FN ISI Export Format VR 1.0 PT J AU Ohno, H TI Ferromagnetic III-V heterostructures SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B NR 35 AB Properties of the ferromagnetic III-V semiconductor (Ga,Mn)As and heterostructures based on it are reviewed. A model based on hole-mediated ferromagnetic interaction is shown to successfully describe the ferromagnetic transition temperature of (Ga,Mn)As. Spontaneous splitting of resonant tunneling spectra was compared with theory and shown to result from the spin splitting of the valence band. The first demonstration of spin-dependent scattering in magnetic semiconductor trilayers as well as electrical spin injection is also reviewed. (C) 2000 American Vacuum Society. [S0734-211X(00)06004-2]. CR ABE E, IN PRESS PHYSICA E AKIBA N, 1998, APPL PHYS LETT, V73, P2122 AKIBA N, 2000, J APPL PHYS, V87, P6436 AKIBA N, 1998, PHYSICA B, V256, P561 AKIBA N, UNPUB AKINAGA H, 1997, J APPL PHYS, V81, P5345 ANDO K, COMMUNICATION ANDO K, 1998, J APPL PHYS, V83, P6548 BESCHOTEN B, 1999, PHYS REV LETT, V83, P3073 BRINER B, 1994, PHYS REV LETT, V73, P340 CHAO CYP, 1991, PHYS REV B, V43, P7027 DIETL T, 1997, PHYS REV B, V55, PR3347 DIETL T, 2000, SCIENCE, V287, P1019 FURDYNA JK, 1988, SEMICONDUCTOR SEMIME, V25 HIENRICH B, 1994, ULTRATHIN MAGNETIC S, V2, PCH2 JUNGWIRTH T, 1999, PHYS REV B, V59, P9818 KUROIWA T, 1998, ELECTRON LETT, V34, P190 MATSUKURA F, 1998, PHYS REV B, V57, PR2037 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MUNEKATA H, 1989, PHYS REV LETT, V63, P1849 OHNO H, 1998, APPL PHYS LETT, V73, P363 OHNO H, 1996, APPL PHYS LETT, V69, P363 OHNO H, 1999, J APPL PHYS, V85, P4277 OHNO H, 1999, J MAGN MAGN MATER, V200, P110 OHNO H, 1996, P 23 INT C PHYS SEM, P405 OHNO H, 1992, PHYS REV LETT, V68, P2664 OHNO H, 1998, SCIENCE, V281, P951 OHNO Y, 1999, NATURE, V402, P790 OKABAYASHI J, 1998, PHYS REV B, V58, PR4211 OMIYA T, 2000, PHYSICA E, V7, P976 SATOH Y, 1997, P 3 S PHYS APPL SPIN, P23 SHIODA R, 1998, PHYS REV B, V58, P1100 SZCZYTKO J, 1999, PHYS REV B, V59, P12935 TANAKA M, COMMUNICATION YAMAURA M, 1999, MAT RES SOC 1999 SPR TC 0 BP 2039 EP 2043 PG 5 JI J. Vac. Sci. Technol. B PY 2000 PD JUL-AUG VL 18 IS 4 GA 345UW J9 J VAC SCI TECHNOL B UT ISI:000088834400043 ER PT J AU Akiba, N Chiba, D Nakata, K Matsukura, F Ohno, Y Ohno, H TI Spin-dependent scattering in semiconducting ferromagnetic (Ga,Mn)As trilayer structures SO JOURNAL OF APPLIED PHYSICS NR 12 AB The spin-dependent scattering in ferromagnet/nonmagnet/ferromagnet (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As trilayer structures was studied. An increase of sheet resistance was observed when the magnetizations of the two ferromagnetic (Ga,Mn)As layers were aligned anti-parallel, which was realized by the different coercivity of the two (Ga,Mn)As layers with different compositions. This is the first demonstration of spin-dependent scattering in magnetic multilayer structures made of semiconductor-materials alone. (C) 2000 American Institute of Physics. [S0021-8979(00)81508- X]. CR AKIBA N, 1998, APPL PHYS LETT, V73, P2122 AKINAGA H, 1997, J APPL PHYS, V81, P5345 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2, PCH2 BRINER B, 1994, PHYS REV LETT, V73, P340 JULLIERE M, 1975, PHYS LETT A, V54, P225 MATSUKURA F, 1998, PHYS REV B, V57, PR2037 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIYAZAKI T, 1995, J MAGN MAGN MATER, V139, P231 OHNO H, 1998, APPL PHYS LETT, V73, P363 OHNO H, 1996, APPL PHYS LETT, V69, P363 OHNO H, 1996, P 23 INT C PHYS SEM, P405 SHEN A, 1997, JPN J APPL PHYS PT 2, V36, PL73 TC 1 BP 6436 EP 6438 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800178 ER PT J AU Takahashi, K Tanaka, M TI Magnetotransport properties of MnAs/GaAs/MnAs ferromagnet/semiconductor trilayer heterostructures SO JOURNAL OF APPLIED PHYSICS NR 15 AB We have succeeded in growing MnAs/GaAs/MnAs ferromagnet/semiconductor trilayer heterostructures on GaAs(111)B substrates by molecular-beam epitaxy. Double-step features were observed in magnetization characteristics due to the difference in coercive force between the top and bottom MnAs layers. Magnetoresistance (MR) curves in current-in-plane geometry showed the spin-valve effect, which was caused by the change of the magnetic alignment of the two ferromagnetic MnAs layers from parallel to antiparallel orientation. Temperature dependence of the MR was also investigated. We infer that the positive temperature coefficient of the MR by the spin-valve effect suggests the heat (carrier) induced interlayer exchange coupling. (C) 2000 American Institute of Physics. [S0021- 8979(00)88308-5]. CR AKEURA K, 1995, APPL PHYS LETT, V67, P3349 AKEURA K, 1996, J APPL PHYS, V79, P4957 AKINAGA H, 1997, J APPL PHYS, V81, P5345 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1994, PHYS REV B, V49, P13231 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO K, 1997, 16 EL MAT S MON JUL, P53 TAKAHASHI K, 1999, 18 EL MAT S SHIR JUL, P17 TANAKA M, 1999, APPL PHYS LETT, V74, P64 TANAKA M, 1994, APPL PHYS LETT, V65, P1964 TANAKA M, 1993, APPL PHYS LETT, V63, P696 TANAKA M, 1995, J CRYST GROWTH, V150, P1132 VANROY W, 1997, APPL PHYS LETT, V71, P971 VANROY W, 1996, APPL PHYS LETT, V69, P711 TC 0 BP 6695 EP 6697 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800261 ER PT J AU Chen, X Wang, YJ Liang, BQ Tang, YJ Zhao, HW Xiao, JQ TI Perpendicular anisotropy in the amorphous TbCo/Si multilayers SO JOURNAL OF APPLIED PHYSICS NR 16 AB The TbCo/Si multilayers prepared by the rf magnetron sputtering system with various Si thickness have been investigated. X-ray diffraction, magnetic measurement and Kerr rotation have been performed. No antiferromagnetic coupling was found for the system. With the thickness of Si layer t(Si) increasing, the perpendicular anisotropy constant K-u, and the saturation magnetization M-s decreased rapidly. It was assumed that Co2Si and Tb had been formed in the interfacial zone between TbCo and Si layers due to the interlayer diffusion. The decreasing of M- s is attributed to the decreasing of the effective thickness of magnetic layer. (C) 2000 American Institute of Physics. [S0021- 8979(00)89008-8]. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CARGILL GS, 1978, J APPL PHYS, V49, P1753 FU H, 1991, PHYS REV LETT, V66, P1086 GAMBINO RJ, 1978, J VAC SCI TECHNOL, V15, P296 HARRIS VG, 1992, PHYS REV LETT, V69, P1939 LIU YH, 1991, J PHYS-CONDENS MAT, V3, P3571 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEIKLEJOHN WH, 1987, IEEE T MAGN, V23, P2272 MIZOGUCHI T, 1979, J APPL PHYS, V50, P3570 RUTERANA P, 1990, J APPL PHYS, V68, P1033 SHI ZP, 1996, J APPL PHYS, V79, P4776 SUZUKI Y, 1987, IEEE T MAGN, V23, P2275 TWAROWSKI K, 1981, PHYS STATUS SOLIDI A, V63, P103 WALSER P, 1998, PHYS REV LETT, V80, P2217 WANG YJ, 1990, PHYS REV B, V41, P651 YAN X, 1991, PHYS REV B, V43, P9300 TC 0 BP 6845 EP 6847 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800311 ER PT J AU Akinaga, H Mizuguchi, M Ono, K Oshima, M TI Room-temperature photoinduced magnetoresistance effect in GaAs including MnSb nanomagnets SO APPLIED PHYSICS LETTERS NR 18 AB We show a photoinduced positive magnetoresistance (MR) effect (about 20%) under a low magnetic field (less than 0.1 T) at room temperature. The photoinduced MR effect has been observed in GaAs including nanoscale MnSb islands, when photons with the energy above the band gap of GaAs irradiated the sample. The photoinduced phenomena are due to an enhancement of tunneling probability between MnSb islands by photogenerated carriers in the GaAs matrix. (C) 2000 American Institute of Physics. [S0003-6951(00)02718-2]. CR ADACHI K, 1988, LANDOLTBORNSTEIN A, V27, P148 AKINAGA H, 2000, APPL PHYS LETT, V76, P357 AKINAGA H, 1998, APPL PHYS LETT, V72, P3368 AKINAGA H, 1997, APPL PHYS LETT, V70, P2472 ANDO K, 1998, APPL PHYS LETT, V73, P387 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745 BOECK JD, 1996, APPL PHYS LETT, V68, P2744 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1994, PHYS REV B, V49, P13231 KIRYUKHIN V, 1997, NATURE, V386, P813 KOSHIHARA S, 1997, PHYS REV LETT, V78, P4617 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIYANO K, 1997, PHYS REV LETT, V78, P4257 PEKAREK TM, 1997, J APPL PHYS, V81, P4869 SCHMIDT DR, 1999, PHYS REV LETT, V82, P823 SHI J, 1995, NATURE, V377, P707 WELLMANN PJ, 1998, APPL PHYS LETT, V73, P3291 XIAO JQ, 1992, PHYS REV LETT, V68, P3749 TC 0 BP 2600 EP 2602 PG 3 JI Appl. Phys. Lett. PY 2000 PD MAY 1 VL 76 IS 18 GA 307PY J9 APPL PHYS LETT UT ISI:000086662900039 ER PT J AU Chumakov, AI Niesen, L Nagy, DL Alp, EE TI Nuclear resonant scattering of synchrotron radiation by multilayer structures SO HYPERFINE INTERACTIONS NR 51 AB Multilayer structures form a particular class of samples employed in nuclear resonant scattering of synchrotron radiation. Their specific properties lead to unusual energy and time characteristics of nuclear resonant scattering, which differ much from those of single crystals. The analysis of these distinctions is presented. Several approaches to achieve pure nuclear reflections with multilayers are discussed. Finally, we review the studies of multilayer structures with nuclear resonant scattering of synchrotron radiation. CR AFANASEV AM, 1965, JETP LETT, V2, P81 AFANASEV AM, 1990, PHYS STATUS SOLIDI A, V122, P459 AFANASEV AM, 1973, SOV PHYS JETP, V37, P987 AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BARON AQR, 1994, PHYS REV B, V50, P10354 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 CHUMAKOV AI, 1992, JETP LETT+, V55, P509 CHUMAKOV AI, 1991, JETP LETT+, V53, P271 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 CHUMAKOV AI, 1991, PISMA ESKP TEOR FIZ, V54, P220 DEAK L, 1993, CONDENSED MATTER STU, P269 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1999, J APPL PHYS, V85, P1 GUSEV MV, 1993, JETP LETT+, V58, P257 HANNON JP, 1985, PHYS REV B, V32, P6374 HJORVARSSONB, UNPUB HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 KABANIC VA, 1989, VERSION NUCL RESONAN KIESSIG H, 1931, ANNLN PHYS, V10, P769 KOHLHEPP J, 1997, PHYS REV B, V55, P696 KOHN VG, 1998, JETP LETT, V87, P1 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIRZABABAEV RM, 1971, PHYS LETT A, V37, P441 MORUP S, 1976, APPL PHYS, V11, P63 NAGY DL, 1997, BALKAN PHYS LETT, V5, P240 NAGY DL, 1997, CONDENSED MATTER STU, P17 NAGY DL, 1999, P MOSSB SPECTR MAT S, P323 NIESEN L, 1998, PHYS REV B, V58, P8590 NIESEN L, UNPUB PARRATT LG, 1954, PHYS REV, V45, P359 ROHLSBERGER R, 1994, 9406 DESY HASYLAB ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1993, J APPL PHYS, V74, P1933 ROHLSBERGER R, 1994, THESIS HAMBURG U ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHINJO T, 1991, SURF SCI REP, V21, P49 SHVYDKO YV, 1989, J PHYS-CONDENS MAT, V1, P10563 SMIRNOV GV, 1970, JETP LETT, V9, P70 SMIRNOV GV, 1980, THESIS KURCHATOV I A SMIRNOV GV, 1980, ZH EKSP TEOR FIZ+, V51, P603 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TRAMMELL GT, 1977, AIP C P, V38, P46 TRAMMELL GT, 1961, CHEM EFFECTS NUCLEAR, V1, P75 VANBURCK U, 1980, J PHYS C SOLID STATE, V13, P4511 VANBURCK U, 1990, J PHYS-CONDENS MAT, V2, P3989 VANBURCK U, 1987, PHYS REV LETT, V59, P355 VANDENBERGHE RE, 1989, MOSSBAUER SPECTROSCO, V3, P150 VANDERHEIJDEN PAA, 