biquadratic coupling contributions to the magnetoresistive curves in Fe/FeSi/Fe sandwiches with semiconductor like FeSi and metallic bcc FeSi spacers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 17 AB Magnetoresistance was investigated in Fe/FeSi/Fe sandwiches with metallic bcc-and semiconductor like FeSi spacers prepared by an ultrahigh-vacuum magnetron sputtering system, enhanced with inductively coupled RF plasma. In the easy axis direction, MR curves at 298 K have a dip around the zero magnetic field for both Fe/FeSi/Fe sandwiches with semiconductor like FeSi and hcc metallic FeSi spacers. On the other hand, MR curves at 10 K exhibit a dip and no anomaly around the zero magnetic field for the Fe/bcc metallic FeSi/Fe and Fe/semiconductor like FeSi/Fe sandwiches, respectively. when the contribution of biquadratic coupling to interlayer exchange coupling is considered, these MR behaviors are well explained. These results support the interlayer exchange coupling model attributed to the biquadratic exchange coupling which outweighs the colinear term at a low temperature in Fe/FeSi multilayers. CR BRUNO P, 1994, PHYS REV B, V49, P13231 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 METOKI N, 1993, J MAGN MAGN MATER, V121, P137 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAITO Y, UNPUB PHYS REV B SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 1 BP 1138 EP 1141 PG 4 JI J. Phys. Soc. Jpn. PY 1998 PD APR VL 67 IS 4 GA ZK389 J9 J PHYS SOC JPN UT ISI:000073315800019 ER PT J AU Walser, P Schleberger, M Fuchs, P Landolt, M TI Heat induced antiferromagnetic coupling in multilayers with Ge spacers SO PHYSICAL REVIEW LETTERS NR 16 AB We report on heat induced antiferromagnetic exchange coupling in a new system: ferromagnetic Fe films separated by a spacer of amorphous Ge. Antiferromagnetic coupling occurs at spacer thicknesses between 20 and 25 Angstrom. It exhibits a striking temperature dependence which has a positive temperature coefficient and is fully reversible in the temperature range between 40 and 230 K. Our findings about the importance of the interfaces support the interpretation that resonant tunneling through localized states in the gap of the spacer mediate the magnetic exchange. CR BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BERNASCONI J, 1969, PHYS KONDENS MATER, V10, P224 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BUSCH G, 1967, HELV PHYS ACTA, V40, P812 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1996, THESIS EINDHOVEN U T FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 11 BP 2217 EP 2220 PG 4 JI Phys. Rev. Lett. PY 1998 PD MAR 9 VL 80 IS 10 GA ZA636 J9 PHYS REV LETT UT ISI:000072385400048 ER PT J AU Zhang, XD Li, BZ Zhang, WS Pu, FC TI Magnetoresistance and exchange coupling in a ferromagnetic tunnel junction with ferromagnetic layers of finite thickness SO PHYSICAL REVIEW B-CONDENSED MATTER NR 33 AB Based on a two-band model, we investigate the tunnel magnetoresistance (TMR) and interlayer exchange coupling (IEC) in a ferromagnet/insulator (semiconductor)/ferromagnet [FM/I(S)/FM] tunnel junction covered on both sides by nonmagnetic metal layers. Our results show that (1) the TMR oscillates with the thickness of ferromagnetic layers and can reach very large values under suitable conditions, which may in general not be reached in a FM/I(S)/FM tunnel junction with an infinitely thick ferromagnetic layer. This suggests an alternative way to obtain large TMR; (2) the bilinear coupling (J(1)) and biquadratic coupling (J(2)) decrease exponentially with the increase of barrier thickness, whereas they oscillate with the thickness of the FM layer, and J(2)/J(1) can reach considerably large values under some conditions; (3) the oscillations of the IEC and the TMR with the FM layer thickness are correlated owing to the quantum-size effect namely, the oscillation period and phase of the TMR are exactly the same as that of the IEC, Furthermore, the quantum-size effect can also give rise to a positive TMR (inverse spin-valve effect). CR BARNAS J, 1996, PHYS REV B, V53, PR2956 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DUKE CB, 