FN ISI Export Format VR 1.0 PT J AU Serebryakov, AV Sedykh, VD Novokhatskaya, NI Gurov, AF TI Final stages of crystallization of (Co77Si13.5B9.5)93-xFe7Nbx amorphous alloys SO FIZIKA METALLOV I METALLOVEDENIE NR 18 CR *PDR 2 DAT BAS, 1997, PCPDFWIN VERS 1 30 BERGMAN G, 1956, ACTA CRYSTALLOGR, V9, P214 JORDAN LT, 1981, Z METALLKD, V72, P72 KOPCEWICZ M, 1988, J MAGN MAGN MATER, V72, P119 KUZMA YB, 1967, KRISTALLOGRAFIYA, V12, P353 KUZMA YB, 1964, ZH STRUKT KHIM, V57, P562 MASSALSKI TB, 1996, BINARY ALLOY PHASE D MATTERN N, 1995, MAT SCI ENG A-STRUCT, V194, P77 MORIMOTO S, 1981, P 4 INT C RAP QUENCH, P695 SEREBRYAKOV A, 1999, IJNEP, V11, P25 SEREBRYAKOV A, 1996, NANOSTRUCT MATER, V7, P519 STEARNS MB, 1963, PHYS REV, V129, P1136 WEISMAN ID, 1969, PHYS REV, V177, P465 WOLNY J, 1982, NUCL INSTRUM METHODS, V199, P179 YAVARI AR, 1994, MAT SCI ENG A-STRUCT, V181, P1415 YAVARI AR, 1995, MATER T JIM, V36, P896 YOSHIZAWA Y, 1988, J APPL PHYS, V84, P6044 YOSHIZAWA Y, 1991, MAT SCI ENG A-STRUCT, V113, P176 TC 0 BP 84 EP 91 PG 8 JI Fiz. Metallov Metalloved. PY 2000 PD FEB VL 89 IS 2 GA 297UF J9 FIZ METAL METALLOVED UT ISI:000086100500014 ER PT J AU Liu, T Liu, HY Zhao, ZT Ma, RZ Hu, TD Xie, YN TI Mechanical alloying of Fe-Mn and Fe-Mn-Si SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING NR 14 AB The ball milling of Fe-24Mn and Fe-24Mn-6Si mixed powders has been performed by the high energy ball milling technique. By employing X-ray diffraction and Mossbauer measurements, the composition evolution during the milling process has been investigated. The results indicate the formation of paramagnetic Fe-Mn or Fe-Mn-Si alloys with a metastable fee phase as final products, which imply that the Fe and Mn proceed a co-diffusion mechanism through the surface of fragmented powders. The thermal stability and composition evolution of the as-milled alloys were discussed comparing with the bulk alloy. (C) 1999 Published by Elsevier Science S.A. All rights reserved. CR CABANASMORENO JG, 1993, SCRIPTA METALL MATER, V28, P645 DRBOHLAV O, 1995, ACTA METALL MATER, V43, P1799 FECHT HJ, 1990, J APPL PHYS, V67, P1744 MIEDEMA AR, 1980, PHYSICA B & C, V100, P1 MIURA H, 1990, J NON-CRYST SOLIDS, V117, P741 NAKATSU H, 1996, J JPN I MET, V60, P141 STEARNS MB, 1963, PHYS REV, V129, P1136 WEEBER AW, 1988, PHYSICA B, V153, P93 WU YK, 1993, ACTA METALL SINICA, V29, PB546 XU ZX, 1993, CHINESE SCI BULL, V38, P1767 YAVARI AR, 1992, PHYS REV LETT, V68, P2235 ZHANG DL, 1995, J MATER SCI LETT, V14, P1508 ZHAO ZT, IN PRESS ZHAO ZT, 1996, J MATER SCI LETT, V15, P1427 TC 0 BP 8 EP 13 PG 6 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PY 1999 PD NOV 1 VL 271 IS 1-2 GA 255AR J9 MATER SCI ENG A-STRUCT MATER UT ISI:000083647800002 ER PT J AU Strijkers, GJ Kohlhepp, JT Swagten, HJM de Jonge, WJM TI Formation of nonmagnetic c-Fe1-xSi in antiferromagnetically coupled epitaxial Fe/Si/Fe SO PHYSICAL REVIEW B NR 20 AB Low-energy electron diffraction, Auger electron spectroscopy, and conversion electron Mossbauer spectroscopy have been applied to study antiferromagnetically exchange-coupled epitaxial Fe/Si/Fe(100). It is shown that a bcc-like (100) structure is maintained throughout the layers after a recrystallization of the spacer layer by Fe/Si interdiffusion. Direct experimental evidence is presented that c-Fe1-xSi (0 less than or equal to x less than or equal to 0.5) is formed in the spacer layer, a nonmagnetic metallic metastable iron silicide phase with a CsCl structure (B2), which supports explanations for the antiferromagnetic exchange coupling given recently. CR BRUNO P, 1995, PHYS REV B, V52, P411 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, J APPL PHYS, V79, P4772 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEKOSTER J, 1997, J APPL PHYS, V81, P5349 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FANCIULLI M, 1999, PHYS REV B, V59, P3675 FANCIULLI M, 1994, PHYS SCRIPTA, V54, P16 FOILES CL, 1994, PHYS REV B, V50, P16070 FULLERTON EE, 1993, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GALLEGO JM, 1991, J APPL PHYS, V69, P1377 HELGASON O, 1989, HYPERFINE INTERACT, V45, P415 KLASGES R, 1997, PHYS REV B, V56, P10801 KOHLHEPP JT, 1997, MATER RES SOC SYMP P, V475, P593 MORONI EG, 1999, PHYS REV B, V59, P12860 SHI ZP, 1994, EUROPHYS LETT, V26, P473 STEARNS MB, 1963, PHYS REV, V129, P1136 STRIJKERS GJ, UNPUB TC 2 BP 9583 EP 9587 PG 5 JI Phys. Rev. B PY 1999 PD OCT 1 VL 60 IS 13 GA 244YW J9 PHYS REV B UT ISI:000083079200074 ER PT J AU Turtelli, RS de Morais, E Wiesinger, G Reichl, C Duong, VH Grossinger, R TI Structural details and time dependence of the initial susceptibility in iron-rich Fe-Si ribbons SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 20 AB A systematic study of the temperature dependence of the initial susceptibility c(AC) versus T of Fe-6.5 wt%Si, Fe-7.5 wt%Si and Fe-11 wt%Si ribbons in the as-quenched state and after annealing at 1373 K for 1 h has been performed. In ribbons with a silicon concentration of 6.5 and 7.5 wt%, the presence of an anomaly in chi(AC) versus T and a thermal susceptibility hysteresis at high temperatures were observed. This susceptibility anomaly is attributed to the magnetic aftereffect phenomenon originating from the diffusion of pairs of silicon atoms. The occurrence of a magnetic aftereffect is associated with the existence of the B2 type of structure in the sample induced during the process of cooling from high temperature, its formation being sensitive to the cooling rate. The activation energy of the reversible process of the time dependence of the magnetic susceptibility depends on the cooling rate and its value is estimated using an Arrhenius-type law. X-ray diffraction and Fe-57 Mossbauer measurements were included within this study, in order to investigate the crystallographic structure. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR AHLERS H, 1984, IEEE T MAGN, V20, P1472 ARAI KI, 1984, IEEE T MAGN, V20, P1463 ARAI KI, 1984, IEEE T MAGN, V20, P1469 BERTOTTI G, 1994, LANDOLTBORNSTEIN, V19, P36 CIURZYNSKA W, 1994, J MAGN MAGN MATER, V133, P351 CIURZYNSKA WH, 1987, PHYSICA B & C, V146, P416 FISH GE, 1988, J APPL PHYS, V64, P5370 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HERNANDO A, 1995, PHYS REV B, V51, P3281 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 KERSTEN M, 1956, Z ANGEW PHYS, V8, P313 KNOBEL M, 1992, J APPL PHYS, V71, P6008 OGUMA YS, 1988, J APPL PHYS, V64, P6044 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 STEARNS MB, 1963, PHYS REV, V129, P1136 TURTELLI RS, IN PRESS IEEE T MAGN TURTELLI RS, 1998, J MAGN MAGN MATER, V177, P1389 VIALA B, 1996, MAT SCI ENG A-STRUCT, V212, P62 ZBROSZCZYK J, 1994, J MAGN MAGN MATER, V133, P347 ZEMCIK T, 1991, MAT LETT, V10 TC 1 BP 290 EP 300 PG 11 JI J. Magn. Magn. Mater. PY 1999 PD NOV VL 205 IS 2-3 GA 243BN J9 J MAGN MAGN MATER UT ISI:000082977400021 ER PT J AU Zhou, TJ Yu, Z Du, YW TI The effective magnetic anisotropy in nanocrystalline Fe100-xSix alloys SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 15 AB The effective magnetic anisotropy in the nanocrystalline Fe100- xSx (x less than or equal to 25) alloys prepared by mechanical alloying was measured using the law of approach to saturation. It is found that the effective magnetic anisotropy constants K- eff decrease with increasing Si concentration, and are larger than those of the corresponding polycrystalline Fe100-xSix alloys. The Mossbauer patterns showed that the substitution of Si atoms for Fe ones is disordered. The high coercive force found in these alloys may be related to the high stress: and doping in grain boundaries. (C) 1999 Elsevier Science B.V. All rights reserved. CR ARAI KI, 1985, J APPL PHYS, V57, P460 BECKMAN G, 1995, HDB MAGNETIC MAT, P268 BOZORTH RM, 1951, FERROMAGNETISM, P77 BROWN WF, 1941, PHYS REV, V60, P132 BROWN WF, 1940, PHYS REV, V58, P736 CHIKAZUMI S, 1964, PHYSICS MAGNETISM, P274 DOMANN M, 1979, J MAGN MAGN MATER, V13, P81 GENGNAGEL H, 1961, Z ANGEW PHYS, V4, P174 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 HOLSTEIN T, 1940, PHYS REV, V58, P1098 KRONMULLER H, 1979, IEEE T MAGN, V15, P1218 RUUSKANEN P, 1993, KEY ENG MATER, V81, P159 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMAGUCHI T, 1977, IEEE T MAGN, V13, P1621 ZHOU TJ, 1996, J MAGN MAGN MATER, V164, P219 TC 0 BP 354 EP 358 PG 5 JI J. Magn. Magn. Mater. PY 1999 PD AUG VL 202 IS 2-3 GA 220TK J9 J MAGN MAGN MATER UT ISI:000081683400012 ER PT J AU Randrianantoandro, N Gaffet, E Mira, J Greneche, JM TI Magnetic hyperfine temperature dependence in Fe-Si crystalline alloys SO SOLID STATE COMMUNICATIONS NR 12 AB Fe-Si crystalline alloys with different silicon contents (4.5, 12, 18 and 26 at.%) were investigated by Fe-57 Mossbauer spectrometry and a.c. magnetic measurements in order to get magnetic hyperfine data as a function of temperature and Curie temperatures as a function of silicon content at the different iron sites. The values of critical exponent beta which are independent on the iron site are found close to 0.36, typical of Heisenberg ferromagnets, whatever the silicon content. The present results support the assumptions made in the literature to describe the magnetic and hyperfine properties of FINEMET nanocrystalline alloys and can further be considered. (C) 1999 Elsevier Science Ltd. All rights reserved. CR ARITA M, 1985, T JPN I MET, V26, P710 GRENECHE JM, 1997, HYPERFINE INTERACT, V110, P81 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 KUBACHAWSKI O, 1982, IRON BINARY PHASE DI RANDRIANANTOANDRO , 1997, J PHYS-CONDENS MAT, V9, P10485 RANDRIANANTOANDRO , 1997, PHYS REV B, V56, P10797 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 SLAWSKAWANIEWSKA A, 1992, PHYS REV B, V46, P14594 STEARNS MB, 1963, PHYS REV, V129, P1136 TEILLET J, UNPUB YELSUKOV YP, 1986, PHYS MET METALLOGR, V62, P85 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 1 BP 323 EP 327 PG 5 JI Solid State Commun. PY 1999 VL 111 IS 6 GA 214VQ J9 SOLID STATE COMMUN UT ISI:000081348600007 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Rawers, J Cook, D Kim, T TI Application of Mossbauer spectroscopy in the characterization of nanostructured materials SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING NR 51 AB Understanding of nanostructured materials is often limited by experimental characterization methods that measure only bulk properties. For example, numerous studies have characterized nanostructured materials using X-ray diffraction for phases present, average grain size, internal strain, etc. In this study, Mossbauer analysis is used to characterize the local atomic site characterization, distribution, and concentrations of attrition milled nanostructure powder. Interatomic analysis provided insight into the mechanical alloying process and the resulting nanostructure not previously reported. Iron powder, blends of iron with 2 wt% aluminum powder, and prealloyed iron- aluminum powder were processed with both argon and nitrogen gas as the processing environments. Mechanical processing resulted in micrometer-size particles with essentially defect-free nanograin interiors. Mechanical alloying iron powder with aluminum resulted in the aluminum being restricted to the grain boundary region. Mechanical processing iron powder in a nitrogen gas environment resulted in nitrogen being either on the grain boundary or in the outer layer of the grain boundary distorting the local b.c.c.-Fe lattice into a b.c-Fe lattice. (C) 1998 Elsevier Science S.A. All rights reserved. CR BIGLARI MH, 1995, METALL MATER TRANS A, V26, P765 BONETTI E, 1995, J MATER SCI, V30, P2220 BOSCHERINI F, 1992, C P MET SEM CLUST CO, P303 COOK DC, 1996, MATER SCI FORUM, V225, P533 COOK DC, 1987, METALL TRANS A, V18, P201 DECRISTOFARO N, 1997, METALL T A, V8, P35 EASTMAN JA, 1995, J APPL PHYS, V77, P522 EPPERSON J, 1991, C P MAGN PROP FIN PA, P83 FALL I, 1996, METALL MATER TRANS A, V27, P2160 FECHT HJ, 1990, METALL TRANS A, V21, P2333 FITZSIMMONS MR, 1996, NANOSTRUCT MATER, V7, P179 FOCT J, 1990, HNS 90 C, P72 FOCT J, 1994, NANOSTRUCT MATER, V4, P685 FOUGERE GE, 1995, MAT SCI ENG A-STRUCT, V204, P1 GAVRILJUK V, 1990, HNS 90 C, P91 GENIN J, 1993, DISTRIBUTION INTERST, P261 HAUBOLD T, 1993, ACTA METALL MATER, V41, P1769 HAUBOLD T, 1988, J LESS-COMMON MET, V145, P557 HAUBOLD T, 1989, PHYS LETT A, V135, P461 HELLSTERN E, 1989, J APPL PHYS, V65, P305 HORITA Z, 1996, J MATER RES, V11, P1880 JOSEYACAMAN M, 1995, NANOSTRUCT MATER, V5, P171 KOCK CC, 1989, ANN REV MAT SCI, V19, P191 LECAER G, 1994, HYPERFINE INTERACT, V90, P229 LIU XD, 1993, NANOSTRUCT MATER, V2, P581 MORRIS DG, 1990, MAT SCI ENG A-STRUCT, V125, P97 NIEH TG, 1991, SCRIPTA METALL MATER, V25, P955 OLESZAK D, 1994, MAT SCI ENG A-STRUCT, V181, P1217 OUYANG H, 1994, NANOPHASES NANOCRYST, P95 PARKER JC, 1992, NANOSTRUCT MATER, V1, P53 RAWERS J, 1995, J MAT SYNTH PROCES, V3, P956 RAWERS J, 1996, METALL MATER TRANS A, V25, P3126 RAWERS JC, 1994, METALL MATER TRANS A, V25, P381 SANDERS P, 1994, C P NAN MAT S SAN FR, P319 SATTLER K, 1994, J APPL PHYS, V76, P566 SCHLORKE N, 1995, NANOSTRUCT MATER, V6, P593 SIEGEL R, 1990, C P DEF MAT BOST MA, P15 SIEGEL RW, 1992, ULTRAMICROSCOPY, V40, P376 STEARNS MB, 1963, PHYS REV, V129, P1136 STERN EA, 1995, PHYS REV LETT, V75, P3874 STRAUB WM, 1995, NANOSTRUCT MATER, V6, P571 SUITS BH, 1994, J MATER RES, V9, P336 SUITS BH, 1995, NANOSTRUCT MATER, V6, P609 THOMAS GJ, 1990, SCRIPTA METALL MATER, V24, P201 VALIEV RZ, 1996, ACTA MATER, V44, P4705 WAGNER CNJ, 1991, MAT SCI ENG A-STRUCT, V133, P26 WEISSMULLER J, 1992, NANOSTRUCT MATER, V1, P439 WERTHEIM GK, 1964, PHYS REV LETT, V12, P24 WOLF D, 1995, PHYS LETT A, V205, P274 WUNDERLICH W, 1990, SCRIPTA METALL MATER, V24, P403 ZHU X, 1987, PHYS REV B, V35, P35 TC 0 BP 212 EP 220 PG 9 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PY 1998 PD JUN 15 VL 248 IS 1-2 GA ZZ400 J9 MATER SCI ENG A-STRUCT MATER UT ISI:000074725600026 ER PT J AU Zhang, YZ Jin, HJ TI Microstructure of differently annealed nanocrystalline Fe72.7Cu1Nb1.8Mo2Si13B9.5 alloy SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY NR 9 AB The microstructure of differently annealed nanocrystalline Fe72.7Cu1Nb1.8Mo2Si13B9.5 alloy was investigated by using Mossbauer spectroscopy and transmission electron microscope. The specimens were isochronally annealed at temperatures between 480 degrees C and 600 degrees C for 0.5 h. The experimental results show that the microstructure mainly consists of the nanoscale bcc alpha-Fe(Si) grains and the residual amorphous matrix phase. A trace paramagnetic phase was found for annealing about above 500 degrees C. The volume fraction of alpha-Fe(Si) grain increases with increasing annealing temperature, whereas the average size of grain is almost unchanged above 480 degrees C up to 580 degrees C. The calculated thickness of the intergranular layer of the residual amorphous matrix clearly decreases with increasing annealing temperature. CR HERNANDO A, 1995, PHYS REV B, V51, P3581 HONO K, 1992, ACTA METALL MATER, V40, P2137 KULIK T, 1994, J MAGN MAGN MATER, V138, P270 LIU T, 1996, ACTA PHYS SINICA, V45, P528 STEARNS MB, 1963, PHYS REV, V129, P1136 YANG HE, 1993, CHINESE SCI BULL, V38, P1245 ZHANG XG, 1996, ACTA METALL SINICA, V9, P199 ZHANG YH, 1992, CHINESE SCI BULL, V37, P230 ZHANG YZ, 1997, J MATER SCI TECHNOL, V13, P425 TC 0 BP 327 EP 330 PG 4 JI J. Mater. Sci. Technol. PY 1998 PD JUL VL 14 IS 4 GA 104DC J9 J MATER SCI TECHNOL UT ISI:000074996700008 ER PT J AU Zhou, TJ Yang, W Yu, Z Zhang, HH Shen, JC Du, YW TI The larger polar Kerr rotation of Fe-Si alloy films and