FN ISI Export Format VR 1.0 PT J AU Gebele, O Bohm, M Krey, U Krompiewski, S TI Systematic two-band model calculations of the GMR effect with metallic and non-metallic spacers and with impurities SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 39 AB By a semi-empirical Green's function method we calculate resistances and the corresponding giant magneto-resistance effects (GMR) of two metallic ferromagnetic films separated by different spacers, metallic and non-metallic ones, in a simplified model on an SC lattice, in CPP and CIP geometries (i.e. current perpendicular or parallel to the planes), without impurities, or with interface- or bulk impurities. The electronic structure of the systems is approximated by two hybridized orbitals per atom, to mimic s-bands and d-bands and their hybridization. We show that such calculations usually give rough estimates only, but of the correct order of magnitude; in particular, the predictions on the impurity effects depend strongly on the model parameters. One of our main results is the prediction of huge CPP-GMR effects for non- metallic spacers in the ballistic limit. (C) 2000 Elsevier Science B.V. All rights reserved. CR ASANO Y, 1994, J MAGN MAGN MATER, V136, PL18 ASANO Y, 1994, PHYS REV B, V49, P12381 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINASCH G, 1989, PHYS REV B, V39, P4828 BINDER J, 1997, J MAGN MAGN MATER, V165, P100 BOHM M, UNPUB BRINER B, 1995, Z PHYS B CON MAT, V97, P459 BRUNO P, 1999, J MAG MAG MAT, V198, P46 BURGLER DE, 1998, PHYS REV LETT, V80, P4983 BUTLER WH, 1997, J APPL PHYS, V81, P5518 CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988 DATTA S, 1990, APPL PHYS LETT, V56, P665 DATTA S, 1995, ELECT TRANSPORT MESO GARCIA N, 1999, PHYS REV LETT, V82, P2923 GEBELE O, 1998, THESIS U REGENSBURG GIJS MAM, 1997, ADV PHYS, V46, P285 JULLIERE M, 1975, PHYS LETT A, V54, P225 KROMPIEWSKI S, 1998, EUROPHYS LETT, V44, P661 LEE PA, 1981, PHYS REV LETT, V47, P882 MACLAREN JM, 1999, PHYS REV B, V59, P5470 MATHON J, COMMUNICATION MATHON J, 1997, PHYS REV B, V56, P11797 MATHON J, 1997, PHYS REV B, V56, P11810 MATHON J, 1997, PHYS REV B, V55, P960 MERTIG I, 1995, J MAGN MAGN MATER, V151, P363 MESERVEY R, 1970, PHYS REV LETT, V25, P1270 MONSMA DJ, 1995, PHYS REV LETT, V74, P5260 MOSER A, 1998, J MAGN MAGN MATER, V183, P272 PRINZ GA, 1995, PHYS TODAY, V48, P58 SANVITO S, 1998, J PHYS-CONDENS MAT, V10, PL691 SANVITO S, 1999, PHYS REV B, V59, P11936 SCHEP KM, 1995, PHYS REV LETT, V74, P586 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STEARNS MB, 1977, J MAGN MAGN MATER, V5, P167 THEEUWEN SJC, CONDMAT9911133 DIMES TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TSYMBAL EY, 1996, PHYS REV B, V54, P15314 ZAHN P, 1998, PHYS REV LETT, V80, P4309 ZAHN P, 1995, PHYS REV LETT, V75, P2996 TC 0 BP 309 EP 326 PG 18 JI J. Magn. Magn. Mater. PY 2000 PD JUN VL 214 IS 3 GA 317ZW J9 J MAGN MAGN MATER UT ISI:000087259500020 ER PT J AU Hunziker, M Landolt, M TI Molecular-orbital model of heat-induced effective exchange coupling in magnetic multilayers SO PHYSICAL REVIEW LETTERS NR 10 AB Heat-induced effective exchange coupling between two ferromagnets across a semiconductor spacer layer is described by the interaction of localized, weakly bound electron states which are situated at the two interfaces. These states overlap across the spacer layer and form large molecular orbitals. The energies of these orbitals depend on the spin configuration of the electrons and therefore determine the exchange coupling. Thermal repopulation of the levels yields a positive temperature coefficient of the coupling. The results are found to well reproduce the experimental observations. CR BRINER B, 1994, 10465 ETH BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1994, PHYS REV B, V49, P13231 DEMELO CARS, 1995, PHYS REV B, V51, P8922 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P3995 SUGIURA Y, 1927, Z PHYS, V45, P484 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1999, PHYS REV B, V60, P4082 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 4713 EP 4716 PG 4 JI Phys. Rev. Lett. PY 2000 PD MAY 15 VL 84 IS 20 GA 313JT J9 PHYS REV LETT UT ISI:000086997100050 ER PT J AU Schleberger, M TI Quantitative investigation of amorphous Fe/Ge and Fe/Si by inelastic peak shape analysis SO SURFACE SCIENCE NR 16 AB We investigate the nanostructure of amorphous iron/silicon and iron/germanium samples with inelastic background analysis of X- ray photoelectron spectra. To this end we deposit iron films of Varying thickness on amorphous silicon and germanium substrates. Additionally, we prepare codeposited iron-silicon and iron-germanium samples with varying stoichiometry. We show the interpolation of the inelastic mean free path from the corresponding values of the respective materials to be a valid approximation. We find that the Universal cross-section is fully sufficient for the analysis of iron/silicon and iron/germanium systems. The analysis of the nanostructure can be performed either with pure iron reference spectra or with coevaporated reference spectra. From the analysis of the Ge LMM and Si KLL substrate spectra we obtain only limited information for the thinner films. The analysis of the Fe 3p spectra from the deposits results in the quantitative determination of the nanostructure of our samples. (C) 2000 Elsevier Science B.V. All rights reserved. CR *QUASES, QUASES VERS 2 1 CONT HANSEN HS, 1992, J VAC SCI TECHNOL A, V10, P2938 JANSSON C, 1994, J VAC SCI TECHNOL A, V12, P2332 SCHLEBERGER M, 1997, J VAC SCI TECHNOL A, V15, P3032 SCHLEBERGER M, 1995, J VAC SCI TECHNOL B, V13, P949 SCHLEBERGER M, 1999, PHYS REV B, V60, P14360 SCHLEBERGER M, 1995, SURF SCI, V331, P942 SIMONSEN AC, 1999, THIN SOLID FILMS, V338, P165 TANUMA S, 1988, SURF INTERFACE ANAL, V11, P577 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOUGAARD S, 1996, J VAC SCI TECHNOL A, V14, P1415 TOUGAARD S, 1981, PHYS REV B, V25, P4452 TOUGAARD S, 1987, SOLID STATE COMMUN, V61, P547 TOUGAARD S, 1998, SURF INTERFACE ANAL, V26, P249 TOUGAARD S, 1997, SURF INTERFACE ANAL, V25, P137 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 71 EP 79 PG 9 JI Surf. Sci. PY 2000 PD JAN 10 VL 445 IS 1 GA 275ZK J9 SURFACE SCI UT ISI:000084850500018 ER PT J AU Schleberger, M Walser, P Hunziker, M Landolt, M TI Amorphous Fe-Si and Fe-Ge nanostructures quantitatively analyzed by x-ray-photoelectron spectroscopy SO PHYSICAL REVIEW B NR 16 AB The subject of this paper is an x-ray-photoelectron spectroscopy investigation of amorphous Fe-Si and Fe-Ge nanostructures that have attracted interest because of their magnetic coupling properties. To this end we deposit Fe onto clean, amorphous Si and Ge substrates at room temperature and at 40 K, respectively. We take spectra of the Fe3p, Fe2p, and Si2p core Levels to determine possible chemical shifts. The results indicate a charge transfer from the Fe to the Si and Ge atoms at room temperature as well as at 40 K. Additionally, we record wide range spectra of the SiKLL, GeLMM, and the Fe2p peaks as well as spectra of Fe-Si, and Fe-Ge compounds, respectively. Analyzing the inelastic background of the peaks we quantitatively determine the nanostructure of the deposits. We can exclude the formation of sharp interfaces. Instead, we find evidence for the formation of an Fe-Si or Fe-Ge interface compound with a homogeneous composition. For magnetically investigated low-temperature prepared Fe/Si/Fe trilayers we show that the spacer layer is a pure semiconductor with a thickness that is reduced compared to the nominal value. [S0163-1829(99)02443-1]. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 EGERT B, 1984, PHYS REV B, V29, P2091 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 HAUSSLER P, COMMUNICATION INOMATA K, 1995, PHYS REV LETT, V74, P1863 KILPER R, 1995, APPL SURF SCI, V91, P93 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 SCHLEBERGER M, 1995, SURF SCI, V331, P942 SHIRLEY DA, 1972, PHYS REV B-SOLID ST, V5, P4709 TANUMA S, 1988, SURF INTERFACE ANAL, V11, P577 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOUGAARD S, 1988, SURF INTERFACE ANAL, V11, P453 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 1 BP 14360 EP 14365 PG 6 JI Phys. Rev. B PY 1999 PD NOV 15 VL 60 IS 20 GA 261NP J9 PHYS REV B UT ISI:000084015500062 ER PT J AU Bruno, P TI Theory of interlayer exchange interactions in magnetic multilayers SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 122 AB This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations. CR BACK CH, 1997, J APPL PHYS, V81, P5054 BACK CH, 1995, PHYS REV B, V52, P13114 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BOUNOUH A, 1996, EUROPHYS LETT, V33, P315 BRINER B, 1994, PHYS REV LETT, V73, P340 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO P, 1999, CONDMAT9905022 BRUNO P, 1999, EUR PHYS J B, V11, P83 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1999, IN PRESS BRUNO P, 1997, J MAGN MAGN MATER, V165, P128 BRUNO P, 1996, J MAGN MAGN MATER, V164, P27 BRUNO P, 1995, J MAGN MAGN MATER, V148, P202 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1999, MAGNETISCHE SCHICHTS, PCHB8 BRUNO P, 1996, PHYS REV B, V53, P9214 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1996, PHYS REV LETT, V46, P4253 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CARL A, 1995, PHYS REV LETT, V74, P190 CRAMPIN S, 1996, PHYS REV B, V53, P13817 DEMIGUEL JJ, 1991, J MAGN MAGN MATER, V93, P1 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 DEMOKRITOV SO, 1991, MAGNETIC SURFACES TH, P133 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1995, PHYS REV LETT, V75, P1306 DEVRIES JJ, 1996, THESIS EINDHOVEN U T DRCHAL V, 1998, PHILOS MAG B, V78, P571 DRCHAL V, 1996, PHYS REV B, V53, P15036 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FURUKAWA T, 1996, PHYS REV B, V54, P17896 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 HIMPSEL FJ, 1995, J ELECTRON SPECTROSC, V75, P187 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 INOMATA K, 1995, PHYS REV LETT, V74, P1863 IVES AJR, 1994, J APPL PHYS, V75, P6458 JALOCHOWSKI M, 1992, PHYS REV B, V45, P13607 JOHNSON MT, 1993, MATER RES SOC S P, V313, P93 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JOHNSON PD, 1994, PHYS REV B, V50, P8954 JONES BA, 1998, IBM J RES DEV, V42, P25 KATAYAMA T, 1993, J MAGN MAGN MATER, V126, P527 KAWAKAMI RK, 1999, PHYS REV LETT, V82, P4098 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIRILYUK A, 1996, PHYS REV LETT, V77, P4608 KLASGES R, 1998, PHYS REV B, V57, PR696 KUDMOVSKY J, 1996, PHYS REV B, V54, P3738 KUDRNOVSKY J, 1998, COMP MATER SCI, V10, P188 KUDRNOVSKY J, 1997, MATER RES SOC SYMP P, V475, P575 KUDRNOVSKY J, 1997, PHYS REV B, V56, P8919 LANG P, 1996, PHYS REV B, V53, P9092 LEE B, 1996, PHYS REV B, V54, P13034 LEE BC, 1995, PHYS REV B, V52, P3499 LI DQ, 1995, PHYS REV B, V51, P7195 LI DQ, 1997, PHYS REV LETT, V78, P1154 LINDGREN SA, 1989, J PHYS-CONDENS MAT, V1, P2151 LINDGREN SA, 1988, PHYS REV B, V38, P3060 LINDGREN SA, 1988, PHYS REV LETT, V61, P2894 LINDGREN SA, 1987, PHYS REV LETT, V59, P3003 LOLY PD, 1983, J PHYS C SOLID STATE, V16, P423 LUCE TA, 1996, PHYS REV LETT, V77, P2810 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1997, PHYS REV B, V56, P11797 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEGY R, 1995, PHYS REV B, V51, P5586 MILLER T, 1988, PHYS REV LETT, V61, P1404 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MUELLER MA, 1990, PHYS REV B, V41, P5214 MUELLER MA, 1989, PHYS REV B, V40, P5845 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631 OKUNO SN, 1993, PHYS REV LETT, V70, P1771 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, PHYS REV B, V44, P5355 RHYNE JJ, 1995, MAGNETIC MAT, V5, P1 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SEGOVIA P, 1996, PHYS REV LETT, V77, P3455 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMITH NV, 1994, PHYS REV B, V49, P332 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1999, J MAGN MAGN MATER, V200, P322 STILES MD, 1993, PHYS REV B, V48, P7238 SUZUKI Y, 1998, PHYS REV LETT, V80, P5200 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WACHS AL, 1986, PHYS REV B, V33, P1460 WEBER W, 1995, EUROPHYS LETT, V31, P491 WEBER W, 1996, PHYS REV LETT, V76, P3424 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 TC 0 BP 9403 EP 9419 PG 17 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100011 ER PT J AU Ihara, N Narushima, S Kijima, T Abeta, H Saito, T Shinagawa, K Tsushima, T TI Magnetic properties and magnetoresistance of granular evaporated Fe/Si films SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 45 AB Fe (3.4 Angstrom) and Si (6 Angstrom) are evaporated alternately onto silica substrates to realize a granular structure. The substrate temperature T-s during the evaporation is changed from 100 K to 623 K to vary the film structures. The specimens of T-s greater than or equal to room temperature (RT) are superparamagnetic at RT, which suggests a granular structure. Magnetoresistance (MR) at RT is negative (resistivity decreases with increasing magnetic field H) for all specimens. It is thought that the negative MR is attributable to the granular structure. On the other hand, at 77 K a positive MR linear with H (not H-2) up to 50 kOe is observed for all specimens. The linear dependence on H of the positive MR may be due to the nonuniformity in the granular structure. The positive MR itself and the change of the sign of MR from negative to positive with decreasing temperature have not been observed in conventional granular systems such as Co- Ag and Co-Al-O. CR BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRODSKY MH, 1970, PHYS REV B, V1, P2632 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1994, PHYS REV B, V49, P13231 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHANTRELL RW, 1978, IEEE T MAGN, V14, P975 CHIEN CL, 1993, J APPL PHYS, V73, P5309 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1998, IN PRESS J APPL PHYS ENDO Y, 1998, IN PRESS PHYS REV B ENDO Y, 1997, J MAGN SOC JPN, V21, P541 FUJIMORI H, 1995, MAT SCI ENG B-SOLID, V31, P219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRANQVIST CG, 1976, J APPL PHYS, V47, P2200 HIGHMORE RJ, 1995, J MAGN MAGN MATER, V151, P95 HUNT MB, 1994, PHYS REV B, V50, P14933 IHARA N, 1999, J MAGN SOC JPN, V23, P85 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KINBARA A, 1979, HAKUMAKU, P39 KITTEL C, 1963, QUANTUM THEORY SOLID, PCH12 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MASSALSKI B, 1990, BINARY ALLOY PHASE D, P1771 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MITANI S, 1997, J MAGN MAGN MATER, V165, P141 SAITO Y, 1998, J PHYS SOC JPN, V67, P1138 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SHI ZP, 1996, J APPL PHYS, V79, P4776 STROUD D, 1976, PHYS REV B, V13, P1434 TASSIS DH, 1998, J APPL PHYS, V84, P2960 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONHELMOLT R, 1994, PHYS STATUS SOLIDI B, V182, PK25 WALSER P, 1998, PHYS REV LETT, V80, P2217 XIA K, 