1996, J MAGN MAGN MATER, V159, PL293 VOOGT FC, 1998, PHYS REV B, V57, PR8107 TC 1 BP 427 EP 454 PG 28 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700013 ER PT J AU Chen, X Wang, YJ Liang, BQ Wang, J Li, J TI The magnetic and magneto-optic properties of the amorphous TbCo/Si multilayers SO ACTA PHYSICA SINICA NR 16 AB The Tb0.17Co0.83/Si multilayers prepared by a rf magnetron sputtering system with different Si thickness have been investigated. X-ray diffraction, magnetic measurement and Kerr rotation have been performed. With increasing thickness of Si layer t(Si), the perpendicular anisotropy constant K-u decreased rapidly. The saturation magnetization M-s and the Kerr rotation theta(K) decreased linearly when tsi increased. It was assumed that Co2Si and Tb had been formed in the interfacial zone between TbCo and Si layers. The reduction of K-u, M-s and theta(K) is attributed to the decrease of the effective thickness of magnetic layer, which is linear with t(Si). CR BRINER B, 1994, PHYS REV LETT, V73, P340 CARGILL GS, 1978, J APPL PHYS, V49, P1753 FU H, 1991, PHYS REV LETT, V66, P1086 GAMBINO RJ, 1978, J VAC SCI TECHNOL, V15, P296 HARRIS VG, 1992, PHYS REV LETT, V69, P1939 LIU YH, 1991, J PHYS-CONDENS MAT, V3, P3571 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIZOGUCHI T, 1979, J APPL PHYS, V50, P3570 RUTERANA P, 1990, J APPL PHYS, V63, P1033 SHI ZP, 1996, J APPL PHYS, V79, P4776 SUZUKI Y, 1987, IEEE T MAGN, V23, P2275 TWAROWSKI K, 1981, PHYS STATUS SOLIDI A, V63, P103 WALSER P, 1998, PHYS REV LETT, V80, P2217 WANG YJ, 1990, PHYS REV B, V41, P651 YAN X, 1991, PHYS REV B, V43, P9300 ZAK J, 1990, J MAGN MAGN MATER, V89, P107 TC 0 BP S224 EP S229 PG 6 JI Acta Phys. Sin. PY 1999 PD DEC VL 48 IS 12 SU S GA 279XN J9 ACTA PHYS SIN-CHINESE ED UT ISI:000085070500038 ER PT J AU Bruno, P TI Theory of interlayer exchange interactions in magnetic multilayers SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 122 AB This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations. CR BACK CH, 1997, J APPL PHYS, V81, P5054 BACK CH, 1995, PHYS REV B, V52, P13114 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BOUNOUH A, 1996, EUROPHYS LETT, V33, P315 BRINER B, 1994, PHYS REV LETT, V73, P340 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO P, 1999, CONDMAT9905022 BRUNO P, 1999, EUR PHYS J B, V11, P83 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1999, IN PRESS BRUNO P, 1997, J MAGN MAGN MATER, V165, P128 BRUNO P, 1996, J MAGN MAGN MATER, V164, P27 BRUNO P, 1995, J MAGN MAGN MATER, V148, P202 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1999, MAGNETISCHE SCHICHTS, PCHB8 BRUNO P, 1996, PHYS REV B, V53, P9214 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1996, PHYS REV LETT, V46, P4253 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CARL A, 1995, PHYS REV LETT, V74, P190 CRAMPIN S, 1996, PHYS REV B, V53, P13817 DEMIGUEL JJ, 1991, J MAGN MAGN MATER, V93, P1 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1995, PHYS REV LETT, V75, P1306 DEVRIES JJ, 1996, THESIS EINDHOVEN U T DRCHAL V, 1998, PHILOS MAG B, V78, P571 DRCHAL V, 1996, PHYS REV B, V53, P15036 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FURUKAWA T, 1996, PHYS REV B, V54, P17896 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 HIMPSEL FJ, 1995, J ELECTRON SPECTROSC, V75, P187 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 INOMATA K, 1995, PHYS REV LETT, V74, P1863 IVES AJR, 1994, J APPL PHYS, V75, P6458 JALOCHOWSKI M, 1992, PHYS REV B, V45, P13607 JOHNSON MT, 1993, MATER RES SOC S P, V313, P93 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1994, PHYS REV B, V50, P8954 JONES BA, 1998, IBM J RES DEV, V42, P25 KATAYAMA T, 1993, J MAGN MAGN MATER, V126, P527 KAWAKAMI RK, 1999, PHYS REV LETT, V82, P4098 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIRILYUK A, 1996, PHYS REV LETT, V77, P4608 KLASGES R, 1998, PHYS REV B, V57, PR696 KUDMOVSKY J, 1996, PHYS REV B, V54, P3738 KUDRNOVSKY J, 1998, COMP MATER SCI, V10, P188 KUDRNOVSKY J, 1997, MATER RES SOC SYMP P, V475, P575 KUDRNOVSKY J, 1997, PHYS REV B, V56, P8919 LANG P, 1996, PHYS REV B, V53, P9092 LEE B, 1996, PHYS REV B, V54, P13034 LEE BC, 1995, PHYS REV B, V52, P3499 LI DQ, 1995, PHYS REV B, V51, P7195 LI DQ, 1997, PHYS REV LETT, V78, P1154 LINDGREN SA, 1989, J PHYS-CONDENS MAT, V1, P2151 LINDGREN SA, 1988, PHYS REV B, V38, P3060 LINDGREN SA, 1988, PHYS REV LETT, V61, P2894 LINDGREN SA, 1987, PHYS REV LETT, V59, P3003 LOLY PD, 1983, J PHYS C SOLID STATE, V16, P423 LUCE TA, 1996, PHYS REV LETT, V77, P2810 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1997, PHYS REV B, V56, P11797 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEGY R, 1995, PHYS REV B, V51, P5586 MILLER T, 1988, PHYS REV LETT, V61, P1404 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MUELLER MA, 1990, PHYS REV B, V41, P5214 MUELLER MA, 1989, PHYS REV B, V40, P5845 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1993, PHYS REV LETT, V70, P1771 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, PHYS REV B, V44, P5355 RHYNE JJ, 1995, MAGNETIC MAT, V5, P1 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SEGOVIA P, 1996, PHYS REV LETT, V77, P3455 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMITH NV, 1994, PHYS REV B, V49, P332 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1999, J MAGN MAGN MATER, V200, P322 STILES MD, 1993, PHYS REV B, V48, P7238 SUZUKI Y, 1998, PHYS REV LETT, V80, P5200 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WACHS AL, 1986, PHYS REV B, V33, P1460 WEBER W, 1995, EUROPHYS LETT, V31, P491 WEBER W, 1996, PHYS REV LETT, V76, P3424 