FN ISI Export Format VR 1.0 PT J AU Suresh, N Phase, DM Gupta, A Chaudhari, SM TI Electron density fluctuations at interfaces in Nb/Si bilayer, trilayer, and multilayer films: An x-ray reflectivity study SO JOURNAL OF APPLIED PHYSICS NR 39 AB A grazing incidence x-ray reflectivity technique has been used to determine electron density profile (EDP) as a function of depth in Nb-on-Si and Si-on-Nb bilayer, Nb-Si-Nb and Si-Nb-Si trilayer, and Nb/Si multilayer structures. In each case, films having layer thicknesses of 35 Angstrom were deposited on float glass and Si(100) substrates under ultrahigh vacuum conditions using an electron beam evaporation technique. EDP determined in as-deposited bilayer films shows that the widths of Si-on-Nb and Nb-on-Si interfaces are 20 and 40 Angstrom, respectively. The large difference observed in the widths is attributed to the different growth morphology of 35 Angstrom Nb and 35 Angstrom Si single layer films as revealed by atomic force microscopy investigations. In situ dc resistance measurements carried out on 35 Angstrom single layer Nb films during growth show percolation at a thickness much less than the layer thickness. In case of as-deposited Nb-Si-Nb trilayer film, EDP shows a width of 21 Angstrom at both the interfaces viz. Si-on- Nb and Nb-on-Si whereas in the case of as-deposited Si-Nb-Si trilayer films, the widths of Si-on-Nb and Nb-on-Si interfaces are 21 and 42 Angstrom, respectively. The EDPs obtained from bilayer and trilayer films are used to determine layer-by-layer electron density variation in Nb/Si multilayer structures. The results corresponding to the as-deposited multilayer structure indicate that interdiffusion is larger in the bottom layers of the stack. To study the role of kinetic and thermodynamic factors in the interfacial reactions, the bilayer, trilayer, and multilayer samples were isochronally annealed in vacuum up to a temperature of 300 degrees C in steps of 50 degrees C for 1 h. EDP of annealed bilayer and trilayer films show an increase in interfacial width due to interdiffusion of Nb and Si and samples annealed at 250 and 300 degrees C show Nb-rich and Si-rich intermixed regions. In addition to this, plateau regions having an electron density of 1.8 e/Angstrom(3) are observed in the EDP of Nb-Si-Nb and Si-Nb-Si trilayer structures annealed at 300 degrees C which indicates the formation of a Nb3Si phase. Structural parameters obtained from EDP are extended to interpret the results in as-deposited and annealed multilayer structures. The observed contraction in a bilayer period of an annealed multilayer structure is interpreted in terms of formation of a dense Nb3Si phase confirmed by wide angle x-ray diffraction measurements. Consequently, the multilayer structure is fully destroyed between 250-300 degrees C. (C) 2000 American Institute of Physics. [S0021-8979(00)00611-3]. CR *JCPDS, JCPDS FIL BAI HL, 1996, J PHYS-CONDENS MAT, V8, P8763 BANERJEE S, 1996, PHYS REV B, V54, P16377 BOER FR, 1988, COHESION METALS BRIDOU F, 1994, J PHYS III, V4, P1523 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHAUDHARI SM, 1999, J VAC SCI TECHNOL A, V17, P242 CHENG JY, 1991, J APPL PHYS, V69, P2161 CULLITY BD, 1978, ELEMENTS XRAY DIFFRA, P103 DEBERNABE A, 1998, J APPL PHYS, V84, P1881 DHEZ P, 1988, PHYSICS FABRICATION FULLERTON EE, 1993, PHYS REV B, V48, P17432 HOLLOWAY K, 1989, J APPL PHYS, V65, P474 KLOIDT A, 1991, APPL PHYS LETT, V58, P2601 KORTRIGHT JB, 1991, J APPL PHYS, V69, P168 LODHA GS, 1996, APPL PHYS A-MATER, V62, P29 MORAWE C, 1995, J APPL PHYS, V77, P1969 MURARKA SP, 1983, SILICIDES VLSI APPL NAKANISHI T, 1995, J APPL PHYS, V77, P948 NEVOT L, 1980, REV PHYS APPL, V15, P761 PARRATT LG, 1954, PHYS REV, V95, P359 PATTABI M, 1998, THIN SOLID FILMS, V322, P340 PETFORDLONG AK, 1987, J APPL PHYS, V61, P1422 PRESS WH, 1992, NUMERICAL RECIPES FO PRETORIUS R, 1990, VACUUM, V41, P1038 SANYAL MK, 1996, EUROPHYS LETT, V36, P265 SCHLOMKA JP, 1995, PHYS REV B, V51, P2311 SINHA SK, 1988, PHYS REV B, V38, P2297 SINHA SK, 1994, RESONANT ANOMALOUS X STEARNS DG, 1994, J APPL PHYS, V84, P1003 STEARNS DG, 1990, J APPL PHYS, V67, P2415 STEARNS DG, 1989, J APPL PHYS, V65, P491 THOMPSON C, 1994, PHYS REV B, V49, P4902 UNDERWOOD JH, 1981, APPL OPTICS, V20, P3027 VELDKAMP M, 1998, J APPL PHYS, V83, P155 WANG WH, 1999, PHYS REV B, V59, P10811 YAMAMOTO M, 1992, APPL OPTICS, V31, P1622 ZHANG M, 1996, J APPL PHYS, V80, P1422 ZHANG M, 1997, J MATER SCI LETT, V16, P241 TC 0 BP 7946 EP 7958 PG 13 JI J. Appl. Phys. PY 2000 PD JUN 1 VL 87 IS 11 GA 314QP J9 J APPL PHYS UT ISI:000087067400052 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Study of the barrier height in exchange coupled Fe/Fe1-xSix (x > 0.70) multilayers SO JOURNAL OF APPLIED PHYSICS NR 14 AB Fe/Fe1-xSix multilayers show distinct antiferromagnetic (AF) coupling for a wide spacer composition range 0.50 < x less than or equal to 1.00. As the Si content x increases, the spacer changes from metallic to insulating and the AF coupling strength (J) is significantly enhanced from 0.05 to 1.20 erg/cm(2). We have explained the temperature dependence of the coupling constants J(1) and J(2) in terms of the quantum interference model by taking an unknown energy difference Delta(=U-epsilon(F)) as a fitting parameter, where epsilon(F) is the Fermi level of Fe and U is the potential of the Fe1- xSix. The aim of the present work is to determine the quantity Delta experimentally for the insulating composition range of x > 0.70. The quantity Delta was evaluated both from I-V characteristics and the temperature dependence of the resistivity with the current perpendicular to the sample plane using a crossed electrode geometry junction. It is found that the barrier height increases from 0.15 to 0.70 eV with increasing the Si content x. These values almost agree with the parameter Delta deduced from the temperature dependence of J(1) and J(2). This agreement supports the validity of our previous calculations based on the quantum interference model. (C) 2000 American Institute of Physics. [S0021-8979(00)88708-3]. CR BRUNO P, 1994, J APPL PHYS, V76, P6972 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1999, J APPL PHYS, V85, P5741 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 FULLERTON EE, 1992, J MAGN MAGN MATER, V17, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1987, J APPL PHYS, V61, P3750 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MESERVEY R, 1982, J APPL PHYS, V53, P1563 SIMMONS JG, 1963, J APPL PHYS, V34, P1793 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 6836 EP 6838 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 3 GA 308TK J9 J APPL PHYS UT ISI:000086728800308 ER PT J AU Dubowik, J Stobiecki, F Szymanski, B Kudryavtsev, YV Grabias, A Kopcewicz, M TI Complex magnetic structure of strongly coupled Fe/Si multilayers SO ACTA PHYSICA POLONICA A NR 8 AB Fe/Si multilayers with strong bilinear and biquadratic couplings were investigated. A complex structure revealed by the Mossbauer spectroscopy corresponds to multimode ferromagnetic resonance spectra in a non-saturated state. Simple dispersion relations for antiferromagnetic coupled bilayer structures are shown to be inapplicable to the Fe/Si multilayers with a strong biquadratic component to the antiferromagnetic bilinear coupling. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3032 FREDRIKZE H, 1997, PHYSICA B, V234, P498 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 WIGEN PE, 1994, MAGNETIC MULTILAYERS, P183 TC 0 BP 451 EP 454 PG 4 JI Acta Phys. Pol. A PY 2000 PD MAR VL 97 IS 3 GA 299HN J9 ACTA PHYS POL A UT ISI:000086193100022 ER PT J AU Grunberg, P TI Layered magnetic structures in research and application SO ACTA MATERIALIA NR 76 AB An overview is given on the status of research and applications in the field of layered magnetic structures and the historical development is indicated. Currently the research on interlayer exchange coupling giant magnetoresistance and tunnel magnetoresistance is particularly active, therefore the basic understanding of these phenomena, the size of the effects, important issues and applications are discussed in some more detail. (C) 2000 Acta Metallurgica Inc. Published by Elsevier Scientific Ltd. All rights reserved. CR BAE S, 1998, MICROELECTRON RELIAB, V38, P969 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1990, PHYS REV B, V42, P8110 BEAN CP, 1959, STRUCTURE PROPERTIES, P331 BINASCH G, 1989, PHYS REV B, V39, P4828 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BODEKER P, 1998, PHYS REV LETT, V81, P914 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1995, PHYS REV B, V52, P411 BURGLER DE, 1999, PHYS REV B, V60, PR3732 BUTLER WH, 1996, PHYS REV LETT, V17, P3216 CAMARERO J, 1996, PHYS REV LETT, V76, P4428 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1997, J APPL PHYS, V82, P6142 FARADAY M, 1846, PHILOS T ROY SOC LON, V136, P1 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1995, PHYS REV B, V51, P6364 GALLAGHER WJ, 1997, J APPL PHYS, V81, P3741 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 GIRGIS M, UNPUB GRADMANN U, 1968, PHYS STATUS SOLIDI, V27, P313 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HICKEN RJ, 1994, PHYS REV B, V50, P6143 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HJORVARSSON B, 1997, PHYS REV LETT, V79, P901 HUTTEN, 1999, ACTA MAT, V47, P4245 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JULLIERE M, 1975, PHYS LETT A, V54, P225 KLOSE F, 1997, PHYS REV LETT, V78, P1150 KONIG H, 1948, OPTIK, V3, P101 KREBS JJ, 1989, PHYS REV LETT, V63, P1645 KUNDT A, 1884, WIED ANN, V23, P228 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1993, J MAGN MAGN MATER, V121, P242 MIRBT S, 1996, PHYS REV B, V54, P6382 MIYAZAKI T, 1995, J MAGN MAGN MATER, V139, P231 MOODERA JS, 1995, PHYS REV LETT, V74, P3273 MOTT N, 1963, P R SOC, V156, P368 NEEL L, 1954, J PHYS RADIUM, V15, P225 OKUNO S, COMMUNICATION OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PARKIN SSP, 1991, APPL PHYS LETT, V58, P2710 PARKIN SSP, COMMUNICATION PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 PRATT WP, 1991, PHYS REV LETT, V66, P3060 REISS G, 1998, J MAGN MAGN MATER, V184, P281 ROTH C, 1995, PHYS REV B, V52, P15691 ROTTLANDER P, UNPUB SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHAD R, 1999, PHYS REV B, V59, P1242 SHINJO T, COMMUNICATION SHINJO T, 1990, J PHYS SOC JPN, V59, P3061 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STILES MD, 1996, J APPL PHYS, V79, P5805 TAKANASHI K, 1998, APPL PHYS LETT, V72, P737 THOMSON W, 1857, P R SOC LONDON, V8, P546 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VOHL M, 1989, PHYS REV B, V39, P12003 YAN SS, 1999, PHYS REV B, V59, P11641 YAN SS, 1995, PHYS REV B, V52, P1107 ZAHN P, 1998, PHYS REV LETT, V80, P4309 ZOLL S, 1997, EUROPHYS LETT, V39, P323 TC 0 BP 239 EP 251 PG 13 JI Acta Mater. PY 2000 PD JAN 1 VL 48 IS 1 GA 281ZN J9 ACTA MATER UT ISI:000085191500014 ER PT J AU Schleberger, M Walser, P Hunziker, M Landolt, M TI Amorphous Fe-Si and Fe-Ge nanostructures quantitatively analyzed by x-ray-photoelectron spectroscopy SO PHYSICAL REVIEW B NR 16 AB The subject of this paper is an x-ray-photoelectron spectroscopy investigation of amorphous Fe-Si and Fe-Ge nanostructures that have attracted interest because of their magnetic coupling properties. To this end we deposit Fe onto clean, amorphous Si and Ge substrates at room temperature and at 40 K, respectively. We take spectra of the Fe3p, Fe2p, and Si2p core Levels to determine possible chemical shifts. The results indicate a charge transfer from the Fe to the Si and Ge atoms at room temperature as well as at 40 K. Additionally, we record wide range spectra of the SiKLL, GeLMM, and the Fe2p peaks as well as spectra of Fe-Si, and Fe-Ge compounds, respectively. Analyzing the inelastic background of the peaks we quantitatively determine the nanostructure of the deposits. We can exclude the formation of sharp interfaces. Instead, we find evidence for the formation of an Fe-Si or Fe-Ge interface compound with a homogeneous composition. For magnetically investigated low-temperature prepared Fe/Si/Fe trilayers we show that the spacer layer is a pure semiconductor with a thickness that is reduced compared to the nominal value. [S0163-1829(99)02443-1]. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 EGERT B, 1984, PHYS REV B, V29, P2091 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 HAUSSLER P, COMMUNICATION INOMATA K, 1995, PHYS REV LETT, V74, P1863 KILPER R, 1995, APPL SURF SCI, V91, P93 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 SCHLEBERGER M, 1995, SURF SCI, V331, P942 SHIRLEY DA, 1972, PHYS REV B-SOLID ST, V5, P4709 TANUMA S, 1988, SURF INTERFACE ANAL, V11, P577 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOUGAARD S, 1988, SURF INTERFACE ANAL, V11, P453 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 1 BP 14360 EP 14365 PG 6 JI Phys. Rev. B PY 1999 PD NOV 15 VL 60 IS 20 GA 261NP J9 PHYS REV B UT ISI:000084015500062 ER PT J AU Carlisle, JA Blankenship, SR Smith, RN Chaiken, A Michel, RP van Buuren, T Terminello, LJ Jia, JJ Callcott, TA Ederer, DL TI Electronic structure and crystalline coherence in Fe/Si multilayers SO JOURNAL OF CLUSTER SCIENCE NR 17 AB Soft x-ray fluorescence spectroscopy has been used to examine the electronic structure of deeply buried silicide thin films that arise in Fe/Si multilayers. These systems exhibit antiferromagnetic (AF) coupling of the Fe layers, despite their lack of a noble metal spacer layer found in most GMR materials. Also, the degree of coupling is very dependent on preparation conditions, especially spacer layer thickness and growth temperature. The valence band spectra are quite different for films with different spacerlayer thickness yet are very similar for films grown at different growth temperatures. The latter result is surprising since AF coupling is strongly dependent on growth temperature. Combining near-edge x-ray absorption with the fluorescence data demonstrates that the local bonding structure in the silicide spacer layer in epitaxial films which exhibit AF coupling are metallic. These results indicate the equal roles of crystalline coherence and electronic structure in determining the magnetic properties of these systems. CR CARLISLE JA, 1995, APPL PHYS LETT, V67, P34 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S JIA JJ, 1992, PHYS REV B, V46, P9446 JIA JJ, 1995, REV SCI INSTRUM, V66, P1394 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NILSSON PO, 1995, PHYS REV B, V52, PR8643 NORDGREN EJ, 1997, J PHYS IV, V7, P9 PERERA RCC, 1989, J APPL PHYS, V66, P3676 RUBENSSON JE, 1990, PHYS REV LETT, V64, P1047 STOHR J, 1992, NEXAFS SPECTROSCOPY VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 0 BP 591 EP 599 PG 9 JI J. Clust. Sci. PY 1999 PD DEC VL 10 IS 4 GA 256AE J9 J CLUST SCI UT ISI:000083701700011 ER PT J AU Ihara, N Narushima, S Kijima, T Abeta, H Saito, T Shinagawa, K Tsushima, T TI Magnetic properties and magnetoresistance of granular evaporated Fe/Si films SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 45 AB Fe (3.4 Angstrom) and Si (6 Angstrom) are evaporated alternately onto silica substrates to realize a granular structure. The substrate temperature T-s during the evaporation is changed from 100 K to 623 K to vary the film structures. The specimens of T-s greater than or equal to room temperature (RT) are superparamagnetic at RT, which suggests a granular structure. Magnetoresistance (MR) at RT is negative (resistivity decreases with increasing magnetic field H) for all specimens. It is thought that the negative MR is attributable to the granular structure. On the other hand, at 77 K a positive MR linear with H (not H-2) up to 50 kOe is observed for all specimens. The linear dependence on H of the positive MR may be due to the nonuniformity in the granular structure. The positive MR itself and the change of the sign of MR from negative to positive with decreasing temperature have not been observed in conventional granular systems such as Co- Ag and Co-Al-O. CR BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRODSKY MH, 1970, PHYS REV B, V1, P2632 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHANTRELL RW, 1978, IEEE T MAGN, V14, P975 CHIEN CL, 1993, J APPL PHYS, V73, P5309 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1998, IN PRESS J APPL PHYS ENDO Y, 1998, IN PRESS PHYS REV B ENDO Y, 1997, J MAGN SOC JPN, V21, P541 FUJIMORI H, 1995, MAT SCI ENG B-SOLID, V31, P219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRANQVIST CG, 1976, J APPL PHYS, V47, P2200 HIGHMORE RJ, 1995, J MAGN MAGN MATER, V151, P95 HUNT MB, 1994, PHYS REV B, V50, P14933 IHARA N, 1999, J MAGN SOC JPN, V23, P85 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KINBARA A, 1979, HAKUMAKU, P39 KITTEL C, 1963, QUANTUM THEORY SOLID, PCH12 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MASSALSKI B, 1990, BINARY ALLOY PHASE D, P1771 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MITANI S, 1997, J MAGN MAGN MATER, V165, P141 SAITO Y, 1998, J PHYS SOC JPN, V67, P1138 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, 1996, J APPL PHYS, V79, P4776 STROUD D, 1976, PHYS REV B, V13, P1434 TASSIS DH, 1998, J APPL PHYS, V84, P2960 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONHELMOLT R, 1994, PHYS STATUS SOLIDI B, V182, PK25 WALSER P, 1998, PHYS REV LETT, V80, P2217 XIA K, 1997, PHYS REV B, V56, P14901 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 0 BP 6272 EP 6281 PG 10 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 1999 PD NOV VL 38 IS 11 GA 261ZT J9 JPN J APPL PHYS PT 1 UT ISI:000084041800021 ER PT J AU Bertoncini, P Wetzel, P Berling, D Gewinner, G Ulhaq-Bouillet, C Bohnes, VP TI Epitaxial growth of Fe(001) on CoSi2(001)/Si(001) surfaces: Structural and electronic properties SO PHYSICAL REVIEW B NR 34 AB Ultrathin Fe films, in the thickness range 0-40 monolayers (ML), have been grown on Si(001) by molecular-beam epitaxy and characterized by low-energy electron diffraction, inelastic medium-energy electron diffraction, x-ray photoelectron spectroscopy, angular-resolved ultraviolet spectroscopy, x-ray photoelectron diffraction, ion scattering spectroscopy, and transmission electron microscopy. For Fe depositions onto Si(001) at room temperature, a disordered layer is obtained due to a high degree of intermixing between the Fe deposit and the Si substrate. Successful epitaxial growth of Fe at room temperature is achieved by use of a thin (similar to 10 Angstrom) CoSi2 silicide interlayer epitaxially grown on the Si(001) substrate prior to the Fe deposition, which prevents the intermixing of the Si substrate atoms into the Fe overlayer. Below a coverage of similar to 2 ML a reacted ordered iron-rich phase forms at the surface. At higher coverages, there is growth of an epitaxial essentially body- centered cubic (bcc) Fe(001) overlayer with the orientational relationships Fe(001)[001]parallel to CoSi2(001)[001]parallel to Si(001)[001]. Finally, a well-ordered Fe/CoSi2 interface is formed even at room temperature. [S0163-1829(99)12335-X]. CR ALVAREZ J, 1997, PHYS REV B, V45, P14042 ALVAREZPRADO LM, 1997, PHYS REV B, V56, P3306 BAUMGARTEN L, 1990, PHYS REV LETT, V65, P492 BERLING D, 1999, J MAGN MAGN MATER, V191, P331 BERTONCINI P, UNPUB BUSSE H, 1997, SURF SCI, V381, P133 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHAMBERS SA, 1992, SURF SCI REP, V16, P261 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 EGELHOFF WF, 1990, CRIT REV SOLID STATE, V16, P213 EGERT B, 1984, PHYS REV B, V29, P2091 EGERT B, 1984, SURF SCI, V141, P397 ENDO Y, 1999, PHYS REV B, V59, P4279 FADLEY CS, 1984, PROG SURF SCI, V16, P275 GALLEGO JM, 1992, PHYS REV B, V46, P13339 HADERBACHE L, 1989, PHYS REV B, V39, P1422 HAHN P, 1980, J APPL PHYS, V51, P2079 HENZ J, 1989, SURF SCI, V211, P716 HENZLER M, 1997, SURF REV LETT, V4, P489 HONG S, 1995, PHYS REV B, V51, P17667 JIMINEZ JR, 1990, APPL PHYS LETT, V116, P2811 KLASGES R, 1997, PHYS REV B, V56, P10801 LORETTO D, 1989, PHYS REV LETT, V63, P298 NAZIR ZH, 1996, J MAGN MAGN MATER, V145, P435 PESSA M, 1984, PHYS REV B, V14, P3488 RUHRNSCHOPF K, 1996, THIN SOLID FILMS, V280, P171 SHIRLEY DA, 1978, PHOTOEMISSION SOLIDS, V1, P165 STALDER R, 1992, SURF SCI, V271, P355 TUNG RT, 1982, APPL PHYS LETT, V40, P684 TURNER AM, 1984, PHYS REV B, V29, P2986 VANCAMPEN DG, 1993, PHYS REV B, V48, P17533 WEISS W, 1996, SURF SCI, V347, P117 XU ML, 1989, PHYS REV B, V39, P8275 YALISOVE SM, 1989, J VAC SCI TECHNOL A, V7, P1472 TC 0 BP 11123 EP 11130 PG 8 JI Phys. Rev. B PY 1999 PD OCT 15 VL 60 IS 15 GA 251CT J9 PHYS REV B UT ISI:000083427600099 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Formation of nonmagnetic c-Fe1-xSi in antiferromagnetically coupled epitaxial Fe/Si/Fe SO PHYSICAL REVIEW B NR 20 AB Low-energy electron diffraction, Auger electron spectroscopy, and conversion electron Mossbauer spectroscopy have been applied to study antiferromagnetically exchange-coupled epitaxial Fe/Si/Fe(100). It is shown that a bcc-like (100) structure is maintained throughout the layers after a recrystallization of the spacer layer by Fe/Si interdiffusion. Direct experimental evidence is presented that c-Fe1-xSi (0 less than or equal to x less than or equal to 0.5) is formed in the spacer layer, a nonmagnetic metallic metastable iron silicide phase with a CsCl structure (B2), which supports explanations for the antiferromagnetic exchange coupling given recently. CR BRUNO P, 1995, PHYS REV B, V52, P411 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1997, J APPL PHYS, V81, P5349 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FANCIULLI M, 1999, PHYS REV B, V59, P3675 FANCIULLI M, 1994, PHYS SCRIPTA, V54, P16 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALLEGO JM, 1991, J APPL