their magnetic properties SO APPLIED PHYSICS LETTERS NR 17 AB The structure, magnetic properties and polar Kerr effects of Fe100-xSix (0 less than or equal to x less than or equal to 70) alloy films prepared by ion-beam co-sputtering were studied. We find that the saturation magnetization of these films decreases with increasing x, and a plateau of constant magnetization occurs as 22 less than or equal to x less than or equal to 28. Their polar Ken rotation theta(k) decreases with increasing x as x less than or equal to 16.2 and x greater than or equal to 30, but increases with increasing x as 20 less than or equal to x less than or equal to 28. In the measuring wavelength range of 400-800 nm, the theta(k) of Fe72Si28 film is 40% to 50% larger than that of pure Fe film. We think that amorphization may play an important role in enlarging the polar Kerr rotation of these films. (C) 1998 American Institute of Physics. CR AFONSO CN, 1980, J MAGN MAGN MATER, V15-8, P833 ARAI KI, 1988, J APPL PHYS, V64, P5352 ARAI KI, 1994, J MAGN MAGN MATER, V133, P233 CHEN LY, 1992, P SOC PHOTO-OPT INS, V1746, P307 COUTTS MD, 1967, J APPL PHYS, V38, P409 GESERICH HP, 1973, PHILOS MAG, V27, P1001 HALL TPP, 1969, J PHYS C SOLID STATE, V2, P1590 HONMA H, 1991, J APPL PHYS, V70, P6259 POCKRAND I, 1975, PHYS STATUS SOLIDI A, V27, P413 POLCAROVA M, 1988, PHYS STATUS SOLIDI A, V106, P17 RUDDER WE, 1942, P IRE, V437, P30 SHARMA SK, 1975, PHYS STATUS SOLIDI A, V32, P467 SHIMADA Y, 1976, J APPL PHYS, V47, P4156 SIMPSON AW, 1971, PHYS STATUS SOLIDI B, V43, P291 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMAGUCHI T, 1977, IEEE T MAGN, V13, P1621 YAMAMOTO T, 1944, T I ELECT ENG JPN, V5, P175 TC 6 BP 1383 EP 1384 PG 2 JI Appl. Phys. Lett. PY 1998 PD MAR 16 VL 72 IS 11 GA ZC326 J9 APPL PHYS LETT UT ISI:000072566000041 ER PT J AU Fanciulli, M Zenkevich, A Weyer, G TI Mossbauer investigation of silicide phases at the reactive Fe/Si interface SO APPLIED SURFACE SCIENCE NR 26 AB Silicide phases formed upon pulsed laser deposition of 1-60 Angstrom of Fe onto a H-terminated Si(111) surface at room temperature have been investigated by conversion electron Mossbauer spectroscopy. An interface phase with two different Fe sites of low local symmetry is formed initially with up to 8 Angstrom of Fe. For larger coverage an alpha-Fe phase with incorporated Si occurs. The evolution of this structure upon isothermal annealing at 250 degrees C shows that a c-FeSi phase with B2 structure is formed first, which at later times transforms to the bulk stable epsilon-FeSi phase. For 60 Angstrom coverage a Fe3Si phase is found in addition. A model for the phase formation and evolution mechanisms is proposed. (C) 1998 Elsevier Science B.V. CR ALVAREZ J, 1993, PHYS REV B, V47, P16048 BORG RJ, 1970, J APPL PHYS, V41, P5193 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEGROOTE S, 1994, MATER RES SOC S P, V337, P685 DEGROOTE S, 1993, MATER RES SOC S P, V320, P133 DEVRIES JJ, 1997, PHYS REV LETT, V78, P3023 FANCIULLI M, 1997, EUROPHYS LETT, V37, P139 FANCIULLI M, 1997, J PHYS-CONDENS MAT, V9, P1619 FANCIULLI M, 1996, MATER RES SOC S P, V401, P319 FANCIULLI M, 1996, PHYS REV B, V54, P15985 FANCIULLI M, 1995, PHYS REV LETT, V75, P1642 FANCIULLI M, 1994, PHYS SCRIPTA, V54, P16 FANCIULLI M, 1997, SURF SCI, V377, P529 FANCIULLI M, 1996, THIN SOLID FILMS, V275, P8 JZEHNDER S, 1993, MATER RES SOC S P, V280, P581 KUBLER J, 1993, Z PHYS B CON MAT, V92, P155 MASCARAQUE A, 1997, PHYS REV B, V55, PR7315 MOSER P, 1987, MATER SCI FORUM, V15, P925 SAUER C, 1994, MAGNETIC MULTILAYERS, P147 STEARNS MB, 1963, PHYS REV, V129, P1136 TERSOFF J, 1995, PHYS REV LETT, V74, P5080 UTZIG J, 1989, J APPL PHYS, V65, P3868 VONKANEL H, 1992, MATER SCI REP, V8, P193 VONKANEL H, 1992, PHYS REV B, V45, P13807 WEYER G, 1976, MOSSBAUER EFFECT MET, V10, P301 TC 1 BP 207 EP 212 PG 6 JI Appl. Surf. Sci. PY 1998 PD JAN VL 123 GA YY884 J9 APPL SURF SCI UT ISI:000072196800042 ER PT J AU Liu, T Hu, TD Xie, YN Zhao, ZT Ma, RZ TI An investigation of thermal relaxation of a nanocrystalline ferromagnet SO NANOSTRUCTURED MATERIALS NR 27 AB The amorphous Fe735Cu1Mo3Si135B9 alloy has been prepared and annealed at 793 K for different times. Mossbauer spectra, X-ray diffraction anal differential thermal analysis (DTA) measurements were employed to investigate the variation of microstructure during the isothermal annealing process. The results indicate that the crystallized fraction, hyperfine field of crystalline and amorphous phases, as well as the grain size are almost independent of the annealing time between 20 min. and 180 min., implying that a structural relaxation of interfaces may occur. The thermal relaxation of interfaces of nanocrystalline structure may be similar to that of amorphous alloys prior Co crystallization and therefore is stable to the isothermal annealing, implying an intrinsic stability of the nanocrystalline structure. The structural relaxation may be related to the arrangement of internal stresses and local defects. In view of this, a relationship with the soft magnetic properties of alloys is discussed. (C) 1998 Acta Metallurgica Inc. CR ALLIA P, 1993, J APPL PHYS, V74, P3137 DUHAJ P, 1992, MAT SCI ENG B-SOLID, V14, P357 FUJII Y, 1991, J APPL PHYS, V70, P6241 GLEITER H, 1991, PROG MATER SCI, V33, P223 GRAF T, 1996, J PHYS-CONDENS MAT, V8, P3897 HASEGAWA N, 1990, J MAG SOC JPN, V14, P313 HERNANDO A, 1990, J PHYS-CONDENS MAT, V2, P1885 HERZER G, 1989, IEEE T MAGN, V25, P3327 HONO K, 1992, ACTA METALL MATER, V40, P2137 ILLEKOVA E, 1996, MAT SCI ENG A-STRUCT, V205, P166 KNOBEL M, 1992, J APPL PHYS, V71, P6008 KRILL CE, 1996, MATER SCI FORUM, V225, P263 LACHOWICZ HK, 1994, J MAGN MAGN MATER, V133, P238 LIU T, 1997, HYPERFINE INTERACT, V180, P401 LIU T, 1995, J APPL PHYS, V77, P6214 LIU T, 1996, NANOSTRUCT MATER, V7, P733 LIU T, 1997, SCI CHINA SER A, V40, P298 MATKO I, 1994, MAT SCI ENG A-STRUCT, V179, P557 MIGLIERINI M, 1994, J PHYS-CONDENS MAT, V6, P1431 MOON CH, 1994, SCRIPTA METALL MATER, V31, P1325 SLAWSKAWANIEWSK A, 1993, IEEE T MAGN, V26, P2628 STEARNS MB, 1963, PHYS REV, V129, P1136 SUZUKI K, 1990, MATER T JIM, V31, P743 TSCHOPE A, 1992, J APPL PHYS, V71, P5391 XU ZX, 1993, CHINESE SCI BULL, V38, P1767 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 TC 0 BP 909 EP 918 PG 10 JI Nanostruct. Mater. PY 1997 PD OCT-NOV VL 8 IS 7 GA YZ598 J9 NANOSTRUCT MATER UT ISI:000072270100014 ER PT J AU Nkosibomvu, ZL Witcomb, MJ Cornish, LA Pollak, H TI Mossbauer spectroscopy and SEM characterisation of commercial ferrosilicon powders SO HYPERFINE INTERACTIONS NR 12 AB Ferrosilicon is used as a medium for separating different minerals in beneficiation, and is recovered by magnetic separation, then recycled. Commercial grades exhibit different magnetic properties and a range of chemical compositions, and the former can lead to non-recovery and cost implications. A study was carried out on samples of commercial ferrosilicon in an attempt to characterise the varying saturation magnetism (Satmagan) value. The samples had Satmagan values between 56 and 68% (as measured against a ferrite standard). Mossbauer results showed that peaks became more pronounced with increased Satmagan value. This indicates that the order of the F3Si DO3 phase increased with higher Satmagan value. Scanning electron microscopy revealed that the microstructure comprised dendrites (with 30-34 at. % Si) which were surrounded by a eutectic comprising 22-31 at. % Si, with the dendrites being the major phase. CR 1992, ASM HDB, V3 1995, HDB TERNARY ALLOY DI, V5 CORTIE MB, COMMUNICATION GAO ZQ, 1994, HYPERFINE INTERACT, V94, P2361 GAO ZQ, 1994, HYPERFINE INTERACT, V4, P2213 GAO ZQ, 1993, PHILOS MAG B, V67, P787 RAGHAVAN V, 1986, J ALLOY PHASE DIAGRA, V2, P97 RAGHAVAN V, 1987, PHASE DIAGRAMS TERNA RAYNOR GV, 1988, PHASE EQUILIBRIA IRO, V4, P363 RIVLIN VG, 1984, INT MET REVS, V29, P229 STEARNS MB, 1963, PHYS REV, V129, P1136 WILLIAMS RA, 1992, MINER ENG, V5, P57 TC 1 BP 261 EP 265 PG 5 JI Hyperfine Interact. PY 1998 VL 112 IS 1-4 GA YV034 J9 HYPERFINE INTERACTIONS UT ISI:000071783000056 ER PT J AU Abdellaoui, M DjegaMariadassou, C Gaffet, E TI Structural study of Fe-Si nanostructured materials SO JOURNAL OF ALLOYS AND COMPOUNDS NR 26 AB The mechanical alloying (MA) of Fe and Si powder with ball milling conditions corresponding to an injected shock power of 1.3 TN g(-1), leads to an expansion of the A2 crystalline disordered solid solution phase region up to 27.5 at.% Si (the equilibrium value is 9 at.% Si). In this composition range, an amorphous phase is also detected. In the mechanically alloyed states, Mossbauer spectroscopy reveals that for a Si content less than 15 at.%, the Fe and Si atoms are randomly distributed according to a binomial law in agreement with a bcc structure. For higher Si content, even the X-ray diffraction (XRD) patterns reveal the bce crystalline structure, the Mossbauer spectra show that the random distribution of the Fe and Si atoms in the crystalline lattice can no longer be maintained. (C) 1997 Elsevier Science S.A. CR ABDELLAOUI M, 1995, ACTA METALL MATER, V43, P1087 ABDELLAOUI M, 1994, IEEE T MAGN, V30, P4887 ABDELLAOUI M, 1994, J ALLOY COMPD, V209, P351 ABDELLAOUI M, 1993, J ALLOY COMPD, V198, P155 ABDELLAOUI M, 1994, J PHYS IV, V4, P285 ABDELLAOUI M, 1994, J PHYS IV, V4, P291 ABDELLAOUI M, 1992, J PHYS IV, V2, P73 DEGAUQUE J, 1990, IEEE T MAGN, V26, P2220 DJEGAMARIADASSOU C, 1995, PHYS REV B, V51, P8830 DORMANN JL, 1972, PHYS STATUS SOLIDI B, V52, PK23 ELSUKOV EP, 1992, J PHYS-CONDENS MAT, V4, P7597 GAFFET E, 1993, J ALLOY COMPD, V194, P339 JAPA E, 1979, PHYS STATUS SOLIDI B, V96, PK65 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI, P136 KUWANO H, 1992, MATER SCI FORUM, V88, P561 KUWANO H, 1992, NANOSTRUCT MATER, V1, P143 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 NARITA K, 1979, IEEE T MAGN, V15, P911 RAMASAMY S, 1992, NANOSTRUCT MATER, V1, P225 SCHNEEWEISS O, 1993, SCRIPTA METALL MATER, V28, P293 STEARNS MB, 1963, PHYS REV, V129, P1136 SWANN PR, 1975, MET SCI, V9, P90 TANAKA T, 1993, NUCL INSTRUM METH B, V76, P195 TENWICK MJ, 1984, INT J RAPID SOLIDIF, V1, P143 VALIEV RZ, 1991, SCRIPTA METALL MATER, V25, P2717 WILLIAMSON DL, 1977, MOSSBAUER ISOMER SHI, P49 TC 2 BP 241 EP 248 PG 8 JI J. Alloy. Compd. PY 1997 PD AUG 22 VL 259 IS 1-2 GA XX696 J9 J ALLOYS COMPOUNDS UT ISI:A1997XX69600041 ER PT J AU Greneche, JM TI Nanocrystalline iron-based alloys investigated by Mossbauer spectrometry SO HYPERFINE INTERACTIONS NR 64 AB Nanocrystalline alloys exhibit great fundamental and technological interests because of their microstructural properties, and their excellent soft magnetic properties. Fe-57 Mossbauer spectrometry is a well suitable technique to investigate Fe-based nanocrystalline alloys: its local probe behaviour permits to elucidate the nature of hyperfine interactions at different resonating iron nuclei and to distinguish their immediate atomic surroundings. We review on the recent Mossbauer developments performed on first FeCuMBSi and then FeCuBSi nanocrystalline alloys. From Mossbauer studies, one can estimate the crystalline (i.e., amorphous) fraction, the Si-content in Fe-Si nanocrystalline grains emerging from amorphous alloys of the first series, the temperature dependence of magnetic behaviours of both crystalline and amorphous phases; finally, we present a novel fitting procedure applied to FeCuBSi nanocrystalline alloys which result from bcc-Fe crystalline grains embedded in an amorphous matrix. In this case, the hyperfine structure is able to model the intergranular phase. CR CAMPBELL SJ, 1993, MOSSBAUER SPECTROSCO, V1, P241 CAMPBELL SJ, 1987, MOSSBAUER SPECTROSCO, V3, P183 CSEREI A, 1994, J MATER SCI, V29, P1213 DUHAJ P, 1996, MAT SCI ENG B-SOLID, V39, P208 FUJINAMI M, 1990, JPN J APPL PHYS 2, V29, PL477 GOMEZPOLO C, 1996, PHYS REV B, V53, P3392 GONSER U, 1983, TOP APPL PHYS, V2, P93 GORRIA P, 1993, IEEE T MAGN, V29, P2682 GRAF T, 1996, J PHYS-CONDENS MAT, V8, P3897 GRENECHE JM, 1997, HYP INTERACT GRENECHE JM, 1997, IN PRESS MAT SCI E A GRENECHE JM, 1982, J PHYS C SOLID STATE, V15, P5333 GRENECHE JM, 1982, J PHYS LETT-PARIS, V43, PL233 GUPTA A, 1995, J PHYS-CONDENS MAT, V7, P2237 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P2327 HERZER G, 1992, NANOSTRUCT MATER, V1, P263 HILZINGER HR, 1990, MATER SCI FORUM, V62, P515 HUISHENG Y, 1994, J MAGN MAGN MATER, V138, P94 INOUE A, 1996, SCI REP RES TOHOKU A, V42, P143 JIANG J, 1991, J MATER SCI LETT, V10, P763 JIANG JZ, 1991, Z METALLKD, V82, P698 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KIM KY, 1994, MAT SCI ENG A-STRUCT, V179, P552 KNOBEL M, 1992, J APPL PHYS, V71, P6008 KOHMOTO O, 1990, JPN J APPL PHYS 2, V29, PL1460 KOPCEWICZ M, 1994, HYPERFINE INTERACT, V94, P2223 KOPCEWICZ M, 1996, J APPL PHYS, V79, P993 KOPCEWICZ M, 1995, J MAGN MAGN MATER, V140, P461 KOPCEWICZ M, 1995, NANOSTRUCT MATER, V6, P957 KOPCEWICZ M, 1991, STRUCT CHEM, V2, P313 LONGWORTH G, 1987, MOSSBAUER SPECTROSCO, V2, P289 MAKINO A, 1995, MATER T JIM, V36, P924 MIGLIERINI M, 1995, HYP INTERACT C, V1, P254 MIGLIERINI M, 1997, IN PRESS J CZECH PHY MIGLIERINI M, 1997, IN PRESS MAT SCI E A MIGLIERINI M, 1997, J PHYS-CONDENS MAT, V9, P2303 MIGLIERINI M, 1997, J PHYS-CONDENS MAT, V9, P2321 MIGLIERINI M, 1994, J PHYS-CONDENS MAT, V6, P1431 NAVARRO I, 1995, J MAGN MAGN MATER, V145, P313 NOH TH, 1990, J APPL PHYS, V67, P5568 ORUE I, 1994, HYPERFINE INTERACT, V94, P2199 PRADELL T, 1995, J PHYS-CONDENS MAT, V7, P4129 PUNDT A, 1992, Z PHYS B CON MAT, V87, P65 RANDRIANANTOAND N, 1995, MATER SCI FORUM, V179, P545 RANDRIANANTOAND N, UNPUB PHYS REV B RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 RYAN DH, 1987, PHYS REV B, V35, P8630 SAWA T, 1990, J APPL PHYS, V67, P5565 SLAWSKAWANIEWSK A, 1997, IN PRESS J APPL PHYS SLAWSKAWANIEWSKA A, 1997, ACTA PHYS POL A, V91, P229 SLAWSKAWANIEWSKA A, 1992, PHYS REV B, V46, P14594 STEARNS MB, 1963, PHYS REV, V129, P1136 SUZUKI K, 1993, J APPL PHYS, V74, P3316 SUZUKI K, 1991, J APPL PHYS, V70 SUZUKI K, 1994, MAT SCI ENG A-STRUCT, V179, P501 YOSHIZAWA Y, 1990, IEEE T J MAGN JPN, V5, P530 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1991, MAT SCI ENG A-STRUCT, V133, P176 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 ZEMCIK T, 1993, KEY ENG MATER, V81, P261 ZEMCIK T, 1991, MATER LETT, V10, P313 TC 9 BP 81 EP 91 PG 11 JI Hyperfine Interact. PY 1997 VL 110 IS 1-2 GA XV680 J9 HYPERFINE INTERACTIONS UT ISI:A1997XV68000010 ER PT J AU Abdellaoui, M Mariadassou, CD TI Structural investigation of Fe-Si nanostructured materials SO ANNALES DE CHIMIE-SCIENCE DES MATERIAUX NR 16 AB Starting from a mixture of elementary powders of Fe and Si, the mechanical alloying (MA) process induces an extension of the A2 solid solution phase domain up to 27 Si at. %, when using ball milling conditions corresponding to 1.3 watt/g injected shock power (the solid solution phase domain limit is 9 Si at. % for the thermodynamically stable state). In this concentration range, an amorphous phase is also detected. In order to study the disorder type induced by this process, the local chemical environment of the Fe atoms in mechanically alloyed samples as well as in postannealed samples has been determined by Mossbauer spectroscopy. For a Si content less than 15 at %, the Mossbauer spectra show that the Fe and Si atoms are randomly distributed in the A2 solid solution, following a binomial law in a b.c.c structure. However, for higher Si contents, although the X-ray diffraction (XRD) patterns show the b.c.c structure of the A2 solid solution, the Mossbauer spectra no longer attest for a random distribution of the Fe and Si atoms in the crystal structure of the A2 solid solution. So a new analysis, taking into account the contributions of the internal magnetic fields of the three sites of the Fe atoms (Fe atoms in the crystalline structure, Fe atoms in the amorphous phase and Fe atoms in the grain boundary phase), is needed. The Mossbauer spectra of the ball milled and subsequently annealed samples are typical of the stable structures, consistent with the nominal stoichiometries. The latter are in agreement with those determined by the energy dispersive X-ray analyses (EDXA). CR ABDELLAOUI M, 1995, ACTA METALL MATER, V43, P1087 ABDELLAOUI M, 1994, J ALLOY COMPD, V209, P351 ABDELLAOUI M, 1993, J ALLOY COMPD, V198, P155 DJEGAMARIADASSOU C, 1995, PHYS REV B, V51, P8830 DORMANN JL, 1972, PHYS SOL B, PK23 ELSUKOV EP, 1992, J PHYS-CONDENS MAT, V4, P7597 GAFFET E, 1994, REV METALL-PARIS, V91, P757 JAPPA E, 1979, PHYS STATUS SOLIDI, V96, P65 KUBASCHEWSKI F, 1982, FE SI IRON SILICON I, P136 KUWANO H, 1992, MATER SCI FORUM, V88, P561 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 RAMASAMY S, 1992, NANOSTRUCT MATER, V1, P225 STEARNS MB, 1963, PHYS REV, V129, P1136 SWANN PR, 1975, MET SCI, V9, P90 VALIEV RZ, 1991, SCRIPTA METALL MATER, V25, P2717 YERMAKOV AY, 1981, PHYS MET METALLOGR, V52, P50 TC 1 BP 195 EP 200 PG 6 JI Ann. Chim.