1997, PHYS REV B, V56, P14901 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 0 BP 6272 EP 6281 PG 10 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 1999 PD NOV VL 38 IS 11 GA 261ZT J9 JPN J APPL PHYS PT 1 UT ISI:000084041800021 ER PT J AU Matsuyama, K Nishihata, K Komatsu, S Nozaki, Y TI Magnetic and electric properties of Sn-oxide/M (M=Fe, Ni, Co) multilayers. SO IEEE TRANSACTIONS ON MAGNETICS NR 7 AB Magnetic and electronic properties of novel semiconductive- oxide/ferromagnet multilayers of Sn-oxide and ferromagnetic metals (Fe, Ni, Co), deposited with a multi-target rf magnetron sputtering system, were studied. Among the studied material systems, Co/Sn-oxide sustains well-defined layer structure and ferromagnetic property for the thinnest thickness of 1 nm, A thermionic CPP transport was observed in [Co(2 nm) /Sn-oxide (4 nm)](10), which activation energy was evaluated as 4.4x10(-3) erg from the thermal dependence of conductivity. Negative magnetoresistance was observed in two orthogonal directions of in-plane external fields, which confirms spin dependent transport in Sn-oxide thin film, The measured MR change is 0.6 % (Delta R = 0.8 Omega, R-s=140 Omega) at room temperature. CR BULTER WH, 1997, J APPL PHYS, V81, P5518 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 INOMATA K, 1974, JPN J APPL PHYS, V33, PL1670 JIA YQ, 1996, IEEE T MAGN, V32, P4707 JOHNSON M, 1998, PHYS REV B, V58, P9635 MATSUYAMA K, 1999, IN PRESS J MAGN MAGN TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 2901 EP 2903 PG 3 JI IEEE Trans. Magn. PY 1999 PD SEP VL 35 IS 5 PN 1 GA 246EH J9 IEEE TRANS MAGN UT ISI:000083151100216 ER PT J AU Dekoster, J Degroote, S Meersschaut, J Moons, R Vantomme, A Bottyan, L Deak, L Szilagyi, E Nagy, DL Baron, AQR Langouche, G TI Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy SO HYPERFINE INTERACTIONS NR 23 AB Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Mossbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Mossbauer reflectometry. From the fits of the time spectrum and the resonant theta-2 theta scans a model for the sublayer magnetization of the multilayer is deduced. CR BOST MC, 1985, J APPL PHYS, V58, P2696 BOTTYAN L, UNPUB PHYS REV B BRUNO P, 1995, PHYS REV B, V52, P411 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 DEAK L, 1996, PHYS REV B, V53, P6158 DEGROOTE S, 1995, APPL SURF SCI, V91, P72 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1996, PHYS REV LETT, V57, P2442 JACCARINO V, 1967, PHYS REV, V160, P476 LANG P, 1993, PHYS REV LETT, V71, P1927 MADER KA, 1993, PHYS REV B, V48, P4364 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUEFFER R, 1996, HYP INTERACT, V97, P589 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SPIERING H, IN PRESS NUCL RESONA TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1994, PHYS REV B, V50, P3570 TC 0 BP 39 EP 48 PG 10 JI Hyperfine Interact. PY 1999 VL 121 IS 1-8 GA 236UP J9 HYPERFINE INTERACTIONS UT ISI:000082617800006 ER PT J AU Walser, P Hunziker, M Landolt, M TI Heat-induced effective exchange coupling in magnetic multilayers with semiconductors SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 35 AB Two ferromagnetic films separated by an amorphous semiconducting spacer layer are exchange coupled across the spacer. The coupling is reversibly temperature dependent with a positive temperature coefficient making such layered systems a 2-D realization of the concept of heat-induced magnetism. By studying ferromagentic Fe layers separated by amorphous Si, Ge, or ZnSe layers we explore the possibilities to generate such an effective exchange coupling and address the question of the mechanism responsible for it. (C) 1999 Elsevier Science B.V. All rights reserved. CR 1991, LANDOLTBERNSTEIN SER, V3 ALBERS A, 1994, PHYSICA B, V194, P1091 BERNASCONI J, 1969, PHYS KONDENS MATER, V10, P224 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BURGLER DE, 1998, PHYS REV LETT, V80, P4983 BUSCH G, 1967, HELV PHYS ACTA, V40, P812 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 FULLERTON EE, 1992, J MAGN MAGN MATER, V17, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIN PK, 1977, CAN J PHYS, V55, P1641 MAGNIN P, 1978, J APPL PHYS, V49, P1709 MAGNIN P, 1978, J PHYS F MET PHYS, V8, P2085 MOTT NF, 1987, CONDUCTION NONCRYSTA MOTT NF, 1979, ELECT PROCESSES NONC NEEL L, 1962, CR HEBD ACAD SCI, V255, P1676 OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHLEBERGER M, UNPUB SCHOLL A, 1998, THESIS U KOLN SIEGBHAN K, 1958, P REH C NUCL STRUCT, P1957 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1992, THESIS ETH ZURICH TOUGAARD S, 1990, J ELECTRON SPECTROSC, V52, P243 WALSER P, 1999, IN PRESS PHYS REV B, V60 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 95 EP 109 PG 15 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700008 ER PT J AU Walser, P Hunziker, M Speck, T Landolt, M TI Heat-induced antiferromagnetic coupling in multilayers with ZnSe spacers SO PHYSICAL REVIEW B NR 22 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. As spacer material we use amorphous ZnSe which is a compound semiconductor and find heat- induced antiferromagnetic coupling in striking similarity to amorphous Si and Ge. In an Fe/alpha-ZnSe/Fe trilayer with spacer thickness between 18 Angstrom and 22 Angstrom the coupling is antiferromagnetic with a positive temperature coefficient. At slightly larger thicknesses between 22 Angstrom and 25 Angstrom we find a reversible transition from ferromagnetic coupling at low temperatures to antiferromagnetic coupling at higher temperatures upon heating. We discuss the reversibly heat-induced effective exchange coupling in terms of localized defect states in the band gap in the vicinity of the Fermi energy. [S0163-1829(99)04230-7]. CR BRINER B, 1993, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETZ ZURICH CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GOLDFINGER P, 1963, T FARADAY SOC, V59, P2851 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 LIM PK, 1977, CAN J PHYS, V55, P1641 MOTT NF, 1987, CONDUCTION NONCRYSTA OHKAWA K, 1995, PHYS STATUS SOLIDI B, V187, P291 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PRINZ GA, 1994, ULTRATHIN MAGNETIC S SCHOLL A, 1998, THESIS U KOLN SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 1 BP 4082 EP 4086 PG 5 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100053 ER PT J AU Walser, P Landolt, M TI Heat-induced coupling in multilayers with semiconducting spacers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 11 AB Two ferromagnetic films separated by an amorphous semiconducting spacer are exchange coupled across the spacer layer. The coupling is reversibly temperature dependent with a positive temperature coefficient. (C) 1999 Elsevier Science B.V. All rights reserved. CR BRINER B, 1994, PHYS REV LETT, V73, P340 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1983 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP 412 EP 414 PG 3 JI J. Magn. Magn. Mater. PY 1999 PD JUN VL 199 GA 204TE J9 J MAGN MAGN MATER UT ISI:000080779600130 ER PT J AU Moroni, EG Wolf, W Hafner, J Podloucky, R TI Cohesive, structural, and electronic properties of Fe-Si compounds SO PHYSICAL REVIEW B NR 68 AB Phase stability, structural, and electronic properties of iron silicides in the Fe3Si, FeSi, and FeSi2 compositions are investigated by first-principle density-functional calculations based on ultrasoft pseudopotentials and all-electron methods. Structural stabilization versus spin-polarization effects are discussed at the Fe3Si composition, while for epsilon-FeSi and beta-FeSi2 we investigate their structural properties and the corresponding semiconducting band properties. All the computed results are analyzed and compared to available experimental data. The stability of the bulk phases, the lattice parameters, the cohesive energies and magnetic properties are found to be in good agreement with experiment when using the generalized gradient approximations for the exchange-correlation functional. Density-functional calculations are unable to account for the small bulk modulus of epsilon-FeSi despite that the computed lattice constant and internal atomic positions coincide with the experimental results. Both full-potential and ultrasoft-pseudopotential methods confirm for beta-FeSi2 the indirect nature of the fundamental gap, which is attributed to a transition between Y to 0.6X Lambda being 30% smaller than the experimental gap. Ultrasoft pseudopotential calculations of Fe-Si magnetic phases and of various nonequilibrium metallic phases at the FeSi and FeSi2 composition are presented. These calculations provide nb initio information concerning the stabilization of metallic pseudomorphic phases via high pressures or epitaxy. [S0163-1829(99)05419-3]. CR ANTONOV VN, 1998, PHYS REV B, V57, P8934 BAIN EC, 1924, T AIME, V70, P25 BLOCHL PE, 1994, PHYS REV B, V49, P16223 BOST MC, 1985, J APPL PHYS, V58, P2696 BUSSE H, 1997, SURF SCI, V381, P133 CASTRO GR, 1997, J PHYS-CONDENS MAT, V9, P1871 CHERIEF N, 1989, APPL PHYS LETT, V55, P1671 CHEVRIER J, 1993, EUROPHYS LETT, V22, P449 CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 CLARK SJ, 1998, PHYS REV B, V58, P10389 DEBOER FR, 1988, COHESION METALS, V1 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EISEBITT S, 1994, PHYS REV B, V50, P18330 EPPENGA R, 1990, J APPL PHYS, V68, P3027 FILONOV AB, 1996, J APPL PHYS, V79, P7708 FU C, 1994, PHYS REV B, V49, P2219 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GIANNINI C, 1992, PHYS REV B, V45, P8822 HINAREJOS JJ, 1998, PHYS REV B, V57, P1414 JANSEN HJF, 1984, PHYS REV B, V30, P561 JARLBORG T, 1995, PHYS REV B, V51, P11106 JARLBORG T, 1997, REP PROG PHYS, V60, P1305 KITTEL C, 1986, INTRO SOLID STATE PH KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KRESSE G, 1996, COMP MATER SCI, V6, P15 KRESSE G, 1994, J PHYS-CONDENS MAT, V6, P8245 KRESSE G, 1996, PHYS REV B, V54, P11169 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 LAASONEN K, 1993, PHYS REV B, V47, P10142 LOUIE SG, 1982, PHYS REV B, V26, P1738 MADER KA, 1993, PHYS REV B, V48, P4364 MANDRUS D, 1995, PHYS REV B, V51, P4763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MERMIN ND, 1965, PHYS REV, V137, PA1141 MIGLIO L, 1995, APPL PHYS LETT, V67, P2293 MIGLIO L, 1997, EUROPHYS LETT, V37, P415 MIGLIO L, 1995, PHYS REV B, V52, P1448 MONKHORST HJ, 1976, PHYS REV B, V13, P5188 MORONI EG, 1997, PHYS REV B, V56, P15629 MORONI EG, UNPUB MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244 NICULESCU VA, 1983, J MAGN MAGN MATER, V39, P223 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PAULING L, 1948, ACTA CRYSTALLOGR, V1, P212 PAXTON AT, 1990, PHYS REV B, V41, P8127 PERDEW JP, 1992, PHYS REV B, V45, P244 PERDEW JP, 1981, PHYS REV B, V23, P5048 RIZZI A, 1995, PHYS REV B, V51, P17780 RUBLOFF GW, 1983, SURF SCI, V132, P268 SAITOH S, 1981, JPN J APPL PHYS, V20, P1649 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TUNG RT, 1983, PHYS REV LETT, V50, P429 VANDERBILT D, 1990, PHYS REV B, V41, P7892 VILLARS P, 1985, PEARSONS HDB CRYSTAL VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 VONKANEL H, 1996, APPL SURF SCI, V104, P204 VONKANEL H, 1994, PHYS REV B, V50, P3570 VONKANEL H, 1992, PHYS REV B, V45, P13807 WALLART X, 1993, APPL SURF SCI, V70-1, P598 WALLART X, 1994, PHYS REV B, V49, P5714 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WHITE JA, 1994, PHYS REV B, V50, P4954 WILLIAMS AR, 1982, J APPL PHYS, V53, P2019 WOLF W, 1996, THESIS U WIEN WOOD DM, 1985, J PHYS A-MATH GEN, V18, P1343 ZINOVEVA GP, 1974, PHYS STATUS SOLIDI A, V23, P711 TC 2 BP 12860 EP 12871 PG 12 JI Phys. Rev. B PY 1999 PD MAY 15 VL 59 IS 20 GA 200ZW J9 PHYS REV B UT ISI:000080571000025 ER PT J AU Miyoshi, T Matsui, T Tsuda, H Mabuchi, H Morii, K TI Magnetic and electric properties of Mn5Ge3/Ge nanostructured films SO JOURNAL OF APPLIED PHYSICS NR 12 AB We have investigated the magnetic, electric, and structural properties of Mn5Ge3/Ge nanostructured films produced by solid- state reaction of Mn/Ge multilayered films. The films composed of strongly uniaxially oriented Mn5Ge3 and randomly oriented Ge were successfully produced. The average grain size of Mn5Ge3 considerably changed according to the discharging power (E) of the ion source: 15 nm for E = 25 W and 50 nm for E = 50 W. The temperature dependence of the conductivity for the E = 25 sample showed semiconductor-type behavior over all the temperature region. Whereas the E = 50 sample, the conduction type changed from a metallic type (low temperature) to a semiconductor type (high temperature) with the transition temperature T-TR = 360 K. We also observed the anomalous magnetic behavior of Mn5Ge3. We discuss these behaviors in conjunction with the microstructure of the annealed films. The possibility of the carrier-spin exchange interactions has also been studied. (C) 1999 American Institute of Physics. [S0021- 8979(99)22208-6]. CR BROWN JL, 1994, IEEE T COMPON PACK A, V17, P373 DAUGHTON JM, 1992, THIN SOLID FILMS, V216, P162 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FURDYNA JK, 1988, J APPL PHYS, V64, P29 INOMATA K, 1995, MAT SCI ENG B-SOLID, V31, P41 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATSUI T, 1996, J ALLOY COMPD, V236, P111 MATUI T, 1992, MAT SCI ENG B-FLUID, V14, P95 MATUI T, 1993, MATER CHEM PHYS, V36, P106 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 YAMADA N, 1990, J PHYS SOC JPN, V59, P273 ZAETS W, 1997, APPL PHYS LETT, V70, P2508 TC 0 BP 5372 EP 5374 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2B GA 188NF J9 J APPL PHYS UT ISI:000079853500032 ER PT J AU Endo, Y Kikuchi, N Kitakami, O Shimada, Y TI Antiferromagnetic coupling in Co/Ge superlattices SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 16 AB We have investigated interlayer coupling of Co/Ge superlattices. The present experiments obviously show that the coupling changes from ferromagnetic (F) to antiferromagnetic (AF) and finally to non-coupling (N) with the increase of Ge layer thickness. This coupling behaviour, as a function of the spacer thickness, is very similar to that of Fe/Si superlattices, although the coupling strength is much smaller than the latter: namely, similar to 0.05 erg cm(-2) for Co/Ge and similar to 1.0 erg cm(-2) for Fe/Si. Precise structural characterization indicates that diffused spacers at Co/Ge interfaces are responsible for the AF coupling. The same coupling behaviour has also been observed in Co/non-magnetic Co-Ge superlattices, where interdiffusion at the interfaces is entirely suppressed. All these results clearly demonstrate that the interlayer coupling between neighbouring Co layers is mediated by non-magnetic Co-Ge spacers. CR BRINER B, 1995, PHYS REV B, V51, P7303 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEVRIES JJ, 1997, J MAGN MAGN MATER, V165, P435 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1999, IN PRESS J APPL PHYS ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, 1999, PHYS REV B, V59, P4279 FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WALSER P, 1998, PHYS REV LETT, V80, P2217 TC 0 BP L133 EP L137 PG 5 JI J. Phys.