PHYS, V69, P1377 HELGASON O, 1989, HYPERFINE INTERACT, V45, P415 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP JT, 1997, MATER RES SOC SYMP P, V475, P593 MORONI EG, 1999, PHYS REV B, V59, P12860 SHI ZP, 1994, EUROPHYS LETT, V26, P473 STEARNS MB, 1963, PHYS REV, V129, P1136 STRIJKERS GJ, UNPUB TC 2 BP 9583 EP 9587 PG 5 JI Phys. Rev. B PY 1999 PD OCT 1 VL 60 IS 13 GA 244YW J9 PHYS REV B UT ISI:000083079200074 ER PT J AU Dekoster, J Degroote, S Meersschaut, J Moons, R Vantomme, A Bottyan, L Deak, L Szilagyi, E Nagy, DL Baron, AQR Langouche, G TI Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy SO HYPERFINE INTERACTIONS NR 23 AB Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Mossbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Mossbauer reflectometry. From the fits of the time spectrum and the resonant theta-2 theta scans a model for the sublayer magnetization of the multilayer is deduced. CR BOST MC, 1985, J APPL PHYS, V58, P2696 BOTTYAN L, UNPUB PHYS REV B BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1996, PHYS REV B, V53, P6158 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1996, PHYS REV LETT, V57, P2442 JACCARINO V, 1967, PHYS REV, V160, P476 LANG P, 1993, PHYS REV LETT, V71, P1927 MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUEFFER R, 1996, HYP INTERACT, V97, P589 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SPIERING H, IN PRESS NUCL RESONA TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 0 BP 39 EP 48 PG 10 JI Hyperfine Interact. PY 1999 VL 121 IS 1-8 GA 236UP J9 HYPERFINE INTERACTIONS UT ISI:000082617800006 ER PT J AU Walser, P Hunziker, M Landolt, M TI Heat-induced effective exchange coupling in magnetic multilayers with semiconductors SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 35 AB Two ferromagnetic films separated by an amorphous semiconducting spacer layer are exchange coupled across the spacer. The coupling is reversibly temperature dependent with a positive temperature coefficient making such layered systems a 2-D realization of the concept of heat-induced magnetism. By studying ferromagentic Fe layers separated by amorphous Si, Ge, or ZnSe layers we explore the possibilities to generate such an effective exchange coupling and address the question of the mechanism responsible for it. (C) 1999 Elsevier Science B.V. All rights reserved. CR 1991, LANDOLTBERNSTEIN SER, V3 ALBERS A, 1994, PHYSICA B, V194, P1091 BERNASCONI J, 1969, PHYS KONDENS MATER, V10, P224 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BURGLER DE, 1998, PHYS REV LETT, V80, P4983 BUSCH G, 1967, HELV PHYS ACTA, V40, P812 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 FULLERTON EE, 1992, J MAGN MAGN MATER, V17, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIN PK, 1977, CAN J PHYS, V55, P1641 MAGNIN P, 1978, J APPL PHYS, V49, P1709 MAGNIN P, 1978, J PHYS F MET PHYS, V8, P2085 MOTT NF, 1987, CONDUCTION NONCRYSTA MOTT NF, 1979, ELECT PROCESSES NONC NEEL L, 1962, CR HEBD ACAD SCI, V255, P1676 OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHLEBERGER M, UNPUB SCHOLL A, 1998, THESIS U KOLN SIEGBHAN K, 1958, P REH C NUCL STRUCT, P1957 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1992, THESIS ETH ZURICH TOUGAARD S, 1990, J ELECTRON SPECTROSC, V52, P243 WALSER P, 1999, IN PRESS PHYS REV B, V60 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 95 EP 109 PG 15 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700008 ER PT J AU Schuller, IK Kim, S Leighton, C TI Magnetic superlattices and multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 154 AB We briefly review the active areas of current research in magnetic superlattices, emphasizing later years. With recent widening use of advanced technologies, more emphasis has been made on quantitative atomic level chemical and structural characterization. Examples where the multilayer structure has been controlled, characterized and correlated with the physical properties are discussed. The physical properties are categorized according to the complexity of a structure needed to observe a particular effect. We outline a number of general important unsolved problems, which could considerably benefit from theoretical and experimental input. An extensive list of magnetic multilayer materials is provided, with references to recent publications. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALLEN PB, 1997, SOLID STATE COMMUN, V102, P127 ANGELAKERIS M, 1997, J APPL PHYS, V82, P5640 ATKINSON R, 1996, J MAGN MAGN MATER, V162, P131 AURIC P, 1998, J PHYS-CONDENS MAT, V10, P3755 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BEACH RS, 1993, PHYS REV LETT, V70, P3502 BELIEN P, 1994, PHYS REV B, V50, P9957 BORCHERS JA, 1993, PHYS REV LETT, V70, P1878 BRYNJACOBSEN C, 1997, J PHYS-CONDENS MAT, V9, P8727 BURGLER DE, 1998, PHYS REV LETT, V80, P4983 CABLE JW, 1986, PHYS REV B, V34, P1643 CAMLEY RE, 1990, PHYS REV LETT, V64, P2703 CARCIA PF, 1985, APPL PHYS LETT, V47, P178 CAREY MJ, 1993, J APPL PHYS, V73, P6892 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CASTANO FJ, 1997, J PHYS CONDENS MATT, V8, P10603 CEBOLLADA A, 1989, PHYS REV B, V39, P9726 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHEN LH, 1993, APPL PHYS LETT, V63, P1279 CHIANG WC, 1998, PHYS REV B, V58, P5602 CHILDRESS JR, 1994, J MAGN MAGN MATER, V130, P13 CHRISEY DB, 1994, PULSED LASER DEPOSTI COLINO JM, 1996, PHYS REV B, V54, P13030 COWLEY RA, 1998, J PHYS-CONDENS MAT, V10, P2115 DEBERNABE A, 1998, J APPL PHYS, V84, P1881 DELMORAL A, 1998, J PHYS-CONDENS MAT, V10, PL139 DHEZ P, 1987, PHYSICS FABRICATION DIENY B, 1991, J MAGN MAGN MATER, V93, P101 DINIA A, 1998, EUROPHYS LETT, V42, P331 DU J, 1998, PHYS STATUS SOLIDI A, V167, P183 DUDA LC, 1996, PHYS REV B, V54, P10396 DUMOND JWM, 1935, PHYS REV, V48, P703 FALICOV LM, 1990, J MATER RES, V5, P1299 FENG JW, 1996, J MAGN MAGN MATER, V152, P27 FNIDIKI A, 1998, J APPL PHYS, V84, P3311 FOLKERTS W, 1993, J APPL PHYS, V73, P3922 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1998, APPL PHYS LETT, V72, P380 FULLERTON EE, 1993, APPL PHYS LETT, V63, P1699 FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV B, V45, P9292 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 GALLEGO JM, 1994, APPL PHYS LETT, V64, P2590 GALLEGO JM, 1995, PHYS REV LETT, V74, P4515 GANSHINA EA, 1995, J MAGN MAGN MATER, V146, P143 GIJS MAM, 1994, J APPL PHYS, V75, P6709 GOLUB VO, 1997, J MAGN MAGN MATER, V174, P95 GRANBERG P, 1998, J MAGN MAGN MATER, V186, P154 GRANBERG P, 1996, PHYS REV B, V54, P1199 GRANDMANN U, 1993, HDB MAGNETIC MAT, V7, P1 GRIMSDITCH M, 1983, PHYS REV LETT, V51, P498 GRUNBAUM E, 1975, EPITAXIAL GROWTH GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GU T, 1997, PHYS REV B, V56, P6474 GYORGY EM, 1982, PHYS REV B, V25, P6739 HONDA S, 1997, J APPL PHYS, V82, P4428 HUANG JCA, 1995, PHYS REV B, V52, P13110 JOHNSON M, 1985, PHYS REV LETT, V55, P1790 KANO H, 1993, APPL PHYS LETT, V63, P2839 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIM S, 1996, PHYS REV B, V74, PR4967 KIM SH, 1998, PHYS REV B, V58, P2240 KIWI M, 1973, AIP C P, V18, P347 KIWI M, 1996, PHYS REV B, V54, P15335 KLINKHAMMER F, 1996, J MAGN MAGN MATER, V161, P49 KRISHNAN R, 1997, J MAGN MAGN MATER, V174, PL17 KRISHNAN R, 1997, J MAGN MAGN MATER, V168, P15 KUBINSKI DJ, 1996, J APPL PHYS, V79, P7395 KUCH W, 1997, EUROPHYS LETT, V37, P465 KUCH W, 1998, J MAGN MAGN MATER, V184, P127 KUCH W, 1998, PHYS REV B, V58, P8556 LASSRI H, 1997, J MAGN MAGN MATER, V172, P61 LEE SF, 1995, PHYS REV B, V52, P15426 LESMES F, 1996, APPL PHYS LETT, V69, P2596 LEVY PM, 1996, J MAGN MAGN MATER, V164, P284 LEVY PM, 1994, SOLID STATE PHYSICS, V47 LI Y, 1997, J PHYS-CONDENS MAT, V9, P6301 LUCINSKI T, 1998, J MAGN MAGN MATER, V189, P39 MACKAY JF, 1996, PHYS REV LETT, V77, P3925 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MANOHARAN SS, 1998, PHYS REV B, V58, P8549 MATTSON JE, 1993, J APPL PHYS, V73, P5969 MAURICE JL, 1998, J MAGN MAGN MATER, V184, P1 MILLER T, 1992, PHYS REV LETT, V68, P3339 MULLOY M, 1995, J MAGN MAGN MATER, V147, P177 MURAYAMA A, 1998, PHYS REV B, V58, P8596 NALLET P, 1996, J APPL PHYS, V79, P6884 NILSSON A, 1996, PHYS REV B, V54, P2917 NOAKES TCQ, 1998, PHYS REV B, V58, P4934 ODONOVAN KV, 1998, J MAGN MAGN MATER, V186, P161 OKEEFFE AP, 1998, APPL PHYS LETT, V73, P1002 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 ONO T, 1997, PHYS REV B, V55, P14457 ONO T, 1998, SOLID STATE COMMUN, V105, P93 PAN FM, 1998, PHYS LETT A, V247, P187 PANIAGO R, 1995, PHYS REV B, V52, P17052 PAPE I, 1998, PHYSICA B, V253, P278 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PECHAN MJ, 1994, J APPL PHYS, V75, P6178 PIRAUX L, 1996, J MAGN MAGN MATER, V159, PL287 POLLARD RJ, 1997, J MAGN MAGN MATER, V176, P134 POLLARD RJ, 1995, J MAGN MAGN MATER, V148, PL375 POTTER CD, 1994, PHYS REV B, V49, P16055 PRATT WP, 1991, PHYS REV LETT, V66, P3060 RABE A, 1994, PHYS REV LETT, V73, P2728 RAMOS CA, 1990, PHYS REV LETT, V65, P2913 REISS G, 1998, J MAGN MAGN MATER, V184, P281 RENEVIER H, 1997, PHYS REV LETT, V78, P2775 RENSING NM, 1993, J MAGN MAGN MATER, V121, P436 RICHOMME F, 1996, PHYS REV B, V54, P416 ROBINSON A, 1998, P WORKSH SCI DIR ADV SAKURAI M, 1995, J MAGN MAGN MATER, V147, P16 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 SCHAD R, 1998, PHYS REV B, V57, P13692 SCHREIBER F, 1994, J MAGN MAGN MATER, V135, P215 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHULLER IK, 1980, PHYS REV LETT, V44, P1597 SCHULLER IK, 1994, SOLID STATE COMMUN, V92, P141 SEVENHANS W, 1986, PHYS REV B, V34, P5955 SHAN ZS, 1989, PHYS REV LETT, V63, P449 SHINJO T, 1988, METALLIC SUPERLATTIC SIMPSON JA, 1997, J PHYS-CONDENS MAT, V9, P8693 STAUDHAMMER KP, 1973, ATLAS BINARY ALLOYS SUZUKI M, 1995, PHYS REV B, V52, P361 TAPPERT J, 1997, J MAGN MAGN MATER, V164, P261 THALER BJ, 1978, PHYS REV LETT, V41, P336 TOMAZ MA, 1997, J PHYS-CONDENS MAT, V9, PL179 TONNERRE JM, 1995, PHYS REV LETT, V75, P740 TSUI F, 1994, PHYS REV LETT, V72, P3084 UBA S, 1996, PHYS REV B, V53, P6526 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VAEZZADEH M, 1994, PHYS REV B, V50, P6113 VELEZ M, 1998, J MAGN MAGN MATER, V184, P275 WALSER P, 1998, PHYS REV LETT, V80, P2217 WANG ZJ, 1998, J MAGN MAGN MATER, V188, P269 WANG ZJ, 1997, J MAGN MAGN MATER, V176, P127 WELLER D, 1994, PHYS REV B, V49, P12888 WU P, 1997, J APPL PHYS, V81, P7301 WU P, 1997, J MAGN MAGN MATER, V168, P43 WU RQ, 1992, PHYS REV LETT, V69, P2867 XU J, 1997, PHYS REV B, V55, P416 YAN ML, 1995, J APPL PHYS, V77, P1816 YAN ML, 1996, J PHYS-CONDENS MAT, V8, PL711 YANG ZJ, 1995, PHYS REV B, V52, P4263 YU CT, 1995, PHYS REV B, V52, P1123 ZEIDLER T, 1998, J MAGN MAGN MATER, V187, P1 ZEIDLER T, 1996, PHYS REV B, V53, P3256 ZHANG XY, 1998, J MAGN MAGN MATER, V187, P12 ZHOU WS, 1981, PHYSICA B & C, V108, P953 ZORCHENKO VV, 1998, J MAGN MAGN MATER, V183, P25 ZUCKERMANN MJ, 1973, SOLID STATE COMMUN, V12, P745 TC 1 BP 571 EP 582 PG 12 