-Sci. Mat. PY 1997 VL 22 IS 3-4 GA XN449 J9 ANN CHIM-SCI MAT UT ISI:A1997XN44900013 ER PT J AU Girchardt, T Graf, T Hesse, J Grabias, A Kopcewicz, M Herzer, G TI Short-time high-temperature annealing of Fe(CuMo)SiB: A Mossbauer study SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING NR 12 AB The very soft magnetic properties of the Fe73.5Cu1Nb3Si13.5B9 (FINEMET) alloy are due to a nanocrystalline structure built during the annealing of the as-quenched amorphous ribbon at suitable chosen temperature and time. In the nanocrystalline state, the samples consist of nanoscale FeSi grains with diameters between 10 and 15 nm embedded in a remaining amorphous matrix. The formation of the nanostructure is influenced by the elements Cu and Nb. In this contribution, Nb is replaced by Mo, an atom with a smaller diameter. The aim of this experimental study is to investigate the changes in the onset of nanocrystallization, the microcrystallization and also the crystallization products due to the replacement of Nb by Mo. The conventional Mossbauer effect on Fe-57 is used as a tool for phase analysis. The phase identification is done via the hyperfine field values. We are able to perform well defined annealing procedures for short times, i.e., 15, 30, 60, 90, 120, 180, 300 and, for comparison, 3600 s. This time series was performed at a rather high annealing temperature of 650 degrees C, After the annealing procedure, the samples were rapidly cooled down to room temperature. The Mossbauer spectra are collected after this procedure. (C) 1997 Elsevier Science S.A. CR CHIEN CL, 1977, PHYS REV B, V18, P1003 GIRCHARDT T, ICAME 95, V50, P497 GRAF T, 1996, J PHYS-CONDENS MAT, V8, P3897 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HAMPEL G, 1995, PHYS STATUS SOLIDI A, V149, P515 HERZER G, 1990, IEEE T MAGN, V26, P1397 JAMES F, MINUIT FITTING PACKA JIANG JZ, 1991, Z METALLKD, V82, P698 KOPCEWICZ M, 1990, HYPERFINE INTERACT, V55, P1009 MURPHY KA, PHYS REV B STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 0 BP 204 EP 208 PG 5 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PY 1997 PD JUN 15 VL 226 GA XJ847 J9 MATER SCI ENG A-STRUCT MATER UT ISI:A1997XJ84700041 ER PT J AU Kruijer, S Keune, W Dobler, M Reuther, H TI Depth analysis of phase formation in Si after high-dose Fe ion implantation by depth-selective conversion-electron Mossbauer spectroscopy SO APPLIED PHYSICS LETTERS NR 24 AB Fe+ ions of 200 keV in energy were implanted into Si(111) at 350 degrees C with a dose of 7 x 10(17) cm(-2). The depth distribution of the two formed phases (epsilon-FeSi and beta- FeSi2) was investigated nondestructively up to a depth of about 800 Angstrom by depth-selective conversion-electron Mossbauer spectroscopy (DCEMS) in combination with depth-profiling (destructive) Auger electron spectroscopy (AES). Near the surface only beta-FeSi2 is formed, while a mixture of beta- FeSi2 and epsilon-FeSi is formed at larger depths. The Fe- concentration depth profile calculated from the DCEMS results is in good agreement with that measured by AES. (C) 1997 American Institute of Physics. CR BRAND RA, 1987, NUCL INSTRUM METH B, V28, P398 BUNKER SN, 1989, NUCL INSTRUM METH B, V39, P7 CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 DOBLER M, 1996, HYPERFINE INTERACT C, V1, P266 DOBLER M, 1996, NUCL INSTRUM METH B, V117, P117 DOBLER M, 1996, P ICAME 95, V50, P687 FALTHAUER RW, 1994, SILICIDES GERMANIDES, V320 FANCIULLI M, 1995, PHYS REV LETT, V75, P1642 HUNT TD, 1993, NUCL INSTRUM METH B, V74, P60 LILJEQUIST D, 1978, NUCL INSTRUM METHODS, V155, P529 LILJEQUIST D, 1985, PHYS REV B, V31, P4131 MACEDO WAA, 1994, HYPERFINE INTERACT, V92, P1221 MULLER G, 1990, NUCL INSTRUM METH B, V50, P384 OOSTRA DJ, 1991, APPL PHYS LETT, V59, P1737 PANKNIN D, 1993, VACUUM, V44, P171 RADERMACHER K, 1991, APPL PHYS LETT, V59, P2145 REUTHER H, 1996, APPL PHYS LETT, V69, P3176 REUTHER H, 1995, HYPERFINE INTERACT, V95, P161 REUTHER H, 1996, SURF INTERFACE ANAL, V24, P411 STEARNS MB, 1963, PHYS REV, V129, P1136 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 WERTHEIM GK, 1966, J APPL PHYS, V37, P3333 YANG Z, 1996, J APPL PHYS, V79, P4312 ZIEGLER JF, 1985, STOPPING RANGES IONS TC 3 BP 2696 EP 2698 PG 3 JI Appl. Phys. Lett. PY 1997 PD MAY 19 VL 70 IS 20 GA WZ348 J9 APPL PHYS LETT UT ISI:A1997WZ34800020 ER PT J AU Zbroszczyk, J Ciurzynska, W TI The magnetic after-effect in amorphous and nanocrystalline Fe- Cu-Nb-Si-B alloys SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 54 AB The magnetic relaxation phenomenon for the Fe73.5Cu1Nb3Si13.5B9 alloy in the as-quenched state and after annealing is investigated. It is stated that the disaccommodation intensity distinctly decreases after the heat treatment of the sample at 673 K for 1 h due to the annealing out of some free volumes. Moreover, the intensity of the disaccommodation drops almost to zero after the sample crystallization occurs. From the results obtained, it becomes evident that the amorphous phase is the main source of the magnetic after-effect in the nanocrystalline samples. The present results are discussed under the assumption that the relaxation processes are described by a gaussian distribution in ln tau. CR ALLIA P, 1982, PHYS REV B, V26, P6141 BLYTHE HJ, 1985, J MAGN MAGN MATER, V53, P179 BOGACHEV IN, 1974, PHYS STATUS SOLIDI A, V24, P661 BOURROUS M, 1989, PHYS STATUS SOLIDI A, V112, P181 CHEN WZ, 1995, J MAGN MAGN MATER, V146, P354 CHIEN CL, 1979, PHYS REV B, V20, P283 CSEREI A, 1994, J MATER SCI, V29, P1213 FISH GE, 1985, IEEE T MAGN, V21, P1996 GAWIOR W, 1992, J MAGN MAGN MATER, V111, P90 GRENECHE JM, 1982, J PHYS C SOLID STATE, V15, P985 GRIMM H, 1983, PHYS STATUS SOLIDI B, V117, P663 GROSSINGER R, 1994, P 4 INT WORKSH NONCR GUNNLAUGSSON HP, 1995, PHYS SCRIPTA, V52, P113 HERNANDO A, 1994, PHYS REV B, V49, P7064 HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1992, J MAGN MAGN MATER, V112, P258 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 HIRAGA K, 1991, MATER T JIM, V33, P868 HISATAKE K, 1973, JPN J APPL PHYS, V22, P1024 HISATAKE K, 1986, PHYS STATUS SOLIDI A, V93, P605 HOFMANN B, 1992, PHYS STATUS SOLIDI A, V134, P247 JIANG JZ, 1991, Z METALLKD, V82, P698 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KIM KY, 1993, J APPL PHYS, V73, P6595 KNOBEL M, 1992, J APPL PHYS, V71, P6008 KOPCEWICZ M, 1985, J MAGN MAGN MATER, V51, P218 KRONER E, 1965, MODERNE PROBLEME MET, V2, P122 KRONMULLER H, 1984, J MAGN MAGN MATER, V41, P366 KRONMULLER H, 1968, NACHWIRKUNG FERROMAG KRONMULLER H, 1983, PHILOS MAG B, V48, P127 LACHOWICZ HK, 1994, J MAGN MAGN MATER, V133, P238 LITVINOV VS, 1982, NUCL GAMMA RESONANCE MANGIN P, 1978, J APPL PHYS, V49, P1709 MULLER M, 1991, Z METALLKD, V82, P895 NEEL L, 1951, J PHYS RAD, V12, P339 NEEL L, 1952, J PHYSIQUE, V13, P249 NOWICK AS, 1972, ANELASTIC RELAXATION PFANNES HD, 1977, APPL PHYS, V13, P317 PFEIFFER H, 1994, J MAGN MAGN MATER, V130, P92 POLAK C, 1994, J MAGN MAGN MATER, V134, P1 PRESTON RS, 1962, PHYS REV, V128, P2207 PUNDT A, 1992, Z PHYS B CON MAT, V87, P65 RASEK J, 1973, ACTA PHYS POL A, V44, P85 REININGER T, 1988, PHYS STATUS SOLIDI A, V110, P243 RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 ROSS E, 1966, Z ANGEW PHYS, V21, P391 STEARNS MB, 1963, PHYS REV, V129, P1136 YANG HS, 1994, J MAGN MAGN MATER, V138, P94 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 ZBROSZCZYK J, 1996, PHYS STATUS SOLIDI A, V153, P507 ZEMCIK T, 1993, KEY ENG MATER, V81, P261 ZHOU XZ, 1993, J APPL PHYS, V73, P6597 TC 2 BP 4303 EP 4318 PG 16 JI J. Phys.-Condes. Matter PY 1997 PD MAY 19 VL 9 IS 20 GA XA327 J9 J PHYS-CONDENS MATTER UT ISI:A1997XA32700025 ER PT J AU Li, T Li, YZ Zhang, YH TI Phases in ball-milled Fe0.6Si0.4 SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 16 AB Phases in Fe0.6Si0.4 ball milled for different lengths of time have been investigated by means of x-ray diffraction, Mossbauer spectroscopy and Raman scattering spectroscopy. It was found that the high-temperature phase Fe5Si3 can be formed by ball milling Fe0.6Si0.4 at room temperature. In the milling procedure the compounds FeSi and Fe3Si were also formed. CR ECKERT J, 1988, APPL PHYS LETT, V55, P117 ECKERT J, 1993, J APPL PHYS, V73, P2794 ELSUKOV EP, 1992, J PHYS-CONDENS MAT, V4, P7597 ESCORIAL AG, 1991, MAT SCI ENG A-STRUCT, V134, P1394 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HELLSTERN E, 1989, J APPL PHYS, V65, P305 KOCH CC, 1983, APPL PHYS LETT, V43, P1017 PAULING L, 1948, ACTA CRYSTALLOGR, V1, P212 SCHWARZ RB, 1986, APPL PHYS LETT, V49, P146 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 SIDORENKO FA, 1982, J PHYS CHEM SOLIDS, V43, P297 STEARNS MB, 1963, PHYS REV, V129, P1136 UMEMOTO M, 1995, MATER T JIM, V36, P373 WARLIMONT H, 1968, Z METALLKD, V59, P595 YAVARI AR, 1992, PHYS REV LETT, V68, P2235 YU Z, 1984, ACTA PETROL MINERAL, V3, P23 TC 3 BP 1381 EP 1388 PG 8 JI J. Phys.-Condes. Matter PY 1997 PD FEB 10 VL 9 IS 6 GA WK618 J9 J PHYS-CONDENS MATTER UT ISI:A1997WK61800021 ER PT J AU Bauer, P Dufour, C Jaouen, C Marchal, G Pacaud, J Grilhe, J Jousset, JC TI High electronic excitations and ion beam mixing effects in high energy ion irradiated Fe/Si multilayers SO JOURNAL OF APPLIED PHYSICS NR 33 AB Mossbauer spectroscopy (Fe-57) shows evidence for mixing effects induced by electronic energy deposition in nanoscale Fe/Si multilayers irradiated with swift heavy ions. A decrease in the mixing efficiency with electronic stopping power is reported; a threshold is found, under which iron environment modifications no longer occur. The kinetics of Fe-Si phase formation after irradiation suggests the existence of three regimes: (i) for high excitation levels, a magnetic amorphous phase is formed directly in the wake of the incoming ion and an almost complete mixing is reached at low fluence (10(13) U/cm(2)); (ii) for low excitation levels, a paramagnetic Si- rich amorphous phase is favored at the interface while crystalline iron subsists at high fluences; (iii) for intermediate excitation levels, saturation effects are observed and the formation rate of both magnetic and paramagnetic phases points to direct mixing in the ion wake but with a reduced track length in comparison to U irradiation. The measured interfacial mixing cross section induced by electronic energy deposition suggests that a thermal diffusion process is mainly involved in addition to damage creation. (C) American Institute of Physics. CR AUDOUARD A, 1988, EUROPHYS LETT, V5, P241 AUDOUARD A, 1987, EUROPHYS LETT, V3, P327 AUDOUARD A, 1990, PHYS REV LETT, V65, P875 BARBU A, 1991, EUROPHYS LETT, V15, P37 BIERSACK JP, 1980, NUCL INSTRUM METHODS, V174, P257 BORGESEN P, 1990, APPL PHYS LETT, V57, P1407 BOUFFARD S, 1989, ANN PHYS-PARIS, V4, P395 DAMMAK H, 1993, PHIL MAG LETT, V67, P253 DATCHARRY L, 1994, UNPUB DEA REPORT DOFOUR C, 1990, KEY ENG MATER, V40, P1467 DUFOUR C, 1993, EUROPHYS LETT, V21, P671 DUFOUR C, 1993, J MAGN MAGN MATER, V93, P545 DUFOUR C, 1978, REV SCI INSTRUM, V62, P1709 DUNLOP A, 1989, CR ACAD SCI II, V309, P1277 DUNLOP A, 1994, NUCL INSTRUM METH B, V90, P330 DUNLOP A, 1990, NUCL INSTRUM METH B, V48, P419 DUNLOP A, 1989, NUCL INSTRUM METH B, V42, P182 ISUI K, 1986, P 11 C EL MICR KYOT, P1299 IWASE A, 1987, PHYS REV LETT, V58, P2450 JACCARINO V, 1965, PHYS REV LETT, V15, P258 JOHNSON WL, 1985, NUCL INSTRUM METH B, V7-8, P657 KLAUMUNZER S, 1986, PHYS REV LETT, V57, P850 LEGRAND P, 1993, RADIAT EFF DEFECT S, V126, P151 LESUEUR D, 1993, RADIAT EFF DEFECT S, V126, P163 MANGIN P, 1978, J APPL PHYS, V49, P1709 MATTESON S, 1979, RADIAT EFF DEFECT S, V42, P217 PAUMIER E, 1993, RADIAT EFF DEFECT S, V126, P181 SIGMUND P, 1981, NUCL INSTRUM METHODS, V182, P25 SIGMUND P, 1980, NUCL INSTRUM METHODS, V168, P389 STEARNS MB, 1963, PHYS REV, V129, P1136 TOULEMONDE M, 1994, NUCL INSTRUM METH B, V91, P108 TOULEMONDE M, 1992, PHYS REV B, V46, P14362 WANG ZG, 1994, J PHYS-CONDENS MAT, V6, P6733 TC 5 BP 116 EP 125 PG 10 JI J. Appl. Phys. PY 1997 PD JAN 1 VL 81 IS 1 GA WA947 J9 J APPL PHYS UT ISI:A1997WA94700018 ER PT J AU Mishra, SR Long, GJ Pringle, OA Marasinghe, GK Middleton, DP Buschow, KHJ Grandjean, F TI A magnetic and Mossbauer spectral study of the Tb2Fe17-xAlx solid solutions SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 32 AB The magnetic properties of a series of Tb2Fe17-xAlx solid solutions, with x equal to 0.00, 1.00, 1.98, 3.14, 4.08, 5.10, 6.06, 7.16, and 8.12, have been studied by magnetic measurements and Mossbauer spectroscopy. Magnetization studies indicate that the Curie temperature increases from 420 K in Tb2Fe17 to a maximum of 475 K in Tb2Fe13.86Al3.14. The magnetization results indicate an antiferromagnetic coupling of the terbium sublattice with the iron sublattice at low temperature. The magnetically ordered Mossbauer spectra have been fit with a binomial distribution of near neigbors. The weighted average maximum hyperfine field, H-max, decreases by 12 kOe per aluminum at 85 K. The decrease in hyperfine field is due to the dilution of the magnetic moments by aluminum. The weighted average decremental field, Delta H, decreases by 2 and 1 kOe per aluminum at 85 and 295 K, respectively. The compositional dependence of the decremental field indicates the presence of RKKY type spatial spin oscillation in the 4s conduction band, an oscillation which is modified by the presence of aluminum, The weighted average isomer shift increases by 0.016 and 0.010 mm/s per aluminum at 85 and 295 K, respectively, because of both the screening of the 4s electrons by the 3d electrons due to interband mixing of the 3d band with the valence band of aluminum, and the unit cell volume expansion upon aluminum substitution. CR BOLLER H, 1976, J LESS-COMMON MET, V45, P103 COEY JMD, 1990, J MAGN MAGN MATER, V87, PL251 DEMOOIJ DB, 1988, J LESS-COMMON MET, V142, P349 GRANDJEAN F, 1994, INTERSTITIAL INTERME, P463 HU Z, 1994, J APPL PHYS, V76, P443 HUMEROTHERY W, 1954, STRUCTURE METALS ALL IBBERSON RM, 1991, J PHYS-CONDENS MAT, V3, P1219 JACOBS TH, 1992, J MAGN MAGN MATER, V116, P220 JACOBS TH, 1992, PHYSICA B, V179, P177 JASWAL SS, 1994, INTERSTITIAL INTERME, P411 KAWAKAMI M, 1972, J PHYS SOC JPN, V33, P1591 LI WZ, 1994, J APPL