-Condes. Matter PY 1999 PD APR 19 VL 11 IS 15 GA 189PL J9 J PHYS-CONDENS MATTER UT ISI:000079913700001 ER PT J AU Wang, JZ Li, BZ TI Interlayer exchange coupling between two ferromagnets with finite thickness separated by a nonmetallic spacer SO PHYSICAL REVIEW B-CONDENSED MATTER NR 17 AB Interlayer exchange coupling (IEC) between two ferromagnets (FM's) separated by a nonmetallic spacer is analyzed theoretically within the free-electron approximation. Particular attention is paid to the influence of FM thickness d(FM) On IEC and the variation of Fermi energy with the alignment of two FM's. The results show that (I)d(FM) strongly influence the IEC such that, only when d(FM) is not large, the barrier height and molecular field are both small, the IEC may oscillate with the spacer thickness owing to the quantum-size effect; otherwise, the IEC does not oscillate, but exhibits an exponential behavior in most spacer thickness; (2) as an oscillatory function of d(FM) with multiple periods, the IEC has a negative nonoscillatory term, which will become zero when the molecular field is comparatively small; (3) the Fermi energy has little difference between the parallel and antiparallel alignments of the two FM's, which correlates with the IEC to some extent. Particularly, with the increasing of d(FM) this correlation becomes stronger. [S0163-1829(99)01409- 5]. CR BANARAS J, 1992, J MAGN MAGN MATER, V111, PL215 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1995, PHYS REV B, V52, P411 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SHI ZP, 1994, EUROPHYS LETT, V26, P473 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIAO MW, 1996, PHYS REV B, V54, P3322 YANG GL, 1996, ACTA PHYS SINICA, V45, P869 ZHANG WS, 1998, PHYS REV B, V58, P14959 ZHANG XD, 1998, PHYS REV B, V57, P1090 TC 0 BP 6383 EP 6389 PG 7 JI Phys. Rev. B-Condens Matter PY 1999 PD MAR 1 VL 59 IS 9 GA 178EX J9 PHYS REV B-CONDENSED MATTER UT ISI:000079254300058 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Interlayer coupling in Fe/Fe1-xSix superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 28 AB Interlayer coupling has been investigated for a series of Fe/Fe1-xSix (0.4 less than or equal to x less than or equal to 1.0) superlattices. The layer of Fe1-xSix in the lattices is ferromagnetic for x<0.5 and causes ferromagnetic coupling between Fe layers for all spacer thicknesses investigated here. As the Si content increases above x=0.5, the layer becomes nonmagnetic and simultaneously our current in the plane of the sample and current perpendicular to the sample plane measurements suggest that the spacer rapidly changes its conduction property from metallic to highly resistive. Variations of the interlayer magnetic coupling as a function of spacer layer thickness for the spacer compositions above x=0.5 are similar to each other; namely, with an increase of the spacer thickness the interlayer coupling is initially ferromagnetic, then antiferromagnetic, and finally becomes noncoupling. Moreover, the temperature dependence of the bilinear and biquadratic coupling constants, J(1)(T) and J(2)(T) which were obtained by numerical fitting, varies sensitively with x. Assuming that the conduction of the spacers ranges from metallic to insulating as x increases, all these coupling behaviors can be described qualitatively by the quantum interference model formalized by Bruno. Furthermore, we found that the coupling strength is enhanced dramatically with increase of x of Fe1-xSix. [S0163-1829(99)11405-X]. CR BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BRINER B, 1993, PHYS REV LETT, V73, P340 BRUNO P, 1994, J APPL PHYS, V76, P6972 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHUBUNOVA EV, 1994, THIN SOLID FILMS, V247, P39 CULLITY BD, 1956, ELEMENTS XRAY DIFFRA, P263 DEBROEDERFJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1998, APPL PHYS LETT, V72, P495 ENDO Y, 1998, IEEE T MAGN, V34, P906 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FUJII Y, 1987, METALLIC SUPERLATTIC, P33 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1987, J APPL PHYS, V61, P3750 HEINRICH B, 1988, PHYS REV B, V38, P12879 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KILPER R, 1995, APPL SURF SCI, V91, P93 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1996, PHYS REV B, V55, PR696 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WANG RW, 1994, PHYS REV LETT, V72, P920 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 7 BP 4279 EP 4286 PG 8 JI Phys. Rev. B-Condens Matter PY 1999 PD FEB 1 VL 59 IS 6 GA 168NP J9 PHYS REV B-CONDENSED MATTER UT ISI:000078699400048 ER PT J AU Heide, C Elliott, RJ Wingreen, NS TI Spin-polarized tunnel current in magnetic-layer systems and its relation to the interlayer exchange interaction SO PHYSICAL REVIEW B-CONDENSED MATTER NR 56 AB The spin-polarized tunnel current and its connection to the interlayer exchange interaction is studied in ferromagnet- insulator-ferromagnet thin-film planar junctions out of equilibrium. Building on the nonequilibrium Keldysh formalism, it is possible to systematically include a contact interaction between localized spins and conduction electrons and extend previous treatments on spin currents and exchange interaction. In particular, a Landauer-type formula is derived for the spin current that explains the result found earlier [Schwabe, Wingreen, and Elliott, Phys. Rev. B 54, 12 953 (1996)] that the exchange interaction between the ferromagnetic slabs increases in proportion to the slab width. Furthermore, switching is shown to occur between parallel and antiparallel coupling of the slabs for different applied biases under feasible experimental conditions. [S0163-1829(99)08705-6]. CR ARONOV AG, 1976, PISMA ESKP TEOR FIZ, V24, P37 BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BARNAS J, 1994, PHYS REV B, V49, P12835 BAUER GEW, 1992, PHYS REV LETT, V69, P1676 BLACKMAN JA, 1970, J PHYS C SOLID STATE, V2, P1670 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CAROLI C, 1971, J PHYS C, V4, P916 CAROLI C, 1971, J PHYS C, V4, P2598 CAROLI C, 1972, J PHYS PART C SOLID, V5, P21 COMBESCOT R, 1971, J PHYS C SOLID STATE, V4, P2611 DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062 DATTA S, 1995, CAMBRIDGE STUDIES SE, V3 DAUGHTON JM, 1997, J APPL PHYS, V81, P3758 DAUGHTON JM, 1992, THIN SOLID FILMS, V216, P162 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FEUCHTWANG TE, 1976, PHYS REV B, V13, P517 FEUCHTWANG TE, 1974, PHYS REV B, V10, P4121 FEUCHTWANG TE, 1974, PHYS REV B, V10, P4135 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALLAGHER WJ, 1997, J APPL PHYS, V81, P3741 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEIDE C, 1998, PHYS REV B, V57, P11862 JOHNSON M, 1988, PHYS REV B, V37, P5312 JOHNSON M, 1987, PHYS REV B, V35, P4959 JOHNSON M, 1985, PHYS REV LETT, V55, P1790 JULLIERE M, 1975, PHYS LETT A, V54, P225 KELDYSH LV, 1965, SOV PHYS JETP, V20, P1018 LARSEN U, 1981, PHYS LETT A, V85, P471 LEVY PM, 1994, SOLID STATE PHYSICS, V47 MAEKAWA S, 1982, IEEE T MAGN, V18, P707 MAGNUS W, 1966, FORMULAS THEOREMS SP MIYAZAKI T, 1997, J APPL PHYS, V81, P3753 MIYAZAKI T, 1995, J MAGN MAGN MATER, V139, PL231 MOODERA JS, 1996, J APPL PHYS, V79, P4724 MUKASA K, 1993, JPN J APPL PHYS, V33, P2692 NOLTING W, 1995, Z PHYS B CON MAT, V96, P357 NOWAK J, 1992, J MAGN MAGN MATER, V109, P79 PARKIN SSP, 1990, PHYS REV LETT, V64, P2301 SCHWABE NF, 1996, PHYS REV B, V54, P12953 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STILES MD, 1993, PHYS REV B, V48, P7238 SUEZAWA Y, 1992, JPN J APPL PHYS 2, V31, PL1415 TEDROW PM, 1973, PHYS REV B, V7, P318 TEDROW PM, 1971, PHYS REV LETT, V26, P192 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TSYMBAL EY, 1997, J PHYS-CONDENS MAT, V9, PL411 VALET T, 1993, PHYS REV B, V48, P7099 VONSOVSKII SV, 1974, MAGNETISM YAFET Y, 1987, PHYS REV B, V36, P3948 ZHANG S, 1997, PHYS REV LETT, V79, P3744 ZILBERMAN PE, COMMUNICATION TC 2 BP 4287 EP 4304 PG 18 JI Phys. Rev. B-Condens Matter PY 1999 PD FEB 1 VL 59 IS 6 GA 168NP J9 PHYS REV B-CONDENSED MATTER UT ISI:000078699400049 ER PT J AU Vavra, I Bydzovsky, J Svec, P Harvanka, M Derer, J Frait, Z Kambersky, V Lopusnik, R Visnovsky, S Kubena, J Holy, V TI Structural, electrical and magnetic properties of Fe/Si and Fe/FeSi multilayers SO ACTA PHYSICA SLOVACA NR 5 AB Fe/Si and Fe/FeSi multilayers with various spacer layer thickness (0.8-2.0 nm) were prepared by magnetron sputtering. The detailed structural analysis performed by low angle X-ray scattering and cross-sectional TEM revealed the differences between the microstructure of both kinds of multilayers. Magnetic analysis showed that interlayer exchange coupling is present only in Fe/FeSi multilayers with spacer layer thickness around 1.7 nm. CR HONDA S, 1997, J MAGN MAGN MATER, V165, P153 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MCGUIRE TR, 1975, IEEE T MAGN, V4, P1018 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 743 EP 746 PG 4 JI Acta Phys. Slovaca PY 1998 PD DEC VL 48 IS 6 GA 155XP J9 ACTA PHYS SLOVACA UT ISI:000077972000036 ER PT J AU Krompiewski, S Krey, U TI Tunneling conductance and interlayer exchange coupling of metallic magnetic trilayers decorated with additional ultra- thin nonmetallic spacers SO EUROPHYSICS LETTERS NR 23 AB By a very accurate recursion method based on the Kubo formula we calculate tunneling conductances of systems consisting of a nonmagnetic metallic spacer (MS) sandwiched between two ferromagnets (F) with additional ultra-thin nonmetallic (NM) interface layers. These hybrid structures are attached to voltage contacts by semi-infinite ideal lead wires (LW). The problem is treated in a two-band tight-binding model with hybridization. Our main finding is that the low-resistivity spin electron channel depends on the energy barrier width of the nonmetallic layer, and that with an asymmetric placement of the NM interface layers one can get large positive or negative values of the giant magnetoresistance with current- perpendicular-to-plane. CR ASANO Y, 1994, J MAGN MAGN MATER, V136, PL18 BOHM M, 1998, UNPUB DPG SPRING C R BRINER B, 1995, Z PHYS B CON MAT, V97, P459 BRUNO P, 1994, PHYS REV B, V49, P13231 BUTLER WH, 1997, J APPL PHYS, V81, P5518 DATTA S, 1990, APPL PHYS LETT, V56, P665 DATTA S, 1995, ELECT TRANSPORT MESO JULLIERE M, 1975, PHYS LETT A, V54, P225 KROMPIEWSKI S, 1997, J PHYS-CONDENS MAT, V9, P7135 KROMPIEWSKI S, 1996, PHYS REV B, V54, P11961 LEE PA, 1981, PHYS REV LETT, V47, P882 MATHON J, 1997, PHYS REV B, V56, P11797 MATHON J, 1997, PHYS REV B, V56, P11810 MATHON J, 1997, PHYS REV B, V55, P14378 MATHON J, 1995, PHYS REV B, V52, PR6983 MESERVEY R, 1970, PHYS REV LETT, V25, P1270 MONSMA DJ, 1995, PHYS REV LETT, V74, P5260 MOODERA JS, 1996, J APPL PHYS, V79, P4724 PRINZ GA, 1995, PHYS TODAY APR, P58 SCHEP KM, 1995, PHYS REV LETT, V74, P586 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STEARNS MB, 1977, J MAGN MAGN MATER, V5, P167 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 5 BP 661 EP 667 PG 7 JI Europhys. Lett. PY 1998 PD DEC 1 VL 44 IS 5 GA 145CK J9 EUROPHYS LETT UT ISI:000077353300019 ER PT J AU Tong, LN Pan, MH Wu, J Wu, XS Du, J Lu, M Feng, D Zhai, HR Xia, H TI Magnetic and transport properties of sputtered Fe/Si multilayers SO EUROPEAN PHYSICAL JOURNAL B NR 26 AB The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si; ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either t(Si) greater than or equal to 3 nm for the series [Fe(3 nm)/Si(t(Si))](30) or t(Fe) < 2 nm for the series [Fe(t(Fe))/Si(1.9 nm)](30) multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when alpha-Si layers appear in the spacers. The dependences of MR on t(Si) and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The t(Fe) dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field H-s increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHILDRESS JR, 1992, PHYS REV B, V45, P2855 CHOPRA KL, 1969, THIN FILM PHENOMENA, P345 CLLITY DB, 1978, ELEMENTS XRAY DIFFRA COLINO JM, 1996, PHYS REV B, V54, P13030 COWACHE C, 1996, PHYS REV B, V53, P15027 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DIENY B, 1992, J PHYS-CONDENS MAT, V4, P8009 DIENY B, 1992, PHYS REV B, V45, P806 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARRATT JD, 1997, J APPL PHYS, V81, P5793 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LEAUWEN RV, 1990, J APPL PHYS, V67, P4910 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MCGUIRE TR, 1975, IEEE T MAGN, V11, P1018 PARKIN SSP, MAG 90 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 61 EP 66 PG 6 JI Eur. Phys. J. B PY 1998 PD SEP VL 5 IS 1 GA 131HP J9 EUR PHYS J B UT ISI:000076570400009 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Perez, GT Salas, FH Morales, R Alvarez-Prado, LM Alameda, JM TI Short-range order effects in amorphous FexSi1-x/Si multilayers induced by preparation conditions SO JOURNAL DE PHYSIQUE IV NR 12 AB Magnetic properties of compositionally modulated FexSi1-x/Si amorphous multilayers are reported. The concentration x was 0.68 less than or equal to x less than or equal to 0.82 for two nominal modulation lengths lambda of 4 and 8 fi. The samples were prepared by pulsating two-cathode sputtering. From SQUID magnetometry and transverse magneto-optic Kerr effect, we detected a noticeable decrease in both magnetization and relative reflectivity (delta=Delta R/R) as lambda increases from 4 to 8 Angstrom. Also, for a fixed value of x, it was found that both coercive field and in-plane uniaxial anisotropy constant decrease systematically for increasing lambda. The two pulses used in the preparation method causes slight chemical short range effects, altering also the magnetic properties by changing the number and nature of nearest neighbors of a given Fe atom. The above short-range effects are present even when no multilayer structure is detected by x-ray diffraction. CR ALVAREZPRADO LM, 1997, PHYS REV B, V56, P3306 ARON C, 1991, SOLID STATE COMMUN, V79, P217 BRUSON A, 1985, J APPL PHYS, V58, P1229 DUFOUR C, 1988, J PHYS-PARIS, V49, P1781 FELDTKELLER E, 1963, Z PHYS, V176, P510 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 KAZAMA NS, 1983, J MAGN MAGN MATER, V35, P214 LIENARD A, 1978, J APPL PHYS, V49, P1680 MA XD, 1991, J MAGN MAGN MATER, V95, P199 PEREZ GT, 1991, J MAGN MAGN MATER, V93, P155 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 0 BP 175 EP 178 PG 4 JI J. Phys. IV PY 1998 PD JUN VL 8 IS P2 GA ZX533 J9 J PHYS IV UT ISI:000074526300042 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Temperature dependence of interlayer coupling in Fe/Si superlattices SO IEEE TRANSACTIONS ON MAGNETICS NR 12 AB We have explored the temperature dependence of the interlayer coupling in Fe/Fe1-xSix superlattices (0.5 less than or equal to x less than or equal to 1). It is found that the Si content of the Fe1-xSix, spacer greatly affects the temperature dependence