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700034 ER PT J AU Zhao, JH Zhang, M Liu, RP Zhang, XY Cao, LM Dai, DY Chen, H Xu, YF Wang, WK TI Investigation of interfacial phenomena in Ag-Si multilayers during the annealing process SO JOURNAL OF MATERIALS RESEARCH NR 18 AB Interfacial phenomena and microstructure in Ag-Si multilayers with a modulation period of 7.64 nm during annealing from 323 to 573 K were investigated by in situ x-ray diffraction and high-resolution transmission electron microscopy. Uphill and downhill diffusion were observed on annealing. The temperature dependence of the effective diffusion coefficient from 373 K (as to downhill diffusion regime) to 523 K was D-e = 2.02 x 10(-20) exp(-0.24 eV/k(B)T) m(2)/s. Diffusion of silicon atoms along silver grain boundaries was proposed as the main diffusion mechanism. After annealing, continuous silver sublayers changed to nanometer-sized silver particles (about 4.5 nm) coated completely by amorphous silicon. CR AGARWAL BK, 1979, XRAY SPECTROSCOPY BIAN X, 1994, J APPL PHYS, V76, P6796 CHAIKEN A, 1996, PHYS REV B, V53, P5518 COFFA S, 1992, PHYS REV B, V45, P8355 DUPUIS V, 1990, J APPL PHYS, V68, P3348 GREER AL, 1985, SYNTHETIC MODULATED HARRISON LG, 1961, T FARADAY SOC, V57, P1191 KLUG HP, 1974, XRAY PROCEDURES POLY LEE TL, 1993, J APPL PHYS, V75, P2007 LEE YS, 1996, J APPL PHYS, V79, P3534 NAKAJIMA H, 1988, J APPL PHYS, V63, P1046 PORTER D, 1981, PHASE TRANSFORMATION REDON O, 1995, J MAGN MAGN MATER, V149, P398 SEIBT M, 1998, PHYS REV LETT, V80, P774 SLOOF WG, 1986, SCRIPTA METALL MATER, V20, P1683 WANG WH, 1994, J APPL PHYS, V76, P1578 WANG WH, 1994, MAT SCI ENG B-SOLID, V22, P211 ZHANG M, 1996, APPL PHYS LETT, V69, P3182 TC 0 BP 2888 EP 2892 PG 5 JI J. Mater. Res. PY 1999 PD JUL VL 14 IS 7 GA 235PF J9 J MATER RES UT ISI:000082550700026 ER PT J AU Walser, P Hunziker, M Speck, T Landolt, M TI Heat-induced antiferromagnetic coupling in multilayers with ZnSe spacers SO PHYSICAL REVIEW B NR 22 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. As spacer material we use amorphous ZnSe which is a compound semiconductor and find heat- induced antiferromagnetic coupling in striking similarity to amorphous Si and Ge. In an Fe/alpha-ZnSe/Fe trilayer with spacer thickness between 18 Angstrom and 22 Angstrom the coupling is antiferromagnetic with a positive temperature coefficient. At slightly larger thicknesses between 22 Angstrom and 25 Angstrom we find a reversible transition from ferromagnetic coupling at low temperatures to antiferromagnetic coupling at higher temperatures upon heating. We discuss the reversibly heat-induced effective exchange coupling in terms of localized defect states in the band gap in the vicinity of the Fermi energy. [S0163-1829(99)04230-7]. CR BRINER B, 1993, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETZ ZURICH CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIM PK, 1977, CAN J PHYS, V55, P1641 MOTT NF, 1987, CONDUCTION NONCRYSTA OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHOLL A, 1998, THESIS U KOLN SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 1 BP 4082 EP 4086 PG 5 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100053 ER PT J AU Tong, LN Pan, MH Wu, XS Lu, M Zhai, HR TI Transport properties of sputtered Fe Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 7 AB A relatively large GMR effect associated with antiferromagnetic (AFM) coupling in sputtered Fe/Si multilayers was observed and the dependence of transport properties on Si layer and Fe layer thickness and on the number of bilayers at room temperature and 77 K were studied. Our data suggests that the mechanism of AFM coupling and GMR effect in Fe/Si multilayers is the same as that in metal/metal systems. (C) 1999 Elsevier Science B.V. All rights reserved. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 TC 0 BP 101 EP 103 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600034 ER PT J AU Walser, P Landolt, M TI Heat-induced coupling in multilayers with semiconducting spacers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 11 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. (C) 1999 Elsevier Science B.V. All rights reserved. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1983 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 412 EP 414 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600130 ER PT J AU Zuberek, R Fronc, K Szymczak, R Baran, M Mosiniewicz-Szablewska, E Gnatchenkob, SL Chizhik, AB Stobiecki, F Szymczak, H TI Low temperature enhancement of the magnetic anisotropy in Fe Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 4 AB The FMR and SQUID investigation of the magnetic anisotropy of Fe/Si multilayers are presented. The multilayers, with various thicknesses of iron and a thick layer of silicon (in order to eliminate the coupling between Fe layers), have been grown by DC sputtering on single crystal GaAs substrates. Low temperature enhancement of the easy-plane anisotropy, especially below 50 K, was observed. This anisotropy seems to be of magnetoelastic origin. The coercivity was shown to decrease with temperature. (C) 1999 Elsevier Science B.V. All rights reserved. CR ANKNER JF, 1993, J APPL PHYS, V73, P6436 BASZYNSKI J, 1994, PHYS STATUS SOLIDI A, V141, PK23 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 TC 0 BP 83 EP 84 PG 2 JI J. Magn. Magn. Mater. PY 1999 PD MAY VL 197 GA 195VB J9 J MAGN MAGN MATER UT ISI:000080271900030 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Interlayer coupling of Fe/Si/Fe trilayers with very thin boundary layers SO JOURNAL OF APPLIED PHYSICS NR 12 AB The interlayer magnetic coupling of a Fe/Si/Fe trilayer shows an analogous feature to that of Fe/Si superlattices. With an increase in Si layer thickness, it oscillates as ferromagnetic (first F), antiferromagnetic (AF), ferromagnetic (second F), and finally reaches a noncoupling (N) state. We have investigated interlayer coupling of Fe/Si/Fe trilayers inserting very thin (1 or 2 ML thick) boundary layers X (X=Ag, Ge, Fe-Si, Ta, etc.). They are expected to suppress interatomic diffusion between Fe and Si layers. Interlayer coupling of Fe/X/Si/X/Fe with negligible interdiffusion is simply F and changes to N as the Si layer thickness increases. Furthermore, Fe/Fe-Si/Fe trilayers which show coupling of first F, AF but not second F, reproduce second F when a Si layer is inserted in the Fe-Si spacer. These results imply that an amorphous Si spacer mediates ferromagnetic coupling between neighboring Fe layers while the first F and the strong AF coupling usually observed in Fe/Si superlattices are caused by diffused crystalline Fe-Si. (C) 1999 American Institute of Physics. [S0021-8979(99)45508-2]. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 NEEL L, 1962, CR HEBD ACAD SCI, V255, P1545 TOSCANO IS, 1992, J MAGN MAGN MATER, V114, PL6 TC 1 BP 5741 EP 5743 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2B GA 188NF J9 J APPL PHYS UT ISI:000079853500152 ER PT J AU Endo, Y Kikuchi, N Kitakami, O Shimada, Y TI Antiferromagnetic coupling in Co/Ge superlattices SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 16 AB We have investigated interlayer coupling of Co/Ge superlattices. The present experiments obviously show that the coupling changes from ferromagnetic (F) to antiferromagnetic (AF) and finally to non-coupling (N) with the increase of Ge layer thickness. This coupling behaviour, as a function of the spacer thickness, is very similar to that of Fe/Si superlattices, although the coupling strength is much smaller than the latter: namely, similar to 0.05 erg cm(-2) for Co/Ge and similar to 1.0 erg cm(-2) for Fe/Si. Precise structural characterization indicates that diffused spacers at Co/Ge interfaces are responsible for the AF coupling. The same coupling behaviour has also been observed in Co/non-magnetic Co-Ge superlattices, where interdiffusion at the interfaces is entirely suppressed. All these results clearly demonstrate that the interlayer coupling between neighbouring Co layers is mediated by non-magnetic Co-Ge spacers. CR BRINER B, 1995, PHYS REV B, V51, P7303 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1999, IN PRESS J APPL PHYS ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP L133 EP L137 PG 5 JI J. Phys.-Condes. Matter PY 1999 PD APR 19 VL 11 IS 15 GA 189PL J9 J PHYS-CONDENS MATTER UT ISI:000079913700001 ER PT J AU Fanciulli, M Weyer, G Svane, A Christensen, NE von Kanel, H Muller, E Onda, N Miglio, L Tavazza, F Celino, M TI Microscopic environment of Fe in epitaxially stabilized c-FeSi SO PHYSICAL REVIEW B-CONDENSED MATTER NR 57 AB Epitaxially stabilized iron monosilicide films having the CsCl structure (c-FeSi) have been investigated by conversion electron Mossbauer spectroscopy and transmission electron microscopy. The Fe-57 Mossbauer parameters (isomer shift delta, linewidth Gamma, and quadrupole splitting Delta) are reported and discussed in terms of the local surrounding of the Fe nucleus. High statistical accuracy and resolution allowed a detailed investigation of the effects of strain and of the structural phase transformation from the epitaxially stabilized to the bulk stable phase, The phase transformation was found to proceed in a rather surprising layer by layer mechanism with smooth interfaces between the epitaxially stabilized, the bulk stable, and a third phase. Results from a molecular-dynamics simulation at constant pressure and temperature of the structural phase transition are presented and compared with the experimental findings. The isomer shift and the electric-field gradient at the Fe nucleus in the strained c-FeSi and in the third phase have been calculated using the ab initio full potential linear muffin-tin orbital method. The Mossbauer parameters of some relevant point defects in c-FeSi have likewise been calculated within this framework. [S0163- 1829(99)01302-8]. CR AFANASEV AM, 1990, HYPERFINE INTERACT, V61, P325 ANDERSEN OK, 1985, CANONICAL DESCRIPTIO, P59 ANDERSEN OK, 1975, PHYS REV B, V12, P3060 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BRUINSMA R, 1986, J PHYS-PARIS, V47, P2055 CARLISLE JA, 1996, PHYS REV B, V53, P5518 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHEVRIER J, 1992, APPL SURF SCI, V56-8, P438 CHRISTENSEN NE, 1996, ELECT STRUCTURES SEM CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 CHRISTENSEN NE, 1996, PHYS STATUS SOLIDI B, V198, P23 CHRISTIANSEN J, 1976, Z PHYS B CON MAT, V24, P177 DEGROOTE S, 1996, ITAL PHY SO, V50, P623 DEGROOTE S, 1994, MATER RES SOC S P, V337, P685 DEGROOTE S, 1993, MATER RES SOC S P, V220, P133 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DELLER HR, 1997, THESIS ETH ZURICH DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DUFEK P, 1995, PHYS REV LETT, V75, P3545 ERIKSSON O, 1989, J PHYS-CONDENS MAT, V1, P1589 FANCIULLI M, 1997, EUROPHYS LETT, V37, P139 FANCIULLI M, 1997, J PHYS-CONDENS MAT, V9, P1619 