PHYS, V76, P1 LONG GJ, 1994, J APPL PHYS, V76, P5383 LONG GJ, 1994, J APPL PHYS, V75, P2598 LONG GJ, 1994, J APPL PHYS, V75, P5994 LONG GJ, 1993, J APPL PHYS, V74, P504 LONG GJ, 1992, J APPL PHYS, V72, P4845 LONG GJ, 1991, SUPERMAGNETS HARD MA, P255 MARASINGHE GK, 1994, J APPL PHYS, V76, P6731 MIDDLETON DP, 1994, J ALLOY COMPD, V203, P217 MISHRA SR, IN PRESS J APPL PHYS MOHN P, 1987, J PHYS F MET PHYS, V17, P2421 NARASIMHAN KSV, 1973, AIP C P, V18, P1248 OESTERREICHER H, 1976, J LESS-COMMON MET, V46, P127 PLUSA D, 1986, J LESS-COMMON MET, V120, P1 PLUSA D, 1984, J LESS-COMMON MET, V99, P87 SABIRIANOV RF, UNPUB J APPL PHYS STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 STEINER W, 1977, PHYS STATUS SOLIDI A, V42, P739 SUN H, 1990, J PHYS-CONDENS MAT, V2, P6465 YELON WB, 1993, J APPL PHYS, V73, P6029 TC 5 BP 167 EP 176 PG 10 JI J. Magn. Magn. Mater. PY 1996 PD SEP VL 162 IS 2-3 GA VV246 J9 J MAGN MAGN MATER UT ISI:A1996VV24600004 ER PT J AU Szymanski, K Dobrzynski, L Prus, B Cooper, MJ TI Single line circularly polarised source for Mossbauer spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 14 AB A single line circularly polarised source with a degree of polarisation equal to (80+/-2)% was constructed. The source can be used as an extremely useful tool for a quick, unique and simple determination of the sign of hyperfine field. Test measurements on alpha-Fe demonstrate that the sign of hyperfine magnetic field follows changes of the sign of an external magnetizing field. The hyperfine magnetic field observed in HoFe2 in which Fe magnetic moments are oriented antiparallel to the total magnetisation, is shown. The excellent performance of the source opens up new possibilities of studying materials with inhomogeneous magnetisation distribution. CR BOWDEN GJ, 1968, J PHYS C, V1, P1376 FRAUENFELDER H, 1962, PHYS REV, V126, P1065 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P1136 JASHKE J, 1994, 4 SEEH WORKSH MOSSB ROBINSON JW, 1981, HDB SPECTROSCOPY, V3, P496 SATULA D, 1993, J MAGN MAGN MATER, V119, P309 SHTRIKMAN S, 1969, REV SCI INSTRUM, V40, P1151 STAMPFEL JP, 1971, MOSSBAUER EFFECT MET, V6, P95 STEARNS MB, 1963, PHYS REV, V129, P1136 SZMANSKI K, 1995, INT C APPL MOSSB EFF SZYMANSKI K, 1995, 10 INT C HYP INT AUG SZYMANSKI K, 1990, HYPERFINE INTERACT, V59, P477 SZYMANSKI K, INPRESS VINCZE I, 1978, SOLID STATE COMMUN, V25, P689 TC 9 BP 438 EP 441 PG 4 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1996 PD NOV VL 119 IS 3 GA VQ522 J9 NUCL INSTRUM METH PHYS RES B UT ISI:A1996VQ52200019 ER PT J AU Kyprianidis, IM Achilleos, CA Tsoukalas, IA Bremers, H Hesse, J TI Magnetic phase transitions in FeCrBSi alloys SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 24 AB We have studied the magnetic phase transitions of semi: iron- rich FeCrSiB alloys in both the amorphous and crystalline states, and have determined the critical exponents gamma*(T), gamma(c) and beta(c). We used a vibrating sample magnetometer for the magnetization measurements, and Fe-57 Mossbauer spectroscopy to characterize the solid state of the alloys. The maximum values of gamma*(T) are higher for the crystalline than for the amorphous state. For the crystalline alloys, a decrease in the maximum gamma*(T) values is observed as the Cr concentration is increased, which corresponds to a decrease in the mean hyperfine field at the Fe nuclei. CR ARROTT A, 1967, PHYS REV LETT, V19, P786 BHATNAGAR AK, 1983, PHYS REV B, V28, P359 CHOO WK, 1977, METALL TRANS A, V8, P417 FAHNLE M, 1987, J MAGN MAGN MATER, V65, P1 FAHNLE M, 1984, J MAGN MAGN MATER, V45, P279 FAHNLE M, 1984, J MAGN MAGN MATER, V44, P274 FAHNLE M, 1983, J MAGN MAGN MATER, V38, P240 FAHNLE M, 1985, J PHYS C SOLID STATE, V18, P181 FAHNLE M, 1983, J PHYS C SOLID STATE, V16, PL819 FAHNLE M, 1985, PHYS STATUS SOLIDI B, V130, PK113 GAUNT P, 1981, PHYS REV B, V23, P251 HAUG M, 1987, J MAGN MAGN MATER, V69, P163 HAUG M, 1987, PHYS STATUS SOLIDI B, V144, P411 KAUL SN, 1985, J MAGN MAGN MATER, V53, P5 KAUL SN, 1988, PHYS REV B, V38, P9178 KELLNER WU, 1986, J MAGN MAGN MATER, V62, P169 KELLNER WU, 1987, PHYS STATUS SOLIDI B, V144, P397 KOUVEL JS, 1964, PHYS REV A, V136, P1626 MURPHY KA, 1973, PHYS REV B, V7, P23 OK HN, 1980, PHYS REV B, V22, P3471 PUZNIAK R, 1984, P 5 INT C RAP QUENCH REISSER R, 1991, J MAGN MAGN MATER, V97, P83 SEEGER M, 1989, J MAGN MAGN MATER, V78, P393 STEARNS MB, 1963, PHYS REV, V129, P1136 TC 0 BP 203 EP 208 PG 6 JI J. Magn. Magn. Mater. PY 1996 PD AUG VL 161 GA VR562 J9 J MAGN MAGN MATER UT ISI:A1996VR56200031 ER PT J AU Liu, T Gao, YF Xu, ZX Zhao, ZT Ma, RZ TI Compositional evolution and magnetic properties of nanocrystalline Fe81.5Cu0.5Mo0.5P12C3Si2.5 SO JOURNAL OF APPLIED PHYSICS NR 16 AB Tile amorphous alloy Fe81.5P12C3Cu0.5Mo0.5Si2.5 has been prepared and the crystallized alloy exhibits an ultrafine structure with a grain size of about 20 nm and excellent soft magnetic properties. The coercivity and the core loss as low as 5.7 A/m, 0.26 W/kp, respectively, and the maximum permeability as high as 10.2x10(4) at an optimal annealing temperature of about 360 degrees C were obtained. By means of x-ray diffraction, transmission electron microscope, and Mossbauer spectroscopy measurements, microstructures of the allay were investigated as a function of the annealing temperature. The primary crystallization produces ultrafine grains of alpha- Fe(Si) solid solution with a grain size of about 20 nm precipitated in the residual amorphous matrix. The Si in the cu Phase was estimated near to be completely disorder ranged and the Si concentration was determined to be about 2%-5%. The Fe3P phase appears in the residual amorphous phase upon annealing ar 420 degrees C. (C) 1996 American Institute of Physics. CR FUJII Y, 1991, J APPL PHYS, V70, P6241 HERZER G, 1989, IEEE T MAGN, V25, P3327 JIANG JZ, 1991, Z METALLKD, V82, P698 KNOBEL M, 1992, J APPL PHYS, V71, P6008 LISHER EJ, 1974, J PHYS C SOLID STATE, V7, P1344 LIU T, IN PRESS HYPERFINE I MIGLIERINI M, 1994, J PHYS-CONDENS MAT, V6, P1431 MORIYA T, 1973, J PHYS SOC JPN, V35, P198 PULIDO E, 1992, IEEE T MAGN, V28, P2424 RUNDQVIST S, 1962, ACTA CHEM SCAND, V16, P1 STEARNS MB, 1963, PHYS REV, V129, P1136 SUZUKI K, 1990, MATER T JIM, V31, P743 WERTHEIM GK, 1964, PHYS REV LETT, V12, P24 XU ZX, 1993, CHINESE SCI BULL, V38, P1767 YANG HS, 1994, J MAGN MAGN MATER, V138, P94 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 2 BP 3972 EP 3976 PG 5 JI J. Appl. Phys. PY 1996 PD OCT 1 VL 80 IS 7 GA VL801 J9 J APPL PHYS UT ISI:A1996VL80100052 ER PT J AU Teng, GQ Chao, YS Lai, ZH Dong, L TI Microstructural study of the low-temperature nanocrystallization of amorphous Fe78B13Si9 SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH NR 20 AB The amorphous Fe78B13Si9 (Metglas 26058-2) alloy is treated by high current density electropulsing and the preliminary, partial, and full nanocrystallization can be achieved at temperatures lower than the bulk crystallization temperature by isothermal annealing. Analysis of Mossbauer spectra along with XRD measurement and TEM observation is presented. The preliminary crystalline product is the disordered b.c.c. Fe- based solid solution, probably containing a trace amount of B. In the partially and fully crystallized samples, alpha-Fe(Si), t-Fe2B, and also a small amount of t-Fe3B appear. The hyperfine magnetic field distribution P(H) of the residual amorphous phase in the crystallized sample takes a distinct bimodal type. It was suggested that the secondary peak at the higher field side can be associated with Fe-rich clusters in the residual amorphous phase of the preliminarily crystallized sample and that the lower field side is caused by the local segregation of some Si and B atoms in the residual amorphous phase excluded during the crystallization processes of the partially and fully nanocrystallized samples. CR BHATNAGAR AK, 1983, PHYS REV B, V28, P359 CHAO YS, 1994, MAT SCI ENG A-STRUCT, V181, P982 ELSUKOV EP, 1986, SOVIET PHYS PHYS MET, V62, P85 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HILZINGER HR, 1988, MATER SCI ENG, V99, P101 HUANG DR, 1991, MAT SCI ENG A-STRUCT, V133, P209 KULIK T, 1992, MAT SCI ENG A-STRUCT, V157, P107 LAI ZH, 1995, J MATER RES, V10, P900 LAI ZH, 1989, SCRIPTA METALL MATER, V23, P305 LIEBERMANN HH, 1989, METALL TRANS A, V20, P63 MIGLIERINI M, 1994, J PHYS-CONDENS MAT, V6, P1431 MULLER M, 1992, J MAGN MAGN MATER, V112, P263 OK HN, 1981, J PHYS F MET PHYS, V11, P1495 RIXCKER G, 1992, J PHYS CONDENS MATT, V4, P10925 SINGHAL R, 1993, J MATER SCI, V28, P975 SORESCU M, 1992, PHYS STATUS SOLIDI A, V132, PK57 STEARNS MB, 1963, PHYS REV, V129, P1136 TAKACS L, 1975, J PHYS F MET PHYS, V5, P800 TENG GQ, 1994, CHINESE SCI BULL, V39, P974 TONG HY, 1992, J NON-CRYST SOLIDS, V150, P444 TC 4 BP 265 EP 276 PG 12 JI Phys. Status Solidi A-Appl. Res. PY 1996 PD AUG 16 VL 156 IS 2 GA VF161 J9 PHYS STATUS SOLIDI A-APPL RES UT ISI:A1996VF16100004 ER PT J AU Moriya, T Ukai, K Kato, K Kimura, M Yazaki, K Isokane, Y Miyazaki, T Kozakai, T Koyama, T TI Mossbauer study on the phase separation of Fe-Co-Si alloys SO MATERIALS TRANSACTIONS JIM NR 11 AB Mossbauer experiments are performed on Si-rich Fe-Co-Si alloys. New information on their phase separation process, from the as- quenched state to that of the DO3 + epsilon phases, is obtained. Analysis of the Mossbauer spectra is made based on the preferential site occupation rules. The phase boundary and the tie-line are accurately determined. The chemical order of the rapidly quenched specimen is shown to be complete inside the DO3 phase boundary, while it is incomplete outside unless annealed. The degree of the chemical order of Co atoms is determined. CR BLAAUW C, 1976, SOLID STATE COMMUN, V18, P729 BURCH TJ, 1974, PHYS REV LETT, V33, P421 FUKAYA M, 1990, J MATER SCI, V25, P522 HAMIMORI T, 1987, J SCI HOROSHIMA U A, V51, P41 KOZAKAI T, 1994, J MATER SCI, V29, P652 KOZAKAI T, 1989, P 1 JAP INT SAMP S, P139 MORIYA T, 1973, J PHYS SOC JPN, V35, P1378 NICULESCU VA, 1981, PHYS REV B, V23, P2388 PICKART S, 1975, PHYS LETT A, V53, P321 STEARNS MB, 1963, PHYS REV, V129, P1136 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 TC 0 BP 965 EP 969 PG 5 JI Mater. Trans. JIM PY 1996 PD MAY VL 37 IS 5 GA UV971 J9 MATER TRANS JIM UT ISI:A1996UV97100001 ER PT J AU Serebryakov, A Sedykh, V Novokhatskaya, N Stelmukh, V TI Mossbauer study of primary crystallization in amorphous (Co77Si13.5B9.5)(93)Fe4Nb3 SO NANOSTRUCTURED MATERIALS NR 10 AB The behavior of (Co77Si13.5B9.5)(93)Fe4Nb3 and (Co77Si13.5B9.5)(99.3)Fe-0.7 amorphous alloys during primary crystallization was studied using Mossbauer spectroscopy and X- ray diffraction. The data obtained clearly demonstrate a key role of chemical interactions in the structural evolution of amorphous alloys and further clarify some mechanisms underlying the evolution. CR GONZALEZ J, 1994, IEEE T MAGN, V30, P4812 HANSEN M, 1958, CONSTITUTION BINARY INDEN G, 1979, PHYS STATUS SOLIDI A, V56, P177 MEYER WO, 1979, PHYS STATUS SOLIDI A, V56, P481 MIEDEMA AR, 1976, J LESS-COMMON MET, V46, P67 QUINTANA P, 1994, J APPL PHYS, V75, P6940 SEREBRYAKOV A, 1995, NANOSTRUCT MATER, V5, P481 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1991, MAT SCI ENG A-STRUCT, V133, P176 TC 1 BP 461 EP 466 PG 6 JI Nanostruct. Mater. PY 1996 PD MAY-JUN VL 7 IS 4 GA UN695 J9 NANOSTRUCT MATER UT ISI:A1996UN69500008 ER PT J AU Komatsu, T Sakemi, Y Shimagami, K Matusita, K Miyazaki, M TI Mossbauer study of Fe magnetic state at the interface between Fe-Al-Si thin films and crystallized glass substrate SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS NR 19 AB The magnetic state of Fe atoms at or near the interface between Fe74.3Al9.8Si15.9 sendust magnetic thin films and SiO2-based crystallized glass substrate (Fotoceram, Corning Co.) has been examined using conversion electron Mossbauer spectroscopy. The thicknesses of sputtered films are 0.05-2.0 mu m, and annealing conditions are at 500 degrees C for 1 h. The excellent soft magnetic properties are not obtained for films with a thickness of less than 0.5 mu m. The presence of ferromagnetic Fe atoms with internal magnetic fields of 24.3-24.9 MA m(-1) is confirmed at or near the interface, indicating the formation of an Fe-rich phase such as Fe90Si10. The fraction of Fe atoms forming the Fe-rich phase at or near the interface is estimated to be around 20%. The formation of the Fe-rich phase is one of the main reasons for the degradation of the soft magnetic properties of sendust films deposited on SiO2-based crystallized glass substrate, even though the DO3-type ordered structure has also been formed. CR AKITA M, 1985, J JPN I MET, V49, P431 DONALD IW, 1993, J MATER SCI, V28, P2841 KAJIWARA K, 1990, IEEE T MAGN, V26, P2978 MATUSITA K, 1993, J MATER SCI, V28, P6333 MIURA M, 1986, JPN J APPL PHYS 1, V25, P1192 MIYAZAKI M, 1993, J APPL PHYS, V74, P766 MIYAZAKI M, 1992, J APPL PHYS, V71, P2368 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 MIYAZAKI M, 1991, J APPL PHYS, V69, P7207 ONO K, 1962, J PHYS SOC JPN, V17, P1747 SHIBUYA H, 1979, IEEE T MAGN, V13, P1029 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1963, PHYS REV, V129, P1136 SWALIN RA, 1962, THERMODYNAMICS SOLID SWANSON KR, 1970, J APPL PHYS, V41, P3155 TAKAHASHI M, 1987, IEEE T MAGN, V23, P3968 TAKAHASHI M, 1987, OYO BUTURI, V56, P1289 THOMAS JM, 1975, J CHEM SOC FARAD T 2, V71, P1708 YAMANAKA K, 1971, J JPN I MET, V35, P566 TC 1 BP 101 EP 106 PG 6 JI J. Mater. Sci.-Mater. Electron. PY 1996 PD APR VL 7 IS 2 GA UB525 J9 J MATER SCI-MATER ELECTRON UT ISI:A1996UB52500006 ER PT J AU Moriya, T Nakashima, H Isokane, Y Miyazaki, T Kozakai, T Koyama, T TI A Mossbauer study on the phase separation of Fe-Co-Al alloys SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 6 AB Mossbauer effects are observed to study phase separation process in the Fe-Co-Al alloy system from the as-quenched state to the A2+B2 phases. The Al-rich and Al-poor sides of the phase boundary and the tie-lines are accurately determined. We analyze a Mossbauer spectrum decomposing it into subspectra corresponding to iron atoms under varieties of environments, supplemented by empirical relations between hyperfine field parameters and the occupation numbers of the nearest neighboring atoms. The results are compared with those by Ackermann (Thesis, Universitat Dortmund, 1988) who also studied the same system by Mossbauer analysis, obtaining the distribution of the internal field by the method of Window (J. Phys. E, Sci. Instrum. 