of the bilinear and biquadratic coupling constants. Neither the "thickness fluctuation" model nor the "loose" spin model proposed by Slonczewski give satisfactory explanations to the temperature-dependent interlayer coupling. Instead, the present experimental results for all spacer compositions can be reproduced very well by the quantum interference model. We discuss the experimental results based on the above interlayer coupling models. CR BRUNO P, 1994, J APPL PHYS, V76, P6972 CHAIKEN A, 1996, PHYS REV B, V53, P5518 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 4 BP 906 EP 908 PG 3 JI IEEE Trans. Magn. PY 1998 PD JUL VL 34 IS 4 PN 1 GA 101CP J9 IEEE TRANS MAGN UT ISI:000074852300028 ER PT J AU Saito, Y Inomata, K TI Biquadratic coupling contributions to the magnetoresistive curves in Fe/FeSi/Fe sandwiches with semiconductor like FeSi and metallic bcc FeSi spacers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 17 AB Magnetoresistance was investigated in Fe/FeSi/Fe sandwiches with metallic bcc-and semiconductor like FeSi spacers prepared by an ultrahigh-vacuum magnetron sputtering system, enhanced with inductively coupled RF plasma. In the easy axis direction, MR curves at 298 K have a dip around the zero magnetic field for both Fe/FeSi/Fe sandwiches with semiconductor like FeSi and hcc metallic FeSi spacers. On the other hand, MR curves at 10 K exhibit a dip and no anomaly around the zero magnetic field for the Fe/bcc metallic FeSi/Fe and Fe/semiconductor like FeSi/Fe sandwiches, respectively. when the contribution of biquadratic coupling to interlayer exchange coupling is considered, these MR behaviors are well explained. These results support the interlayer exchange coupling model attributed to the biquadratic exchange coupling which outweighs the colinear term at a low temperature in Fe/FeSi multilayers. CR BRUNO P, 1994, PHYS REV B, V49, P13231 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1997, J MAGN MAGN MATER, V165, P431 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 METOKI N, 1993, J MAGN MAGN MATER, V121, P137 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 SAITO Y, UNPUB PHYS REV B SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 TC 1 BP 1138 EP 1141 PG 4 JI J. Phys. Soc. Jpn. PY 1998 PD APR VL 67 IS 4 GA ZK389 J9 J PHYS SOC JPN UT ISI:000073315800019 ER PT J AU Walser, P Schleberger, M Fuchs, P Landolt, M TI Heat induced antiferromagnetic coupling in multilayers with Ge spacers SO PHYSICAL REVIEW LETTERS NR 16 AB We report on heat induced antiferromagnetic exchange coupling in a new system: ferromagnetic Fe films separated by a spacer of amorphous Ge. Antiferromagnetic coupling occurs at spacer thicknesses between 20 and 25 Angstrom. It exhibits a striking temperature dependence which has a positive temperature coefficient and is fully reversible in the temperature range between 40 and 230 K. Our findings about the importance of the interfaces support the interpretation that resonant tunneling through localized states in the gap of the spacer mediate the magnetic exchange. CR BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BERNASCONI J, 1969, PHYS KONDENS MATER, V10, P224 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BUSCH G, 1967, HELV PHYS ACTA, V40, P812 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1996, THESIS EINDHOVEN U T FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 INOMATA K, 1995, PHYS REV LETT, V74, P1863 KOHLHEPP J, 1996, J MAGN MAGN MATER, V156, P261 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 11 BP 2217 EP 2220 PG 4 JI Phys. Rev. Lett. PY 1998 PD MAR 9 VL 80 IS 10 GA ZA636 J9 PHYS REV LETT UT ISI:000072385400048 ER PT J AU Endo, Y Kitakami, O Shimada, Y TI Measurement of perpendicular giant magnetoresistance of Fe/Si superlattices SO APPLIED PHYSICS LETTERS NR 18 AB The superlattices Fe/Si exhibit an antiferromagnetic coupling for very thin Si layers and giant magnetoresistance (GMR) is observed accompanying this coupling. The GMR for these superlattices measured with a current in the plane of the sample (CIP-GMR) is usually less than 0.2%. Considering a shunt effect due to large resistivity of Si layers, we measured the GMR with a current perpendicular to the sample plane (CPP-GMR). The thickness and width of the electrodes for the CPP measurement were carefully designed so that the current is always homogeneous in the sample. As a result, CPP-GMR for these superlattices is found to be about 3-6 times larger than CIP-GMR. Although a careful design of the electrodes is needed for homogeneity of the current, the technique is much easier than the CPP measurement for metal/metal superlattices and expected to provide valuable information on the spin-dependent electron transport phenomena in the Fe/Si superlattices. (C) 1998 American Institute of Physics. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5112 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 ENDO Y, 1997, J MAGN SOC JPN, V21, P541 ENDO Y, UNPUB FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V532, P5112 GIJS MAM, 1994, J APPL PHYS, V75, P6709 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MOODERA JS, 1996, APPL PHYS LETT, V69, P708 PEDERSON RJ, 1967, APPL PHYS LETT, V10, P29 PRATT WP, 1991, PHYS REV LETT, V66, P3060 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VAVRA W, 1995, APPL PHYS LETT, V66, P2579 TC 5 BP 495 EP 497 PG 3 JI Appl. Phys. Lett. PY 1998 PD JAN 26 VL 72 IS 4 GA YT563 J9 APPL PHYS LETT UT ISI:000071619600035 ER PT J AU Xia, K Zhang, WY Lu, M Zhai, HG TI Noncollinear interlayer coupling across a semiconductor spacer SO PHYSICAL REVIEW B-CONDENSED MATTER NR 18 AB Based on the extended s-d exchange model. which includes both isotropic and anisotropic spin interactions between conduction electrons and local states, we have derived analytically the interlayer coupling across a semiconductor spacer with a general band structure. Both Heisenberg-type and Dzyaloshinski- Moriya (DM) - type Ruderman-Kittel-Kasuya-Yosida-like interlayer coupling are obtained as a result of spin-orbit interaction. The interlayer coupling decreases exponentially with spacer thickness and the oscillation period depends on the band structure and orientation of spacers. Our result is different from previous theory; in particular, the DM-type interlayer exchange coupling offers a natural explanation to the noncollinear alignment of neighboring ferromagnetic layers as were observed in recent experiments on magnetic- semiconductor multilayer structures. CR ABRIKOSOV AA, 1980, J LOW TEMP PHYS, V39, P217 BRINER B, 1995, PHYS REV B, V51, P7303 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1996, PHYS REV B, V53, P5112 SHEKHTMAN L, 1992, PHYS REV B, V47, P174 SHEKHTMAN L, 1992, PHYS REV LETT, V69, P836 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIA K, 1997, PHYS REV B, V55, P12561 XIAO MW, 1996, PHYS REV B, V54, P3322 TC 1 BP 14901 EP 14904 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD DEC 15 VL 56 IS 23 GA YM239 J9 PHYS REV B-CONDENSED MATTER UT ISI:000071043700009 ER PT J AU Klasges, R Carbone, C Eberhardt, W Pampuch, C Rader, O Kachel, T Gudat, W TI Formation of a ferromagnetic silicide at the Fe/Si(100) interface SO PHYSICAL REVIEW B-CONDENSED MATTER NR 27 AB The interplay between magnetism and chemistry at the Fe/Si(100) interface has been examined by spin-and angle-resolved photoemission. A ferromagnetically ordered metallic silicide of similar to 20 Angstrom thickness is formed by deposition of Fe on Si at room temperature. This interface layer is ferromagnetic in-plane with a reduced spin polarization in comparison to bulk Fe. Its electronic structure indicates an Fe-rich composition close to Fe,Si. The Fe/Si and Si/Fe interface are inequivalent with respect to silicide formation and to the resulting magnetic properties. [S0163-1829(97)04142- 8]. CR ALVAREZ J, 1992, PHYS REV B, V45, P14042 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHERIEF N, 1990, VACUUM, V41, P1350 CHUBUNOVA EV, 1994, THIN SOLID FILMS, V247, P39 CRECELIUS G, 1993, APPL SURF SCI, V65-6, P683 EGERT B, 1984, PHYS REV B, V29, P2091 EISEBITT S, 1994, PHYS REV B, V50, P18330 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALLEGO JM, 1991, J APPL PHYS, V69, P1377 GALLEGO JM, 1992, PHYS REV B, V46, P13339 HIMPSEL FJ, 1979, J VAC SCI TECHNOL, V16, P1297 KILPER R, 1995, APPL SURF SCI, V91, P93 KISKER E, 1992, ANGLE RESOLVED PHOTO KOBAYASHI N, 1995, THIN SOLID FILMS, V270, P406 KOKE P, 1985, SURF SCI, V152, P1001 KONUMA K, 1993, J APPL PHYS, V73, P1104 KRAMER B, 1970, PHYS STATUS SOLIDI, V41, P649 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 LEFKI K, 1993, J APPL PHYS, V74, P1138 MURARKA SP, 1985, SILICIDES VLSI APPLI NAZIR ZH, 1996, J MAGN MAGN MATER, V156, P435 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VESCOVO E, 1995, SOLID STATE COMMUN, V94, P751 TC 7 BP 10801 EP 10804 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD NOV 1 VL 56 IS 17 GA YD476 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YD47600027 ER PT J AU AlvarezPrado, LM Perez, GT Morales, R Salas, FH Alameda, JM TI Perpendicular anisotropy detected by transversely biased initial susceptibility via the magneto-optic Kerr effect in FexSi1-x thin films and FexSi1-x/Si multilayers: Theory and experiment SO PHYSICAL REVIEW B-CONDENSED MATTER NR 50 AB We studied experimentally and theoretically the perpendicular anisotropy and the stripe-domain structure in both FexSi1-x thin films and FexSi1-x/Si multilayers, the latter being in the low-modulation-length regime (0.4 nm 11 ML. In situ surface magneto-optic Ken effect measurements show that at room temperature the fct and bcc regions are ferromagnetic, while the fee region is nonferromagnetic with some magnetic live layers. All magnetizations are in-plane. Oxygen absorption experiments suggest that these live layers are at the Fe/Co interface. Low temperature growth Fe/Co(100) shows a Ken signal that increases linearly with d(Fe) and suggests that the magnetic moments for fee Fe and bcc Fe are the same. To further study the magnetic properties of the nonferromagnetic ''fcc'' phase, we used metastable fee Fe as a spacer layer between two Co layers. The Co/fcc Fe/Co on Cu(100) sandwiches exhibit ferromagnetic coupling, strong antiferromagnetic coupling (AFC) and weak AFC. An oscillation in the strong AFC was found by artificially lengthening the thickness range of the nonferromagnetic fee phase. (C) 1996 American Vacuum Society. CR ALLENSPACH R, 1992, PHYS REV LETT, V69, P3385 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAUDELET F, 1995, PHYS REV B, V51, P12563 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEIM KR, 1993, J APPL PHYS, V74, P7422 KIRILYUK A, 1995, PHYS REV B, V52, P11672 LI DQ, 1994, J APPL PHYS, V76, P6425 LI DQ, 1994, PHYS REV LETT, V72, P3112 LIU C, 1988, PHYS REV LETT, V60, P2422 MACEDO WAA, 1988, PHYS REV LETT, V61, P475 MAGNAN H, 1991, PHYS REV LETT, V67, P859 MONTANO PA, 1987, PHYS REV LETT, V59, P1041 MORUZZI VL, 1986, PHYS REV B, V34, P1784 MULLER S, 1995, PHYS REV LETT, V74, P765 MULLER S, 1995, SURF SCI, V322, P21 NEWKIRK JB, 1957, T AIME, V209, P1214 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1992, PHYS REV B, V45, P13064 PURCELL ST, 1991, PHYS REV LETT, V67, P903 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 QIU ZQ, 1992, PHYS REV LETT, V68, P1398 THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WUTTIG M, 1993, SURF SCI, V282, P237 XHONNEUX P, 1992, PHYS REV B, V46, P556 TC 2 BP 3164 EP 3170 PG 7 JI J. Vac. Sci. Technol. B PY 1996 PD JUL-AUG VL 14 IS 4 GA VD931 J9 J VAC SCI TECHNOL B UT ISI:A1996VD93100123 ER PT J AU Baszynski, J Szymanski, B Tolinski, T TI Evidence of the oscillations in the interlayer coupling of co sublayers across Co-Zr amorphous-like spacers, from M(H) curves SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 5 AB The first observations of oscillatory interlayer coupling between Co layers across the amorphous-like spacer Co-Zr with period 16 Angstrom for a series of Co(similar to 30 Angstrom)/Zr(t Angstrom), where 3 < t < 30, superlattices is presented. The total roughness of the interface is about a few monolayers on average. The strength of the AF interlayer coupling is about 0.01 erg/cm(2) at the AF1 peak. CR BASZYNSKI J, 1995, MML 95 BASZYNSKI J, 1994, PHYS STATUS SOLIDI A, V141, PK23 KINGETSU T, 1994, JPN J APPL PHYS 1, V33, P1890 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 79 EP 80 PG 2 JI J. Magn. Magn. Mater. PY 1996 PD APR VL 156 IS 1-3 GA UV358 J9 J MAGN MAGN MATER UT ISI:A1996UV35800035 ER PT J AU Kohlhepp, J denBroeder, FJA TI Magnetic coupling in sputtered Fe/Si-type multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 7 AB In HV-sputtered Fe100-xSix/Si100-yFey multilayers the antiferromagnetic coupling strength and the fraction of ferromagnetic coupling increases with decreasing temperature. The ferromagnetic component can be explained by bridging along grain boundaries or by an Fe percolation mechanism in the nonmagnetic interlayers. Recent speculations that the magnetic coupling across the FeSi spacers is mediated by thermal excitation of charge carriers are incompatible with our observations. CR BRINER B, 1994, PHYS REV LETT, V73, P340 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 INOMATA K, 1995, PHYS REV LETT, V74, P1863 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MOOIJ JH, 1973, PHYS STATUS SOLIDI A, V17, P521 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 15 BP 261 EP 262 PG 2 JI J. Magn. Magn. Mater. PY 1996 PD APR VL 156 IS 1-3 GA UV358 J9 J MAGN MAGN MATER UT ISI:A1996UV35800109 ER PT J AU Takahashi, Y Inomata, K TI Effect of composite nonmagnetic spacer layer on exchange coupling in magnetic superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 30 AB We calculate the exchange coupling between ferromagnetic layers in magnetic superlattices, in which a potential scattering layer is inserted in nonmagnetic spacer layers. The Green's- function method is used for the formulation of the exchange coupling in the system. The numerical results of the exchange coupling are obtained by varying the parameters of the potential scattering layer, i.e., the potential height and width. The potential barrier plays the role of a gate across which waves of electrons in nonmagnetic spacer layers propagate. It is shown from the numerical results that the Rudermann-Kittel-Kasuya-Yosida-like exchange coupling between two ferromagnetic layers is changed significantly with potential barrier properties, and that the transition from ferromagnetic to antiferromagnetic coupling or the reverse can be induced by changing the potential parameters under a definite structure of the superlattices. CR BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1992, J MAGN MAGN MATER, V116, PL13 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1994, PHYS REV LETT, V72, P3627 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BUTTIKER M, 1985, PHYS REV B, V31, P6207 