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 TC 0 BP 9403 EP 9419 PG 17 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100011 ER PT J AU Carlisle, JA Blankenship, SR Smith, RN Chaiken, A Michel, RP van Buuren, T Terminello, LJ Jia, JJ Callcott, TA Ederer, DL TI Electronic structure and crystalline coherence in Fe/Si multilayers SO JOURNAL OF CLUSTER SCIENCE NR 17 AB Soft x-ray fluorescence spectroscopy has been used to examine the electronic structure of deeply buried silicide thin films that arise in Fe/Si multilayers. These systems exhibit antiferromagnetic (AF) coupling of the Fe layers, despite their lack of a noble metal spacer layer found in most GMR materials. Also, the degree of coupling is very dependent on preparation conditions, especially spacer layer thickness and growth temperature. The valence band spectra are quite different for films with different spacerlayer thickness yet are very similar for films grown at different growth temperatures. The latter result is surprising since AF coupling is strongly dependent on growth temperature. Combining near-edge x-ray absorption with the fluorescence data demonstrates that the local bonding structure in the silicide spacer layer in epitaxial films which exhibit AF coupling are metallic. These results indicate the equal roles of crystalline coherence and electronic structure in determining the magnetic properties of these systems. CR CARLISLE JA, 1995, APPL PHYS LETT, V67, P34 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S JIA JJ, 1992, PHYS REV B, V46, P9446 JIA JJ, 1995, REV SCI INSTRUM, V66, P1394 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NILSSON PO, 1995, PHYS REV B, V52, PR8643 NORDGREN EJ, 1997, J PHYS IV, V7, P9 PERERA RCC, 1989, J APPL PHYS, V66, P3676 RUBENSSON JE, 1990, PHYS REV LETT, V64, P1047 STOHR J, 1992, NEXAFS SPECTROSCOPY VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 0 BP 591 EP 599 PG 9 JI J. Clust. Sci. PY 1999 PD DEC VL 10 IS 4 GA 256AE J9 J CLUST SCI UT ISI:000083701700011 ER PT J AU Ihara, N Narushima, S Kijima, T Abeta, H Saito, T Shinagawa, K Tsushima, T TI Magnetic properties and magnetoresistance of granular evaporated Fe/Si films SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 45 AB Fe (3.4 Angstrom) and Si (6 Angstrom) are evaporated alternately onto silica substrates to realize a granular structure. The substrate temperature T-s during the evaporation is changed from 100 K to 623 K to vary the film structures. The specimens of T-s greater than or equal to room temperature (RT) are superparamagnetic at RT, which suggests a granular structure. Magnetoresistance (MR) at RT is negative (resistivity decreases with increasing magnetic field H) for all specimens. It is thought that the negative MR is attributable to the granular structure. On the other hand, at 77 K a positive MR linear with H (not H-2) up to 50 kOe is observed for all specimens. The linear dependence on H of the positive MR may be due to the nonuniformity in the granular structure. The positive MR itself and the change of the sign of MR from negative to positive with decreasing temperature have not been observed in conventional granular systems such as Co- Ag and Co-Al-O. CR BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRODSKY MH, 1970, PHYS REV B, V1, P2632 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHANTRELL RW, 1978, IEEE T MAGN, V14, P975 CHIEN CL, 1993, J APPL PHYS, V73, P5309 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1998, IN PRESS J APPL PHYS ENDO Y, 1998, IN PRESS PHYS REV B ENDO Y, 1997, J MAGN SOC JPN, V21, P541 FUJIMORI H, 1995, MAT SCI ENG B-SOLID, V31, P219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRANQVIST CG, 1976, J APPL PHYS, V47, P2200 HIGHMORE RJ, 1995, J MAGN MAGN MATER, V151, P95 HUNT MB, 1994, PHYS REV B, V50, P14933 IHARA N, 1999, J MAGN SOC JPN, V23, P85 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KINBARA A, 1979, HAKUMAKU, P39 KITTEL C, 1963, QUANTUM THEORY SOLID, PCH12 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MASSALSKI B, 1990, BINARY ALLOY PHASE D, P1771 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MITANI S, 1997, J MAGN MAGN MATER, V165, P141 SAITO Y, 1998, J PHYS SOC JPN, V67, P1138 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, 1996, J APPL PHYS, V79, P4776 STROUD D, 1976, PHYS REV B, V13, P1434 TASSIS DH, 1998, J APPL PHYS, V84, P2960 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONHELMOLT R, 1994, PHYS STATUS SOLIDI B, V182, PK25 WALSER P, 1998, PHYS REV LETT, V80, P2217 XIA K, 1997, PHYS REV B, V56, P14901 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 0 BP 6272 EP 6281 PG 10 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 1999 PD NOV VL 38 IS 11 GA 261ZT J9 JPN J APPL PHYS PT 1 UT ISI:000084041800021 ER PT J AU Dekoster, J Degroote, S Meersschaut, J Moons, R Vantomme, A Bottyan, L Deak, L Szilagyi, E Nagy, DL Baron, AQR Langouche, G TI Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy SO HYPERFINE INTERACTIONS NR 23 AB Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Mossbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Mossbauer reflectometry. From the fits of the time spectrum and the resonant theta-2 theta scans a model for the sublayer magnetization of the multilayer is deduced. CR BOST MC, 1985, J APPL PHYS, V58, P2696 BOTTYAN L, UNPUB PHYS REV B BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1996, PHYS REV B, V53, P6158 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1996, PHYS REV LETT, V57, P2442 JACCARINO V, 1967, PHYS REV, V160, P476 LANG P, 1993, PHYS REV LETT, V71, P1927 MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUEFFER R, 1996, HYP INTERACT, V97, P589 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SPIERING H, IN PRESS NUCL RESONA TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 0 BP 39 EP 48 PG 10 JI Hyperfine Interact. PY 1999 VL 121 IS 1-8 GA 236UP J9 HYPERFINE INTERACTIONS UT ISI:000082617800006 ER PT J AU Tong, LN Pan, MH Wu, XS Lu, M Zhai, HR TI Transport properties of sputtered Fe Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 7 AB A relatively large GMR effect associated with antiferromagnetic (AFM) coupling in sputtered Fe/Si multilayers was observed and the dependence of transport properties on Si layer and Fe layer thickness and on the number of bilayers at room temperature and 77 K were studied. Our data suggests that the mechanism of AFM coupling and GMR effect in Fe/Si multilayers is the same as that in metal/metal systems. (C) 1999 Elsevier Science B.V. All rights reserved. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 TC 0 BP 101 EP 103 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600034 ER PT J AU Tanaka, M Saito, K Goto, M Nishinaga, T TI Epitaxial growth and properties of MnAs/GaAs/MnAs trilayer heterostructures SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 10 AB We have grown MnAs/GaAs/MnAs ferromagnet/semiconductor trilayer heterostructures on GaAs (1 1 1)B substrates by molecular-beam epitaxy. Cross-sectional transmission electron microscopy showed that the trilayers are formed as intended with fairly abrupt and smooth interfaces. The epitaxial orientations of MnAs and GaAs are (0 0 0 1) and (1 1 1), respectively. Double steps were observed in the magnetization characteristics due to the difference in coercive force between the two MnAs layers. The interlayer coupling was little when the thickness of the GaAs was 5-10 nm. (C) 1999 Elsevier Science B.V. All rights reserved. CR AKEURA K, 1995, APPL PHYS LETT, V67, P3349 AKEURA K, 1996, J APPL PHYS, V79, P4957 BRINER B, 1994, PHYS REV LETT, V73, P340 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO K, 1997, 16 EL MAT S MON JUL, P53 TANAKA M, 1994, APPL PHYS LETT, V65, P1964 TANAKA M, 1993, APPL PHYS LETT, V63, P696 TANAKA M, 1994, J VAC SCI TECHNOL B, V12, P1091 VANROY W, 1996, APPL PHYS LETT, V69, P711 TC 0 BP 719 EP 721 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600225 ER PT J AU Tanaka, M TI Ferromagnet semiconductor hybrid structures grown by molecular- beam epitaxy SO JOURNAL OF CRYSTAL GROWTH NR 31 AB Recent studies on two types of ferromagnet/semiconductor hybrid structures grown by molecular-beam epitaxy (MBE) are described: (1) ferromagnet [MnAs]/semiconductor [GaAs] layered heterostructures, and (2) III-V (GaAs)-based magnetic semiconductor alloy [(GaMn)As] thin films. Their MBE growth, structures, and magnetic properties are presented. (C) 1999 Elsevier Science B.V. All rights reserved. CR AKEURA K, 1995, APPL PHYS LETT, V67, P3349 AKEURA K, 1996, J APPL PHYS, V79, P4957 ANDO K, 1997, AM PHYS SOC 1997 MAR ANDO K, 1998, J APPL PHYS, V83, P6548 BRINER B, 1994, PHYS REV LETT, V73, P340 FOXON CT, 1975, SURF SCI, V50, P434 HAYASHI T, 1996, 41 C MAGN MAGN MAT N HAYASHI T, 1996, 9 INT C MOL BEAM EP HAYASHI T, 1997, APPL PHYS LETT, V71, P1825 HAYASHI T, 1997, J APPL PHYS, V81, P4865 HAYASHI T, 1997, J CRYST GROWTH, V175, P1063 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OHAGAN S, 1994, J APPL PHYS, V75, P7835 OHNO H, 1996, APPL PHYS LETT, V69, P363 OHNO H, 1991, J APPL PHYS, V69, P6103 OIWA A, 1997, SOLID STATE COMMUN, V103, P209 PRINZ GA, 1981, APPL PHYS LETT, V39, P397 PRINZ GA, 1995, PHYSICS TODAY PRINZ GA, 1990, SCIENCE, V250, P1092 SAITO K, 1997, 16 EL MAT S MON JUL, P53 SHEN A, 1997, J CRYST GROWTH, V175, P1069 TANAKA M, 1993, 13 N AM MOL BEAM EP TANAKA M, 1994, APPL PHYS LETT, V65, P1964 TANAKA M, 1993, APPL PHYS LETT, V63, P696 TANAKA M, 1995, J CRYST GROWTH, V150, P1132 TANAKA M, 1994, J VAC SCI TECHNOL B, V12, P1091 VANROY W, 1996, APPL PHYS LETT, V69, P711 VANROY W, 1997, J MAGN MAGN MATER, V165, P149 WALDROP JR, 1979, APPL PHYS LETT, V34, P630 YU KM, 1992, J APPL PHYS, V72, P2850 TC 0 BP 660 EP 669 PG 10 JI J. Cryst. Growth PY 1999 PD MAY VL 202 GA 198DB J9 J CRYST GROWTH UT ISI:000080406000142 ER PT J AU Moroni, EG Wolf, W Hafner, J Podloucky, R TI Cohesive, structural, and electronic properties of Fe-Si compounds SO PHYSICAL REVIEW B NR 68 AB Phase stability, structural, and electronic properties of iron silicides in the Fe3Si, FeSi, and FeSi2 compositions are investigated by first-principle density-functional calculations based on ultrasoft pseudopotentials and all-electron methods. Structural stabilization versus spin-polarization effects are discussed at the Fe3Si composition, while for epsilon-FeSi and beta-FeSi2 we investigate their structural properties and the corresponding semiconducting band properties. All the computed results are analyzed and compared to available experimental data. The stability of the bulk phases, the lattice parameters, the cohesive energies and magnetic properties are found to be in good agreement with experiment when using the generalized gradient approximations for the exchange-correlation functional. Density-functional calculations are unable to account for the small bulk modulus of epsilon-FeSi despite that the computed lattice constant and internal atomic positions coincide with the experimental results. Both full-potential and ultrasoft-pseudopotential methods confirm for beta-FeSi2 the indirect nature of the fundamental gap, which is attributed to a transition between Y to 0.6X Lambda being 30% smaller than