4 (1971) 401). CR ACKERMANN H, 1988, THESIS U DORTMUND KOZAKAI T, 1994, J MATER SCI, V29, P652 MORIYA T, IN PRESS MAT T JIM MORIYA T, 1973, J PHYS SOC JPN, V35, P1378 STEARNS MB, 1963, PHYS REV, V129, P1136 WINDOW B, 1971, J PHYS E, V4, P401 TC 0 BP 293 EP 296 PG 4 JI J. Phys. Soc. Jpn. PY 1996 PD JAN VL 65 IS 1 GA TT953 J9 J PHYS SOC JPN UT ISI:A1996TT95300048 ER PT J AU RIXECKER, G SCHAAF, P GONSER, U TI ORDERED IRON-SILICON ALLOYS - ANTIPHASE BOUNDARIES SEEN BY MOSSBAUER-SPECTROSCOPY SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH NR 16 AB In a previous paper, Fe-Si alloys having the DO3 crystal structure of ordered Fe3Si were investigated using Mossbauer spectroscopy. The short-range order around the iron atoms can be described using appropriate binomial distributions, the relative abundances of the various Fe sites being reflected in the intensities of the corresponding subspectra. The present work is intended to show that deviations from the theoretical intensities occurring at both ends of the homogeneity range of the DO3 phase can be explained by the presence of nanometer- sized antiphase domains. CR 1942, INT UNION CRYSTALLOG, V9, P61 ARITA M, 1985, T JPN I MET, V26, P710 GAO ZQ, 1993, PHILOS MAG B, V67, P787 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 HILFRICH K, 1993, Z METALLKD, V84, P255 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI KUNDIG W, 1969, NUCL INSTRUM METHODS, V75, P336 MATSUMURA S, 1989, MATER T JIM, V30, P695 RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 STEARNS MB, 1963, PHYS REV, V129, P1136 VOJTECHOVSKY K, 1974, CZECH J PHYS, VB 24, P171 YELSUKOV EP, 1985, SOVIET PHYS PHYS MET, V60, P83 YELSUKOV YP, 1989, PHYS MET METALLOGR, V67, P87 YELSUKOV YP, 1986, PHYS MET METALLOGR, V62, P85 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 1 BP 291 EP 298 PG 8 JI Phys. Status Solidi A-Appl. Res. PY 1995 PD OCT 16 VL 151 IS 2 GA TE527 J9 PHYS STATUS SOLIDI A-APPL RES UT ISI:A1995TE52700003 ER PT J AU BHAGAT, N GUPTA, A PRINCIPI, G TI AMORPHOUS TO NANOCRYSTALLINE TRANSFORMATION IN METALLIC GLASSES SO TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS NR 16 AB Amorphous to nanocrystalline transformation in some Cu and Nb containing metallic glasses has been studied. The nanocrystalline phase is found to have a DO3 structure with Si concentration <25 at.%. The crystallite size increases with increasing annealing time reaching a maximum of similar to 10nm after 10 min of annealing at 540 degrees C. Precipitation of the nanocrystalline phase is accompanied by development of a high degree of compositional inhomogeneity in the remaining amorphous phase. In contrast to some earlier studies, the specimen with higher Si concentration is found to have a relatively faster crystallization rate. This result reflects the effect of the variation in free-volume and/or quenched-in nuclei in the as-prepared amorphous specimens, on the crystallization kinetics. CR BROVKO I, 1991, HYPERFINE INTERACT, V69, P529 DREHMAN AJ, 1984, ACTA METALL MATER, V32, P323 GREER AL, 1982, J MATER SCI, V17, P1117 GUPTA A, 1992, J NON-CRYST SOLIDS, V149, P275 HERZER G, 1990, IEEE T MAGN, V25, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 JAYRAJ ME, 1990, THESIS KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KELTON KF, 1985, ACTA METALL, V53, P455 KOSTER U, 1991, MAT SCI ENG A-STRUCT, V133, P611 SAWA T, 1990, J APPL PHYS, V67, P5565 STEARNS MB, 1963, PHYS REV, V129, P1136 SUZUKI K, 1991, J APPL PHYS, V70, P6232 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1989, J JPN I MET, V53, P241 TC 0 BP 159 EP 162 PG 4 JI Trans. Indian Inst. Met. PY 1995 PD JUN VL 48 IS 3 GA RZ630 J9 TRANS INDIAN INST MET UT ISI:A1995RZ63000006 ER PT J AU BLAZHIEV, OL CHIGIRINSKAYA, LA CHERNOVA, GP CHULANOV, OB KASABOV, S KOTENEV, VA POPOV, AV TI EFFECT OF ELECTRON-DENSITY TRANSFER BETWEEN COMPONENTS ON THE PHYSICOCHEMICAL PROPERTIES OF THE FE-CR-SI ALLOYS SO PROTECTION OF METALS NR 24 AB The mechanism of the effect of alloying elements on the physicochemical properties of alloys was considered for the Fe- Cr-Si system as an example. It was shown by Mossbauer spectroscopy that silicon is an electron density acceptor in Fe-Cr alloys. The particular role of orbital electronegativity, which serves as a measure of donor-acceptor interactions between the alloy components, is stressed. On the other hand, XPS data imply that silicon in the passive film acts as a donor of electron density toward iron and chromium. The effect of the donor-acceptor properties of silicon in alloy and in oxide changes the energetic characteristics of their interaction with water and chloride ions. From this viewpoint, an explanation is given for some features of the corrosion-electrochemical behavior of X25 ferritic steel when it is alloyed with silicon. CR BATSANOV SS, 1966, ELEKTROOTRITSATELNOS BLAZHIEV OL, 1994, THESIS RUSS ACAD SCI CHIGIRINSKAYA LA, 1994, PROT MET+, V30, P197 CHULANOV OB, 1994, PROT MET+, V30, P9 CHULANOV OB, 1993, ZASCHT METAL, V29, P331 CHULANOV OB, 1992, ZASHCH MET, V28, P829 CHULANOV OB, 1988, ZASHCH MET, V24, P98 DARKEN LS, 1953, PHYSICAL CHEM METALS DEAN MH, 1987, J ELECTROANAL CHEM, V228, P135 DIPAOLA A, 1989, ELECTROCHIM ACTA, V34, P203 FERREIRA MGS, 1985, J ELECTROCHEM SOC, V132, P760 GODOVIKOV AA, 1979, KRISTALLOKHIMIYA PRO GRIGOROVICH VK, 1988, METALLICHESKAYA SVYA GRISHCHISHYNA LN, 1991, DOKL AKAD NAUK SSSR+, V318, P96 KUWANO H, 1977, J PHYS SOC JPN, V42, P72 MIEDEMA AR, 1992, PHYSICA B, V182, P1 NEMANICH R, 1977, PHYS REV B, V16, P124 OVERHAUSER AW, 1963, PHYS REV LETT, V13, P316 PETTIFOR DG, 1978, J PHYS F MET PHYS, V8, P219 ROBBINS MO, 1984, PHYS REV B, V29, P1333 SANSERI C, 1987, J ELECTROCHEM SOC, V134, P2410 SOKOLOVSKAYA EM, 1986, METALLOKHIMIYA STEARNS MB, 1963, PHYS REV, V129, P1136 WATSON RE, 1979, P METALL SOC AIME, P308 TC 0 BP 335 EP 340 PG 6 JI Protect. Met. PY 1995 PD JUL-AUG VL 31 IS 4 GA RQ740 J9 PROT MET-ENGL TR UT ISI:A1995RQ74000007 ER PT J AU HAMPEL, G GRAF, T KORUS, J FRICKE, M HESSE, J TI STRUCTURE INVESTIGATIONS ON ANNEALED FE(CUNB)SIB ALLOYS WITH DIFFERENT SI-B CONTENTS SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH NR 35 AB The structure of three alloys Fe73.5Cu1Nb3Si22.5-zBz with z = 5, 9, and 14 is examined in the nano- and microcrystalline states. This alloy system is very interesting for technical applications because of its nanostructure causing very soft magnetic properties together with low magnetostriction. The Si and B concentrations influence the number and the temperature of phase transitions as well as the grain size, composition, and structure of the nano- and microcrystals which develop while annealing the as-cast amorphous alloys. The specific electrical resistivity and magnetization are measured as function of temperature at well-defined heating rates. These measurements allow to determine characteristic temperatures which indicate the phase formation of nano- and microcrystals. Furthermore the Curie temperatures of phases being ferromagnetic are helpful for phase identification. The detailed phase analysis of differently annealed samples is done by X-ray diffraction and Mossbauer spectroscopy. The combination of hyperfine field and diffraction data allows us to ensure the existence of new phases. CR 1981, METALS ALLOYS DATA B BROVKO I, 1991, HYPERFINE INTERACT, V69, P529 DUHAJ P, 1991, MAT SCI ENG A-STRUCT, V133, P398 ELSUKOV EP, 1986, FIZ MET METALLOVED, V62, P1136 FUJINAMI M, 1990, JPN J APPL PHYS 2, V29, PL477 GRAF T, 1994, HYPERFINE INTERACT, V94, P2207 GRAFF T, 1995, IN PRESS J MAGNETISM, V140 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HAMPEL G, 1993, THESIS TU BRAUNSCHWE HEROLD U, 1978, Z METALLKD, V69, P326 HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 HERZER G, 1992, NANOSTRUCT MATER, V1, P263 HERZER G, 1993, PHYS SCRIPTA, VT49A, P307 HERZER G, 1990, PHYSICA SCRIPTA T, V49, P307 HILZINGER HR, 1990, J MAGN MAGN MATER, V83, P370 HILZINGER HR, 1990, MATER SCI FORUM, V62, P515 HOFMANN B, 1992, PHYS STATUS SOLIDI A, V134, P247 HONO K, 1992, ACTA METALL MATER, V40, P2137 JIANG JZ, 1991, Z METALLKD, V82, P698 KOPCEWICZ M, 1994, IN PRESS HYPERFINE I KOSTER U, 1991, MAT SCI ENG A-STRUCT, V133, P611 LECAER G, 1981, PHYS STATUS SOLIDI A, V64, P275 MULLER M, 1994, J MAGN MAGN MATER, V136, P79 MULLER M, 1992, J MAGN MAGN MATER, V112, P263 MULLER M, 1991, Z METALLKD, V82, P895 PUNDT A, 1992, Z PHYS B, V4, P65 REININGER T, 1992, J MAGN MAGN MATER, V111, PL220 SCHAFER R, IN PRESS DOMAIN OBSE SKORVANEK I, 1994, IEEE T MAGNETICS, V30 SKORVANEK I, 1992, J APPL PHYS, V72, P1 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 ZEMCIK T, 1991, MATER LETT, V10, P313 TC 4 BP 515 EP 533 PG 19 JI Phys. Status Solidi A-Appl. Res. PY 1995 PD JUN VL 149 IS 2 GA RH614 J9 PHYS STATUS SOLIDI A-APPL RES UT ISI:A1995RH61400002 ER PT J AU KOMATSU, T SHIMAGAMI, K SAKEMI, Y MATUSITA, K MIYAZAKI, M TI MAGNETIC STATE OF FE AT AND NEAR THE INTERFACE BETWEEN FE-AL-SI MAGNETIC THIN-FILMS AND ZN-FERRITE SO JOURNAL OF APPLIED PHYSICS NR 21 CR AKITA M, 1985, J JPN I MET, V49, P431 DONALD IW, 1993, J MATER SCI, V28, P2841 HIRAO K, 1980, J NON-CRYST SOLIDS, V40, P315 KAJIWARA K, 1990, IEEE T MAGN, V26, P2978 KURKJIAN CR, 1964, PHYS CHEM GLASSES, V5, P63 MATUSITA K, 1993, J MATER SCI, V28, P6333 MIURA M, 1986, JPN J APPL PHYS 1, V25, P1192 MIYAZAKI M, 1993, J APPL PHYS, V74, P766 MIYAZAKI M, 1992, J APPL PHYS, V71, P2368 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 MIYAZAKI M, 1991, J APPL PHYS, V69, P7207 ONO K, 1962, J PHYS SOC JPN, V17, P1747 SHIBUYA H, 1979, IEEE T MAGN, V13, P1029 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1963, PHYS REV, V129, P1136 SWALIN RA, 1962, THERMODYNAMICS SOLID SWANSON KR, 1970, J APPL PHYS, V41, P3155 TAKAHASHI M, 1987, IEEE T MAGN, V23, P3968 TAKAHASHI M, 1987, OYO BUTURI, V56, P1289 THOMAS JM, 1975, J CHEM SOC FARAD T 2, V71, P1708 YAMANAKA K, 1971, J JPN I MET, V35, P566 TC 0 BP 6300 EP 6305 PG 6 JI J. Appl. Phys. PY 1995 PD JUN 15 VL 77 IS 12 GA RD572 J9 J APPL PHYS UT ISI:A1995RD57200033 ER PT J AU PRADELL, T CLAVAGUERA, N ZHU, J CLAVAGUERAMORA, MT TI A MOSSBAUER STUDY OF THE NANOCRYSTALLIZATION PROCESS IN FE73.5CUNB3SI17.5B5 ALLOY SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 18 AB The nanocrystallization process taking place during isothermal annealing at 490 degrees C in Fe73.5CuNb3Si17.5B5 amorphous alloy was studied as a function of annealing time by using transmission Mossbauer spectroscopy. Two different stages were found: a first one where mainly changes in the short-range order parameters of the amorphous phase occur. and a second one where nanocrystals with DO3 structure appear. The silicon content in the nanocrystals decreases with annealing time to a final value of about 22 at.%. The first stage is also observed after 1 hour annealing at 450 degrees C or after cycling the amorphous sample from room temperature to 490 degrees C at a rate of 160 degrees C min(-1) several times. The magnetic moments in the amorphous phase tend to align parallel to the surface of the ribbon especially in the first stage of nanocrystallization. The nanocrystalline phase formed in the second stage shows also a preferential magnetic orientation parallel to that surface. The existence of two stages is corroborated by differential scanning calorimetry, transmission electron microscopy and image analysis. The overall observations strongly suggest that nanocrystallization is driven by nucleation and growth. CR BRAND RA, 1990, NORMOS PROGRAMS VERS CLAVAGUERA N, 1994, IN PRESS NANOSTRUCTU CLAVAGUERA N, 1995, UNPUB J APPL PHYS FUJINAMI M, 1990, JPN J APPL PHYS 2, V29, PL477 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HERZER G, 1993, PHYS SCRIPTA, VT49A, P307 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 HONO K, 1992, SURF SCI, V266, P385 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KOSTER U, 1991, MAT SCI ENG A-STRUCT, V133, P611 MIGLIERINI M, 1994, J PHYS-CONDENS MAT, V6, P1431 NOTH TH, 1990, J APPL PHYS, V67, P5568 PUNDT A, 1992, Z PHYS B CON MAT, V87, P65 RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 STEARNS MB, 1963, PHYS REV, V129, P1136 VANDENBERGHE RE, 1987, NUCL INSTRUM METH B, V26, P603 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 TC 20 BP 4129 EP 4143 PG 15 JI J. Phys.-Condes. Matter PY 1995 PD MAY 22 VL 7 IS 21 GA RA006 J9 J PHYS-CONDENS MATTER UT ISI:A1995RA00600012 ER PT J AU NOMURA, K REUTHER, H RICHTER, E UJIHIRA, Y TI MAGNETIC-STRUCTURE OF FE-SI-AL FILMS IMPLANTED WITH AL AND N IONS SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-ARTICLES NR 19 AB Changes in the magnetic structure of Fe-Si-Al films due to Al and N ion implantation were studied by Fe-57 Conversion Electron Mossbauer Spectrometry (CEMS). The peaks of the magnetic sextets due to the crystalline films became broader by implantation with 5x10(16) Al/cm(2), suggesting the formation of amorphous phases. In the CEM spectrum of one sample with large grains implanted with 1x10(17) Al/cm(2) a crystalline alpha-Fe phase appeared. N implantation with the same dose did not amorphize the sample but the components with high magnetic hyperfine fields were enhanced. CR ARITA M, 1985, T JPN I MET, V26, P710 BRAND RA, NORMOS LEAST SQUARER CHANG YJ, 1982, ACTA METALL MATER, V30, P1185 FUJIMORI H, 1994, 8TH S U SCI KUB, P16 INOUE K, 1993, NUCL INSTRUM METH B, V76, P124 KUMURA T, 1987, J APPL PHYS, V61, P3844 MASUMOTO H, 1937, JAPAN INS METALS, V1, P127 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 NOMURA K, 1984, BUNSEKI KAGAKU, V33, PT81 NOMURA K, 1994, HYPERFINE INTERACT, V88, P73 NOMURA K, 1990, HYPERFINE INTERACT, V54, P839 NOMURA K, 1994, IN PRESS J MAT SCI NOMURA K, 1993, NUCL INSTRUM METH B, V76, P199 NOORT HM, 1983, SOLID STATE COMMUN, V48, P495 PRINCIPI G, 1980, J MATER SCI, V15, P2665 REUTHER H, 1991, NUCL INSTRUM METH B, V53, P167 REUTHER H, 1988, NUCL INSTRUM METH B, V30, P61 STEARNS MB, 1963, PHYS REV, V129, P1136 ZIEGLER JF, 1985, STOPPING RANGES IONS TC 1 BP 299 EP 313 PG 15 JI J. Radioanal. Nucl. Chem.-Artic. PY 1995 PD MAR VL 190 IS 2 GA QU844 J9 J RADIOANAL NUCL CHEM ART UT ISI:A1995QU84400012 ER PT J AU SORESCU, M KNOBBE, ET BARB, D TI EXCIMER-LASER PROCESSING OF AMORPHOUS AND NANOCRYSTALLINE FE73.5CU1NB3SI22.5-XBX (X=6 AND 9) SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS NR 28 AB The effects of pulsed excimer laser irradiation (lambda = 308 nm, tau = 10 ns) on the magnetic and structural properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si22.5-xBx (x = 6 and 9) were investigated by transmission Mossbauer spectroscopy, scanning electron microscopy and energy-dispersive X-ray analysis. In the amorphous specimens, two types of compositionally-dependent kinetics have been deduced for the laser-induced changes to the easy magnetization axis: controlled magnetic anisotropy (x = 9) and random distribution of magnetic moment directions (x = 6). Micrometer-size crystalline precipitates of alpha-Fe have been observed in the Fe73.5Cu1Nb3Si16.5B6 sample irradiated at the highest repetition rate. Pulsed excimer laser treatment of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 has been found to enhance the fraction of crystalline Fe-Si alloy (18 at. %) with DO3 structure, and to determine a random distribution of magnetic moment directions in the remaining amorphous grain boundary phase. Excimer laser processing is suggested as a powerful tool for controlling the magnetic anisotropy and phase equilibrium in amorphous and nanocrystalline materials CR BLOEMBERGEN N, 1979, LASER SOLID INTERACT, PCH1 BRAND RA, 1983, J PHYS F MET PHYS, V13, P675 CRANSHAW TE, 1984, MOSSBAUER SPECTROSCO, V1, P173 GLEITER H, 1992, NANOSTRUCT MATER, V1, P1 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HE KY, 1994, J APPL PHYS, V75, P3684 HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 JELLISON GE, 1986, P SOC PHOTO-OPT INS, V710, P24 JIANG J, 1992, PHYS STATUS SOLIDI A, V130, PK63 KNOBEL M, 1992, J APPL PHYS, V71, P6008 POLAK C, 1992, J MAGN MAGN MATER, V104, P100 PULIDO E, 1992, IEEE T MAGN, V28, P2424 RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 SANCHEZ FH, 1992, PHYS REV B, V46, P13881 SANCHEZ P, 1988, J PHYS-PARIS, V12, P49 SORESCU D, 1993, SOLID STATE COMMUN, V85, P717 SORESCU M, 1993, J MATER RES, V8, P3078 SORESCU M, 1994, PHYS REV B, V49, P3253 SORESCU M, 1992, PHYS STATUS SOLIDI A, V132, PK57 STEARNS MB, 1963, PHYS REV, V129, P1136 STENGER S, 1992, J NON-CRYST SOLIDS, V151, P66 WACHTMAN JB, 1993, CHARACTERIZATION MAT, PCH34 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 ZEMCIK T, 1991, MATER LETT, V10, P313 TC 4 BP 79 EP 87 PG 9 JI J. Phys. Chem. Solids PY 1995 PD JAN VL 56 IS 1 GA QL729 J9 J PHYS CHEM SOLIDS UT ISI:A1995QL72900011 ER PT J AU GUPTA, A BHAGAT, N PRINCIPI, G TI MOSSBAUER STUDY OF MAGNETIC-INTERACTIONS IN NANOCRYSTALLINE FE73.5CU1NB3SI16.5B6 SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 20 AB Mossbauer spectroscopy has been used to follow the temperature- dependent magnetization in the temperature range 4.2-823 K of the amorphous as well as the nanocrystalline grains in partially crystallized Fe73.5Cu1Nb3Si16.5B6 alloy. In nanocrystallized specimens, the magnetization behaviour of both amorphous and nanocrystalline components is significantly different from that of the bulk amorphous or crystalline Fe3Si. Initially the nanocrystalline grains exhibit a superparamagnetic behaviour above the Curie temperature of the amorphous matrix. With increasing density of nanocrystalline grains, the superferromagnetic interaction between the grains becomes important. CR BHATNAGAR AK, 1984, PHYS REV B, V29, P4896 CHIEN CL, 1977, PHYS REV B, V16, P3024 CHIKAZUMI S, 1966, PHYSICS MAGNETISM GUPTA A, 1994, J MAGN MAGN MATER, V133, P291 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 HANDRICH K, 1969, PHYS STATUS SOLIDI B, V32, PK55 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 KANEYOSHI T, 1984, PHYS STATUS SOLIDI B, V123, P525 KULIK T, 1992, 1ST P M MAGN EFF APP, P87 MOORJANI K, 1984, MAGNETIC GLASSES, P133 MORUP S, 1983, J MAGN MAGN MATER, V40, P163 MORUP S, 1983, J MAGN MAGN MATER, V37, P39 PENISSOD P, 1982, NUCL INSTRUM METHODS, V199, P99 PRASAD BB, 1980, SOLID STATE COMMUN, V36, P661 SLAWSKAWAINEWSK A, 1993, PHYS REV B STEARNS MB, 1963, PHYS REV, V129, P1136 THOMAS MF, 1986, MOSSBAUER SPECTROSCO, P143 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YU S, 1992, IEEE T MAGN, V28, P5 TC 7 BP 2237 EP 2248 PG 12 JI J. Phys.