1969, TUNNELING PHENOMENA DUKE CB, 1969, TUNNELING SOLIDS EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FOILES CL, 1994, PHYS REV B, V50 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 HATHAWAY KB, 1992, J MAGN MAGN MATER, V104, P1840 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S HEINRICH B, 1993, ADV PHYS, V42, P523 HONDA S, 1997, J MAGN MAGN MATER, V165, P153 JULLIERE M, 1975, PHYS LETT A, V54, P225 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 LEDAIR P, 1994, J APPL PHYS, V76, P6546 MAEKAWA S, 1982, IEEE T MAGN, V18, P707 MIYAZAKI T, 1991, J MAGN MAGN MATER, V98, PL7 MOODERA JS, 1996, J APPL PHYS, V79, P4724 MOODERA JS, 1995, PHYS REV LETT, V74, P3273 NOWAK J, 1992, J MAGN MAGN MATER, V109, P79 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STEARNS MB, 1977, J MAGN MAGN MATER, V5, P167 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL9 WOLF EL, 1985, PRINCIPLES TUNNELING XIAO MW, 1996, PHYS REV B, V54, P3322 TC 4 BP 1090 EP 1096 PG 7 JI Phys. Rev. B-Condens Matter PY 1998 PD JAN 1 VL 57 IS 2 GA YR357 J9 PHYS REV B-CONDENSED MATTER UT ISI:000071487300064 ER PT J AU Xia, K Zhang, WY Lu, M Zhai, HG TI Noncollinear interlayer coupling across a semiconductor spacer SO PHYSICAL REVIEW B-CONDENSED MATTER NR 18 AB Based on the extended s-d exchange model. which includes both isotropic and anisotropic spin interactions between conduction electrons and local states, we have derived analytically the interlayer coupling across a semiconductor spacer with a general band structure. Both Heisenberg-type and Dzyaloshinski- Moriya (DM) - type Ruderman-Kittel-Kasuya-Yosida-like interlayer coupling are obtained as a result of spin-orbit interaction. The interlayer coupling decreases exponentially with spacer thickness and the oscillation period depends on the band structure and orientation of spacers. Our result is different from previous theory; in particular, the DM-type interlayer exchange coupling offers a natural explanation to the noncollinear alignment of neighboring ferromagnetic layers as were observed in recent experiments on magnetic- semiconductor multilayer structures. CR ABRIKOSOV AA, 1980, J LOW TEMP PHYS, V39, P217 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 SHEKHTMAN L, 1992, PHYS REV B, V47, P174 SHEKHTMAN L, 1992, PHYS REV LETT, V69, P836 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIA K, 1997, PHYS REV B, V55, P12561 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 1 BP 14901 EP 14904 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD DEC 15 VL 56 IS 23 GA YM239 J9 PHYS REV B-CONDENSED MATTER UT ISI:000071043700009 ER PT J AU Hinarejos, JJ Castro, GR Segovia, P Alvarez, J Michel, EG Miranda, R RodriguezMarco, A SanchezPortal, D Artacho, E Yndurain, F Yang, SH Ordejon, P Adams, JB TI Surface electronic structure of metastable FeSi(CsCl)(111) epitaxially grown on Si(111) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 30 AB We report an investigation on the electronic structure of metastable, epitaxial FeSi films grown on Si(111). The electronic structure of the metastable silicides was probed with angle-resolved photoemission, and com-pared with theoretical calculations. We identify the silicide as FeSi crystallizing in the CsCl structure. Its surface is Fe terminated, and presents a prominent, strongly dispersing surface state at a binding energy of -3.5 eV in <(Gamma)over bar>. Its origin lies in the truncation of Fe bonds at the surface, and thus it has a major Fe d(z)2 content. CR ALVAREZ J, 1992, PHYS REV B, V45, P14042 ALVAREZ J, 1993, SURF SCI, V287, P490 ARTACHO E, 1991, PHYS REV B, V44, P6169 BOST MC, 1985, J APPL PHYS, V58, P2696 BUSSE H, 1985, SURF SCI, V331, P885 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566 DEPARGA ALV, 1992, EUROPHYS LETT, V18, P595 DERRIEN J, 1992, APPL SURF SCI, V56-8, P382 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GALLEGO JM, 1991, J APPL PHYS, V69, P1377 HAMERS RJ, 1986, PHYS REV LETT, V56, P1972 HINAREJOS JJ, UNPUB JANSEN RW, 1987, PHYS REV B, V36, P6520 KEVAN SD, 1991, PHYS REV B, V31, P1788 KEVAN SSD, 1991, PHYS REV B, V31, P3348 KOHN W, 1965, PHYS REV A, V140, P1133 