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEAVEN DM, 1991, PHYS REV B, V44, P5977 EDWARDS DM, 1995, MAT SCI ENG B-SOLID, V31, P25 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JONES BA, 1993, PHYS REV LETT, V71, P4253 LACROIX C, 1991, J MAGN MAGN MATER, V93, P413 LANGRETH DC, 1981, PHYS REV B, V24, P2978 MATHON J, 1993, J MAGN MAGN MATER, V121, P242 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MUNOZ MC, 1994, PHYS REV LETT, V72, P2482 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SHI ZP, 1994, PHYS REV B, V49, P15159 STILES MD, 1993, PHYS REV B, V48, P7238 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WANG Y, 1990, PHYS REV LETT, V65, P2732 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 2 BP 13705 EP 13709 PG 5 JI Phys. Rev. B-Condens Matter PY 1996 PD MAY 15 VL 53 IS 20 GA UN909 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UN90900070 ER PT J AU Wang, ZJ Wen, LS Chang, XR Gu, YS Tian, ZZ Xiao, JM TI Oscillatory magnetic interlayer exchange coupling in Fe-N/TiN multilayers SO APPLIED PHYSICS LETTERS NR 13 AB The discovery of oscillatory interlayer exchange coupling in a new type of ceramic superlattice system Fe-N/TiN, is reported. The magnitude of the exchange coupling was found to oscillate with the thickness of the TiN spacer layer and Fe-N ferromagnetic layer with periods about 0.8 and 0.6 nm, respectively. (C) 1996 American Institute of Physics. CR BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 KIM TK, 1972, APPL PHYS LETT, V20, P492 MEKATA M, 1965, B JPN I MET, V4, P379 MEKATA M, 1972, J PHYS SOC JPN, V33, P62 NICOLET MA, 1978, THIN SOLID FILMS, V52, P415 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1991, APPL PHYS LETT, V58, P2710 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WOOD JC, 1971, PHYS REV B, V4, P2224 TC 3 BP 2887 EP 2889 PG 3 JI Appl. Phys. Lett. PY 1996 PD MAY 13 VL 68 IS 20 GA UK569 J9 APPL PHYS LETT UT ISI:A1996UK56900039 ER PT J AU Kawakami, RK EscorciaAparicio, EJ Qiu, ZQ TI Magnetic coupling in Co/face-centered-cubic Fe/Co sandwiches SO JOURNAL OF APPLIED PHYSICS NR 13 AB Ferromagnetic (FC) and antiferromagnetic coupling (AFC) of Co layers across a metastable fee Fe spacer layer has been observed. Room-temperature-grown Fe on Co/Cu(100) was chosen as a spacer layer because it exhibits three distinct structural and magnetic phases depending on the thickness range: fct and ferromagnetic (region I), fee and nonferromagnetic (region II), bcc and ferromagnetic (region III) (listed in order of increasing thickness). Co/Fe/Co sandwiches were grown on Cu(100) by molecular beam epitaxy with a base pressure of similar to 2x10(-10) Ton, and characterized by low-energy electron diffraction and reflection high-energy electron diffraction. The magnetic properties were studied in situ using surface magneto;optic Ken effect. Using a wedged Fe spacer layer, we investigated the magnetic coupling between Co films across many thicknesses of Fe. We found FC in region I, strong AFC at the boundary between regions I and II, and weak AFC in region II. We also studied the effect of just the Co overlayer on the metastable fee Fe. We find that Co/Fe/Cu(100) differs qualitatively from Fe/Co/Cu(100). Finally, we find an oscillation in the AFC with a periodicity of similar to 12 Angstrom by artificially increasing the thickness range of region II. (C) 1996 American Institute of Physics. CR FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 LI DQ, 1994, J APPL PHYS, V76, P6425 LI DQ, 1994, PHYS REV LETT, V72, P3112 MAGNAN H, 1991, PHYS REV LETT, V67, P859 MULLER S, 1995, PHYS REV LETT, V74, P765 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1992, PHYS REV B, V45, P13064 PURCELL ST, 1991, PHYS REV LETT, V67, P903 THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 XHONNEUX P, 1992, PHYS REV B, V46, P556 TC 3 BP 4532 EP 4534 PG 3 JI J. Appl. Phys. PY 1996 PD APR 15 VL 79 IS 8 PN 2A GA UG877 J9 J APPL PHYS UT ISI:A1996UG87700014 ER PT J AU Shi, ZP Klein, BM TI Antiferromagnetic coupling in magnetic multilayers with a narrow gap semiconductor spacer SO JOURNAL OF APPLIED PHYSICS NR 20 AB Antiferromagnetic (AF) coupling has been observed in sputtered Fe/Si multilayers at room temperature, with thin spacers (<20 Angstrom) which were claimed to be FeSi. To study the magnetic coupling in this system we extend the RKKY interaction approach to a temperature-dependent narrow gap semiconductor. The strong AF coupling at room temperature and weakly ferromagnetic (F) coupling at low temperatures observed in Fe/Si can be explained from this model. (C) 1996 American Institute of Physics. CR AEPPLI G, 1992, COMMENTS COND MAT PH, V16, P155 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BALTENSPERGER W, 1960, HELV PHYS ACTA, V33, P881 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1994, PHYS REV B, V49, P13231 CHAINANI A, 1994, PHYS REV B, V50, P8915 FOILES CL, 1995, MAT RES SOC S P, V382 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALAKHOV VR, 1995, J PHYS-CONDENS MAT, V7, P5529 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JARLBORG T, 1995, PHYS REV B, V51, P11106 LANDOLT M, 1995, APPL PHYS A-MATER, V60, P403 MATSON JE, 1993, PHYS REV LETT, V71, P185 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SANCHEZCASTRO C, 1993, PHYS REV B, V47, P6879 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 3 BP 4776 EP 4778 PG 3 JI J. Appl. Phys. PY 1996 PD APR 15 VL 79 IS 8 PN 2A GA UG877 J9 J APPL PHYS UT ISI:A1996UG87700108 ER PT J AU deMelo, CARS TI Magnetic exchange coupling mediated by bound states SO JOURNAL OF APPLIED PHYSICS NR 21 AB Usually indirect exchange coupling is mediated by unbound, noncorrelated intermediate states (RKKY-like mechanisms) or by unbound, correlated intermediate states (superexchange-like mechanisms). Here we investigate the possibility of indirect magnetic exchange coupling mediated by bound, correlated intermediate states. As a concrete example we study the magnetic coupling between two magnetic impurities embedded in a semiconductor matrix. The importance of long ranged attractive Coulomb interactions between electrons and holes is emphasized. This attraction leads to exciton bound states which act as mediators of the effective exchange interaction between the two impurities. The resulting exchange interaction presents strong temperature dependence and can be analyzed in terms of the symmetry of the internal wavefunction of the exciton bound states. Possible applications of these results may include recent experimental results on ferromagnetic metal- semiconductor multilayers. (C) 1996 American Institute of Physics. CR ABRIKOSOV AA, 1980, ADV PHYS, V29, P869 ANDERSON PW, 1950, PHYS REV, V79, P350 BLOEMBERGEN N, 1955, PHYS REV, V97, P1679 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B, V92, P135 DEMELO CARS, 1995, PHYS REV B, V51, P8922 GIEBULTOWICZ TM, 1994, 6 JOINT MMM INT C, P163 GIEBULTOWICZ TM, 1994, J CRYST GROWTH, V138, P877 GOODENOUGH JB, 1955, PHYS REV, V100, P564 KANAMORI J, 1959, J PHYS CHEM SOLIDS, V10, P87 KASUYA T, 1956, PROG THEOR PHYS, V16, P45 KASUYA T, 1956, PROG THEOR PHYS, V16, P58 KRAMERS HA, 1934, PHYSICA, V1, P182 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NEGELE JW, 1987, QUANTUM MANY PARTICL, PCH2 NOZIERES P, 1964, THEORY INTERACTING F POPOV VN, 1987, FUNCTIONAL INTEGRALS RUDERMAN MA, 1954, PHYS REV, V96, P99 SOKEL R, 1976, PHYS REV LETT, V36, P61 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 YOSIDA K, 1957, PHYS REV, V106, P893 TC 0 BP 5412 EP 5414 PG 3 JI J. Appl. Phys. PY 1996 PD APR 15 VL 79 IS 8 PN 2A GA UG877 J9 J APPL PHYS UT ISI:A1996UG87700352 ER PT J AU Fullerton, EE Bader, SD TI Temperature-dependent biquadratic coupling in antiferromagnetically coupled Fe/FeSi multilayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 36 AB Fe/FeSi multilayers are known to exhibit a strong antiferromagnetic interlayer coupling peak centered at a nominal FeSi spacer thickness of similar to 15+/-2 Angstrom at room temperature, and to develop remanence in the magnetic hysteresis loop upon cooling to similar to 100 K. An analysis of the hysteresis loops is found to require the inclusion of a temperature-dependent biquadratic (90 degrees coupling) in addition to the bilinear coupling term in the energetics. The temperature dependence of the Fe/FeSi multilayer coupling can then be understood in terms that are applicable to conventional metallic multilayer systems such as Fe/Cr. CR AEPPLI G, 1992, COMMENTS COND MAT PH, V16, P155 BLAND AC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND AC, 1994, ULTRATHIN MAGNETIC S, V1 BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B, V92, P135 BRINER B, 1995, Z PHYS B CON MAT, V97, P459 BRINER B, 1994, Z PHYS B CON MAT, V96, P291 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1995, MRS S P, V382 DEMELO CARS, 1995, PHYS REV B, V51, P8922 DENBROEDER FJA, 1995, PHYS REV LETT, V75, P3026 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 INOMATA K, 1995, PHYS REV LETT, V74, P1863 LEVY PM, 1994, SOLID STATE PHYS, V47, P367 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 MATTSON JE, 1993, PHYS REV LETT, V71, P185 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1994, PHYSICA B, V198, P173 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 VONKANEL H, 1992, PHYS REV B, V45, P13807 TC 28 BP 5112 EP 5115 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD MAR 1 VL 53 IS 9 GA UA011 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UA01100020 ER PT J AU Chaiken, A Michel, RP Wall, MA TI Structure and magnetism of Fe/Si multilayers grown by ion-beam sputtering SO PHYSICAL REVIEW B-CONDENSED MATTER NR 47 AB Ion-beam sputtering has been used to prepare Fe/Si multilayers on a variety of substrates and over a wide range of temperatures. Small-angle x-ray-diffraction and transmission electron microscopy experiments show that the layers are heavily intermixed although a composition gradient is maintained. When the spacer layer is an amorphous iron silicide, the magnetic properties of the multilayers are similar to those of bulk Fe. When the spacer layer is a crystalline silicide with the B2 or DO3 structure, the multilayers show antiferromagnetic interlayer coupling like that observed in ferromagnet/paramagnet multilayers such as Fe/Cr and Co/Cu. Depending on the substrate type and the growth temperature, the multilayers grow in either the (011) or (001) texture. The occurrence of the antiferromagnetic interlayer coupling is dependent on the crystallinity of the iron and iron silicide layers, but does not seem to be strongly affected by the perfection of the layering or the orientation of the film. Since the B2- and DO3-structure FexSi1-x compounds are known to be metallic, antiferromagnetic interlayer coupling in Fe/Si multilayers probably originates from the same quantum-well and Fermi surface effects as in Fe/Cr and Co/Cu multilayers. CR ALTBIR D, 1995, J MAGN MAGN MATER, V149, PL246 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BARBEE TW, 1985, APPL OPTICS, V24, P883 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 CARLISLE JA, UNPUB CHAIKEN A, 1994, REV SCI INSTRUM, V65, P3870 DEKOSTER J, 1995, MRS S P, V382 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DUFOUR C, 1991, J MAGN MAGN MAT, V93 FARROW RFC, 1993, J CRYST GROWTH, V133, P47 FOILES CL, 1995, MRS S P, V382 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, COMMUNICATION FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1993, PHYS REV B, V48, P17432 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GRINSTAFF MW, 1993, PHYS REV B, V48, P269 GUPTA A, 1994, PHYS REV B, V50, P2833 HOLLOWAY K, 1989, J APPL PHYS, V65, P474 INOMATA K, 1994, JPN J APPL PHYS 2, V33, PL1670 KINGON AI, 1989, APPL PHYS LETT, V55, P301 KUDRNOVSKY J, 1991, PHYS REV B, V43, P5924 MADER KA, 1993, PHYS REV B, V48, P4364 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MASSALSKI TB, 1990, BINARY ALLOY PHASE D MATTSON JE, 1994, J APPL PHYS, V75, P6169 MATTSON JE, 1993, PHYS REV LETT, V71, P185 METOKI N, 1993, J MAGN MAGN MATER, V121, P137 MICHEL RP, UNPUB MIURA H, 1991, J APPL PHYS, V70, P4287 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 NAKATANI R, 1993, J APPL PHYS, V73, P6375 ONDA N, 1993, J CRYST GROWTH, V12, P634 PARKIN SSP, 1992, PHYS REV B, V46, P9262 PAYNE AP, 1993, PHYS REV B, V47, P2289 RUGGIERO ST, 1982, PHYS REV B, V26, P4894 SHI ZP, 1995, EUROPHYS LETT, V29, P585 STEARNS DG, 1991, J VAC SCI TECHNOL A, V9, P2662 STILES MD, 1993, PHYS REV B, V48, P7238 STOCK HJ, 1994, APPL PHYS A-MATER, V58, P371 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANDENBERG HAM, 1994, IEEE T MAGN, V30, P809 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG WH, 1994, MAT SCI ENG A-STRUCT, V179, P229 WILSON LC, 1993, THESIS STANFORD U TC 44 BP 5518 EP 5529 PG 12 JI Phys. Rev. B-Condens Matter PY 1996 PD MAR 1 VL 53 IS 9 GA UA011 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UA01100077 ER PT J AU Saito, Y Inomata, K Yusu, K TI Transition from antiferromagnetic coupling to biquadratic coupling in Fe/FeSi multilayers SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS NR 26 AB The detailed temperature dependence of interlayer exchange coupling in Fe/FeSi multilayers prepared by ion beam sputtering was investigated and compared with the data for Fe/Si multilayers. Significant differences between interlayer exchange coupling in Fe/FeSi and Fe/Si multilayers were observed. The coupling between Fe layers in Fe/FeSi multilayers showed a transition from antiferromagnetic to 90 degrees coupling with decreasing temperature. This was due to the strong temperature dependence of J(2) (biquadratic coupling), which outweighs that of J(1) (collinear coupling) at low temperatures. CR BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1991, PHYS REV LETT, V67, P1602 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, UNPUB PHYS REV B FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 INOMATA K, 1995, PHYS REV LETT, V74, P1863 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KAIDANOV VI, 1968, SOV PHYS SEMICOND, V2, P382 KOHLHEPP J, IN PRESS J MAGN MAGN MATTSON JE, 1993, PHYS REV LETT, V71, P185 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHIESINGER Z, 1993, PHYS REV LETT, V13, P1748 SHI ZP, 1995, EUROPHYS LETT, V29, P585 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TAKAGI S, 1981, J PHYS SOC JPN, V50, P2539 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UMGURIS J, 1991, PHYS REV LETT, V67, P140 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WOLFE R, 1965, PHYS LETT, V19, P449 TC 10 BP L100 EP L103 PG 4 JI Jpn. J. Appl. Phys. Part 2 - Lett. PY 1996 PD JAN 15 VL 35 IS 1B GA TU369 J9 JPN J APPL PHYS PT 2 UT ISI:A1996TU36900011 ER PT J AU BACK, CH WEBER, W BISCHOF, A PESCIA, D ALLENSPACH, R TI PROBING OSCILLATORY EXCHANGE COUPLING WITH A PARAMAGNET SO PHYSICAL REVIEW B-CONDENSED MATTER NR 23 AB A paramagnet is used to probe directly the exchange coupling emanating from a ferromagnetic