-Condes. Matter PY 1995 PD MAR 6 VL 7 IS 10 GA QL494 J9 J PHYS-CONDENS MATTER UT ISI:A1995QL49400029 ER PT J AU SEPIOL, B VOGL, G TI DIFFUSION IN ORDERED FE-SI ALLOYS SO HYPERFINE INTERACTIONS NR 25 AB The measurement of the diffusional Mossbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0(3) structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe3Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe3Si to the iron-rich side is discussed. CR ASENOV S, 1980, PHYS LETT A, V79, P349 BAKKER H, 1988, DIFFUSION CRYSTALLIN, P189 BAKKER H, 1988, PHYS STATUS SOLIDI B, V145, P409 FELDWISCH R, UNPUB ACTA METALL MA GUDE A, 1994, SPR M DPG MUNST HEIMING A, 1988, J PHYS F MET PHYS, V18, P1491 INDEN G, 1972, Z METALLKD, V63, P253 INDEN G, 1971, Z METALLKD, V62, P627 KNAUER RC, 1978, PHYS REV, V17, P711 KRACHLER R, IN PRESS INTERMETALL MANTL S, 1983, PHYS REV B, V27, P5313 PETRY W, 1987, MATER SCI FORUM, V15, P323 RANDL OG, 1994, PHYS REV B, V49, P8768 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 ROWE JM, 1971, J PHYS CHEM SOLIDS, V32, P41 RUEBENBAUER K, 1983, HYPERFINE INTERACT, V14, P139 SEPIOL B, 1993, PHYS REV LETT, V71, P731 SEPIOL B, 1993, PHYS SCRIPTA, VT49A, P378 SINGWI KS, 1960, PHYS REV, V119, P863 STEARNS MB, 1963, PHYS REV, V129, P1136 STEINMETZ KH, 1986, PHYS REV B, V34, P107 SZABO IA, 1991, PHILOS MAG A, V63, P1137 VOGL G, 1994, ACTA METALL MATER, V42, P3175 VOGL G, 1990, HYPERFINE INTERACT, V53, P197 WEVER H, 1974, Z METALLKD, V65, P747 TC 6 BP 149 EP 159 PG 11 JI Hyperfine Interact. PY 1995 VL 95 IS 1-4 GA QL965 J9 HYPERFINE INTERACTIONS UT ISI:A1995QL96500023 ER PT J AU REUTHER, H TI CEMS STUDY OF SILICON IMPLANTED IRON SO HYPERFINE INTERACTIONS NR 31 AB Thin layers of iron-rich Fe-Si alloys were formed by silicon implantation into iron at room temperature with different energies (100, 200, and 300 keV) and ion doses (2 x 10(17) to 1 x 10(18) cm(-2)). The produced layers were investigated by Fe- 57 conversion electron Mossbauer spectroscopy (CEMS) to identify the phases formed by the ion implantation. Auger electron spectroscopy (AES) was used to measure the concentration depth profiles of the implanted silicon. Depending on the implantation parameters different disordered Fe-Si structures were detected. At low doses only magnetic phases were formed while at high doses a non-magnetic phase with a hitherto unknown structure appeared. Annealing of the samples resulted first in the formation of a D0(3)-like short- range order and a slow decrease of the non-magnetic phase, and subsequently in the migration of Si out of the investigated depth range. CR BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BRAND RA, 1987, NUCL INSTRUM METH B, V28, P398 CHEMELLI C, 1993, APPL SURF SCI, V68, P173 DEGROOTE S, 1994, 1994 MRS SPRING M BO DERRIEN J, 1993, APPL SURF SCI, V73, P90 DESIMONI J, 1993, APPL PHYS LETT, V62, P306 FULTZ B, 1994, PHYS REV B, V49, P6312 GLADUN C, 1992, 11TH INT C THERM ARL HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HUNT TD, 1993, NUCL INSTRUM METH B, V74, P60 LAUBACH S, 1989, Z PHYS B CON MAT, V75, P173 LIN MC, 1981, PHYS REV B, V24, P3712 LIN XW, 1993, APPL PHYS LETT, V63, P105 MULLER G, 1990, HYPERFINE INTERACT, V56, P1627 OGALE SB, 1985, J APPL PHYS, V57, P2915 REUTHER H, 1994, HYPERFINE INTERACT, V92, P1367 REUTHER H, 1993, NUCL INSTRUM METH B, V80-1, P348 REUTHER H, 1992, NUCL INSTRUM METH B, V68, P241 REUTHER H, 1991, NUCL INSTRUM METH B, V53, P167 REUTHER H, 1988, NUCL INSTRUM METH B, V30, P61 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 SANCHEZ FH, 1991, PHYS REV B, V44, P4290 SAWICKA BD, 1979, PHYS STATUS SOLIDI A, V56, P451 SIGFUSSON TI, 1990, HYPERFINE INTERACT, V54, P861 STEARNS MB, 1963, PHYS REV, V129, P1136 THOMAS JM, 1975, J CHEM SOC FARAD T 2, V71, P1708 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 WARLIMONT H, 1968, Z METALLKD, V59, P595 WERTHEIM GK, 1966, J APPL PHYS, V37, P3333 WILDMAN H, UNPUB ZIEGLER JF, 1985, STOPPING RANGES IONS TC 7 BP 161 EP 173 PG 13 JI Hyperfine Interact. PY 1995 VL 95 IS 1-4 GA QL965 J9 HYPERFINE INTERACTIONS UT ISI:A1995QL96500024 ER PT J AU LI, ZW ZHOU, XZ MORRISH, AH TI SITE OCCUPANCIES OF SI ATOMS AND CURIE TEMPERATURES FOR SM2FE17-XSIX SO PHYSICAL REVIEW B-CONDENSED MATTER NR 27 CR ALP EE, 1987, J MAGN MAGN MATER, V68, P305 GIVORD D, 1974, IEEE T MAGN, VMA10, P109 GUBBENS PCM, 1974, J PHYSIQUE C6 S, V35, P617 HU BP, 1992, J MAGN MAGN MATER, V114, P138 HU BP, 1991, J PHYS-CONDENS MAT, V3, P3983 JACOBS TH, 1992, J MAGN MAGN MATER, V116, P220 JACOBS TH, 1992, J MAGN MAGN MATER, V104, P1275 JASWAL SS, 1991, PHYS REV LETT, V67, P644 LI ZW, 1990, PHYS REV B, V41, P8617 LIN C, 1992, SOLID STATE COMMUN, V81, P299 LITTMANN MF, 1971, IEEE T MAGN, V7, P48 LONG GJ, 1993, SOLID STATE COMMUN, V88, P761 MASSALSKI TB, 1986, BINARY ALLOY PHASE D, P112 MCNEELY D, 1976, J LESS-COMMON MET, V44, P183 NARASIMHAN KSV, 1974, IEEE T MAGN, VMA10, P729 NARASIMHM KSV, 1974, AIP C P, V18, P1248 OESTERREICHER H, 1976, J LESS-COMMON MET, V44, P127 PLUSA D, 1986, J LESS-COMMON MET, V120, P1 PLUSA D, 1984, J LESS-COMMON MET, V99, P87 SHEN BG, 1993, J PHYS-CONDENS MAT, V5, PL685 STEARNS MB, 1963, PHYS REV, V129, P1136 VALEANU M, 1994, SOLID STATE COMMUN, V89, P519 VANMENS R, 1986, J MAGN MAGN MATER, V61, P24 WANG Z, 1993, J PHYS CONDENS MATT, V5, P2047 WEITZER F, 1989, J APPL PHYS, V65, P4963 YELON WB, 1993, J APPL PHYS, V73, P6029 ZOUGANELIS G, 1991, SOLID STATE COMMUN, V77, P11 TC 26 BP 2891 EP 2895 PG 5 JI Phys. Rev. B-Condens Matter PY 1995 PD FEB 1 VL 51 IS 5 GA QG312 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QG31200032 ER PT J AU GAO, ZQ FULTZ, B TI THERMAL-STABILITY OF FE3SI-BASED NANOCRYSTALS SO HYPERFINE INTERACTIONS NR 18 AB We studied the thermal stability of nanocrystalline (Fe3Si)(0.95)Nb-0.05 and Fe3Si alloys prepared by high-energy ball milling. Alloys were characterized by Mossbauer spectrometry, as well as X-ray diffractometry and transmission electron microscopy. The Nb-containing alloy was considerably more stable against grain growth than was the binary Fe3Si alloy. Mossbauer spectrometry showed that the Nb atoms segregated away from the DO3 ordered domains, probably to grain boundaries, and thus provided a strong suppression on grain growth. CR AKAI H, 1986, PHYS REV LETT, V56, P2407 ALBEN R, 1978, J APPL PHYS, V49, P1653 EASTMAN J, 1989, RES DEV JAN, P56 ECKERT J, 1993, J APPL PHYS, V73, P131 ESCORIAL AG, 1991, MAT SCI ENG A-STRUCT, V134, P1394 FULTZ B, 1993, MOSSBAUER SPECTROSCO, P1 GAO Z, IN PRESS NANOSTRUCTU GLEITER H, 1989, PROG MATER SCI, V33, P223 HAHN H, 1990, J MATER RES, V5, P609 INGALLS R, 1974, SOLID STATE COMMUN, V14, P11 KLUG HP, 1974, XRAY DIFFRACTION PRO, PCH9 KUHRT C, 1992, J APPL PHYS, V71, P1896 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 LI M, UNPUB NANOSTUCTURED MIEDEMA AR, 1980, PHYSICA B & C, V100, P1 SIEGEL RW, 1988, J MATER RES, V3, P1367 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P1044 TC 1 BP 2213 EP 2218 PG 6 JI Hyperfine Interact. PY 1994 VL 94 IS 1-4 GA QB955 J9 HYPERFINE INTERACTIONS UT ISI:A1994QB95500062 ER PT J AU GAO, ZQ FULTZ, B TI KINETICS OF ORDERING IN FE3SI SO HYPERFINE INTERACTIONS NR 19 AB Alloys of Fe3Si were prepared as disordered bcc solid solutions by mechanical alloying. Chemical disorder --> D0(3) order transformations were studied by Mossbauer spectrometry and X- ray diffractometry. The evolution of short- and long-range order parameters showed that ordering probably occurs heterogeneously by nucleation and growth. CR ANTHONY L, 1989, J MATER RES, V4, P1120 ANTHONY L, 1989, J MATER RES, V4, P1132 FULTZ B, 1989, ACTA METALL MATER, V37, P823 FULTZ B, 1990, HYPERFINE INTERACT, V54, P799 FULTZ B, 1990, J MATER RES, V5, P1419 FULTZ B, 1991, MATER RES SOC S P, V186, P187 FULTZ B, 1993, MOSSBAUER SPECTROSCO, P1 FULTZ B, 1993, NUCL INSTRUM METH B, V76, P115 FULTZ B, 1991, PHYS REV B, V44, P9805 GAO ZQ, 1993, PHILOS MAG B, V67, P787 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 MATSUMURA S, 1989, MATER T JIM, V30, P695 MIYAZAKI M, 1992, J APPL PHYS, V71, P2368 RIETVELD HM, 1966, ACTA CRYSTALLOGR, V20, P508 SCHNEEWEISS O, 1989, J PHYS CONDENS MATT, V1, P4795 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1972, PHYS REV B, V6, P3326 SWANN PR, 1975, MET SCI, V9, P90 VONDREELE RB, 1992, J APPL CRYSTALLOGR, V15, P581 TC 3 BP 2361 EP 2366 PG 6 JI Hyperfine Interact. PY 1994 VL 94 IS 1-4 GA QB955 J9 HYPERFINE INTERACTIONS UT ISI:A1994QB95500087 ER PT J AU FANCIULLI, M WEYER, G VONKANEL, H ONDA, N TI CONVERSION ELECTRON MOSSBAUER-SPECTROSCOPY STUDY OF IRON SILICIDE FILMS GROWN BY MBE SO PHYSICA SCRIPTA NR 25 AB Conversion Electron Mossbauer Spectroscopy has been applied to the study of different novel expitaxially stabilized phases of the Fe-Si system and also of Fe3Si films. The silicides have been grown by Molecular Beam Epitaxy on Si(111). The Fe-57 Mossbauer parameters (isomer shift delta, linewidth Gamma, quadrupole splitting Delta and magnetic held H at the nucleus) are reported and discussed in terms of the local surrounding of the Fe nucleus. CR BRUINSMA R, 1986, J PHYS-PARIS, V47, P2055 CHRISTENSEN NE, 1990, PHYS REV B, V42, P7148 DEGROOTE S, 1993, MATER RES SOC S P, V320, P133 DIMITRIADIS CA, 1990, J APPL PHYS, V68, P1726 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EPPENGA R, 1990, J APPL PHYS, V68, P3027 FANCIULLI M, 1994, 4TH SEEH WORKSH MOSS GIANNINI C, 1992, PHYS REV B, V45, P8822 HELGASON O, 1989, HYPERFINE INTERACT, V45, P415 HINES WA, 1976, PHYS REV B, V13, P4060 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI MOSS J, 1972, J PHYS F MET PHYS, V2, P358 ONDA N, 1993, APPL SURF SCI, V73, P124 ONDA N, 1992, APPL SURF SCI, V56-8, P421 ONDA N, 1993, MATER RES SOC S P, V280, P581 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P1449 RIXECKER G, 1993, PHYS STATUS SOLIDI A, V139, P309 STEARNS MB, 1963, PHYS REV, V129, P1136 VANTOMME A, 1990, HYPERFINE INTERACT, V57, P2133 VONKANEL H, 1991, APPL SURF SCI, V53, P196 VONKANEL H, 1992, PHYS REV B, V45, P13807 WALKER LR, 1961, PHYS REV LETT, V6, P98 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WEYER G, 1976, MOSSBAUER EFFECT MET, V10, P301 TC 14 BP 16 EP 19 PG 4 JI Phys. Scr. PY 1994 VL 54 GA PW672 J9 PHYS SCR UT ISI:A1994PW67200004 ER PT J AU NOMURA, K UJIHIRA, Y YANAGITANI, A KAWASHIMA, N TI MICROSTRUCTURAL ANALYSIS OF FE-SI-AL ALLOY POWDERS AND FILMS BY MOSSBAUER SPECTROMETRY SO JOURNAL OF MATERIALS SCIENCE NR 14 AB The powder, plate and films of Fe-Si-Al alloy were prepared by gas atomizer, extrusion, sputtering, and quenching. The characteristics of these alloy materials were studied by Mossbauer spectrometry, and estimated on the base of iron configuration. The magnetic hyperfine fields were dependent on each preparation process. Quenched ribbon gave a perfect DO3 structure. CR ARITA M, 1985, T JPN I MET, V26, P710 CHANG YJ, 1982, ACTA METALL MATER, V30, P1185 DOBRZYNSKI L, 1987, PHYS STATUS SOLIDI A, V101, P567 FRACKOWIAK JE, 1986, HYPERFINE INTERACT, V28, P1067 FUKAYA M, 1991, J MATER SCI, V26, P5420 MASUMOTO H, 1937, JAPAN INS METALS, V1, P127 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 NOMURA K, 1984, BUNSEKI KAGAKU, V33, PT81 NOMURA K, 1994, HYPERFINE INTERACT, V88, P73 NOMURA K, 1990, HYPERFINE INTERACT, V54, P839 NOMURA K, 1993, NUCL INSTRUM METH B, V76, P199 ONO K, 1962, J PHYS SOC JPN, V17, P1747 STEARNS MB, 1963, PHYS REV, V129, P1136 YANAGITANI A, 1991, 2ND P JAP INT SAMPE, P1019 TC 0 BP 6019 EP 6025 PG 7 JI J. Mater. Sci. PY 1994 PD NOV 15 VL 29 IS 22 GA PU793 J9 J MATER SCI UT ISI:A1994PU79300036 ER PT J AU REUTHER, H TI MOSSBAUER AND AUGER SPECTROSCOPIC INVESTIGATIONS OF FE-SI ALLOYS PRODUCED BY ION-IMPLANTATION SO SURFACE AND INTERFACE ANALYSIS NR 15 AB Fe-Si alloys and compounds are of strong interest because of their electrical and magnetic properties. In thin layers they can be produced by ion implantation. To form iron-rich alloys Si was implanted at room temperature into iron. Different energies (100,200, and 300 keV) and ion doses (2 x 10(17) to 1 x 10(18) cm-2) were applied. The produced layers were investigated by Fe-57 conversion electron Mossbauer spectroscopy (CEMS) and Auger electron spectroscopy (AES). CEMS was used to study the phases formed due to the ion implantation. Depending on the the samples resulted first in the precipitation of crystalline compounds and then in the beginning of the migration of Si out of the investigated range. The concentration profiles were determined with AES. Gaussian shaped Si profiles were found. Depending on the implantation parameters the maximum Si concentration detected was about 50 at.