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI LOUIE SG, 1980, PHYS REV LETT, V44, P549 MAER KA, 1993, PHYS REV B, V48, P4364 MALTEZ RL, 1996, PHYS REV B, V54, P11659 ONDA N, 1993, APPL SURF SCI, V73, P124 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PERDEW JP, 1981, PHYS REV B, V23, P5048 PIRRI C, 1988, PHYS REV B, V38, P1512 RODRIGUEZMARCO A, UNPUB SANCHEZPORTAL D, 1996, J PHYS-CONDENS MAT, V8, P3859 SANCHEZPORTAL D, 1995, SOLID STATE COMMUN, V95, P685 SANKEY OF, 1989, PHYS REV B, V40, P3979 VONKANEL H, 1992, PHYS REV B, V45, P13807 YANG S, UNPUB TC 2 BP 16065 EP 16068 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD JUN 15 VL 55 IS 24 GA XJ271 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XJ27100023 ER PT J AU Fredrikze, H vanderGraaf, A Valkier, M Kohlhepp, J denBroeder, FJA TI (Anti-)ferromagnetic coupling in Fe/Si multilayers from polarized neutron reflectometry SO PHYSICA B NR 6 AB Polarized neutron reflectometry data on Fe/Si multilayers are interpreted using strongly depth-dependent magnetization in the Fe layers. This behaviour is ascribed to a depth-dependent mixture of ferromagnetic and anti-ferromagnetic coupled regions in the sample. CR DEHAAN VO, 1995, NUCL INSTRUM METH A, V362, P434 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FULLERTON EE, 1996, PHYS REV B, V53, P5112 KOHLHEPP J, 1996, IN PRESS J MAGN MAGN LEKNER J, 1987, THEORY REFLECTION EL PENFOLD J, 1990, J PHYS-CONDENS MAT, V2, P1369 TC 1 BP 498 EP 499 PG 2 JI Physica B PY 1997 PD JUN VL 234 GA XG666 J9 PHYSICA B UT ISI:A1997XG66600186 ER PT J AU Dekoster, J Bemelmans, H Degroote, S Moons, R Verheyden, J Vantomme, A Langouche, G TI Epitaxial growth of and silicide formation in Fe/FeSi multilayers SO JOURNAL OF APPLIED PHYSICS NR 15 AB The structural properties of multilayers consisting of Fe layers separated by Si or FeSi layers grown with molecular beam epitaxy on MgO(001) and Si(lll) are reported. Rutherford backscattering and ion channeling are used to determine the crystallinity of the layers. We find evidence for epitaxy, alloying effects, and structural coherence. Conversion electron Mossbauer spectroscopy is utilized to investigate the silicide formation in the spacer layer of Fe/FeSi multilayers and at the interface of Fe/Si layers. The silicide formed in Fe/FeSi multilayers is characterized by a broad single line Mossbauer resonance which is characteristic for the metastable CsCl-FeSi phase. For Fe/Si multilayers the Mossbauer results indicate that FeSi compounds with clearly other hyperfine parameters than the CsCl phase are formed in the spacer. (C) 1997 American Institute of Physics. CR BOST MC, 1985, J APPL PHYS, V58, P2696 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHU WK, 1978, BACKSCATTERING SPECT, P257 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DESIMONI J, 1993, APPL PHYS LETT, V62, P306 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JACCARINO V, 1967, PHYS REV, V160, P476 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MULLER E, 1994, APPL PHYS LETT, V64, P1938 PHASE DM, 1987, NUCL INSTRUM METH B, V19-2, P737 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 4 BP 5349 EP 5351 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2B GA WV537 J9 J APPL PHYS UT ISI:A1997WV53700242 ER PT J AU vanderGraaf, A Valkier, M Kohlhepp, J denBroeder, FJA TI Interlayer coupling in Fe/Si multilayers studied by polarized neutron reflectometry SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 6 AB Results of a room temperature polarized neutron reflectometry (PNR) study of the depth-dependent magnetization in (A)FM- coupled Fe/Si multilayers (MLs) are presented. Simultaneous interpretation of PNR data measured at increasing field values, keeping the nuclear structure of the MLs equal, shows strongly depth-dependent magnetization profiles. At low fields the Fe layers at the substrate side turn out to be predominantly ferromagnetically (FM) coupled, while an antiferromagnetic (AFM) alignment of adjacent Fe layers is observed towards the top of the MLs. When the field is increased the region of FM (AFM) alignment grows (diminishes) by rotation of the magnetization