specimen across a nonmagnetic spacer material by measuring the induced magnetic moment. The model structure to observe the oscillatory exchange field consists of a Cu(100) single crystal, a Co base layer, a Cu spacer, and fee Fe as the paramagnetic probe layer with large magnetic susceptibility. Spin-resolving techniques show that the magnetization of the paramagnet oscillates as a function of the thickness of the spacer as well as of the paramagnet. CR ALVARADO SF, 1982, Z PHYS B CON MAT, V49, P129 BACK CH, UNPUB BACK CH, 1994, Z PHYS B CON MAT, V96, P1 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1991, PHYS REV LETT, V67, P1602 FARLE M, 1993, PHYS REV B, V47, P11571 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KERKMANN D, 1992, PHYS REV LETT, V68, P686 KOIKE K, 1994, PHYS REV B, V50, P4816 LI DQ, 1994, PHYS REV LETT, V72, P3112 MATSUYAMA H, 1991, REV SCI INSTRUM, V62, P970 MOOG ER, 1989, PHYS REV B, V39, P6949 MULHOLLAN GA, 1991, PHYS REV B, V43, P13645 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SAMANT MG, 1994, PHYS REV LETT, V72, P1112 STAMPANONI M, 1989, APPL PHYS A-MATER, V49, P449 THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 WEBER W, 1995, EUROPHYS LETT, V31, P491 TC 3 BP 13114 EP 13117 PG 4 JI Phys. Rev. B-Condens Matter PY 1995 PD NOV 1 VL 52 IS 18 GA TD725 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TD72500012 ER PT J AU BRUNO, P TI THEORY OF INTERLAYER MAGNETIC COUPLING SO PHYSICAL REVIEW B-CONDENSED MATTER NR 85 CR ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571 ANDERSON PW, 1961, PHYS REV, V124, P41 ANERSEN OK, 1987, ELECTRONIC STRUCTURE ASHCROFT NW, 1976, SOLID STATE PHYSICS, PCH18 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BOBO JF, 1993, EUROPHYS LETT, V24, P139 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO E, 1993, J PHYS-CONDENS MAT, V5, P2109 BRUNO E, 1993, PHYS REV LETT, V71, P181 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, IN PRESS J MAGN MAGN BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, J MAGN MAGN MATER, V116, PL13 BRUNO P, 1994, PHYS REV B, V49, P13231 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CAROLI B, 1967, J PHYS CHEM SOLIDS, V28, P1427 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1991, PHYS REV B, V44, P9331 COHENTANOUDJI C, 1973, MECANIQUE QUANTIQUE, V1 DEDERICHS PH, 1993, MAGNETISMUS FESTKORP, PCH27 DESJONQUERES MC, 1993, CONCEPTS SURFACE PHY, P187 ECONOMOU EN, 1983, GREENS FUNCTIONS QUA, PCH5 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FERT A, 1994, ULTRATHIN MAGNETIC S, V2, P82 FRIEDEL J, 1958, NUOVO CIM SUPPL, V7, P287 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GEERTS W, 1994, PHYS REV B, V50, P12581 GRADSHTEVN IS, 1965, TABLE INTEORALS SERI, P558 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HALSE MR, 1969, PHILOS T ROY SOC LON, V265, P507 HERMAN F, 1991, J APPL PHYS, V69, P4783 HERMAN F, 1992, MATER RES SOC S P, V231, P195 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KASUYA T, 1956, PROG THEOR PHYS, V16, P45 KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303 KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238 KUDRNOVSKY J, COMMUNICATION KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105 LANG P, 1993, PHYS REV LETT, V71, P1927 MACKINTOSH AR, 1980, ELECTRONS FERMI SURF, P149 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MEGY R, 1995, PHYS REV B, V51, P5586 NEGELE JW, 1988, QUANTUM MANY PARTICL, P121 NORDSTROM L, 1995, EUROPHYS LETT, V29, P395 NORDSTROM L, 1994, PHYS REV B, V50, P13058 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 QIU ZQ, 1992, PHYS REV B, V46, P8659 ROTH LM, 1966, PHYS REV, V149, P519 RUDERMAN MA, 1954, PHYS REV, V96, P99 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SPRUNG DWL, 1993, AM J PHYS, V61, P1118 STILES MD, 1993, PHYS REV B, V4, P7238 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STOEFLER D, 1992, THESIS STRASBOURG SUZUKI Y, 1995, J MAGN MAGN MATER, V144, P651 SUZUKI Y, 1993, J MAGN MAGN MATER, V121, P539 SUZUKI Y, 1992, PHYS REV LETT, V68, P3355 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1993, NATO ADV SCI INST SE, V309, P101 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 WANG Y, 1990, PHYS REV LETT, V65, P2732 YAFET Y, 1988, J APPL PHYS, V63, P3453 YAFET Y, 1987, PHYS REV B, V36, P3948 YOSIDA K, 1957, PHYS REV, V106, P893 TC 174 BP 411 EP 439 PG 29 JI Phys. Rev. B-Condens Matter PY 1995 PD JUL 1 VL 52 IS 1 GA RH930 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995RH93000066 ER PT J AU OCHI, CLC MAJLIS, N TI DAMPED RUDERMAN-KITTEL-KASUYA-YOSIDA INTERACTION AMONG LOCAL MAGNETIC-MOMENTS IN THE IMPURITY-BAND REGIME OF DOPED SEMICONDUCTORS SO PHYSICAL REVIEW B-CONDENSED MATTER NR 12 CR LIU YH, 1991, J PHYS-CONDENS MAT, V3, P3571 MAJLIS N, 1967, P PHYS SOC LOND, V90, P811 MAJLIS N, 1981, PHYSICA B & C, V107, P677 MATSUBARA T, 1961, PROG THEOR PHYS, V26, P739 MOLOVANOVIC M, 1989, PHYS REV LETT, V63, P82 PAALANEN MA, 1989, IOP C P, V7, P69 ROY A, 1988, PHYS REV B, V37, P5522 ROY A, 1988, PHYS REV B, V37, P5531 RUDERMAN MA, 1954, PHYS REV, V96, P99 SASAKI W, 1961, PHYSICA, V27, P877 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOYOZAWA Y, 1962, J PHYS SOC JPN, V17, P986 TC 0 BP 14221 EP 14225 PG 5 JI Phys. Rev. B-Condens Matter PY 1995 PD MAY 15 VL 51 IS 20 GA RB213 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995RB21300033 ER PT J AU BRINER, B LANDOLT, M TI EXCHANGE-COUPLING ACROSS SIO SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER NR 19 AB Strongly temperature-dependent ferromagnetic exchange coupling is observed between Fe films separated by an amorphous SiO barrier. Heating reversibly enhances the coupling strength which monotonically decreases with increasing SiO thickness. At T = 40 K the coupling disappears for d(SiO) approximate to 20 Angstrom whereas at room temperature it persists up to a barrier thickness of 60 Angstrom, The coupling strength J is determined by externally compensating the exchange field of samples grown on an antiferromagnetically biased Fe/Cr/Fe structure, It amounts to J approximate to 2 . 10(-6) J/m(2) for a sample with d(SiO) = 25 Angstrom at T = 300 K. As a tentative explanation we propose that impurity or defect states within the large mobility gap of SiO carry the magnetic interaction across the insulating barrier. CR BRINER B, 1995, IN PRESS PHYS REV B, V57 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BRINER B, 1994, Z PHYS B CON MAT, V96, P291 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1993, J MAGN MAGN MATER, V121, P1448 BRUNO P, 1994, PHYS REV B, V49, P13231 EDWARDS DM, NATO ASI SER B-PHYS, V309, P401 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HOLZENKAMPFER E, 1979, J NON-CRYST SOLIDS, V32, P327 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PHILLIP HR, 1972, J NONCRYST SOLIDS, V8, P627 SCHONHENSE G, 1993, ANN PHYS-LEIPZIG, V2, P465 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 TC 3 BP 459 EP 463 PG 5 JI Z. Phys. B-Condens. Mat. PY 1995 PD MAY VL 97 IS 3 GA RA157 J9 Z PHYS B-CONDENS MATTER UT ISI:A1995RA15700010 ER PT J AU INOMATA, K YUSU, K SAITO, Y TI INTERLAYER COUPLING AND MAGNETORESISTANCE IN FE-SI MULTILAYERS WITH SEMICONDUCTING SPACERS SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY NR 24 AB Two different types of antiferromagnetic (AF) interlayer coupling as a function of Si layer thickness t(Si) were observed in a series of (2.6 nm Fe-t(Si) nm Si)(22) multilayers prepared by ion beam sputtering on thermally oxidized Si substrates. One AF coupling was observed around t(Si) = 1.2 nm at room temperature and changed into ferromagnetic (F) coupling at Low temperature. This phenomenon was ascribed to a narrow gap semiconductor with impurity states in the energy gap formed at the interface. The other AF coupling was observed for t(Si) thicker than 1.5 nm Si, with a minimum around t(Si) = 2.5 nm, which was almost temperature independent; this was attributed to the formation of an amorphous Si layer for the thicker Si layers. Negative magnetoresistance was observed in the multilayers with AF coupling, which had a similar temperature dependence to that of the AF coupling. CR BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1991, PHYS REV LETT, V67, P1602 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DUFOUR C, 1988, J PHYS C SOLID STATE, V8, P1781 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1988, PHYS REV B, V38, P12879 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KITTEL C, 1956, INTRO SOLID STATE PH, P347 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PECHAN MJ, 1993, IEEE T MAGN, V29, P2720 PERKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1991, PHYS REV LETT, V67, P903 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WERTHEIM GK, 1965, PHYS LETT, V18, P89 ZHANG S, PREPRINT TC 1 BP 41 EP 47 PG 7 JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. PY 1995 PD APR VL 31 IS 1-2 GA QV619 J9 MATER SCI ENG B-SOLID STATE M UT ISI:A1995QV61900007 ER PT J AU BRINER, B RAMSPERGER, U LANDOLT, M TI HEAT-ACTIVATED MAGNETIC EXCHANGE COUPLING ACROSS GE BARRIERS AND GE/SI HETEROSTRUCTURES SO PHYSICAL REVIEW B-CONDENSED MATTER NR 16 CR BRINER B, 1994, EUROPHYS LETT, V28, P65 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS EIDGENOSSISCH BRUNO P, 1994, PHYS REV B, V49, P13231 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL306 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HERRING C, 1966, MAGNETISM, V2, P2 KAMIMURA H, 1989, PHYSICS INTERACTING KNOTEK ML, 1973, PHYS REV LETT, V30, P853 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 SEAH MP, 1979, SURFACE INTERFACE AN, V1, P2 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV STUDY I B, V39, P257 TOSCANO S, 1992, THESIS EIDGENOSSISCH TC 8 BP 7303 EP 7306 PG 4 JI Phys. Rev. B-Condens Matter PY 1995 PD MAR 15 VL 51 IS 11 GA QP774 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QP77400066 ER PT J AU LANDOLT, M BRINER, B TI EXCHANGE COUPLING IN MULTILAYERS WITH SEMICONDUCTORS SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING NR 23 AB Intrinsic and heat-induced exchange coupling exists between ferromagnetic films separated by non-magnetic semiconducting spacer layers. Magnetic coupling across thin amorphous layers of Si, SiO, Ge and Ge/Si heterostructures is described. Antiferromagnetic coupling occurs in a limited thickness range for Si and Si/Ge heterostructures, and ferromagnetic coupling is found for SiO, Ge, and certain thicknesses of Si and Si/Ge heterostructures. The coupling strength is very weak, of the order of a few 10(-6) J/m(2). It exhibits a pronounced temperature dependence with a positive temperature coefficient for both ferro- and antiferromagnetic couplings. The observations indicate that resonant tunneling through defect states in the spacer material mediates the exchange coupling. CR BELL FG, 1988, PHYS REV B, V37, P8383 BRINER B, 1995, IN PRESS PHYS REV B, V51 BRINER B, 1995, IN PRESS Z PHYS B, V97 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BRINER B, 1994, Z PHYS B CON MAT, V96, P291 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1993, J MAGN MAGN MATER, V121, P148 BRUNO P, 1994, PHYS REV B, V49, P13231 EDWARDS DM, 1993, NATO ADV SCI INST SE, V309, P401 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL306 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HOLZENKAMPFER E, 1979, J NON-CRYST SOLIDS, V32, P327 KNOTEK ML, 1973, PHYS REV LETT, V30, P853 KNOTEK ML, 1975, SOLID STATE COMMUN, V17, P1431 LANDOLT M, 1986, APPL PHYS A-MATER, V41, P83 MATTSON JE, 1993, PHYS REV LETT, V71, P185 SCHONHENSE G, 1993, ANN PHYS-LEIPZIG, V2, P465 SCIMECA T, 1991, SOLID STATE COMMUN, V77, P817 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 TC 2 BP 403 EP 409 PG 7 JI Appl. Phys. A-Mater. Sci. Process. PY 1995 PD APR VL 60 IS 4 GA QR568 J9 APPL PHYS A-MAT SCI PROCESS UT ISI:A1995QR56800009 ER PT J AU DEMELO, CARS TI MAGNETIC EXCHANGE COUPLING MEDIATED BY BOUND-STATES SO PHYSICAL REVIEW B-CONDENSED MATTER NR 20 CR ABRIKOSOV AA, 1980, ADV PHYS, V29, P869 ANDERSON PW, 1950, PHYS REV, V79, P350 BLOEMBERGEN N, 1955, PHYS REV, V97, P1679 BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1993, Z PHYS B, V92, P135 GIEBULTOWICZ TM, 1994, J CRYST GROWTH, V138, P877 GIEBULTOWICZ TM, UNPUB GOODENOUGH JB, 1955, PHYS REV, V100, P564 KANAMORI J, 1959, J PHYS CHEM SOLIDS, V10, P87 KASUYA T, 1957, PHYS REV, V106, P893 KASUYA T, 1956, PROG THEOR PHYS, V16, P45 KASUYA T, 1956, PROG THEOR PHYS, V16, P58 KRAMERS HA, 1934, PHYSICA, V1, P182 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NEGELE JW, 1987, QUANTUM MANY PARTICL, PCH2 NOZIERES P, 1964, THEORY INTERACTING F POPOV VN, 1987, FUNCTIONAL INTEGRALS RUDERMAN MA, 1954, PHYS REV, V96, P99 SOKEL R, 1976, PHYS REV LETT, V36, P61 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 5 BP 8922 EP 8927 PG 6 JI Phys. Rev. B-Condens Matter PY 1995 PD APR 1 VL 51 IS 14 GA QT246 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QT24600027 ER PT J AU SHI, ZP SINGH, RRP KLEIN, BM TI INTERLAYER MAGNETIC COUPLING IN MAGNETIC KONDO-LATTICE MULTILAYERED STRUCTURES SO EUROPHYSICS LETTERS NR 38 AB We study the interlayer coupling between metallic ferromagnetic materials, separated by a thin insulator spacer, modelled as a Kondo insulator, in an attempt to understand the behavior of Fe/FeSi multilayered structures. We find that interlayer magnetic coupling is antiferromagnetic at large band filling and ferromagnetic at small band filling with only one change in sign as a function of electron density. This dependence of the coupling on the electron density is contrasted with the pure RKKY coupling that would arise in a simple metal. It gives a way of understanding the photoinduced antiferromagnetic interlayer coupling in Fe/FeSi superlattices seen in recent experiments. CR AEPPLI G, 1992, COMMENTS COND MAT PH, V16, P155 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEAVEN DM, 1991, PHYS REV B, V44, P5977 DEMOKRITOV S, 1992, MATER RES SOC S P, V231, P133 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 ERICKSON RP, 1992, PHYS REV B, V46, P861 FAZEKAS P, 1991, Z PHYS B CON MAT, V85, P285 FYE RM, 1990, PHYS REV LETT, V65, P3177 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1990, PHYS REV LETT, V64, P673 JACCARINO V, 1967, PHYS REV, V160, P476 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 LACROIX C, 1979, PHYS REV B, V20, P1969 MASON TE, 1992, PHYS REV LETT, V69, P490 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PURCELL ST, 1992, PHYS REV B, V45, P13064 PURCELL ST, 1991, PHYS REV LETT, V67, P903 QIU ZQ, 1992, PHYS REV LETT, V68, P1398 SCHLESINGER Z, 1993, PHYS REV LETT, V71, P1748 SHI ZP, 1992, PHYS REV LETT, V69, P3678 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V7, P1923 WANG Y, 1990, PHYS REV LETT, V65, P2732 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 TC 8 BP 585 EP 590 PG 6 JI Europhys. Lett. PY 1995 PD MAR 1 VL 29 IS 7 GA QM477 J9 EUROPHYS LETT UT ISI:A1995QM47700013 ER PT J AU FERT, A