FANCIULLI M, 1995, MATER RES SOC S P, V402, P319 FANCIULLI M, 1996, PHYS REV B, V54, P15985 FANCIULLI M, 1995, PHYS REV LETT, V75, P1642 FANCIULLI M, 1994, PHYS SCRIPTA, V54, P16 FANCIULLI M, 1996, THIN SOLID FILMS, V275, P8 FANCIULLI M, UNPUB GOLDANSKII VI, 1968, CHEM APPL MOSSBAUER HELGASON O, 1989, HYPERFINE INTERACT, V45, P415 JONES RO, 1989, REV MOD PHYS, V61, P689 KONDO S, 1995, J PHYS-CONDENS MAT, V7, P2123 LANGE H, 1997, PHYS STATUS SOLIDI B, V201, P3 LILJEQUIST D, 1978, NUCL INSTRUM METHODS, V155, P529 MADER KA, 1993, PHYS REV B, V48, P4364 MASON TE, 1992, PHYS REV LETT, V69, P490 METHFESSEL M, 1989, PHYS REV B, V40, P2009 METHFESSEL M, 1988, PHYS REV B, V38, P1537 MIGLIO L, 1995, APPL PHYS LETT, V67, P2293 MIGLIO L, 1997, EUROPHYS LETT, V37, P415 NISHIYAMA K, 1978, HYPERFINE INTERACT, V4, P490 ONDA N, 1993, APPL SURF SCI, V73, P124 ONDA N, 1992, APPL SURF SCI, V56-8, P421 ONDA N, 1993, MATER RES SOC S P, V280, P581 PAULING L, 1948, ACTA CRYSTALLOGR, V1, P212 SKRIVER HL, 1984, LMTO METHOD STADELMANN PA, 1987, ULTRAMICROSCOPY, V21, P131 TAVAZZA F, IN PRESS PHYS REV B VANDERMERWE JH, 1972, SURF SCI, V31, P198 VONKANEL H, 1991, APPL SURF SCI, V53, P196 VONKANEL H, 1994, PHYS REV B, V50, P3570 VONKANEL H, 1992, PHYS REV B, V45, P13807 VONKANEL H, 1995, PHYS REV LETT, V74, P1163 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WERTHEIM GK, 1965, PHYS LETT, V18, P89 WEYER G, 1976, MOSSBAUER EFFECT MET, V10, P301 ZUNGER A, 1989, J CRYST GROWTH, V98, P1 TC 1 BP 3675 EP 3687 PG 13 JI Phys. Rev. B-Condens Matter PY 1999 PD FEB 1 VL 59 IS 5 GA 168NN J9 PHYS REV B-CONDENSED MATTER UT ISI:000078699300067 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Interlayer coupling in Fe/Fe1-xSix superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 28 AB Interlayer coupling has been investigated for a series of Fe/Fe1-xSix (0.4 less than or equal to x less than or equal to 1.0) superlattices. The layer of Fe1-xSix in the lattices is ferromagnetic for x<0.5 and causes ferromagnetic coupling between Fe layers for all spacer thicknesses investigated here. As the Si content increases above x=0.5, the layer becomes nonmagnetic and simultaneously our current in the plane of the sample and current perpendicular to the sample plane measurements suggest that the spacer rapidly changes its conduction property from metallic to highly resistive. Variations of the interlayer magnetic coupling as a function of spacer layer thickness for the spacer compositions above x=0.5 are similar to each other; namely, with an increase of the spacer thickness the interlayer coupling is initially ferromagnetic, then antiferromagnetic, and finally becomes noncoupling. Moreover, the temperature dependence of the bilinear and biquadratic coupling constants, J(1)(T) and J(2)(T) which were obtained by numerical fitting, varies sensitively with x. Assuming that the conduction of the spacers ranges from metallic to insulating as x increases, all these coupling behaviors can be described qualitatively by the quantum interference model formalized by Bruno. Furthermore, we found that the coupling strength is enhanced dramatically with increase of x of Fe1-xSix. [S0163-1829(99)11405-X]. CR BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BRINER B, 1993, PHYS REV LETT, V73, P340 BRUNO P, 1994, J APPL PHYS, V76, P6972 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUBUNOVA EV, 1994, THIN SOLID FILMS, V247, P39 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEBROEDERFJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1987, J APPL PHYS, V61, P3750 HEINRICH B, 1988, PHYS REV B, V38, P12879 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KILPER R, 1995, APPL SURF SCI, V91, P93 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1996, PHYS REV B, V55, PR696 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WANG RW, 1994, PHYS REV LETT, V72, P920 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 7 BP 4279 EP 4286 PG 8 JI Phys. Rev. B-Condens Matter PY 1999 PD FEB 1 VL 59 IS 6 GA 168NP J9 PHYS REV B-CONDENSED MATTER UT ISI:000078699400048 ER PT J AU Chaudhari, SM Suresh, N Phase, DM Gupta, A Dasannacharya, BA TI Design and performance of an ultrahigh vacuum system for metallic multilayers SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 22 AB This article describes the design, development, and performance testing of a versatile ultrahigh vacuum (UHV) electron-beam deposition system for synthesis of thin films and multilayer structures. Initially, basic design norms required to achieve set objectives are discussed and then a brief description of the system is presented. The fabricated UHV chamber has a number of vacuum ports to accommodate various features and accessories needed to deposit and characterize good quality thin films and multilayer structures of different metals. To demonstrate the capabilities of the system, depositions of thin films and multilayer structures of different materials were carried out. Representative results of hard x-ray reflectivity measurements corresponding to Ni, Au, and Ag thin films and Nb/Si and Fe/Ni multilayer structures are given and discussed. Furthermore, the easy adaptability of the system in order to carry out other investigations related to thin films is also demonstrated by presenting our recent in situ experiments conducted on aging studies of discontinuous silver films deposited on glass substrates under UHV conditions. (C) 1999 American Vacuum Society. [S0734-2101(99)01001-5]. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 CASANOVE MJ, 1994, MATER RES SOC SYMP P, V343, P277 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CILIA M, 1997, J APPL PHYS, V82, P4137 FULLERTON EE, 1993, PHYS REV B, V48, P17432 HOLY V, 1994, PHYS REV B, V49, P10668 HUANG TC, 1992, ADV XRAY ANAL, V35, P143 KLOIDT A, 1991, APPL PHYS LETT, V58, P2601 LAMELAS FJ, 1991, PHYS REV B, V43, P12296 LENGELER B, 1992, ADV XRAY ANAL, V35, P127 LOWNDES DH, 1990, PHYS REV LETT, V65, P1160 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARRATT LG, 1954, PHYS REV, V95, P359 PATTABI M, 1998, THIN SOLID FILMS, V322, P340 SPILLER E, 1990, OPT ENG, V29, P609 SPILLER E, 1985, P SOC PHOTO-OPT INS, V563, P367 SPILLER E, 1994, SOFT XRAY OPTICS STEARNS DG, 1991, J VAC SCI TECHNOL A, V9, P2662 SUDOH M, 1991, OPT ENG, V30, P1061 THOMPSON C, 1994, PHYS REV B, V49, P4902 TRISCONE JM, 1990, PHYS REV LETT, V64, P804 VERES T, 1997, J APPL PHYS, V81, P4758 TC 3 BP 242 EP 248 PG 7 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 1999 PD JAN-FEB VL 17 IS 1 GA 158UU J9 J VAC SCI TECHNOL A UT ISI:000078136300037 ER PT J AU Michel, RP Chaiken, A Wang, CT Johnson, LE TI Exchange anisotropy in epitaxial and polycrystalline NiO/NiFe bilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 46 AB (001)-oriented NiO/NiFe bilayers were grown on single crystal MgO (001) substrates by ion beam sputtering in order to determine the effect that the crystalline orientation of the NiO antiferromagnetic layer has on the magnetization curve of the NiFe ferromagnetic layer. The simplest model predicts no exchange anisotropy for the (001)-oriented NiO surface, which in its bulk termination is magnetically compensated. Nonetheless exchange anisotropy is present in the epitaxial films, although it is approximately half as large as in polycrystalline films that were grown simultaneously. The surface anisotropy in the epitaxial films is found to contain cubic and unidirectional components, while that in the polycrystalline film is best described by a uniaxial plus unidirectional anisotropy. Experiments indicate that differences in exchange field and coercivity between polycrystalline and epitaxial NiFe/NiO bilayers couples arise due to variations in induced surface anisotropy. Implications of these observations for models of induced exchange anisotropy in NiO/NiFe bilayer couples will be discussed. CR AMBROSE T, 1994, APPL PHYS LETT, V65, P1967 CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 CAREY MJ, 1993, PHYS REV B, V47, P9952 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHIKAZUMI S, 1964, PHYSICS MAGNETISM CIUREANU P, 1992, THIN FILM RESISTIVE DEVASAHAYAM AJ, 1995, IEEE T MAGN, V31, P3820 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P159 DIENY B, 1990, J PHYS-CONDENS MAT, V2, P187 EVERITT BA, 1996, IEEE T MAGN, V32, P4657 FARZTDINOV MM, 1964, USP FIZ NAUK, V84, P855 FLORCZAK JM, 1991, PHYS REV B, V44, P9338 HAMAKAWA Y, 1996, IEEE T MAGN, V32, P149 HAN DH, 1997, APPL PHYS LETT, V70, P664 HAN DH, 1997, J APPL PHYS, V81, P340 JUNGBLUT R, 1994, J APPL PHYS, V75, P6659 KANAI H, 1996, IEEE T MAGN, V32, P3368 KIEF MT, 1997, J APPL PHYS, V81, P4981 KOON NC, 1997, PHYS REV LETT, V78, P4865 LAI CH, 1995, IEEE T MAGN, V31, P2609 LIN CL, 1995, IEEE T MAGN, V31, P4091 LIN T, 1995, IEEE T MAGN, V31, P2585 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MAURI D, 1987, J APPL PHYS, V62, P3047 MCGUIRE TR, 1962, J APPL PHYS, V33, P1291 MEIKLEJOHN WH, 1956, PHYS REV, V105, P904 MICHEL RP, 1996, IEEE T MAGN, V32, P4651 MORAN TJ, 1995, J APPL PHYS, V78, P1887 MORAN TJ, 1995, THESIS U CALIFORNIA NIKITENKO VI, 1998, J APPL PHYS, V83, P6828 NOGUES J, 1996, PHYS REV LETT, V76, P4624 PACCARD D, 1966, PHYS STATUS SOLIDI, V16, P301 ROTH WL, 1960, J APPL PHYS, V31, P1571 ROTH WL, 1958, PHYS REV, V111, P772 ROTH WL, 1958, PHYS REV, V110, P1333 SAITO S, 1980, J PHYS C SOLID STATE, V13, P1513 SCHLENKER C, 1986, J MAGN MAGN MATER, V54-7, P801 SHEN JX, 1996, J APPL PHYS, V79, P5008 SIEVERS AJ, 1962, PHYS REV, V129, P1566 SLACK GA, 1960, J APPL PHYS, V31, P1571 SOEYA S, 1994, J APPL PHYS, V76, P5356 STOECKLEIN W, 1988, PHYS REV B, V38, P6847 VANDERZAAG PJ, 1996, J APPL PHYS, V79, P5103 WEISSMAN MB, 1993, REV MOD PHYS, V65, P829 YELON A, 1971, PHYSICS THIN FILMS TC 8 BP 8566 EP 8573 PG 8 JI Phys. Rev. B-Condens Matter PY 1998 PD OCT 1 VL 58 IS 13 GA 125HU J9 PHYS REV B-CONDENSED MATTER UT ISI:000076232100067 ER PT J AU Tong, LN Pan, MH Wu, J Wu, XS Du, J Lu, M Feng, D Zhai, HR Xia, H TI Magnetic and transport properties of sputtered Fe/Si multilayers SO EUROPEAN PHYSICAL JOURNAL B NR 26 AB The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si; ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either t(Si) greater than or equal to 3 nm for the series [Fe(3 nm)/Si(t(Si))](30) or t(Fe) < 2 nm for the series [Fe(t(Fe))/Si(1.9 nm)](30) multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when alpha-Si layers appear in the spacers. The dependences of MR on t(Si) and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The t(Fe) dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field H-s increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHILDRESS JR, 1992, PHYS REV B, V45, P2855 CHOPRA KL, 1969, THIN FILM PHENOMENA, P345 CLLITY DB, 1978, ELEMENTS XRAY DIFFRA COLINO JM, 1996, PHYS REV B, V54, P13030 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DIENY B, 1992, J PHYS-CONDENS MAT, V4, P8009 DIENY B, 1992, PHYS REV B, V45, P806 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEAUWEN RV, 1990, J APPL PHYS, V67, P4910 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MCGUIRE TR, 1975, IEEE T MAGN, V11, P1018 PARKIN SSP, MAG 90 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 61 EP 66 PG 6 JI Eur. Phys. J. B PY 1998 PD SEP VL 5 IS 1 GA 131HP J9 EUR PHYS J B UT ISI:000076570400009 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Zuberek, R Fronc, K Mosiniewicz-Szablewska, E TI FMR and SMFMR study of Fe/Si multilayers SO JOURNAL DE PHYSIQUE IV NR 6 AB In this paper the investigations of magnetic and magnetoelastic properties of Fe/Si multilayers are presented. The multilayers have been grown by de sputtering on the single - crystal GaAs substrates. Ferromagnetic resonance (FMR) measurements were performed at the frequency of 9.4 GHz and in the temperature range from liquid helium to room temperature before and after illumination with 514nm light. The magnetostriction constant of investigated films has been measured at room temperature by strain modulated ferromagnetic resonance (SMFMR) method. An attention is given to the effect of the interface on the observed effective saturation magnetostriction. The FMR and SMFMR measurements mostly revealed the contribution from interface to the observed spectra. The results were analyzed taking into account both the alloying effects and the intrinsic surface anisotropy and magnetostriction. It was shown that in the case of Fe/Si multilayers the effect of alloying prevails. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 HENNING JCM, 1978, APPL PHYS, V10, P353 SZYMCZAK H, 1978, 4 INT C MICR FERR JA, P247 WINDT DL, 1995, J APPL PHYS, V78, P2423 YAMAMOTO T, 1980, DEV SENDUST, P27 TC 1 BP 249 EP 252 PG 4 JI J. Phys. IV PY 1998 PD JUN VL 8 IS P2 GA ZX533 J9 J PHYS IV UT ISI:000074526300059 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Temperature dependence of interlayer coupling in Fe/Si superlattices SO IEEE TRANSACTIONS ON MAGNETICS NR 12 AB We have explored the temperature dependence of the interlayer coupling in Fe/Fe1-xSix superlattices (0.5 less than or equal to x less than or equal to 1). It is found that the Si content of the Fe1-xSix, spacer greatly affects the temperature dependence of the bilinear and biquadratic coupling constants. Neither the "thickness fluctuation" model nor the "loose" spin model proposed by Slonczewski give satisfactory explanations to the temperature-dependent interlayer coupling. Instead, the present experimental results for all spacer compositions can be reproduced very well by the quantum interference model. We discuss the experimental results based on the above interlayer coupling models. CR BRUNO P, 1994, J APPL PHYS, V76, P6972 CHAIKEN A, 1996, PHYS REV B, V53, P5518 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 4 BP 906 EP 908 PG 3 JI IEEE Trans. Magn. PY 1998 PD JUL VL 34 IS 4 PN 1 GA 101CP J9 IEEE TRANS MAGN UT ISI:000074852300028 ER PT J AU Cross, JO Elam, WT Harris, VG Kirkland, JP Bouldin, CE Sorensen, LB TI Sample-angle feedback for diffraction anomalous fine-structure spectroscopy SO JOURNAL OF SYNCHROTRON RADIATION NR 7 AB Diffraction anomalous fine-structure (DAFS) experiments measure Bragg peak intensities as continuous functions of photon energy near a core-level excitation. Measuring the integrated intensity at each energy makes the experiments prohibitively slow; however, in many cases DAFS can be collected quickly by measuring only the peak intensity at the center of the rocking curve. A piezoelectric-actuator-driven stage has been designed and tested as part of a sample-angle feedback circuit for locking onto the maximum of the rocking curve while the energy is scanned. Although software peak-tracking requires only a simple calculation of diffractometer angles, it is found that the additional hardware feedback dramatically improves the reproducibility of the data. CR CHAIKEN A, 1996, PHYS REV B, V53, P5518 COWAN PL, 1983, NUCL INSTRUM METHODS, V208, P349 CROSS JO, 1996, THESIS U WASHINGTON FURENLID LR, 1997, J PHYS IV, V7, P335 KIM KH, 1991, REV SCI INSTRUM, V62, P982 SORENSEN LB, 1994, RESONANT ANOMALOUS X, P389 STRAGIER H, 1992, PHYS REV LETT, V69, P3064 TC 0 BP 911 EP 913 PG 3 JI J. Synchrot. Radiat. PY 1998 PD MAY 1 VL 5 PN 3 GA 103UA J9 J SYNCHROTRON RADIAT UT ISI:000074975200230 ER PT J AU Moons, R Degroote, S Dekoster, J Vantomme, A Langouche, G TI Structural characterization of metastable FeSi films and of Fe/FeSi multilayers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 12 AB The structural properties of molecular beam epitaxy (MBE)-grown metastable CsCl-type FeSi (i.e. an iron silicide with the CsCl lattice structure) on Si (1 1 1) and of Fe/FeSi multilayers grown with MBE on MgO (0 0 1) are reported. Rutherford backscattering and channeling spectrometry (RBS-C) combined with X-ray diffraction are used to determine the structure, epitaxy and crystalline quality of the layers. Single metastable CsCl-FeSi layers could be stabilized epitaxially up to a thickness of 62 nm and are found to be twinned with respect to the Si (1 1 1) substrate, Moreover, an extensive study on antiferromagnetically (AF) coupled (Fe/FeSi)(15)/MgO multilayers indicates that the Fe layers are slightly expansively strained while the FeSi spacers are fully relaxed. Further, we could grove that the FeSi spacers in the multilayers have a cubic CsCl lattice structure with a lattice parameter of 0.28 nm. (C) 1998 Elsevier Science B.V. CR APPLETON BR, 1977, ION BEAM HDB MAT ANA BARRETT JH, 1971, PHYS REV B, V3, P1527 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1997, J APPL PHYS, V81, P5349 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1995, MATER RES SOC SYMP P, V384, P183 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 FULLERTON EE, 1993, PHYS REV B, V48, P17555 KOHLHEPP J, 1997, PHYS REV B, V55, P696 MICHEL RP, 1995, MATER RES SOC S P, V384, P197 MOONS R, 1998, NUCL INSTRUM METH B, V134, P181 TC 0 BP 268 EP 272 PG 5 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1998 PD MAR VL 138 GA ZW154 J9 NUCL INSTRUM METH PHYS RES B UT ISI:000074380400046 ER PT J AU Saito, Y Inomata, K TI Biquadratic coupling contributions to the magnetoresistive curves in Fe/FeSi/Fe sandwiches with semiconductor like FeSi and metallic bcc FeSi spacers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 17 AB Magnetoresistance was investigated in Fe/FeSi/Fe sandwiches with metallic bcc-and semiconductor like FeSi spacers prepared by an ultrahigh-vacuum magnetron sputtering system, enhanced with inductively coupled RF plasma. In the easy axis direction, MR curves at 298 K have a dip around the zero magnetic field for both Fe/FeSi/Fe sandwiches with semiconductor like FeSi and hcc metallic FeSi spacers. On the other hand, MR curves at 10 K exhibit a dip and no anomaly around the zero magnetic field for the Fe/bcc metallic FeSi/Fe and Fe/semiconductor like FeSi/Fe sandwiches, respectively. when the contribution of biquadratic coupling to interlayer exchange coupling is considered, these MR behaviors are well explained. These results support the interlayer exchange coupling model attributed to the biquadratic exchange coupling which outweighs the colinear term at a low temperature in Fe/FeSi multilayers. CR BRUNO P, 1994, PHYS REV B, V49, P13231 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 METOKI N, 1993, J MAGN MAGN MATER, V121, P137 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAITO Y, UNPUB PHYS REV B SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 1 BP 1138 EP 1141 PG 4 JI J. Phys. Soc. Jpn. PY 1998 PD APR VL 67 IS 4 GA ZK389 J9 J PHYS SOC JPN UT ISI:000073315800019 ER PT J AU Gao, X Hale, J Heckens, S Woollam, JA TI Studies of metallic multilayer structures, optical properties, and oxidation using in situ spectroscopic ellipsometry SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 13 AB In situ spectroscopic ellipsometry (SE) has been successfully used to accurately measure sputter deposition rates and optical constants of un-oxidized metal layers and to control the growth of magnetic multilayers. The structures include [Co/Cu](n), [Co/Au](n), [Co/Ni](n), [Co/Pd](n) and [Co/Pd/ Au](n). Layer thickness precision is better than +/-0.05 nm for layer thicknesses in the range of 0.2 nm to 10 nm. Closed-loop feedback control of layer thickness is also demonstrated. Good consistency was obtained by comparing the in situ SE results to x-ray diffraction measurements. Dynamic oxidation studies of [Co/Au](n) and [Co/Ni](n) multilayer structures are also presented. (C) 1998 American Vacuum Society. CR AZZAM RMA, 1977, ELLIPSOMETRY POLARIZ, PCH4 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 CHAIKEN A, 1996, PHYS REV B, V53, P5518 COLLINS RW, 1990, REV SCI INSTRUM, V61, P2029 EGGELHOFF WF, 1995, J APPL PHYS, V78, P273 IRENE EA, 1995, MRS B, V24 JELLISON GE, 1991, APPL OPTICS, V30, P3354 JOHS B, IN PRESS THIN SOLID MAJKRZAK CF, 1994, MAGNETIC MULTILAYERS, P299 MCGAHAN WA, 1989, APPL PHYS COMMUN, V9, P1 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 PALIK E, 1985, HDB OPTICAL CONSTANT, PCH5 WOOLLAM JA, 1996, P SOC PHOTO-OPT INS, V2873, P140 TC 3 BP 429 EP 435 PG 7 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 1998 PD MAR-APR VL 16 IS 2 GA ZC509 J9 J VAC SCI TECHNOL A UT ISI:000072587200009 ER PT J AU Fanciulli, M Zenkevich, A Weyer, G TI Mossbauer investigation of silicide phases at the reactive Fe/Si interface SO APPLIED SURFACE SCIENCE NR 26 AB Silicide phases formed upon pulsed laser deposition of 1-60 Angstrom of Fe onto a H-terminated Si(111) surface at room temperature have been investigated by conversion electron Mossbauer spectroscopy. An interface phase with two different Fe sites of low local symmetry is formed initially with up to 8 Angstrom of Fe. For larger coverage an alpha-Fe phase with incorporated Si occurs. The evolution of this structure upon isothermal annealing at 250 degrees C shows that a c-FeSi phase with B2 structure is formed first, which at later times transforms to the bulk stable epsilon-FeSi phase. For 60 Angstrom coverage a Fe3Si phase is found in addition. A model for the phase formation and evolution mechanisms is proposed. (C) 1998 Elsevier Science B.V. CR ALVAREZ J, 1993, PHYS REV B, V47, P16048 BORG RJ, 1970, J APPL PHYS, V41, P5193 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEGROOTE S, 1994, MATER RES SOC S P, V337, P685 DEGROOTE S, 1993, MATER RES SOC S P, V320, P133 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FANCIULLI M, 1997, EUROPHYS LETT, V37, P139 FANCIULLI M, 1997, J PHYS-CONDENS MAT, V9, P1619 FANCIULLI M, 1996, MATER RES SOC S P, V401, P319 FANCIULLI M, 1996, PHYS REV B, V54, P15985 FANCIULLI M, 1995, PHYS REV LETT, V75, P1642 FANCIULLI M, 1994, PHYS SCRIPTA, V54, P16 FANCIULLI M, 1997, SURF SCI, V377, P529 