in the individual Fe layers. The overall AFM alignment is more perfect for MLs with 1.4 nm thick Si layers than for 1.1 nm thick Si layers. These observations are in excellent agreement with magneto-optical Kerr effect and vibrating sample magnetometry (VSM) investigations [1] and can be explained by growth-induced pinholes, formed predominantly in the beginning of the sputtering process. CR FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FULLERTON EE, 1996, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 LEKNER J, 1987, THEORY REFLECTION PENFOLD J, 1990, J PHYS-CONDENS MAT, V2, P1369 VANWELL AA, 1994, PHYSICA B, V198, P217 TC 5 BP 157 EP 160 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200036 ER PT J AU Kohlhepp, J denBroeder, FJA Valkier, M vanderGraaf, A TI Apparent strong biquadratic contributions to the interlayer exchange coupling in Fe/Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 13 AB We have studied the interlayer exchange coupling in sputtered Fe/Si multilayers both by integrating and by depth-sensitive magnetic methods. We find that the degrees of antiferromagnetic alignment of adjacent ferromagnetic layers and their rotation process in an applied magnetic field depend on the position in the multilayer stack. The observed vertical and lateral variations of the coupling properties are able to mimic an apparent strong biquadratic coupling. CR BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 10 BP 431 EP 434 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200110 ER PT J AU deVries, JJ Kohlhepp, J denBroeder, FJA Verhaegh, PA Jungblut, R Reinders, A deJonge, WJM TI Structural and magnetic analysis of MBE-grown Fe/Si/Fe and Fe/Ge/Fe sandwiches SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 19 AB The structure and the interlayer exchange coupling in MBE-grown nominal Fe/Ge1-xFex/Fe (x = 0.0, 0.25, 0.33, 0.5) and Fe/Si/Fe sandwiches with wedge-shaped spacer layers were investigated. In the case of Fe/Si a sample with a wedge-shaped magnetic layer was also studied. From a structural analysis with LEED and from a magnetic analysis with the magneto-optical Kerr effect, it is concluded that the Si spacer transforms into an SiFe alloy with the deposition of Fe. A strong antiferromagnetic coupling is found in the case of Fe/Si, but no antiferromagnetic coupling is found for Fe/Ge1-xFex It appears that the coupling behavior in Fe/Si(SiFe)/Fe sandwiches as a function of spacer thickness is monotonous rather than oscillatory. CR 1996, LANDOLTBORNSTEIN SOL, V3, P41 ANDERSON GW, 1995, APPL PHYS LETT, V66, P1123 ANDERSON GW, 1995, PHYS REV LETT, V74, P2764 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS SWISS FEDERAL BRINER B, 1993, Z PHYS B, V92, P1 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1994, J APPL PHYS, V75, P6169 MATTSON JE, 1993, PHYS REV LETT, V71, P185 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 4 BP 435 EP 438 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200111 ER PT J AU Kohlhepp, J Valkier, M vanderGraaf, A denBroeder, FJA TI Mimicking of a strong biquadratic interlayer exchange coupling in Fe/Si multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 29 AB The antiferromagnetic interlayer exchange coupling properties of sputtered Fe/Si multilayers have been studied by magnetometry and spin-polarized neutron reflectometry. Both the degree of antiferromagnetic alignment of adjacent ferromagnetic layers at zero field and the strength of the coupling are found to depend on the position in the multilayer stack. It is shown that these interlayer coupling variations are able to imitate an apparent strong biquadratic coupling. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, IN PRESS J MAGN MAGN KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEKNER J, 1987, THEORY REFLECTION MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANDERGRAAF A, IN PRESS J MAGN MAGN VANWELL AA, 1994, PHYSICA B, V198, P217 VONKANEL H, 1992, PHYS REV B, V45, P13877 TC 9 BP R696 EP R699 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD JAN 1 VL 55 IS 2 GA WD789 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WD78900013 ER