the experimental gap. Ultrasoft pseudopotential calculations of Fe-Si magnetic phases and of various nonequilibrium metallic phases at the FeSi and FeSi2 composition are presented. These calculations provide nb initio information concerning the stabilization of metallic pseudomorphic phases via high pressures or epitaxy. [S0163-1829(99)05419-3]. CR ANTONOV VN, 1998, PHYS REV B, V57, P8934 BAIN EC, 1924, T AIME, V70, P25 BLOCHL PE, 1994, PHYS REV B, V49, P16223 BOST MC, 1985, J APPL PHYS, V58, P2696 BUSSE H, 1997, SURF SCI, V381, P133 CASTRO GR, 1997, J PHYS-CONDENS MAT, V9, P1871 CHERIEF N, 1989, APPL PHYS LETT, V55, P1671 CHEVRIER J, 1993, EUROPHYS LETT, V22, P449 CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 CLARK SJ, 1998, PHYS REV B, V58, P10389 DEBOER FR, 1988, COHESION METALS, V1 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EISEBITT S, 1994, PHYS REV B, V50, P18330 EPPENGA R, 1990, J APPL PHYS, V68, P3027 FILONOV AB, 1996, J APPL PHYS, V79, P7708 FU C, 1994, PHYS REV B, V49, P2219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GIANNINI C, 1992, PHYS REV B, V45, P8822 HINAREJOS JJ, 1998, PHYS REV B, V57, P1414 JANSEN HJF, 1984, PHYS REV B, V30, P561 JARLBORG T, 1995, PHYS REV B, V51, P11106 JARLBORG T, 1997, REP PROG PHYS, V60, P1305 KITTEL C, 1986, INTRO SOLID STATE PH KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KRESSE G, 1996, COMP MATER SCI, V6, P15 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245 KRESSE G, 1996, PHYS REV B, V54, P11169 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 LAASONEN K, 1993, PHYS REV B, V47, P10142 LOUIE SG, 1982, PHYS REV B, V26, P1738 MADER KA, 1993, PHYS REV B, V48, P4364 MANDRUS D, 1995, PHYS REV B, V51, P4763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MERMIN ND, 1965, PHYS REV, V137, PA1141 MIGLIO L, 1995, APPL PHYS LETT, V67, P2293 MIGLIO L, 1997, EUROPHYS LETT, V37, P415 MIGLIO L, 1995, PHYS REV B, V52, P1448 MONKHORST HJ, 1976, PHYS REV B, V13, P5188 MORONI EG, 1997, PHYS REV B, V56, P15629 MORONI EG, UNPUB MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244 NICULESCU VA, 1983, J MAGN MAGN MATER, V39, P223 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PAULING L, 1948, ACTA CRYSTALLOGR, V1, P212 PAXTON AT, 1990, PHYS REV B, V41, P8127 PERDEW JP, 1992, PHYS REV B, V45, P244 PERDEW JP, 1981, PHYS REV B, V23, P5048 RIZZI A, 1995, PHYS REV B, V51, P17780 RUBLOFF GW, 1983, SURF SCI, V132, P268 SAITOH S, 1981, JPN J APPL PHYS, V20, P1649 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TUNG RT, 1983, PHYS REV LETT, V50, P429 VANDERBILT D, 1990, PHYS REV B, V41, P7892 VILLARS P, 1985, PEARSONS HDB CRYSTAL VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 VONKANEL H, 1996, APPL SURF SCI, V104, P204 VONKANEL H, 1994, PHYS REV B, V50, P3570 VONKANEL H, 1992, PHYS REV B, V45, P13807 WALLART X, 1993, APPL SURF SCI, V70-1, P598 WALLART X, 1994, PHYS REV B, V49, P5714 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WHITE JA, 1994, PHYS REV B, V50, P4954 WILLIAMS AR, 1982, J APPL PHYS, V53, P2019 WOLF W, 1996, THESIS U WIEN WOOD DM, 1985, J PHYS A-MATH GEN, V18, P1343 ZINOVEVA GP, 1974, PHYS STATUS SOLIDI A, V23, P711 TC 2 BP 12860 EP 12871 PG 12 JI Phys. Rev. B PY 1999 PD MAY 15 VL 59 IS 20 GA 200ZW J9 PHYS REV B UT ISI:000080571000025 ER PT J AU Wang, JZ Li, BZ TI Interlayer exchange coupling between two ferromagnets with finite thickness separated by a nonmetallic spacer SO PHYSICAL REVIEW B-CONDENSED MATTER NR 17 AB Interlayer exchange coupling (IEC) between two ferromagnets (FM's) separated by a nonmetallic spacer is analyzed theoretically within the free-electron approximation. Particular attention is paid to the influence of FM thickness d(FM) On IEC and the variation of Fermi energy with the alignment of two FM's. The results show that (I)d(FM) strongly influence the IEC such that, only when d(FM) is not large, the barrier height and molecular field are both small, the IEC may oscillate with the spacer thickness owing to the quantum-size effect; otherwise, the IEC does not oscillate, but exhibits an exponential behavior in most spacer thickness; (2) as an oscillatory function of d(FM) with multiple periods, the IEC has a negative nonoscillatory term, which will become zero when the molecular field is comparatively small; (3) the Fermi energy has little difference between the parallel and antiparallel alignments of the two FM's, which correlates with the IEC to some extent. Particularly, with the increasing of d(FM) this correlation becomes stronger. [S0163-1829(99)01409- 5]. CR BANARAS J, 1992, J MAGN MAGN MATER, V111, PL215 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIAO MW, 1996, PHYS REV B, V54, P3322 YANG GL, 1996, ACTA PHYS SINICA, V45, P869 ZHANG WS, 1998, PHYS REV B, V58, P14959 ZHANG XD, 1998, PHYS REV B, V57, P1090 TC 0 BP 6383 EP 6389 PG 7 JI Phys. Rev. B-Condens Matter PY 1999 PD MAR 1 VL 59 IS 9 GA 178EX J9 PHYS REV B-CONDENSED MATTER UT ISI:000079254300058 ER PT J AU Tanaka, M Saito, K Nishinaga, T TI Epitaxial MnAs/GaAs/MnAs trilayer magnetic heterostructures SO APPLIED PHYSICS LETTERS NR 12 AB We have successfully grown MnAs/GaAs/MnAs ferromagnet/semiconductor trilayer heterostructures on GaAs(111) B substrates by molecular beam epitaxy. The epitaxial orientations of MnAs and GaAs are (0001) and (111), respectively, as expected. It was found that epitaxial monocrystalline GaAs can be grown on the As-rich (3X2)-(0001) MnAs surface. Cross-sectional images by transmission electron microscopy showed that the trilayers are formed as intended with fairly smooth and atomically abrupt interfaces. Double- step