FANCIULLI M, 1996, THIN SOLID FILMS, V275, P8 JZEHNDER S, 1993, MATER RES SOC S P, V280, P581 KUBLER J, 1993, Z PHYS B CON MAT, V92, P155 MASCARAQUE A, 1997, PHYS REV B, V55, PR7315 MOSER P, 1987, MATER SCI FORUM, V15, P925 SAUER C, 1994, MAGNETIC MULTILAYERS, P147 STEARNS MB, 1963, PHYS REV, V129, P1136 TERSOFF J, 1995, PHYS REV LETT, V74, P5080 UTZIG J, 1989, J APPL PHYS, V65, P3868 VONKANEL H, 1992, MATER SCI REP, V8, P193 VONKANEL H, 1992, PHYS REV B, V45, P13807 WEYER G, 1976, MOSSBAUER EFFECT MET, V10, P301 TC 1 BP 207 EP 212 PG 6 JI Appl. Surf. Sci. PY 1998 PD JAN VL 123 GA YY884 J9 APPL SURF SCI UT ISI:000072196800042 ER PT J AU Klasges, R Carbone, C Eberhardt, W Pampuch, C Rader, O Kachel, T Gudat, W TI Formation of a ferromagnetic silicide at the Fe/Si(100) interface SO PHYSICAL REVIEW B-CONDENSED MATTER NR 27 AB The interplay between magnetism and chemistry at the Fe/Si(100) interface has been examined by spin-and angle-resolved photoemission. A ferromagnetically ordered metallic silicide of similar to 20 Angstrom thickness is formed by deposition of Fe on Si at room temperature. This interface layer is ferromagnetic in-plane with a reduced spin polarization in comparison to bulk Fe. Its electronic structure indicates an Fe-rich composition close to Fe,Si. The Fe/Si and Si/Fe interface are inequivalent with respect to silicide formation and to the resulting magnetic properties. [S0163-1829(97)04142- 8]. CR ALVAREZ J, 1992, PHYS REV B, V45, P14042 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHERIEF N, 1990, VACUUM, V41, P1350 CHUBUNOVA EV, 1994, THIN SOLID FILMS, V247, P39 CRECELIUS G, 1993, APPL SURF SCI, V65-6, P683 EGERT B, 1984, PHYS REV B, V29, P2091 EISEBITT S, 1994, PHYS REV B, V50, P18330 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALLEGO JM, 1991, J APPL PHYS, V69, P1377 GALLEGO JM, 1992, PHYS REV B, V46, P13339 HIMPSEL FJ, 1979, J VAC SCI TECHNOL, V16, P1297 KILPER R, 1995, APPL SURF SCI, V91, P93 KISKER E, 1992, ANGLE RESOLVED PHOTO KOBAYASHI N, 1995, THIN SOLID FILMS, V270, P406 KOKE P, 1985, SURF SCI, V152, P1001 KONUMA K, 1993, J APPL PHYS, V73, P1104 KRAMER B, 1970, PHYS STATUS SOLIDI, V41, P649 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 LEFKI K, 1993, J APPL PHYS, V74, P1138 MURARKA SP, 1985, SILICIDES VLSI APPLI NAZIR ZH, 1996, J MAGN MAGN MATER, V156, P435 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VESCOVO E, 1995, SOLID STATE COMMUN, V94, P751 TC 7 BP 10801 EP 10804 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD NOV 1 VL 56 IS 17 GA YD476 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YD47600027 ER PT J AU Kim, KJ Kang, JH Bahng, JH Lee, MH Lynch, DW TI Optical properties of Fe1-xSix alloys (x<=0.1) studied by spectroscopic ellipsometry SO JOURNAL OF APPLIED PHYSICS NR 15 AB Optical properties of dilute Fe1-xSix (x less than or equal to 0.1> alloys were studied by spectroscopic ellipsometry in the 1.5-6 eV photon energy region. The absorption strength of the alloys is found to decrease in the entire energy region as the Si composition increases. The interband-transition edges of Fe at about 2.5 eV in the minority-spin bands and at about 5 eV in the majority-spin bands shift to lower energies as the Si composition increases. The decrease in the absorption strength is interpreted as due to a decrease in the density of states of the Fe host and also due to a reduction of conduction-electron concentration in the alloys. The shifts of the 2.5 and 5 eV interband-transition edges can be explained in terms of a perturbative variation in the band structure of Fe induced by its alloying with Si. (C) 1997 American Institute of Physics. CR ASPNES DE, 1975, APPL OPTICS, V14, P220 AZZAM RAM, 1977, ELLIPSOMETRY POLARIZ CALANDRA C, 1992, PHYS REV B, V45, P5819 CHAIKEN A, 1996, PHYS REV B, V53, P5518 FIORILLO F, 1996, J MAGN MAGN MATER, V157, P428 JACCARINO V, 1967, PHYS REV, V160, P476 KIM KJ, 1994, J PHYS-CONDENS MAT, V6, P5069 KIM KJ, 1988, PHYS REV B, V38, P13107 KRAUSE TW, 1996, J APPL PHYS, V79, P3156 MUELLER JE, 1987, SOLID STATE COMMUN, V42, P365 RAO RS, 1983, PHYS REV B, V28, P5762 SCHNEEWEISS O, 1989, J PHYS-CONDENS MAT, V1, P4749 TAJIMA K, 1988, PHYS REV B, V38, P6954 TUNG RT, 1986, APPL PHYS LETT, V48, P1264 ZINOVEV VE, 1973, SOV PHYS JETP, V36, P1174 TC 0 BP 4043 EP 4046 PG 4 JI J. Appl. Phys. PY 1997 PD OCT 15 VL 82 IS 8 GA YA572 J9 J APPL PHYS UT ISI:A1997YA57200059 ER PT J AU Rioux, D Allen, B Hochst, H Zhao, D Huber, DL TI Birefringence-induced interference effects in thin-film magnetic-circular-dichroism spectra SO PHYSICAL REVIEW B-CONDENSED MATTER NR 26 AB Magnetic-circular-dichroism (MCD) spectra taken at the M-2,M-3 absorption edge of thin Fe films exhibit pronounced thickness- dependent variations in the MCD signal and line shape which are related to birefringence effects in the ferromagnetic film. Model calculations based on the Maxwell-Fresnel formalism are used to calculate the different interference effects occurring for left- and right-circularly polarized light reflected from the vacuum/film/substrate interfaces. The M-2,M-3 MCD experiments confirm the magnitude- and thickness-dependent periodicity predicted by the macroscopic theory. The data clearly demonstrate the importance of the interference effects which are very pronounced for film thicknesses up to several units of the excitation wavelength lambda. While at the Fe M- 2,M-3 transition the thickness corresponding to the wavelength unit is about 220 Angstrom, the same effects are to be expected in the Fe L-2,L-3 spectra for considerably thinner films since the wavelength is only lambda similar to 17 Angstrom. The observed interference effects are of general character and caution should be employed in attempts to relate changes in the L-2,L-3 MCD spectra of several-monolayer thin films solely to the formation or reorientation of magnetic moments and to their decomposition into spin and orbital components. Because the theory employed here considers the total power dissipated in the ref-lection and absorption processes rather than amplitudes of reflected waves, interference effects are not restricted to reflection MCD measurements, but should also be present in a slightly modified form in the more commonly used total- electron-yield-type absorption MCD experiment. CR ANKUDINOV A, 1995, PHYS REV B, V51, P1282 CARRA P, 1993, PHYS REV LETT, V70, P694 CARROLL JJ, 1978, J OPTIC SOC AM, V72, P668 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHEN CT, 1990, PHYS REV B, V42, P7262 CHEN CT, 1995, PHYS REV LETT, V75, P152 COLLINS SP, 1989, J PHYS-CONDENS MAT, V1, P323 ERSKINE JL, 1975, PHYS REV B, V12, P5016 FALICOV LM, 1990, J MATER RES, V5, P1299 GOEDKOOP JB, 1988, PHYS REV B, V37, P2086 HOCHST H, 1997, J APPL PHYS, V81, P7584 HOCHST H, 1994, NUCL INSTRUM METH A, V347, P107 HOCHST H, 1995, REV SCI INSTRUM, V66, P1598 HOCHST H, 1996, SURF SCI, V252, P998 MANCINI DC, 1992, REV SCI INSTRUM, V63, P1269 NAIK R, 1993, PHYS REV B, V48, P1008 OBRIEN WL, 1994, PHYS REV B, V50, P12672 SCHUTZ G, 1987, PHYS REV LETT, V58, P737 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STOHR J, 1994, NATO ASI SERIES E, V254, P221 THOLE BT, 1993, PHYS REV LETT, V70, P2499 THOLE BT, 1992, PHYS REV LETT, V68, P1943 THOLE BT, 1985, PHYS REV LETT, V55, P2086 VANDERLAAN G, 1996, PHYS REV B, V53, P14458 WU RQ, 1993, PHYS REV LETT, V71, P3581 ZHAO D, 1996, THESIS U WISCONSIN M TC 2 BP 753 EP 758 PG 6 JI Phys. Rev. B-Condens Matter PY 1997 PD JUL 1 VL 56 IS 2 GA XL827 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XL82700040 ER PT J AU Akinaga, H VanRoy, W Miyanishi, S Tanaka, K TI Temperature dependence of interlayer coupling in delta MnGa/(Ga,As,Mn)/delta MnGa trilayers SO JOURNAL OF APPLIED PHYSICS NR 16 AB We present the temperature dependence of the interlayer coupling, from 15 to 300 K, in ferromagnet/semiconductor/ferromagnet trilayers with the nominal structure of 10 nm delta Mn60Ga40/GaAs (n monolayers)/20 nn delta Mn54Ga46 [n=6-16 monolayers (ML) nominally] grown on (001) GaAs substrates by molecular-beam epitaxy, Since compositional analysis showed a strong diffusion of Mn into the GaAs spacer layer, we represent the trilayer structure as MnGa/(Ga,As,Mn)/MnGa. The magnetic-circular- dichroism loops showed antiferromagnetic coupling between both MnGa layers for the samples with a spacer layer from 6 to 14 ML GaAs nominally in the whole temperature range. The temperature coefficient of the coupling field was found to be positive for 6-8 ML spacers and negative for 10-14 ML spacers. We interpret these facts as the competition between two (or more) coupling mechanisms. For the sample with a 16 ML GaAs spacer layer, the interlayer coupling was antiferromagnetic below 200 K, but ferromagnetic above 200 K. (C) 1997 American Institute of Physics. CR BITHER TA, 1965, J APPL PHYS, V36, P1501 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1994, PHYS REV B, V49, P13231 CHAIKEN A, 1996, PHYS REV B, V53, P5518 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KRISHNAN KM, 1992, APPL PHYS LETT, V61, P2365 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIYANISHI S, 1996, APPL PHYS LETT, V68, P2890 PRINZ GA, 1990, SCIENCE, V250, P1092 SANDS T, 1990, APPL PHYS LETT, V57, P2609 TANAKA M, 1993, APPL PHYS LETT, V62, P1565 THIBADO PM, 1996, PHYS REV B, V53, PR1041 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANROY W, 1996, APPL PHYS LETT, V69, P711 VANROY W, IN PRESS J MAGN MAGN TC 5 BP 5345 EP 5347 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2B GA WV537 J9 J APPL PHYS UT ISI:A1997WV53700240 ER PT J AU Dekoster, J Bemelmans, H Degroote, S Moons, R Verheyden, J Vantomme, A Langouche, G TI Epitaxial growth of and silicide formation in Fe/FeSi multilayers SO JOURNAL OF APPLIED PHYSICS NR 15 AB The structural properties of multilayers consisting of Fe layers separated by Si or FeSi layers grown with molecular beam epitaxy on MgO(001) and Si(lll) are reported. Rutherford backscattering and ion channeling are used to determine the crystallinity of the layers. We find evidence for epitaxy, alloying effects, and structural coherence. Conversion electron Mossbauer spectroscopy is utilized to investigate the silicide formation in the spacer layer of Fe/FeSi multilayers and at the interface of Fe/Si layers. The silicide formed in Fe/FeSi multilayers is characterized by a broad single line Mossbauer resonance which is characteristic for the metastable CsCl-FeSi phase. For Fe/Si multilayers the Mossbauer results indicate that FeSi compounds with clearly other hyperfine parameters than the CsCl phase are formed in the spacer. (C) 1997 American Institute of Physics. CR BOST MC, 1985, J APPL PHYS, V58, P2696 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHU WK, 1978, BACKSCATTERING SPECT, P257 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DESIMONI J, 1993, APPL PHYS LETT, V62, P306 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JACCARINO