%. CR BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BRAND RA, 1987, NUCL INSTRUM METH B, V28, P398 DEREUS R, 1991, NUCL INSTRUM METH B, V53, P24 LIN MC, 1981, PHYS REV B, V24, P3712 MULLER G, 1990, NUCL INSTRUM METH B, V50, P384 PREECE CM, 1980, ION IMPLANTATION MET REUTHER H, IN PRESS HYP INT REUTHER H, 1992, NUCL INSTRUM METH B, V68, P241 REUTHER H, 1991, NUCL INSTRUM METH B, V53, P167 REUTHER H, 1988, NUCL INSTRUM METH B, V30, P61 SAWICKI J, 1976, PHYS STATUS SOLIDI B, V77, PK1 STEARNS MB, 1963, PHYS REV, V129, P1136 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 WERTHEIM GK, 1966, J APPL PHYS, V37, P3333 ZIEGLER JF, 1985, STOPPING RANGES IONS TC 3 BP 547 EP 550 PG 4 JI Surf. Interface Anal. PY 1994 PD JUL VL 22 IS 1-12 GA PG621 J9 SURF INTERFACE ANAL UT ISI:A1994PG62100115 ER PT J AU NOMURA, K UJIHIRA, Y YANAGITANI, A TI SURFACE-ANALYSIS OF FE-SI-AL SPUTTERED ALLOY-FILMS BY CONVERSION ELECTRON MOSSBAUER SPECTROMETRY SO HYPERFINE INTERACTIONS NR 13 AB Fe-Si-Al alloy films were deposited on silicon wafers heated to various temperatures by DC Ar sputtering and the microstructure of the films was analyzed by CEMS. As-prepared films on cooled substrate contained superparamagnetic components in addition to magnetic components. The fine grains included yielded a random orientation of magnetic spins in the films. The spin orientation became perpendicular to the surface by annealing the sputtered films at more than 773 K. The magnetic fields in sputtered films on a heated substrate were parallel to the surface. CR ARITA M, 1985, T JPN I MET, V26, P710 CHANG Y, 1982, ACTA METALL, V33, P1185 DINHUT JF, 1991, J MAGN MAGN MATER, V93, P252 DOBRZYNSKI L, 1987, PHYS STATUS SOLIDI A, V101, P567 FRACKOWIAK JE, 1986, HYPERFINE INTERACT, V28, P1067 MASUMOTO H, 1937, JAPAN INS METALS, V1, P127 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 NOMURA K, 1984, BUNSEKI KAGAKU, V33, PT81 NOMURA K, 1990, HYPERFINE INTERACT, V54, P839 NOMURA K, 1993, NUCL INSTRUM METH B, V76, P199 NOORT HM, 1983, SOLID STATE COMMUN, V48, P495 STEARNS MB, 1963, PHYS REV, V129, P1136 YANAGITANI A, 1991, 2ND P JAP INT SAMPE, P1019 TC 4 BP 73 EP 81 PG 9 JI Hyperfine Interact. PY 1994 VL 88 IS 1-3 GA PA119 J9 HYPERFINE INTERACTIONS UT ISI:A1994PA11900009 ER PT J AU SITEK, J MIGLIERINI, M TOTH, I TI MAGNETIC HYPERFINE FIELD DISTRIBUTIONS IN FE73.5CU1NB3SI13.5B9 SO IEEE TRANSACTIONS ON MAGNETICS NR 8 AB The ribbons of amorphous alloy of Fe73.5Cu1Nb3Si13.5B9 were isothermally annealed at the temperature 545-degrees-C in the range from 20 minutes up to 120 minutes. Three samples or different thicknesses of 33 mum, 27 mum and 21 mum were used. rhe obtained nanocrystals were studied by Mossbauer spectroscopy. The amount or remaining amorphous phase and average hyperfine field have been dependent on annealing time. Both these parameters have been decreased more rapidly for a thicker sample than for the thinner one. In P(H) distribution we observed a growing low field component and a vanishing high field component. The reason for such a different crystallization processes in various samples is the inhomogeneously distributed silicon along the ribbon thickness. CR BRAND RA, UNPUB NORMOS PROGRAM DUHAJ P, 1993, KEY ENG MATER, V81, P39 HAMPEL G, 1992, J PHYS-CONDENS MAT, V4, P3195 PUNDT A, 1992, Z PHYS B CON MAT, V87, P65 RIXECKER G, 1992, J PHYS-CONDENS MAT, V4, P10295 SITEK J, 1993, KEY ENG MATT, V81, P275 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 0 BP 542 EP 544 PG 3 JI IEEE Trans. Magn. PY 1994 PD MAR VL 30 IS 2 PN 2 GA NU013 J9 IEEE TRANS MAGN UT ISI:A1994NU01300030 ER PT J AU ABDELLAOUI, M GAFFET, E DJEGAMARIADASSOU, C BARRADI, T TI MOSSBAUER-EFFECT EVIDENCE FOR DISORDERING INDUCED BY MECHANICAL ALLOYING IN THE FE-SI SYSTEM SO JOURNAL DE PHYSIQUE IV NR 15 AB Based on X - ray diffraction (XRD) patterns, differential calorimetry (DSC) investigations, the phase transitions induced by mechanical alloying (MA) on the Fe rich side of the Fe - Si system has been studied. Starting from a mixture of Fe and Si powders, MA leads to an expansion (up to 27.5 at. % Si) of the A2 crystalline disordered solid solution phase domain. In this composition field, an amorphous phase is also detected. The expansion of the. disordered A2 phase domain up to 27.5 at.% Si has been confirmed by Mossbauer spectroscopy investigations. An annealing of the mechanically alloyed powders at 800-degrees-C for 48 hours leads exactly to the thermodynamically stable structures consistent with the sample stoechiometry. A high coercive force value of 17.2 kA/m at 1 kHz frequency and 0.15 T magnetic induction was reported for the 9.5 at. % Si. CR ABDELLAOUI M, IN PRESS J ALLOYS CO ABDELLAOUI T, 1992, J PHYSIQUE 3 S, V2 ABDELLAOUI T, 1992, J PHYSIQUE 4 DEGAUQUE J, 1990, IEEE T MAGN, V26, P2220 DORMANN JL, 1993, PHYS STATUS SOLIDI B, V194, P339 ELUKOV EP, 1992, J PHYS CONDENS MATT, V4, P7597 GAFFET E, 1993, J ALLOY COMPD, V194, P339 KUBASCHEWSKI, 1982, FE SI IRON SILICON I, P136 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 MIYAZAKI M, 1992, J APPL PHYS, V71, P2368 NARITA K, 1979, IEEE T MAGN, V15, P911 STEARNS MB, 1963, PHYS REV, V129, P1136 SWANN PR, 1975, MET SCI, V9, P90 TENWICK MJ, 1984, INT J RAPID SOLIDIF, V1, P143 VALIEV RZ, 1991, SCRIPTA METALL MATER, V25, P2717 TC 2 BP 285 EP 290 PG 6 JI J. Phys. IV PY 1994 PD FEB VL 4 IS C3 GA NK459 J9 J PHYS IV UT ISI:A1994NK45900040 ER PT J AU SINGLETON, EW HADJIPANAYIS, GC PAPAEFTHYMIOU, V HU, Z YELON, WB TI PHASE-TRANSFORMATION INDUCED BY GAS-PHASE REACTION IN RFE10SICX ALLOYS SO JOURNAL OF APPLIED PHYSICS NR 15 AB A new series of rare-earth iron intermetallic carbide compounds has been prepared by the reaction of powders with methane gas. The alloys prior to the methane heat treatment had the 2:17- type structure, R2(Fe,Si)17 (R=Y, Ce, Pr, Nd, and Sm). After heat treatment in temperatures up to 873 K the alloys absorb carbon and retain their original structure with a volume expansion over the carbon-free unit cell. For higher heat treatment temperatures (973-1073 K), a phase transformation occurs leading to the BaCd11-type structure. These compounds have a lower Curie temperature than those with the Th2Zn17-type structure, in the range of 453-495 K. Rietveld analysis of neutron diffraction data on NdFe10SiCx with the BaCd11-type structure are reported. In addition, the average hyperfine parameters determined by Mossbauer spectroscopy are reported for the Nd compounds. CR FULLPROF REITVELD RE ALP EE, 1987, J MAGN MAGN MATER, V68, P305 BERTHIER Y, 1988, J MAGN MAGN MATER, V75, P19 BODAK OI, 1969, DOPOV AKAD NAUK UK A, V5, P452 CADOGAN JM, 1992, 7TH P INT S MAGN AN, P50 COEY JMD, 1990, J MAGN MAGN MATER, V87, PL251 HADJIPANAYIS GC, 1992, 7TH P INT S MAGN AN, P403 HU BP, 1991, J PHYS-CONDENS MAT, V3, P3983 LEROY J, 1987, J LESS-COMMON MET, V136, P19 RIETVELD HM, 1969, J APPL CRYSTALLOGR, V2, P66 SINGLETON EW, 1993, J MAGN MAGN MATER, V128, PL21 STEARNS MB, 1963, PHYS REV, V129, P1136 VANMENS R, 1986, J MAGN MAGN MATER, V61, P24 WANG YZ, 1991, J APPL PHYS, V70, P6099 ZHONG XP, 1990, J MAGN MAGN MATER, V86, P333 TC 2 BP 6000 EP 6002 PG 3 JI J. Appl. Phys. PY 1994 PD MAY 15 VL 75 IS 10 PN 2A GA NN734 J9 J APPL PHYS UT ISI:A1994NN73400196 ER PT J AU MATTSON, JE FULLERTON, EE KUMAR, S LEE, SR SOWERS, CH GRIMSDITCH, M BADER, SD PARKER, FT TI PHOTOINDUCED ANTIFERROMAGNETIC INTERLAYER COUPLING IN FE SUPERLATTICES WITH IRON SILICIDE SPACERS SO JOURNAL OF APPLIED PHYSICS NR 34 AB Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100 K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (> 10 mW/mm2). We attribute these effects to charge carriers in the FeSi spacer layer, which, when thermally or photogenerated, are capable of communicating spin information between the Fe layers. CR ALVAREZ J, 1993, APPL SURF SCI, V70-1, P578 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BOEKHOLT M, 1991, PHYSICA C, V175, P127 BRUNO P, 1992, PHYS REV B, V46, P261 CAREY MJ, 1993, PHYS REV B, V47, P9952 COEHOORN R, 1991, PHYS REV B, V44, P9331 DUSAUSOY PY, 1971, ACTA CRYSTALLOGR B, V27, P1209 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FULLERTON EE, 1992, J APPL PHYS, V73, P6335 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 FULLERTON EE, 1992, MRS BULL, V17, P33 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MATTHEISS LF, 1993, PHYS REV B, V47, P13114 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NIEVA G, 1992, APPL PHYS LETT, V60, P2159 NIEVA G, 1992, PHYS REV B, V46, P14249 ONDA N, 1992, APPL SURF SCI, V56-8, P421 PARKER FT, 1989, J APPL PHYS, V66, P5988 PRETORIUS R, 1990, VACUUM, V41, P1038 SANTOS PV, 1991, PHYS REV LETT, V67, P2686 SCHLESINGER Z, 1993, PHYS REV LETT, V71, P1748 STAEBLER DL, 1980, J APPL PHYS, V51, P3262 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 VONKANEL H, 1993, APPL SURF SCI, V70-1, P559 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG Y, 1990, PHYS REV LETT, V65, P2732 WATANABE H, 1963, J PHYS SOC JPN, V18, P995 WERTHEIM GK, 1965, PHYS LETT, V18, P89 ZHOU JH, 1992, PHYS REV B, V46, P12402 TC 5 BP 6169 EP 6173 PG 5 JI J. Appl. Phys. PY 1994 PD MAY 15 VL 75 IS 10 PN 2A GA NN734 J9 J APPL PHYS UT ISI:A1994NN73400261 ER PT J AU YELSUKOV, YP TI STRUCTURE AND MAGNETIC-PROPERTIES OF MICROCRYSTALLINE AND AMORPHOUS BINARY-ALLOYS OF IRON WITH SP-ELEMENTS (AL, SI, P) SO FIZIKA METALLOV I METALLOVEDENIE NR 110 CR ALCAZAR GAP, 1987, J PHYS F MET PHYS, V17, P2323 ANISIMOV VI, 1986, FIZ MET METALLOVED+, V62, P730 ARAI KI, 1984, IEEE T MAGN, V20, P1469 ARROTT A, 1959, PHYS REV, V114, P1420 ARZHNIKOV AK, 1992, J MAGN MAGN MATER, V117, P87 BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BEK G, 1986, METALLICHESKIE STEKL BEK G, 1983, METALLICHESKIE STEKL BESNUS MJ, 1975, J PHYS F MET PHYS, V5, P2138 BONDAR VV, 1970, FIZ MET METALLOVED, V30, P1061 CADEVILLE MC, 1979, J MAGN MAGN MATER, V14, P207 CORB BW, 1982, J APPL PHYS, V53, P7728 CORB BW, 1985, PHYS REV B, V31, P2521 CORB BW, 1983, PHYS REV B, V27, P636 CRANSHAW TE, 1966, PHYS LETT, V21, P481 CRANSHAW TE, 1977, PHYSICA B & C, V86, P391 DOROFEEV GA, 1982, METALLOFIZIKA, V4, P38 DUBIEL SM, 1983, J MAGN MAGN MATER, V1, P530 DUBIEL SM, 1982, J MAGN MAGN MATER, V28, P261 DUBIEL SM, 1987, PHYS LETT A, V120, P151 EIBSCHUTZ M, 1983, PHYS REV B, V28, P425 ELSUKOV EP, 1992, FIZ MET METALLOVED, P87 ELSUKOV EP, 1989, FIZ MET METALLOVED, V67, P301 ELSUKOV EP, 1983, FIZ MET METALLOVED, V55, P337 ELSUKOV EP, 1986, FIZ MET METALLOVED+, V62, P719 ELSUKOV EP, 1991, IZV AKAD NAUK SSSR M, P172 ELSUKOV EP, 1988, IZV AN SSSRM, P170 ELSUKOV EP, 1992, J PHYS-CONDENS MAT, V4, P7597 ELSUKOV EP, 1990, METALLOFIZIKA, V12, P75 ELSUKOV EP, 1989, METALLOFIZIKA, V11, P52 ELSUKOV EP, 1991, PHYS STATUS SOLIDI A, V127, P215 ELSUKOV EP, 1990, PHYS STATUS SOLIDI A, V117, P291 ELSUKOV EP, 1988, STRUKTURNYE MAGNITNY ELSUKOV EP, 1990, TREN IZNOS, V11, P509 ELSUKOV EP, 1990, YADERNOSPEKTROSKOPIC, P91 ETTWIG HH, 1972, Z METALLKD, V63, P453 EYMERY JP, 1988, IEEE T MAGN, V24, P1697 FALLOT M, 1936, ANN PHYS-PARIS, V6, P305 FARGUHAR MC, 1945, J IRON STEEL I, V152, P457 FUJUWARA T, 1982, J PHYS F MET PHYS, V12, P661 GELD PV, 1971, SILITSIDY PEREKHODNY GENGNAGEL H, 1972, PHYS STATUS SOLIDI A, V13, P499 GLASER FW, 1956, T AIME, V206, P1290 GLEZER AM, 1973, FIZ MET METALLOVED+, V36, P652 GOLDANSKII VI, 1970, KHIMICHESKIE PRIMENE HILTUNEN EJ, 1986, PHYS SCRIPTA, V34, P239 HUFFMAN GP, 1967, J APPL PHYS, V38, P735 HULLER K, 1985, J MAGN MAGN MATER, V53, P103 JACCARINO V, 1965, PHYS REV LETT, V15, P258 JOHNSON CE, 1963, P PHYS SOC LOND, V81, P1079 KAZAMA NS, 1980, J MAGN MAGN MATER, V15-8, P1331 KHANDRIK K, 1982, AMORFNYE FERRO FERRI KRISHNAN R, 1987, PHYS LETT A, V121, P43 KUBASHEVSKI O, 1985, DIAGRAMMY SOSTOYANIY LIHL F, 1961, ARCH EISENHUTTENWES, V32, P489 LOGAN J, 1976, J NON-CRYST SOLIDS, V20, P285 MALOZEMOFF AP, 1984, PHYS REV B, V29, P1620 MANGIN P, 1978, J APPL PHYS, V49, P1709 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MAURER M, 1979, J PHYS F MET PHYS, V9, P271 MCCALLY RL, 1990, J APPL PHYS, V67, P5784 MCCALLY RL, 1988, J APPL PHYS, V63, P4124 MEINHARDT D, 1963, Z PHYS, V174, P472 MITERA M, 1978, PHYS STATUS SOLIDI A, V49, PK163 MOORJANI K, 1984, MAGNETIC GLASSES NEMNONOV SA, 1962, FIZ MET METALLOVED, V14, P666 NEMOSHKALENKO VV, 1976, ELEKTRONNAYA SPEKTRO NICULESCU VA, 1983, J MAGN MAGN MATER, V39, P223 OVCHINNIKOV VV, 1981, FIZ TVERD TELA+, V23, P617 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25 PARSONS D, 1958, PHILOS MAG, V3, P1174 PEPPERHOFF W, 1968, ARCH EISENHUTTENWES, V39, P307 PEPPERHOFF W, 1967, Z ANGEW PHYS, V22, P496 PICKART SJ, 1961, PHYS REV, V123, P1163 POLISHCHUK VE, 1970, FIZ MET METALLOVED, V29, P1101 RICHTER F, 1974, ARCH EISENHUTTENWES, V45, P107 RYZHENKO BV, 1984, FIZ MET METALLOVED+, V58, P1153 SANCHEZ FH, 1987, J APPL PHYS, V61, P4349 SHIGA M, 1979, J PHYSIQUE, V40, P204 SHIGA M, 1985, JAPANESE J APPL MAGN, V9, P187 SHIMADA Y, 1976, J APPL PHYS, V47, P4156 SKAKOV YA, 1988, 3 VSES K PROBL ISS 1, P116 SOSTARICH M, 1990, J APPL PHYS, V67, P5793 SRINIVASAN TM, 1967, PHASE STABILITY META, P151 STEARNS MB, 1964, J APPL PHYS, V35, P1095 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1971, PHYS REV B, V4, P4069 STEARNS MB, 1972, PHYS REV B, V6, P3326 STEIN F, 1992, J MAGN MAGN MATER, V117, P45 STEIN F, 1989, J MAGN MAGN MATER, V81, P294 STEPANYUK VS, 1991, J NON-CRYST SOLIDS, V130, P311 SUCKSMITH W, 1939, P ROY SOC A, V170, P551 TAKACS L, 1981, 2 P C MET GLASS SCI, P119 TAKAHASHI M, 1979, JPN J APPL PHYS, V18, P685 TAKAHASHI M, 1977, JPN J APPL PHYS, V16, P2269 TANAKA K, 1982, J PHYS SOC JPN, V51, P3882 TAYLOR A, 1958, J PHYS CHEM SOLIDS, V6, P16 VINCZE I, 1971, PHYS STATUS SOLIDI A, V7, PK43 VONSOVSKII SV, 1971, MAGNETIZM VORONINA EV, 1988, ISSLEDOVANIE TONKOI VORONINA EV, 1993, NUCL INSTRUM METH B, V73, P90 VORONINA EV, 1990, PHYS STATUS SOLIDI B, V160, P625 YELSUKOV EP, 1993, IN PRESS J MAGN MAGN YELSUKOV EP, 1992, J MAGN MAGN MATER, V115, P271 ZABOROV AV, 1983, PHYS STATUS SOLIDI B, V116, P227 ZABOROV AV, 1983, PHYS STATUS SOLIDI B, V116, P511 ZAK T, 1985, ACTA PHYS SLOVACA, V35, P327 ZHANG YD, 1990, J APPL PHYS, V67, P5870 TC 0 BP 5 EP 31 PG 27 JI Fiz. Metallov Metalloved. PY 1993 PD NOV VL 76 IS 5 GA NG718 J9 FIZ METAL METALLOVED UT ISI:A1993NG71800001 ER PT J AU SEPIOL, B TI ATOMIC JUMPS IN ORDERED INTERMETALLIC COMPOUNDS SO PHYSICA SCRIPTA NR 34 AB Information about elementary atomic jump in intermetallic compounds can be obtained by quasielastic Mossbauer spectroscopy, a microscopic method. High temperature Fe-57 Mossbauer spectroscopy permits to separate jumps between various sublattices in non-Bravais lattice through measuring the angular dependence of diffusional line broadening. Results obtained from diffusion in B2 (FeAl) and D0(3) (Fe3Si) structures and the effect of atomic disorder in non- stoichiometric iron-silicon intermetallic compound on diffusion are discussed. CR ANDERSON IS, 1984, J LESS-COMMON MET, V101, P405 ARITA M, 1989, ACTA METALL MATER, V37, P1363 ASENOV S, 1980, PHYS LETT A, V79, P349 BAKKER H, 1981, PHILOS MAG A, V43, P251 BAKKER H, 1988, PHYS STATUS SOLIDI B, V145, P409 CAHN RW, 1989, METALS MATER PROCESS, V1, P1 CHUDLEY CT, 1961, P PHYS SOC LOND, V77, P353 HAUS JW, 1987, PHYS REP, V150, P263 HEIMING A, 1988, J PHYS F MET PHYS, V18, P1491 HEUMANN T, 1966, PHYS STATUS SOLIDI, V15, P95 HEUMANN T, 1970, Z NATURFORSCH A, V25, P1883 KNAUER RC, 1978, PHYS REV, V17, P711 KOIWA M, 1992, ORDERED INTERMETALLI, P449 KUTNER R, 1977, J PHYS CHEM SOLIDS, V38, P741 MANTL S, 1983, PHYS REV B, V27, P5313 MEHRER H, COMMUNICATION PETRY W, 1987, MATER SCI FORUM, V15, P323 RICHTER D, 1982, J LESS-COMMON MET, V88, P353 RIVIERE JP, 1978, SCRIPTA METALL, V12, P1055 ROWE JM, 1971, J PHYS CHEM SOLIDS, V32, P41 RUBY SL, 1973, MOSSBAUER EFFECT MET, V8, P263 RUEBENBAUER K, 1983, HYPERFINE INTERACT, V14, P139 SEPIOL B, 1993, DEFECT DIFFUSION FOR, V95, P831 SEPIOL B, 1993, PHYS REV LETT, V71, P731 SINGWI KS, 1960, PHYS REV, V120, P1093 STEARNS MB, 1963, PHYS REV, V129, P1136 STEINMETZ KH, 1986, PHYS REV B, V34, P107 STOLWIJK NA, 1980, PHILOS MAG A, V42, P783 SZABO IA, 1991, PHILOS MAG A, V63, P1137 SZYMANSKI K, 1990, HYPERFINE INTERACT, V59, P477 VOGL G, 1990, HYPERFINE INTERACT, V53, P197 VOGL G, 1993, IN PRESS J PHYS COND, V5 WEVER H, 1989, Z METALLKD, V80, P389 WEVER H, 1974, Z METALLKD, V65, P747 TC 3 BP 378 EP 383 PG 6 JI Phys. Scr. PY 1993 VL T49A GA MM844 J9 PHYS SCR UT ISI:A1993MM84400067 ER PT J AU KOMATSU, T TI MOSSBAUER STUDY ON CHEMICAL SHORT-RANGE ORDERING DURING STRUCTURAL RELAXATION IN (CO, FE)75 SI10B15 METALLIC-GLASS SO JOURNAL OF MATERIALS SCIENCE NR 50 AB The changes in the microscopic state of Fe-site surroundings