GRUNBERG, P BARTHELEMY, A PETROFF, F ZINN, W TI LAYERED MAGNETIC-STRUCTURES - INTERLAYER EXCHANGE COUPLING AND GIANT MAGNETORESISTANCE SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 94 AB Since the discovery of antiferromagnetic type interlayer coupling in 1986 and of 'Giant Magnetoresistance' in 1988, numerous systems have been investigated. Here we give a critical review of the research on these phenomena and illustrate the development with some results from our groups in Orsay and Juelich. CR ASANO Y, 1993, PHYS REV B, V48, P6192 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1990, PHYS REV B, V42, P8110 BARNAS J, 1990, VACUUM, V41, P1241 BASS J, 1994, J APPL PHYS, V75, P6699 BAUER GEW, 1992, PHYS REV LETT, V69, P1676 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745 BINASCH G, 1989, PHYS REV B, V39, P4828 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRINER B, UNPUB BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 BUTLER WH, 1993, MATER RES SOC S P, V313, P59 CAMLEY RE, 1989, PHYS REV LETT, V63, P664 CAMPBELL IA, 1982, FERROMAGNETIC MATERI, V3, P769 CARBONE C, 1987, PHYS REV B, V36, P2433 CHEN LH, 1993, APPL PHYS LETT, V63, P1279 DIENY B, 1993, MAGNETISM STRUCTURE, P279 DIENY B, 1991, PHYS REV B, V43, P1297 DUPAS C, 1990, J APPL PHYS, V67, P5680 DUVAIL JL, 1994, J APPL PHYS, V75, P7070 EDWARDS DM, 1993, NATO ADV SCI INST SE, V309, P401 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P7795 FERT A, 1994, J APPL PHYS, V75, P6693 FERT A, 1976, J PHYS F MET PHYS, V6, P849 FISHER HE, IN PRESS J PHYS PARI FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GEORGE JM, 1993, MATER RES SOC S P, V313, P737 GEORGE JM, 1994, PHYS REV LETT, V72, P408 GIJS MAM, 1992, PHYS REV B, V46, P2908 GIJS MAM, 1993, PHYS REV LETT, V16, P740 GRADMAN U, 1993, MATER RES SOC S P, V313, P107 GROLIER V, 1993, PHYS REV LETT, V71, P3023 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUITERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 GURNEY BA, 1993, PHYS REV LETT, V71, P4023 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1988, J APPL PHYS, V63, P3863 HERMANN F, 1993, 1992 P INT C PHYS T, P425 HOLODY P, 1994, PHYS REV B, V50, P12999 HOOD RQ, 1992, PHYS REV B, V46, P859 HYLTON TL, 1993, SCIENCE, V261, P1021 INOUE J, 1991, PROG THEOR PHYS S, V106, P187 JOHNSON M, 1993, SCIENCE, V260, P320 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 LEE SF, 1992, PHYS REV B, V46, P548 LENG Q, 1993, 1992 P INT C PHYS T, P434 LENG Q, 1994, THESIS JULICH LEVY PM, 1990, PHYS REV LETT, V65, P1643 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MATHON J, 1993, J MAGN MAGN MATER, V121, P242 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIRANDA R, 1993, PHYS SCRIPTA, VT49B, P579 MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MOUCHOT J, 1993, P INTERMAG OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PARKIN SSP, 1992, APPL PHYS LETT, V61, P1358 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, J MAGN MAGN MATER, V93, P95 PRATT WP, 1993, J MAGN MAGN MATER, V126, P406 PRATT WP, 1991, PHYS REV LETT, V66, P3060 PRINS MWJ, 1993, J MAGN MAGN MATER, V12, P152 PRINZ GA, 1990, SCIENCE, V250, P1092 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SATO H, 1987, SUPERLATTICE MICROST, V4, P45 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SHINJO T, 1990, J PHYS SOC JPN, V59, P3061 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 STEREN L, 1992, J MAGN MAGN MATER, V140, P495 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VALET T, 1992, APPL PHYS LETT, V61, P3187 VALET T, 1993, PHYS REV B, V48, P7099 VEDYAYEV A, 1992, EUROPHYS LETT, V19, P329 VELU E, 1988, PHYS REV B, V37, P668 WANG Y, 1990, PHYS REV LETT, V65, P2732 XIAO JQ, 1992, PHYS REV LETT, V68, P3749 YANG Q, 1994, PHYS REV LETT, V72, P3274 ZHANG S, 1993, MATER RES SOC S P, V313, P53 ZHANG S, 1992, MATER RES SOC S P, V231, P255 ZHANG SF, 1991, J APPL PHYS, V69, P4786 TC 47 BP 1 EP 8 PG 8 JI J. Magn. Magn. Mater. PY 1995 PD FEB VL 140 PN 1 GA QL736 J9 J MAGN MAGN MATER UT ISI:A1995QL73600003 ER PT J AU INOMATA, K YUSU, K SAITO, Y TI MAGNETORESISTANCE ASSOCIATED WITH ANTIFERROMAGNETIC INTERLAYER COUPLING SPACED BY A SEMICONDUCTOR IN FE/SI MULTILAYERS SO PHYSICAL REVIEW LETTERS NR 25 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745 BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1994, PHYS REV B, V49, P13231 CHAINANI A, 1994, PHYS REV B, V50, P8915 DIENY B, 1991, PHYS REV B, V43, P1297 DUFOUR C, 1988, J PHYS C SOLID STATE, V8, P1781 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 INOUE J, 1991, J PHYS SOC JPN, V60, P376 JIMBO M, 1992, JPN J APPL PHYS 2, V31, PL1348 KITTEL C, 1956, INTRO SOLID STATE PH, P347 LEVY PM, 1991, PHYS REV LETT, V65, P164 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MITANI S, IN PRESS MOSCA DH, 1991, J MAGN MAGN MATER, V94, PL1 MOUCHOT J, 1993, IEEE T MAGN, V29, P2732 PARKIN SSP, 1992, APPL PHYS LETT, V60, P512 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 SAITO Y, 1991, JPN J APPL PHYS 2, V30, PL1733 SHINJO T, 1990, J PHYS SOC JPN, V59, P3061 TEZUKA N, IN PRESS TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 XIONG P, 1992, PHYS REV LETT, V69, P3220 ZHANG SF, 1993, J APPL PHYS, V73, P5315 TC 44 BP 1863 EP 1866 PG 4 JI Phys. Rev. Lett. PY 1995 PD MAR 6 VL 74 IS 10 GA QK075 J9 PHYS REV LETT UT ISI:A1995QK07500042 ER PT J AU LEE, BC CHANG, YC TI EFFECTIVE-MASS APPROACH TO THE RKKY INTERACTION IN MAGNETIC MULTILAYERS SO PHYSICAL REVIEW B-CONDENSED MATTER NR 34 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BALTENSPERGER W, 1990, APPL PHYS LETT, V57, P2954 BARNAS J, 1994, J MAGN MAGN MATER, V128, P171 BENDANIEL DJ, 1966, PHYS REV, V152, P683 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CARBONE C, 1993, PHYS REV LETT, V71, P2805 COEHOORN R, 1991, PHYS REV B, V44, P9331 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HARRISON WA, 1961, PHYS REV, V123, P85 HERMAN F, 1992, PHYS REV B, V46, P5806 JONES BA, 1993, PHYS REV LETT, V71, P4253 KITTEL C, 1968, SOLID STATE PHYS, V22, P1 LEE B, 1994, PHYS REV B, V49, P8868 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MUNOZ MC, 1994, PHYS REV LETT, V72, P2482 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 ROTH LM, 1966, PHYS REV, V149, P519 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STILES MD, 1993, PHYS REV B, V48, P7238 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WANG Y, 1990, PHYS REV LETT, V65, P2732 YAFET Y, 1987, PHYS REV B, V36, P3948 TC 10 BP 316 EP 325 PG 10 JI Phys. Rev. B-Condens Matter PY 1995 PD JAN 1 VL 51 IS 1 GA QB377 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QB37700041 ER PT J AU INOMATA, K YUSU, K SAITO, Y TI TWO DIFFERENT TYPES OF ANTIFERROMAGNETIC COUPLINGS AND MAGNETORESISTANCES IN FE/SI MULTILAYERS SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS NR 13 AB Two different types of antiferromagnetic (AF) interlayer couplings as a function of Si layer thickness, t(Si), have been observed in a series of (2.6 nm Fe/t(Si) nm Si)(22) multilayers. One of the AF-couplings was observed at around t(Si)=1.2 nm at room temperature (RT) and changed to ferromagnetic (F) coupling at a low temperature. The other AF coupling was observed for tsi thicker than 1.5 nm With a minimum around t(Si)=2.5 nm, and was almost temperature independent. Negative magnetoresistance has been observed in the multilayers with the AF coupling, and has similar temperature dependence as that of the AF coupling. CR BRINER B, 1994, PHYS REV LETT, V73, P340 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1994, PHYS REV B, V49, P13231 BRURIO P, 1991, PHYS REV LETT, V67, P1602 DUFOUR C, 1988, J PHYS C SOLID STATE, V8, P1781 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 KITTEL C, 1956, INTRO SOLID STATE PH, P347 MATTSON JE, 1993, PHYS REV LETT, V71, P185 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 WOLFE R, 1965, PHYS LETT, V19, P449 TC 13 BP L1670 EP L1672 PG 3 JI Jpn. J. Appl. Phys. Part 2 - Lett. PY 1994 PD DEC 1 VL 33 IS 12A GA PW607 J9 JPN J APPL PHYS PT 2 UT ISI:A1994PW60700009 ER PT J AU FOILES, CL FRANKLIN, MR LOLOEE, R TI STRUCTURE OF SPUTTERED FE/SI MULTILAYERS SO PHYSICAL REVIEW B-CONDENSED MATTER NR 13 CR ANKNER JF, 1993, J APPL PHYS, V73, P6436 DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 DUFOUR C, 1988, J PHYS-PARIS, V49, P1781 DUFOUR C, 1989, SOLID STATE COMMUN, V69, P963 FOILES CL, 1988, J APPL PHYS, V63, P3209 FOILES CL, 1992, METALL TRANS A, V23, P1105 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MORTIZ H, 1992, J VAC SCI TECHNOL B, V10, P1704 MOTTA N, 1993, SURF SCI, V284, P257 SLAUGHTER JM, 1989, REV SCI INSTRUM, V60, P127 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 8 BP 16070 EP 16073 PG 4 JI Phys. Rev. B-Condens Matter PY 1994 PD DEC 1 VL 50 IS 21 GA PV862 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1994PV86200067 ER PT J AU BRUNO, P TI RECENT PROGRESS IN THE THEORY OF INTERLAYER EXCHANGE COUPLING (INVITED) SO JOURNAL OF APPLIED PHYSICS NR 16 CR BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BRINER B, 1993, Z PHYS B, V92, P135 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1994, PHYS REV B, V49, P1323 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 QIU ZQ, 1992, PHYS REV B, V46, P8659 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 STILES MD, 1993, PHYS REV B, V48, P7238 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 TC 11 BP 6972 EP 6976 PG 5 JI J. Appl. Phys. PY 1994 PD NOV 15 VL 76 IS 10 PN 2 GA PT848 J9 J APPL PHYS UT ISI:A1994PT84800314 ER PT J AU ZHANG, SF TI EXCHANGE MAGNETIC COUPLING THROUGH NONMAGNETIC INSULATOR SPACERS (ABSTRACT) SO JOURNAL OF APPLIED PHYSICS NR 2 CR MATTSON JE, 1993, PHYS REV LETT, V71, P185 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 0 BP 6993 EP 6993 PG 1 JI J. Appl. Phys. PY 1994 PD NOV 15 VL 76 IS 10 PN 2 GA PT848 J9 J APPL PHYS UT ISI:A1994PT84800321 ER PT J AU BRINER, B LANDOLT, M TI THERMALLY ACTIVATED BILINEAR AND BIQUADRATIC EXCHANGE COUPLING ACROSS AMORPHOUS-SILICON SO EUROPHYSICS LETTERS NR 10 AB Ferromagnetic Fe and Ni films separated by a spacer layer of amorphous Si evaporated at T = 40 K exhibit oscillatory exchange coupling. Two antiferromagnetic-coupling regions are found for Si thicknesses around 16 angstrom and around 45 angstrom with a range of ferromagnetic coupling at thicknesses between them. We also observed biquadratic coupling at the first crossover between ferro- and antiferromagnetic orientations. The small bilinear coupling strength of about 5.10(-6) J/m2 can reversibly be enhanced upon heating. Irreversible thermal annealing, on the other hand, generally reduces the coupling and in some cases even changes its sign. From the reversible and irreversible temperature dependences we infer that resonant tunnelling through defect states in the spacer material mediates the magnetic exchange. CR BRINER B, 1994, PHYS REV LETT, V73, P340 BRINER B, 1994, THESIS ETH ZURICH BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 EDWARDS DM, 1993, MAGNETISM STRUCTURE, V309, P401 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 9 BP 65 EP 70 PG 6 JI Europhys. Lett. PY 1994 PD OCT 1 VL 28 IS 1 GA PM400 J9 EUROPHYS LETT UT ISI:A1994PM40000012 ER PT J AU BRINER, B LANDOLT, M TI INTRINSIC AND HEAT-INDUCED EXCHANGE COUPLING THROUGH AMORPHOUS- SILICON SO PHYSICAL REVIEW LETTERS NR 14 AB We show that ferromagnetic films separated by a spacer of amorphous Si are exchange coupled for Si thicknesses d(Si) less-than-or-equal-to 40 angstrom. For 14 angstrom < d(Si) < 22 angstrom we observe antiferromagnetic coupling. The coupling strength of approximately 5 X 10(-6) J/m2 is strongly temperature dependent with a positive temperature coefficient. We suggest that localized electronic defect states in the gap of amorphous Si mediate the exchange interaction. The particular coupling mechanism encountered here also works with noncrystalline ferromagnetic layers. CR BRINER B, UNPUB BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO P, 1992, PHYS REV B, V46, P261 BUSCHOW KHJ, 1992, NATO ASI SER E, V229 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL306 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 LANDOLT M, 1985, POLARIZED ELECTRONS, P385 MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873 MATTSON JE, 1993, PHYS REV LETT, V71, P185 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 TOSCANO S, 1992, THESIS ETH ZURICH TC 64 BP 340 EP 343 PG 4 JI Phys. Rev. Lett. PY 1994 PD JUL 11 VL 73 IS 2 GA NW184 J9 PHYS REV LETT UT ISI:A1994NW18400031 ER PT J AU BRUNO, P TI THEORY OF INTRINSIC AND THERMALLY-INDUCED INTERLAYER MAGNETIC COUPLING BETWEEN FERROMAGNETIC-FILMS SEPARATED BY AN INSULATING LAYER SO PHYSICAL REVIEW B-CONDENSED MATTER NR 21 AB A formalism developed previously to study the interlayer exchange coupling between ferromagnetic layers separated by a nonmagnetic metal spacer is applied to the case of an insulating spacer. It allows a unified treatment of both cases (metal and nonmetal spacer), provided one introduces the concept of a complex Fermi surface. In contrast to the metal- spacer case, where the exchange coupling decreases with increasing temperature, the coupling across an insulating spacer is found to increase with temperature. This finding is in agreement with recent experimental observations. CR ASHCROFT NW, 1976, SOLID STATE PHYSICS, PCH18 BOBO JF, 1993, PHYS REV LETT, V24, P139 BRINER B, 1993, Z PHYS B, V92, P135 BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRADSTEYN IS, 1965, TABLE INTEGRALS SERI, P304 GROLIER V, 1993, PHYS REV LETT, V71, P3023 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 MATTSON JE, 1993, PHYS REV LETT, V71, P185 OKUNO SN, 1993, PHYS REV LETT, V70, P1711 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ADV SCI INST SE, V309, P257 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 YAFET Y, 1988, J APPL PHYS, V63, P3453 TC 36 BP 13231 EP 13234 PG 4 JI Phys. Rev. B-Condens Matter PY 1994 PD MAY 1 VL 49 IS 18 GA NM433 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1994NM43300105 ER PT J AU MATTSON, JE FULLERTON, EE KUMAR, S LEE, SR SOWERS, CH GRIMSDITCH, M BADER, SD PARKER, FT TI PHOTOINDUCED ANTIFERROMAGNETIC INTERLAYER COUPLING IN FE SUPERLATTICES WITH IRON SILICIDE SPACERS SO JOURNAL OF APPLIED PHYSICS NR 34 AB Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100 K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (> 10 mW/mm2). We attribute these effects to charge carriers in the FeSi spacer layer, which, when thermally or photogenerated, are capable of communicating spin information between the Fe layers. CR ALVAREZ J, 1993, APPL SURF SCI, V70-1, P578 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BOEKHOLT M, 1991, PHYSICA C, V175, P127 BRUNO P, 1992, PHYS REV B, V46, P261 CAREY MJ, 1993, PHYS REV B, V47, P9952 COEHOORN R, 1991, PHYS REV B, V44, P9331 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1992, MRS BULL, V17, P33 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NIEVA G, 1992, APPL PHYS