features were observed in magnetization characteristics due to the difference in coercive force between the top and bottom MnAs layers. The interlayer coupling was small when the thickness of the GaAs spacer layer was 5-10 nm. (C) 1999 American Institute of Physics. [S0003-6951(99)02101-4]. CR AKEURA K, 1995, APPL PHYS LETT, V67, P3349 AKEURA K, 1996, J APPL PHYS, V79, P4957 BRINER B, 1994, PHYS REV LETT, V73, P340 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARK MC, 1996, J APPL PHYS, V79, P4967 SAITO K, 1997, 16 EL MAT S MON JUL, P53 TANAKA M, 1994, APPL PHYS LETT, V65, P1964 TANAKA M, 1993, APPL PHYS LETT, V63, P696 TANAKA M, 1994, J VAC SCI TECHNOL B, V12, P1091 VANROY W, 1996, APPL PHYS LETT, V69, P711 VANROY W, 1997, J MAGN MAGN MATER, V165, P149 TC 4 BP 64 EP 66 PG 3 JI Appl. Phys. Lett. PY 1999 PD JAN 4 VL 74 IS 1 GA 152TA J9 APPL PHYS LETT UT ISI:000077791800022 ER PT J AU Matsukura, F Akiba, N Shen, A Ohno, Y Oiwa, A Katsumoto, S Iye, Y Ohno, H TI Magnetotransport properties of all semiconductor (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As tri-layer structures SO PHYSICA B NR 8 AB To investigate the magnetic coupling in all-semiconductor structure, ferromagnet/nonmagnet/ferromagnet tri-layer structures using (Ga,Mn)As as a ferromagnetic layer and GaAs or (Al,Ga)As as a nonmagnetic layer were prepared and their magnetic and magnetotransport properties were investigated. The results show that the interaction between the two (Ga,Mn)As layers decreases as the GaAs thickness increases or Al content of the (Al,Ga)As spacer increases. This shows that the carriers present in the nonmagnetic layer mediate the magnetic coupling between the two ferromagnetic layers in the present all- semiconductor system. (C) 1998 Elsevier Science B.V. All rights reserved. CR BRINER B, 1994, PHYS REV LETT, V73, P340 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, PCH2 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 MATSUKURA F, 1998, PHYS REV B, V57, PR2037 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OHNO H, 1996, APPL PHYS LETT, V69, P363 SHEN AD, 1997, JPN J APPL PHYS 2, V36, PL73 VANROY W, 1996, APPL PHYS LETT, V69, P711 TC 0 BP 573 EP 576 PG 4 JI Physica B PY 1998 PD DEC VL 258 GA 152KE J9 PHYSICA B UT ISI:000077775900120 ER PT J AU Akiba, N Matsukura, F Shen, A Ohno, Y Ohno, H Oiwa, A Katsumoto, S Iye, Y TI Interlayer exchange in (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As semiconducting ferromagnet/nonmagnet/ferromagnet trilayer structures SO APPLIED PHYSICS LETTERS NR 8 AB Magnetic properties of all-semiconductor (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As trilayer structures are studied. The interactions between the two ferromagnetic (Ga,Mn)As layers are investigated by magnetotransport measurements in a number of samples with different GaAs thickness or with different Al content in the intermediary nonmagnetic (Al,Ga)As layer. The results indicate that carriers present in the nonmagnetic layer mediate the coupling between the two ferromagnetic layers. (C) 1998 American Institute of Physics. [S0003-6951(98)01441-7]. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2, PCH2 JULLIERE M, 1975, PHYS LETT A, V54, P225 MATSUKURA F, 1998, PHYS REV B, V57, PR2037 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OHNO H, 1996, APPL PHYS LETT, V69, P363 SHEN AD, 1997, JPN J APPL PHYS 2, V36, PL73 TC 7 BP 2122 EP 2124 PG 3 JI Appl. Phys. Lett. PY 1998 PD OCT 12 VL 73 IS 15 GA 128UX J9 APPL PHYS LETT UT ISI:000076427700019 ER PT J AU Tong, LN Pan, MH Wu, J Wu, XS Du, J Lu, M Feng, D Zhai, HR Xia, H TI Magnetic and transport properties of sputtered Fe/Si multilayers SO EUROPEAN PHYSICAL JOURNAL B NR 26 AB The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si; ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either t(Si) greater than or equal to 3 nm for the series [Fe(3 nm)/Si(t(Si))](30) or t(Fe) < 2 nm for the series [Fe(t(Fe))/Si(1.9 nm)](30) multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when alpha-Si layers appear in the spacers. The dependences of MR on t(Si) and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The t(Fe) dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field H-s increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHILDRESS JR, 1992, PHYS REV B, V45, P2855 CHOPRA KL, 1969, THIN FILM PHENOMENA, P345 CLLITY DB, 1978, ELEMENTS XRAY DIFFRA COLINO JM, 1996, PHYS REV B, V54, P13030 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DIENY B, 1992, J PHYS-CONDENS MAT, V4, P8009 DIENY B, 1992, PHYS REV B, V45, P806 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEAUWEN RV, 1990, J APPL PHYS, V67, P4910 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MCGUIRE TR, 1975, IEEE T MAGN, V11, P1018 PARKIN SSP, MAG 90 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 61 EP 66 PG 6 JI Eur. Phys. J. B PY 1998 PD SEP VL 5 IS 1 GA 131HP J9 EUR PHYS J B UT ISI:000076570400009 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Measurement of perpendicular giant magnetoresistance of Fe/Si superlattices SO APPLIED PHYSICS LETTERS NR 18 AB The superlattices Fe/Si exhibit an antiferromagnetic coupling for very thin Si layers and giant magnetoresistance (GMR) is observed accompanying this coupling. The GMR for these superlattices measured with a current in the plane of the sample (CIP-GMR) is usually less than 0.2%. Considering a shunt effect due to large resistivity of Si layers, we measured the GMR with a current perpendicular to the sample plane (CPP-GMR). The thickness and width of the electrodes for the CPP measurement were carefully designed so that the current is always homogeneous in the sample. As a result, CPP-GMR for these superlattices is found to be about 3-6 times larger than CIP-GMR. Although a careful design of the electrodes is needed for homogeneity of the current, the technique is much easier than the CPP measurement for metal/metal superlattices and expected to provide valuable information on the spin-dependent electron transport phenomena in the Fe/Si superlattices. (C) 1998 American Institute of Physics. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5112 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V532, P5112 GIJS MAM, 1994, J APPL PHYS, V75, P6709 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MOODERA JS, 1996, APPL PHYS LETT, V69, P708 PEDERSON RJ, 1967, APPL PHYS LETT, V10, P29 PRATT WP, 1991, PHYS REV LETT, V66, P3060 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VAVRA W, 1995, APPL PHYS LETT, V66, P2579 TC 5 BP 495 EP 497 PG 3 JI Appl. Phys. Lett. PY 1998 PD JAN 26 VL 72 IS 4 GA YT563 J9 APPL PHYS LETT UT ISI:000071619600035 ER PT J AU AlvarezPrado, LM Perez, GT Morales, R Salas, FH Alameda, JM TI Perpendicular anisotropy detected by transversely biased initial susceptibility via the magneto-optic Kerr effect in FexSi1-x thin films and FexSi1-x/Si multilayers: Theory and experiment SO PHYSICAL REVIEW B-CONDENSED MATTER NR 50 AB We studied experimentally and theoretically the perpendicular anisotropy and the stripe-domain structure in both FexSi1-x thin films and FexSi1-x/Si multilayers, the latter being in the low-modulation-length regime (0.4 nm 10 mW/mm2). We attribute these effects to charge carriers in the FeSi spacer layer, which, when thermally or photogenerated, are capable of communicating spin information between the Fe layers. CR ALVAREZ J, 1993, APPL SURF SCI, V70-1, P578 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BOEKHOLT M, 1991, PHYSICA C, V175, P127 BRUNO P, 1992, PHYS REV B, V46, P261 CAREY MJ, 1993, PHYS REV B, V47, P9952 COEHOORN R, 1991, PHYS REV B, V44, P9331 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1992, MRS BULL, V17, P33 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NIEVA G, 1992, APPL PHYS LETT, V60, P2159 NIEVA G, 1992, PHYS REV B, V46, P14249 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PARKER FT, 1989, J APPL PHYS, V66, P5988 PRETORIUS R, 1990, VACUUM, V41, P1038 SANTOS PV, 1991, PHYS REV LETT, V67, P2686 SCHLESINGER Z, 1993, PHYS REV LETT, V71, P1748 STAEBLER DL, 1980, J APPL PHYS, V51, P3262 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1993, APPL SURF SCI, V70-1, P559 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG Y, 1990, PHYS REV LETT, V65, P2732 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WERTHEIM GK, 1965, PHYS LETT, V18, P89 ZHOU JH, 1992, PHYS REV B, V46, P12402 TC 5 BP 6169 EP 6173 PG 5 JI J. Appl. Phys. PY 1994 PD MAY 15 VL 75 IS 10 PN 2A GA NN734 J9 J APPL PHYS UT ISI:A1994NN73400261 ER PT J AU SIEGMANN, HC TI SURFACE AND 2D MAGNETISM WITH SPIN-POLARIZED CASCADE ELECTRONS SO SURFACE SCIENCE NR 33 AB The probing depth lambda of low energy cascade electrons in transition metals (TM) is dominated by scattering into the unoccupied d-orbitals. Thus lambda for electrons within 5-10 eV from the Fermi level varies from 1 monolayer in the early TM such as Gd to 6 monolayers in the late TM(Ni). The spin polarization P(c) of the cascade electrons is due to the spin polarization P0 of the 3d-electrons plus an additional polarization generated in the process of cascade formation by scattering into the spin polarized holes of the 3d-states. The enhancement f = P(c)/P0 is small with the early TM but large with the late TM. Nevertheless, P(c) is proportional to the magnetization and therefore represents an ideal tool to observe magnetism at surfaces and in nanoscale magnetic structures. Very small exchange couplings of ferromagnets across nonmagnetic spacer layers can be measured if one of the ferromagnets is ultrathin and acts as a giant spin molecule without decaying into domains. Recent applications include the investigation of the exchange coupling across semiconducting spacer layers. CR ABRAHAM DL, 1989, PHYS REV LETT, V62, P1157 ALLENSPACH R, 1992, PHYS REV LETT, V69, P3385 BLAND A, 1993, ULTRATHIN MAGNETIC S BLOEMEN PJH, 1992, J MAGN MAGN MATER, V116, PL315 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO E, 1993, PHYS REV LETT, V71, P181 COEHOORN R, 1993, EUROPHYS NEWS, V24, P43 DONATH M, 1991, APPL PHYS A-MATER, V52, P206 DONATH M, 1991, PHYS REV B, V43, P13164 DONATH M, 1993, SURF SCI, V287, P722 FRANCOMBE MH, 1971, PHYSICS THIN FILMS, V6 GLAZER J, 1984, SOLID STATE COMMUN, V52, P11507 GOKHALE MP, 1991, PHYS REV LETT, V66, P2251 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MAURAIN C, 1902, J PHYS-PARIS, V1, P90 MAURI D, 1989, APPL PHYS A-MATER, V49, P439 MAURI D, 1988, PHYS REV LETT, V61, P758 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PAUL OM, 1990, THESIS ETH PENN DR, 1987, PHYS REV B, V35, P482 PENN DR, 1985, PHYS REV B, V32, P7753 SCHEINFEIN MR, 1991, PHYS REV B, V43, P3395 SCHONHENSE G, 1993, ANN PHYS, V2, P498 SEAH MP, 1979, SURFACE INTERFACE AN, V1, P2 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8375 SIEGMANN HC, 1988, PHYS REV B, V38, P10434 SIEGMANN HC, 1988, Z PHYS B CON MAT, V69, P485 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ASI SERIES B, V309 TOSCANO S, 1992, THESIS ETH UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1988, PHYS REV B, V37, P2199 TC 0 BP 1076 EP 1086 PG 11 JI Surf. Sci. PY 1994 PD APR 20 VL 309 PN B GA NH823 J9 SURFACE SCI UT ISI:A1994NH82300079 ER