V, 1967, PHYS REV, V160, P476 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MULLER E, 1994, APPL PHYS LETT, V64, P1938 PHASE DM, 1987, NUCL INSTRUM METH B, V19-2, P737 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 4 BP 5349 EP 5351 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2B GA WV537 J9 J APPL PHYS UT ISI:A1997WV53700242 ER PT J AU deVries, JJ Kohlhepp, J denBroeder, FJA Coehoorn, R Jungblut, R Reinders, A deJonge, WJM TI Exponential dependence of the interlayer exchange coupling on the spacer thickness in MBE-grown Fe/SiFe/Fe sandwiches SO PHYSICAL REVIEW LETTERS NR 20 AB The structure and interlayer exchange coupling in MBE-grown Fe/SiFe/Fe has been investigated. From structural analysis with LEED and from magnetic analysis with the magneto-optical Kerr effect, it is concluded that the Si spacer transforms into an ordered Si0.5Fe0.5 alloy. A strong antiferromagnetic coupling is found (maximum -2.0 mJ/m(2)), the strength of which varies exponentially as a function of the spacer thickness. This behavior can be explained within the framework of recent coupling theories. CR ANDERSON GW, 1995, APPL PHYS LETT, V66, P1123 BLOEMEN PJH, 1992, J MAGN MAGN MATER, V104, P1775 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1995, PHYS REV B, V52, P411 CELINSKI Z, 1991, J APPL PHYS, V70, P5870 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEBOER FR, 1988, COHESION METALS TRAN DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 SHI ZP, COMMUNICATION SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, IN PRESS SLONCZEWSKI JC, 1989, PHYS REV B, V39, P995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 27 BP 3023 EP 3026 PG 4 JI Phys. Rev. Lett. PY 1997 PD APR 14 VL 78 IS 15 GA WT633 J9 PHYS REV LETT UT ISI:A1997WT63300039 ER PT J AU Kohlhepp, J denBroeder, FJA Valkier, M vanderGraaf, A TI Apparent strong biquadratic contributions to the interlayer exchange coupling in Fe/Si multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 13 AB We have studied the interlayer exchange coupling in sputtered Fe/Si multilayers both by integrating and by depth-sensitive magnetic methods. We find that the degrees of antiferromagnetic alignment of adjacent ferromagnetic layers and their rotation process in an applied magnetic field depend on the position in the multilayer stack. The observed vertical and lateral variations of the coupling properties are able to mimic an apparent strong biquadratic coupling. CR BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 10 BP 431 EP 434 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200110 ER PT J AU deVries, JJ Kohlhepp, J denBroeder, FJA Verhaegh, PA Jungblut, R Reinders, A deJonge, WJM TI Structural and magnetic analysis of MBE-grown Fe/Si/Fe and Fe/Ge/Fe sandwiches SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 19 AB The structure and the interlayer exchange coupling in MBE-grown nominal Fe/Ge1-xFex/Fe (x = 0.0, 0.25, 0.33, 0.5) and Fe/Si/Fe sandwiches with wedge-shaped spacer layers were investigated. In the case of Fe/Si a sample with a wedge-shaped magnetic layer was also studied. From a structural analysis with LEED and from a magnetic analysis with the magneto-optical Kerr effect, it is concluded that the Si spacer transforms into an SiFe alloy with the deposition of Fe. A strong antiferromagnetic coupling is found in the case of Fe/Si, but no antiferromagnetic coupling is found for Fe/Ge1-xFex It appears that the coupling behavior in Fe/Si(SiFe)/Fe sandwiches as a function of spacer thickness is monotonous rather than oscillatory. CR 1996, LANDOLTBORNSTEIN SOL, V3, P41 ANDERSON GW, 1995, APPL PHYS LETT, V66, P1123 ANDERSON GW, 1995, PHYS REV LETT, V74, P2764 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS SWISS FEDERAL BRINER B, 1993, Z PHYS B, V92, P1 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 MATTSON JE, 1994, J APPL PHYS, V75, P6169 MATTSON JE, 1993, PHYS REV LETT, V71, P185 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 4 BP 435 EP 438 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200111 ER PT J AU Kohlhepp, J Valkier, M vanderGraaf, A denBroeder, FJA TI Mimicking of a strong biquadratic interlayer exchange coupling in Fe/Si multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 29 AB The antiferromagnetic interlayer exchange coupling properties of sputtered Fe/Si multilayers have been studied by magnetometry and spin-polarized neutron reflectometry. Both the degree of antiferromagnetic alignment of adjacent ferromagnetic layers at zero field and the strength of the coupling are found to depend on the position in the multilayer stack. It is shown that these interlayer coupling variations are able to imitate an apparent strong biquadratic coupling. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BOBO JF, 1993, J MAGN MAGN MATER, V126, P440 BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRADMANN U, 1994, J MAGN MAGN MATER, V137, P44 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, IN PRESS J MAGN MAGN KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEKNER J, 1987, THEORY REFLECTION MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SHI ZP, UNPUB SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANDERGRAAF A, IN PRESS J MAGN MAGN VANWELL AA, 1994, PHYSICA B, V198, P217 VONKANEL H, 1992, PHYS REV B, V45, P13877 TC 9 BP R696 EP R699 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD JAN 1 VL 55 IS 2 GA WD789 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WD78900013 ER PT J AU Michel, RP Chaiken, A Kim, YK Johnson, LE TI NiO exchange bias layers grown by direct ion beam sputtering of a nickel oxide target SO IEEE TRANSACTIONS ON MAGNETICS NR 13 AB A new processes for fabricating NiO exchange bias layers has been developed, The process involves the direct ion beam sputtering (IBS) of a NiO target. The process is simpler than other deposition techniques for producing NiO buffer layers, and facilitates the deposition of an entire spin-valve layered structure using IBS without breaking vacuum. The layer thickness and temperature dependence of the exchange field for NiO/NiFe films produced using IBS are presented and are similar to those reported for similar films deposited using reactive magnetron sputtering. The magnetic properties of highly textured exchange couples deposited on single crystal substrates are compared to those of simultaneously deposited polycrystalline films, and both show comparable exchange fields. These results are compared to current theories describing the exchange coupling at the NiO/NiFe interface. CR CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 CAREY MJ, 1991, J MATER RES, V6, P2680 CHAIKEN A, 1996, PHYS REV B, V53, P5518 KENNEDY RJ, 1995, IEEE T MAGN, V31, P3829 LAI CH, 1995, IEEE T MAGN, V31, P2609 LIN CL, 1995, IEEE T MAGN, V31, P4091 LIN T, 1995, IEEE T MAGN, V31, P2585 LIND DM, 1992, PHYS REV B, V45, P1838 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MARTIN PJ, 1986, PROGR OPTICS, V23, P114 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MORAN TJ, 1995, J APPL PHYS, V78, P1887 SOEYA S, 1994, J APPL PHYS, V76, P5356 TC 19 BP 4651 EP 4653 PG 3 JI IEEE Trans. Magn. PY 1996 PD SEP VL 32 IS 5 PN 2 GA VM259 J9 IEEE TRANS MAGN UT ISI:A1996VM25900117 ER PT J AU Carlisle, JA Chaiken, A Michel, RP Terminello, LJ Jia, JJ Callcott, TA Ederer, DL TI Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 17 AB Soft-x-ray fluorescence spectroscopy has been employed to obtain information about the Si-derived valence-band states of Fe/Si multilayers. The valence-band spectra are quite different for films with and without antiferromagnetic interlayer exchange coupling, demonstrating that these multilayers have different silicide phases in their spacer layers. Comparison with previously published fluorescence data on bulk iron silicides shows that the Fe concentration in the silicide spacer layers is substantial. Near-edge x-ray-absorption data on antiferromagnetically coupled multilayers in combination with the fluorescence data demonstrate unambiguously that the silicide spacer layer in these films is metallic. These results on the electronic structure of buried layers in a multilayer film exemplify the wide range of experiments made possible by high-brightness synchrotron sources. CR BIANCONI A, 1987, SOLID STATE COMMUN, V64, P1313 CARLISLE JA, 1995, APPL PHYS LETT, V67, P34 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHANG LL, 1985, SYNTHETIC MODULATED EDERER DL, 1994, SYNCHROTRON RAD NEWS, V7, P29 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1996, PHYS REV B, V52, P5112 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S JIA JJ, 1992, PHYS REV B, V46, P9446 JIA JJ, 1995, REV SCI INSTRUM, V66, P1394 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MICHEL RP, UNPUB NILSSON PO, 1995, PHYS REV B, V52, PR8643 PERERA RCC, 1989, J APPL PHYS, V66, P3676 RUBENSSON JE, 1990, PHYS REV LETT, V64, P1047 STOHR J, 1992, NEXAFS SPECTROSCOPY VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 15 BP R8824 EP R8827 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD APR 1 VL 53 IS 14 GA UF064 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UF06400005 ER PT J AU Fullerton, EE Bader, SD TI Temperature-dependent biquadratic coupling in antiferromagnetically coupled Fe/FeSi multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 36 AB Fe/FeSi multilayers are known to exhibit a strong antiferromagnetic interlayer coupling peak centered at a nominal FeSi spacer thickness of similar to 15+/-2 Angstrom at room temperature, and to develop remanence in the magnetic hysteresis loop upon cooling to similar to 100 K. An analysis of the hysteresis loops is found to require the inclusion of a temperature-dependent biquadratic (90 degrees coupling) in addition to the bilinear coupling term in the energetics. The temperature dependence of the Fe/FeSi multilayer coupling can then be understood in terms that are applicable to conventional metallic multilayer systems such as Fe/Cr. CR AEPPLI G, 1992, COMMENTS COND MAT PH, V16, P155 BLAND AC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND AC, 1994, ULTRATHIN MAGNETIC S, V1 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B, V92, P135 BRINER B, 1995, Z PHYS B CON MAT, V97, P459 BRINER B, 1994, Z PHYS B CON MAT, V96, P291 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1995, MRS S P, V382 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 INOMATA K, 1995, PHYS REV LETT, V74, P1863 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 MATTSON JE, 1993, PHYS REV LETT, V71, P185 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1994, PHYSICA B, V198, P173 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 28 BP 5112 EP 5115 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD MAR 1 VL 53 IS 9 GA UA011 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UA01100020 ER