LETT, V60, P2159 NIEVA G, 1992, PHYS REV B, V46, P14249 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PARKER FT, 1989, J APPL PHYS, V66, P5988 PRETORIUS R, 1990, VACUUM, V41, P1038 SANTOS PV, 1991, PHYS REV LETT, V67, P2686 SCHLESINGER Z, 1993, PHYS REV LETT, V71, P1748 STAEBLER DL, 1980, J APPL PHYS, V51, P3262 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1993, APPL SURF SCI, V70-1, P559 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG Y, 1990, PHYS REV LETT, V65, P2732 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WERTHEIM GK, 1965, PHYS LETT, V18, P89 ZHOU JH, 1992, PHYS REV B, V46, P12402 TC 5 BP 6169 EP 6173 PG 5 JI J. Appl. Phys. PY 1994 PD MAY 15 VL 75 IS 10 PN 2A GA NN734 J9 J APPL PHYS UT ISI:A1994NN73400261 ER PT J AU SIEGMANN, HC TI SURFACE AND 2D MAGNETISM WITH SPIN-POLARIZED CASCADE ELECTRONS SO SURFACE SCIENCE NR 33 AB The probing depth lambda of low energy cascade electrons in transition metals (TM) is dominated by scattering into the unoccupied d-orbitals. Thus lambda for electrons within 5-10 eV from the Fermi level varies from 1 monolayer in the early TM such as Gd to 6 monolayers in the late TM(Ni). The spin polarization P(c) of the cascade electrons is due to the spin polarization P0 of the 3d-electrons plus an additional polarization generated in the process of cascade formation by scattering into the spin polarized holes of the 3d-states. The enhancement f = P(c)/P0 is small with the early TM but large with the late TM. Nevertheless, P(c) is proportional to the magnetization and therefore represents an ideal tool to observe magnetism at surfaces and in nanoscale magnetic structures. Very small exchange couplings of ferromagnets across nonmagnetic spacer layers can be measured if one of the ferromagnets is ultrathin and acts as a giant spin molecule without decaying into domains. Recent applications include the investigation of the exchange coupling across semiconducting spacer layers. CR ABRAHAM DL, 1989, PHYS REV LETT, V62, P1157 ALLENSPACH R, 1992, PHYS REV LETT, V69, P3385 BLAND A, 1993, ULTRATHIN MAGNETIC S BLOEMEN PJH, 1992, J MAGN MAGN MATER, V116, PL315 BRINER B, 1993, Z PHYS B CON MAT, V92, P137 BRUNO E, 1993, PHYS REV LETT, V71, P181 COEHOORN R, 1993, EUROPHYS NEWS, V24, P43 DONATH M, 1991, APPL PHYS A-MATER, V52, P206 DONATH M, 1991, PHYS REV B, V43, P13164 DONATH M, 1993, SURF SCI, V287, P722 FRANCOMBE MH, 1971, PHYSICS THIN FILMS, V6 GLAZER J, 1984, SOLID STATE COMMUN, V52, P11507 GOKHALE MP, 1991, PHYS REV LETT, V66, P2251 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MAURAIN C, 1902, J PHYS-PARIS, V1, P90 MAURI D, 1989, APPL PHYS A-MATER, V49, P439 MAURI D, 1988, PHYS REV LETT, V61, P758 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PAUL OM, 1990, THESIS ETH PENN DR, 1987, PHYS REV B, V35, P482 PENN DR, 1985, PHYS REV B, V32, P7753 SCHEINFEIN MR, 1991, PHYS REV B, V43, P3395 SCHONHENSE G, 1993, ANN PHYS, V2, P498 SEAH MP, 1979, SURFACE INTERFACE AN, V1, P2 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8375 SIEGMANN HC, 1988, PHYS REV B, V38, P10434 SIEGMANN HC, 1988, Z PHYS B CON MAT, V69, P485 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ASI SERIES B, V309 TOSCANO S, 1992, THESIS ETH UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1988, PHYS REV B, V37, P2199 TC 0 BP 1076 EP 1086 PG 11 JI Surf. Sci. PY 1994 PD APR 20 VL 309 PN B GA NH823 J9 SURFACE SCI UT ISI:A1994NH82300079 ER PT J AU MUNOZ, MC PEREZDIAZ, JL TI EXCHANGE COUPLING IN MAGNETIC MULTILAYERS - A QUANTUM-SIZE EFFECT SO PHYSICAL REVIEW LETTERS NR 37 AB The long-wavelength oscillations observed in magnetic multilayers axe explained by an indirect Ruderman-Kittel- Kasuya-Yosida-like (RKKY) exchange interaction. A perturbative theory of the RKKY-like exchange coupling between two ferromagnetic layers separated by a nonmagnetic slab is derived. The approach includes a realistic description of the multilayer one-electron states, whose wave functions satisfy matching conditions at the ferromagnetic-nonmagnetic interfaces. The quantum-size effects exhibited by the electron transmission coefficient give rise to a distinct multilayer wavelength lambda. which provides the measured long periods. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BENNETT WR, 1990, PHYS REV LETT, V65, P3169 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO E, 1993, J PHYS-CONDENS MAT, V5, P2109 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEAVEN DM, 1991, PHYS REV B, V44, P5977 DIAZ JLP, IN PRESS EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85 EDWARDS DM, 1991, J PHYS CONDENS MATT, V3, P494 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EITENNE P, 1989, J CRYST GROWTH, V95, P410 FAIRBAIRN WM, 1990, J PHYS-CONDENS MAT, V2, P4197 GARCIAMOLINER F, 1992, THEORY SINGLE MULTIP GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1991, J APPL PHYS, V69, P5247 HERMAN F, 1992, PHYS REV B, V46, P5806 JONES BA, 1993, PHYS REV LETT, V71, P4253 KASUYA T, 1956, PROG THEOR PHYS, V16, P45 MITCHELL AH, 1956, PHYS REV, V103, P1439 MORUZZI VL, 1978, CALCULATED ELECTRONI ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROFF F, 1991, PHYS REV B, V44, P5355 QIU ZQ, 1992, PHYS REV B, V46, P8659 RUDERMAN MA, 1954, PHYS REV, V96, P99 SCHNEIDER CM, 1990, PHYS REV LETT, V64, P1059 SPERIOSU VS, 1991, PHYS REV B, V44, P5358 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VANVLECK JH, 1992, REV MOD PHYS, V34, P681 YAFET Y, 1987, PHYS REV B, V36, P3948 YOSIDA K, 1957, PHYS REV, V106, P893 TC 28 BP 2482 EP 2485 PG 4 JI Phys. Rev. Lett. PY 1994 PD APR 11 VL 72 IS 15 GA NE851 J9 PHYS REV LETT UT ISI:A1994NE85100044 ER PT J AU HOMMA, H ANKER, JF MAJKRZAK, CF TI MAGNETIC DEPTH PROFILES OF MAGNETIC MULTILAYERS FE/SI AND FE/W USING POLARIZED NEUTRON REFLECTOMETRY SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 11 AB We have studied the magnetic properties and roughness at interfaces of sputtered magnetic multilayers Fe/Si and Fe/W, employing a newly developed magnetic profile refinement program for polarized neutron reflectivity data. This modeling demonstrates the capability to measure magnetic moment depth profiles near interfaces quantitatively. CR ANKNER JF, 1993, J APPL PHYS, V73, P6436 ANKNER JF, 1992, SPIE C P, V1738, P260 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 HOMMA H, 1989, B AM PHYS SOC, V34, P492 MAJKRZAK CF, 1984, APPL OPTICS, V23, P3524 MAJKRZAK CF, 1988, MAT RES S P, V103, P115 MAJKRZAK CF, 1990, MRS BULL, V15, P65 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 PARRATT LG, 1954, PHYS REV, V95, P359 SANYAL MK, 1992, MATER RES SOC S P, V237, P393 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 1 BP 257 EP 260 PG 4 JI J. Magn. Magn. Mater. PY 1993 PD SEP VL 126 IS 1-3 GA MD354 J9 J MAGN MAGN MATER UT ISI:A1993MD35400069 ER PT J AU BRINER, B LANDOLT, M TI LIGHT-INDUCED MAGNETIC EXCHANGE-COUPLING SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER NR 8 AB We observe ferromagnetic exchange-coupling to be induced between thin Fe layers separated by an insulating SiO barrier upon light irradiation. Coupling can reversibly be switched on with photons of energies less than the bandgap of SiO. We conclude that charge carriers in localized states within the bandgap mediate the observed exchange-coupling. We furthermore report that the exchange-coupling can also be turned off by irradiation with light of higher intensity. CR ABRAHAM DL, 1987, PHYS REV LETT, V58, P1352 BUSCH G, COMMUNICATION GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HOLZENKAMPFER E, 1979, J NON-CRYST SOLIDS, V32, P327 LANDOLT M, 1985, POLARIZED ELECTRONS, P385 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TOSCANO S, 1993, NATO ASI B, V309 TC 14 BP 137 EP 139 PG 3 JI Z. Phys. B-Condens. Mat. PY 1993 PD OCT VL 92 IS 2 GA LZ856 J9 Z PHYS B-CONDENS MATTER UT ISI:A1993LZ85600002 ER PT J AU MATTSON, JE KUMAR, S FULLERTON, EE LEE, SR SOWERS, CH GRIMSDITCH, M BADER, SD PARKER, FT TI PHOTOINDUCED ANTIFERROMAGNETIC INTERLAYER COUPLING IN FE/(FE- SI) SUPERLATTICES SO PHYSICAL REVIEW LETTERS NR 25 AB We report photoinduced antiferromagnetic (AF) interlayer coupling in sputtered Fe/(Fe-Si) superlattices. The superlattices are intrinsically AF coupled at room temperature and become increasingly ferromagnetically coupled when cooled below 100 K, but the AF coupling is restored at low temperature by exposure to visible light of sufficient intensity ( > 10 mW/mm2). These effects are due to charge carriers in the Fe-Si spacer layer which, when thermally or optically generated, are capable of communicating spin information between the Fe layers. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BOEKHOLT M, 1991, PHYSICA C, V175, P127 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNO P, 1992, PHYS REV B, V46, P261 COEHOORN R, 1991, PHYS REV B, V44, P9331 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 LIU YH, 1991, J PHYS-CONDENS MAT, V3, P3571 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MATTSON JE, 1992, PHYS REV LETT, V68, P3252 NIEVA G, 1992, APPL PHYS LETT, V60, P2159 NIEVA G, 1992, PHYS REV B, V46, P14249 NISHIDA I, 1973, PHYS REV B, V7, P2710 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1991, PHYS REV LETT, V67, P903 QIU ZQ, 1992, PHYS REV LETT, V68, P1398 STAEBLER DL, 1980, J APPL PHYS, V51, P3262 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGARIS J, 1991, PHYS REV LETT, V67, P140 WANG Y, 1990, PHYS REV LETT, V65, P2732 WERTHEIM GK, 1965, PHYS LETT, V18, P89 ZHOU JH, 1992, PHYS REV B, V46, P12402 TC 73 BP 185 EP 188 PG 4 JI Phys. Rev. Lett. PY 1993 PD JUL 5 VL 71 IS 1 GA LK368 J9 PHYS REV LETT UT ISI:A1993LK36800048 ER PT J AU FULLERTON, EE MATTSON, JE LEE, SR SOWERS, CH HUANG, YY FELCHER, G BADER, SD PARKER, FT TI MAGNETIC DECOUPLING IN SPUTTERED FE/SI SUPERLATTICES AND MULTILAYERS SO JOURNAL OF APPLIED PHYSICS NR 23 AB Sputtered Fe/Si superlattices were grown to study the magnetic coupling between ferromagnetic Fe layers (30 angstrom thick) for Si spacer-layer thicknesses (t(Si)) between 10 and 40 angstrom. The material is ferromagnetical for t(Si) < 13 angstrom and antiferromagnetically coupled for 13 angstrom < t(Si) < 17 angstrom. For t(Si) > 17 angstrom the Fe layers are uncoupled. X-ray analysis indicates that the system is well layered, but that the crystal structure remains coherent only for t(Si) < 17 angstrom. These results, along with our Mossbauer investigation, strongly suggest that the Si layer is crystalline for t(Si) < 17 angstrom, and is silicide in nature. For thicker spacers, Si becomes amorphous. We propose a model of the layering that is consistent with the known properties of Fe silicide. CR BRUNO P, 1992, PHYS REV B, V46, P261 CHYUNG LJ, 1990, MATER RES SOC S P, V187, P327 CLEMENS BM, 1990, MRS B, V15, P19 COEHOORN R, 1991, PHYS REV B, V44, P9331 DUFOUR C, 1988, PHYSIQUE C, V8, P1781 DUFOUR C, 1989, SOLID STATE COMMUN, V69, P963 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P7795 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MATTSON JE, 1992, PHYS REV LETT, V68, P3252 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PHRAGMIN G, 1926, J IRON STEEL I, V116, P397 SEVENHANS W, 1986, PHYS REV B, V34, P5955 SHIMADA Y, 1976, J APPL PHYS, V47, P4156 SLAUGHTER J, 1990, P SPIE, V1343, P73 STEARNS MB, 1992, J APPL PHYS, V71, P187 STEARNS MB, 1963, PHYS REV, V129, P1136 THOMPSON CV, 1990, MATER RES SOC S P, V187, P61 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGARIS J, 1991, PHYS REV LETT, V67, P140 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG Y, 1990, PHYS REV LETT, V65, P2732 TC 22 BP 6335 EP 6337 PG 3 JI J. Appl. Phys. PY 1993 PD MAY 15 VL 73 IS 10 PN 2B GA LD865 J9 J APPL PHYS UT ISI:A1993LD86500071 ER PT J AU ANKNER, JF MAJKRZAK, CF HOMMA, H TI MAGNETIC DEAD LAYER IN FE/SI MULTILAYER - PROFILE REFINEMENT OF POLARIZED NEUTRON REFLECTIVITY DATA SO JOURNAL OF APPLIED PHYSICS NR 12 AB We have used polarized neutron reflectometry to study the magnetic structure of an Fe/Si multilayer film. By simultaneous refinement of both plus and minus reflectivities we have extracted separate nuclear and magnetic scattering density profiles that include a 6-angstrom-thick magnetically dead layer in Fe at the interface. This result supports the contention that the antiferromagnetic coupling reported in this system is mediated by the presence of Fe in the Si interlayers. CR ANKNER JF, 1992, NEUTRON OPTICAL DEVI, V1738, P261 ANKNER JF, UNPUB BORN M, 1980, PRINCIPLES OPTICS DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 DUFOUR C, 1989, SOLID STATE COMMUN, V69, P963 FELCHER GP, 1981, PHYS REV B, V24, P1595 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 MAJKRZAK CF, 1985, J APPL PHYS, V57, P3657 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 PARRATT LG, 1954, PHYS REV, V95, P359 RAUCH H, 1978, NEUTRON DIFFRACTION, V6 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 10 BP 6436 EP 6437 PG 2 JI J. Appl. Phys. PY 1993 PD MAY 15 VL 73 IS 10 PN 2B GA LD865 J9 J APPL PHYS UT ISI:A1993LD86500109 ER PT J AU FULLERTON, EE MATTSON, JE LEE, SR SOWERS, CH HUANG, YY FELCHER, G BADER, SD PARKER, FT TI NONOSCILLATORY ANTIFERROMAGNETIC COUPLING IN SPUTTERED FE/SI SUPERLATTICES SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 26 AB A series of sputtered Fe(30 angstrom)/Si(x) superlattices were grown for x = 10-40 angstrom. Magnetization and Kerr hysteresis loops, and neutron-reflectivity measurements identify antiferromagnetic (AF) coupling of the Fe layers at room temperature for x = 15 angstrom nominal thickness, with switching fields of 6 kOe. X-rav structural analyses indicate that the spacer medium is crystalline for k < 20 angstrom, while sputtered Si is amorphous (a). Failure to detect oscillations in the AF coupling for thicker Si layers is due to the formation of a-Si, as opposed to the crystalline silicide responsible for the coupling. CR BRUNO P, 1991, PHYS REV LETT, V67, P1602 CLEMENS BM, 1990, MRS B, V15, P19 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEAVEN DM, 1991, PHYS REV B, V44, P5977 DUFOUR C, 1988, J PHYS-PARIS, V49, P1781 DUFOUR C, 1989, SOLID STATE COMMUN, V69, P963 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P7795 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HERMAN F, UNPUB PHYS REV LETT JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 MATTSON JE, 1992, PHYS REV LETT, V68, P3252 MOFFATT WG, 1976, HDB BINARY PHASE DIA PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SEVENHANS W, 1986, PHYS REV B, V34, P5955 SLAUGHTER L, 1990, P SPIE, V1343, P73 SPILLER E, 1988, PHYSICS FABRICATION, P271 STEARNS DG, 1990, J APPL PHYS, V67, P2415 STEARNS MB, 1992, J APPL PHYS, V71, P187 THOMPSON CV, 1990, MATER RES SOC S P, V187, P61 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGARIS J, 1991, PHYS REV LETT, V67, P140 WANG Y, 1990, PHYS REV LETT, V65, P2732 WINDT DL, 1992, J APPL PHYS, V71, P2675 TC 57 BP L301 EP L306 PG 6 JI J. Magn. Magn. Mater. PY 1992 PD DEC VL 117 IS 3 GA KE888 J9 J MAGN MAGN MATER UT ISI:A1992KE88800001 ER