during structural relaxation in a (Co0.75Fe0.25)75Si10B15 metallic glass which shows a remarkable reversible relaxation were examined using Mossbauer-effect measurements at 300 K. The narrowing of the distributions in the magnetic hyperfine field, H(i), and in the isomer shift, delta(IS), and the separation into two parts in the quadrupole splitting, DELTA(QS), due to irreversible and reversible relaxations were clearly observed. A shift towards higher values in the mean H(i) and a decrease in the mean delta(IS) were also found in both relaxations. The features of the changes in H(i), delta(IS) and DELTA(QS) strongly support the theory that the irreversible structural relaxation corresponds to topological short-range ordering which is mainly due to the ordering of Si and B atoms (that is, from random distributions to well-defined positions) and the theory that the reversible structural relaxation arises mainly from chemical short-range ordering between Co and Fe atoms. CR ALLEN JW, 1980, J NON-CRYST SOLIDS, V42, P509 BALANZAT E, 1985, ACTA METALL MATER, V33, P785 BARDOS DI, 1969, J APPL PHYS, V40, P1371 BHATIA AB, 1970, PHYS REV B, V2, P3004 BOHONYEY A, 1991, J PHYS-CONDENS MAT, V3, P4523 BRUNING R, 1987, J APPL PHYS, V62, P3633 BRUNING R, 1990, PHYS REV B, V41, P2678 CAHN RW, 1980, J MATER SCI, V15, P702 CHEREMISIN SM, 1990, SOLID STATE COMMUN, V74, P673 CHIEN CL, 1979, PHYS REV B, V20, P283 CHIEN CL, 1977, PHYS REV B, V16, P3024 CORB BW, 1982, J APPL PHYS, V53, P7728 EGAMI T, 1978, MATER RES BULL, V13, P557 GASKELL PH, 1979, J NON-CRYST SOLIDS, V32, P207 GIBBS MRJ, 1986, J PHYS F MET PHYS, V16, P809 HYGATE G, 1987, J PHYS F MET PHYS, V17, P815 INOUE A, 1984, J MATER SCI, V19, P3953 ITO A, 1982, 4TH P INT C RAP QUEN, P1101 JOHNSTON CE, 1961, PHYS REV LETT, V6, P450 KEMENY T, 1979, PHYS REV B, V20, P476 KOMATSU T, 1986, ACTA METALL MATER, V34, P1899 KOMATSU T, 1990, J APPL PHYS, V68, P2091 KOMATSU T, 1988, J APPL PHYS, V64, P4853 KOMATSU T, 1987, J MATER SCI, V22, P2185 KOMATSU T, 1985, J MATER SCI, V20, P3271 KOMATSU T, 1986, J MATER SCI LETT, V5, P311 KOMATSU T, 1987, J NON-CRYST SOLIDS, V95-6, P985 KOMATSU T, 1987, J NON-CRYST SOLIDS, V91, P52 KOMATSU T, 1986, J NON-CRYST SOLIDS, V85, P358 KOMATSU T, 1987, P S MAGNETIC PROPERT, P74 KOMATSU T, 1990, RES MECH, V31, P263 LUBORSKY FE, 1982, 4TH P INT C RAP QUEN, P561 MESSMER RP, 1981, PHYS REV B, V23, P1616 OHANDLEY RC, 1983, AMORPHOUS METALLIC A, P257 OK HN, 1980, PHYS REV B, V22, P3471 OSHIMA R, 1981, JPN J APPL PHYS, V20, P1 PANEK T, 1982, 4TH P INT C RAP QUEN, P537 PANISSOD P, 1983, PHYS REV B, V28, P2374 PLIPCZUK E, 1990, J MATER SCI LETT, V9, P565 POLLARD RJ, 1984, PHYS REV B, V29, P4864 SHIN ZY, 1990, J APPL PHYS, V67, P3655 STADNIK ZM, 1988, J NON-CRYST SOLIDS, V99, P233 STEARNS MB, 1963, PHYS REV, V129, P1136 SUZUKI K, 1985, 5TH P INT C RAP QUEN, P479 VALENTA P, 1981, PHYS STATUS SOLIDI B, V106, P129 VANDENBEUKEL A, 1983, ACTA METALL MATER, V31, P419 VINCZE I, 1980, J NON-CRYST SOLIDS, V42, P499 WU Y, 1987, J APPL PHYS, V61, P3219 YAMAUCHI K, 1975, J PHYS SOC JPN, V39, P541 YOKOTA R, 1984, J APPL PHYS, V55, P3037 TC 0 BP 6295 EP 6302 PG 8 JI J. Mater. Sci. PY 1993 PD DEC 1 VL 28 IS 23 GA ML892 J9 J MATER SCI UT ISI:A1993ML89200006 ER PT J AU RIXECKER, G SCHAAF, P GONSER, U TI ON THE INTERPRETATION OF THE MOSSBAUER-SPECTRA OF ORDERED FE-SI ALLOYS SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH NR 10 AB Iron-silicon alloys in the concentration range between 13 and 27 at% Si are investigated using Mossbauer spectroscopy. Such alloys are known to have the D0(3) crystal structure of ordered Fe3Si which exhibits a wide homogeneity range. Non- stoichiometric alloys, however, show complicated Mossbauer spectra with many subspectra due to the various Fe sites which in this case are present in the D0(3) structure. The aim of this investigation is to improve both the spectral resolution of the Mossbauer spectra obtained for various Si concentrations and the assignment of the subspectra to the Fe sites. Using appropriate binomial distributions, it would then be possible to calculate the silicon content of the alloys from the Mossbauer spectra. CR 1942, STRUCTURE REP, V9, P61 ARITA M, 1985, T JPN I MET, V26, P710 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI KUNDIG W, 1969, NUCL INSTRUM METHODS, V75, P336 STEARNS MB, 1963, PHYS REV, V129, P1136 YELSUKOV YP, 1989, PHYS MET METALLOGR, V67, P87 YELSUKOV YP, 1986, PHYS MET METALLOGR, V62, P85 YELSUKOV YP, 1985, PHYS MET METALLOGR, V60, P83 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 TC 21 BP 309 EP 320 PG 12 JI Phys. Status Solidi A-Appl. Res. PY 1993 PD OCT 16 VL 139 IS 2 GA MG476 J9 PHYS STATUS SOLIDI A-APPL RES UT ISI:A1993MG47600004 ER PT J AU PACAUD, J JAOUEN, C GRILHE, J DUFOUR, C BAUER, P MARCHAL, G JOUSSET, JC TI ION-BEAM MIXING INDUCED BY ELECTRONIC-ENERGY DEPOSITION IN FE- SI MULTILAYERS SO RADIATION EFFECTS AND DEFECTS IN SOLIDS NR 15 CR AUDOUARD A, 1988, EUROPHYS LETT, V5, P241 AUDOUARD A, 1987, EUROPHYS LETT, V3, P327 AUDOUARD A, 1990, PHYS REV LETT, V65, P875 BARBU A, 1991, EUROPHYS LETT, V15, P37 BOUFFARD S, 1989, ANN PHYS-PARIS, V4, P395 DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 DUFOUR C, 1991, REV SCI INSTRUM, V62, P2984 DUFOUR C, UNPUB EUROPHYS LETT DUNLOP A, 1989, CR ACAD SCI II, V309, P1277 HIRSCH PB, 1965, ELECTRON MICROS, P388 JACCARINO V, 1965, PHYS REV LETT, V15, P258 KLAUMUNZER S, 1986, PHYS REV LETT, V57, P850 MANGIN P, 1978, J APPL PHYS, V49, P1709 STEARNS MB, 1963, PHYS REV, V129, P1136 ZIEGLER JF, 1985, STOPPING RANGES IONS, V1 TC 3 BP 369 EP 372 PG 4 JI Radiat. Eff. Defects Solids PY 1993 VL 126 IS 1-4 GA LU128 J9 RADIAT EFF DEFECT SOLID UT ISI:A1993LU12800077 ER PT J AU SEPIOL, B VOGL, G TI ATOMISTIC DETERMINATION OF DIFFUSION MECHANISM ON AN ORDERED LATTICE SO PHYSICAL REVIEW LETTERS NR 19 AB By high-temperature Fe-57 Mossbauer spectroscopy on single crystals the diffusion mechanism in an ordered structure (stoichiometric Fe3Si) has been studied on an atomic scale. From the widths and the weights of the quasielastic lines in appropriately chosen crystal directions one can directly infer the elementary diffusion jump mechanism: For the stoichiometric alloy Fe3Si jumps via the three iron sublattices dominate. At only slightly higher iron concentrations (off stoichiometry), however, jumps via antistructure sites on the silicon sublattice contribute strongly. CR BAKKER H, 1988, PHYS STATUS SOLIDI B, V145, P409 CAHN RW, 1989, METALS MATER PROCESS, V1, P1 CHUDLEY CT, 1961, J P PHYS SOC LONDON, V7, P353 HEIMING A, 1988, J PHYS F MET PHYS, V18, P1491 HEUMANN T, 1966, PHYS STATUS SOLIDI, V15, P95 HEUMANN T, 1970, Z NATURFORSCH A, V25, P1883 KNAUER RC, 1978, PHYS REV, V17, P711 MANTL S, 1983, PHYS REV B, V27, P5313 PETRY W, 1987, MATER SCI FORUM, V15, P323 ROWE JM, 1971, J PHYS CHEM SOLIDS, V32, P41 RUBY SL, 1973, MOSSBAUER EFFECT MET, V8, P263 SINGWI KS, 1960, PHYS REV, V119, P863 STEARNS MB, 1963, PHYS REV, V129, P1136 STEINMETZ KH, 1986, PHYS REV B, V34, P107 SZABO IA, 1991, PHILOS MAG A, V6, P1137 SZYMANSKI K, 1990, HYPERFINE INTERACT, V59, P477 VOGL G, 1990, HYPERFINE INTERACT, V53, P197 WEVER H, 1989, Z METALLKD, V80, P389 WEVER H, 1974, Z METALLKD, V65, P747 TC 40 BP 731 EP 734 PG 4 JI Phys. Rev. Lett. PY 1993 PD AUG 2 VL 71 IS 5 GA LQ107 J9 PHYS REV LETT UT ISI:A1993LQ10700019 ER PT J AU ALEXANDRE, JL VASCONCELLOS, MAZ HUBLER, R TEIXEIRA, SR BAUMVOL, IJR TI ION-BEAM MIXING OF FE/AL MULTILAYERS - A CEMS STUDY SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 20 AB We report here on the study of the modifications induced by Ar+ and Xe+ bombardment of Fe/Al multilayered structures by means of conversion electron Mossbauer spectroscopy (CEMS). The initial multilayered thin film structures had thicknesses from 10/2 nm to 10/42 nm of Fe/Al. The ion bombardments were performed at substrate temperatures from 77 to 473 K, and a total fluence of 5 x 10(15) cm-2. The Mossbauer spectra were analysed on the basis of the results existing in the literature for the Fe-Al system, and also based on the results obtained from the same multilayered structures subjected to thermal annealing in the temperature range between 523 and 623 K. The analyses showed that amorphous and equilibrium phases are formed. The modified multilayer structure is related to the bombarding ionic species and the substrate temperature during bombardment. CR BVASCONCELLOS MAZ, 1989, PHYS STATUS SOLIDI A, V122, P105 CHITTARANJAN CM, 1991, SOLID STATE COMMUN, V79, P69 GABORIAUD RJ, 1987, NUCL INSTRUM METH B, V19-2, P648 HOHMUTH K, 1989, NUCL INSTRUM METH B, V39, P136 JAOUEN C, 1985, MATER SCI ENG, V69, P483 JAOUEN C, 1987, NUCL INSTRUM METH B, V19-2, P549 JAOUEN C, 1985, NUCL INSTRUM METH B, V7-8, P591 LILIENFELD DA, 1987, NUCL INSTRUM METH B, V19-2, P1 LIU BX, 1987, NUCL INSTRUM METH B, V19-2, P682 LIU BX, 1987, PHIL MAG LETT, V55, P265 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 NASTASI M, 1985, NUCL INSTRUM METH B, V7-8, P585 PRESTON RS, 1972, METALL TRANS, V3, P1831 PRINCIPI G, 1990, COMMUNICATION RAUSCHENBACH B, 1988, J LESS-COMMON MET, V145, P445 RAUSCHENBACH B, 1989, NUCL INSTRUM METH B, V39, P141 SEIDMAN DN, 1987, PHYS STATUS SOLIDI B, V144, P85 STEARNS MB, 1963, PHYS REV, V129, P1136 THOME L, 1987, NUCL INSTRUM METH B, V19-2, P554 VASCONCELLOS MAZ, 1988, MAT SCI ENG A-STRUCT, V104, P169 TC 6 BP 436 EP 441 PG 6 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1993 PD JUN VL 80-1 PN 1 GA LK380 J9 NUCL INSTRUM METH PHYS RES B UT ISI:A1993LK38000096 ER PT J AU FULLERTON, EE MATTSON, JE LEE, SR SOWERS, CH HUANG, YY FELCHER, G BADER, SD PARKER, FT TI MAGNETIC DECOUPLING IN SPUTTERED FE/SI SUPERLATTICES AND MULTILAYERS SO JOURNAL OF APPLIED PHYSICS NR 23 AB Sputtered Fe/Si superlattices were grown to study the magnetic coupling between ferromagnetic Fe layers (30 angstrom thick) for Si spacer-layer thicknesses (t(Si)) between 10 and 40 angstrom. The material is ferromagnetical for t(Si) < 13 angstrom and antiferromagnetically coupled for 13 angstrom < t(Si) < 17 angstrom. For t(Si) > 17 angstrom the Fe layers are uncoupled. X-ray analysis indicates that the system is well layered, but that the crystal structure remains coherent only for t(Si) < 17 angstrom. These results, along with our Mossbauer investigation, strongly suggest that the Si layer is crystalline for t(Si) < 17 angstrom, and is silicide in nature. For thicker spacers, Si becomes amorphous. We propose a model of the layering that is consistent with the known properties of Fe silicide. CR BRUNO P, 1992, PHYS REV B, V46, P261 CHYUNG LJ, 1990, MATER RES SOC S P, V187, P327 CLEMENS BM, 1990, MRS B, V15, P19 COEHOORN R, 1991, PHYS REV B, V44, P9331 DUFOUR C, 1988, PHYSIQUE C, V8, P1781 DUFOUR C, 1989, SOLID STATE COMMUN, V69, P963 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1992, PHYS REV B, V45, P7795 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MATTSON JE, 1992, PHYS REV LETT, V68, P3252 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PHRAGMIN G, 1926, J IRON STEEL I, V116, P397 SEVENHANS W, 1986, PHYS REV B, V34, P5955 SHIMADA Y, 1976, J APPL PHYS, V47, P4156 SLAUGHTER J, 1990, P SPIE, V1343, P73 STEARNS MB, 1992, J APPL PHYS, V71, P187 STEARNS MB, 1963, PHYS REV, V129, P1136 THOMPSON CV, 1990, MATER RES SOC S P, V187, P61 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 UNGARIS J, 1991, PHYS REV LETT, V67, P140 VONKANEL H, 1992, PHYS REV B, V45, P13807 WANG Y, 1990, PHYS REV LETT, V65, P2732 TC 22 BP 6335 EP 6337 PG 3 JI J. Appl. Phys. PY 1993 PD MAY 15 VL 73 IS 10 PN 2B GA LD865 J9 J APPL PHYS UT ISI:A1993LD86500071 ER PT J AU ZHOU, XZ MORRISH, AH NAUGLE, DG PAN, R TI MOSSBAUER STUDY OF AMORPHOUS AND NANOCRYSTALLINE FE73.5CU1NB3SI13.5B9 SO JOURNAL OF APPLIED PHYSICS NR 10 AB The superior soft magnetic material, Fe73.5Cu1Nb3Si13.5B9, formed by partially crystallizing amorphous ribbons upon annealing, has been investigated using x-ray diffraction and Mossbauer spectroscopy. The microstructure of the annealed ribbons consists mainly of DO3 alpha-FeSi nanocrystallites and an amorphous phase that lies in the grain boundaries. This residual amorphous phase has a Curie temperature of about 600 K; when it becomes a paramagnet the coercivity of the ribbon increases dramatically. It follows that, in addition to the nanocrystallite grain size and the random anisotropy, the coupling between the nanocrystallites by the amorphous grain boundaries is important for the achievement of the excellent soft properties. When Cu is replaced by Ag or Ni, a higher annealing temperature is required to produce nanocrystals. CR HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 JAING J, 1991, Z METALLKD, V82, P699 JIANG J, 1991, J MATER SCI LETT, V10, P763 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KONMOTO O, 1990, JPN J APPL PHYS, V29, P1460 SHINJO T, 1964, J PHYS SOC JPN, V19, P1252 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 ZEMCIK T, 1991, MATER LETT, V10, P313 TC 12 BP 6597 EP 6599 PG 3 JI J. Appl. Phys. PY 1993 PD MAY 15 VL 73 IS 10 PN 2B GA LD865 J9 J APPL PHYS UT ISI:A1993LD86500169 ER PT J AU INOUE, K TANABE, S TI MOSSBAUER ANALYSES OF FESIAL AND FESIALN SPUTTERED FILMS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 3 AB Microstructural variations with the annealing temperature for FeSiAl and FeSiAlN films were measured by CEMS (conversion electron Mossbauer microscopy). The ordering starts around 670 K and is completed around 900 K. After 923 K annealing, the D0(3) structure in the FeSiAl film is formed, the D0(3) structure and D0(3)-like structure, where one D-site Si or Al is substituted by one Fe, is formed in the FeSiAlN film. The variation of the permeability agrees with the microstructural variation. CR INOUE K, 1991, MATER RES SOC S P, V232, P243 KUMURA T, 1987, J APPL PHYS, V61, P3844 STEARNS MB, 1963, PHYS REV, V129, P1136 TC 1 BP 124 EP 126 PG 3 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1993 PD APR VL 76 IS 1-4 GA KZ089 J9 NUCL INSTRUM METH PHYS RES B UT ISI:A1993KZ08900046 ER PT J AU DUFOUR, C BAUER, P MARCHAL, G GRILHE, J JAOUEN, C PACAUD, J JOUSSET, JC TI ION-BEAM MIXING EFFECTS INDUCED IN THE LATENT TRACKS OF SWIFT HEAVY-IONS IN A FE/SI MULTILAYER SO EUROPHYSICS LETTERS NR 22 AB By following the experimental results recently Published about electronic-energy-deposition-induced effects in metallic materials, a mixing effect is observed in an Fe/Si multilayer irradiated by 650 MeV uranium ions. Mossbauer spectroscopy shows that, after a fluence as low as 10(13)cm-2, an Fe 4.5- nm/Si 3.5 nm multilayer has been made almost homogeneous by ion mixing. On electron micrographs, at very low fluence, latent tracks are observed where the magnetic properties are drastically modified from the previous crystalline ferromagnetic state. CR AUDOUARD A, 1988, EUROPHYS LETT, V5, P241 AUDOUARD A, 1987, EUROPHYS LETT, V3, P327 AUDOUARD A, IN PRESS J PHYS COND AUDOUARD A, 1990, PHYS REV LETT, V65, P875 BARBU A, 1991, EUROPHYS LETT, V15, P37 BOUFFARD S, 1989, ANN PHYS-PARIS, V4, P395 DUFOUR C, 1991, J MAGN MAGN MATER, V93, P545 DUFOUR C, 1991, REV SCI INSTRUM, V62, P2984 DUNLOP A, 1989, CR ACAD SCI II, V309, P1277 DUNLOP A, 1990, NUCL INSTRUM METH B, V48, P419 FLEISCHER RL, 1965, J APPL PHYS, V36, P3645 HIRSCH PB, 1965, ELECTRON MICROS, P388 IZUI K, 1986, 11TH P INT C EL MICR, P1299 JACCARINO V, 1965, PHYS REV LETT, V15, P258 KLAUMUNZER S, 1986, PHYS REV LETT, V57, P850 MANGIN P, 1978, J APPL PHYS, V49, P1709 MARFAING J, 1990, APPL PHYS LETT, V57, P1739 PAINE BM, 1985, NUCL INSTRUM METH B, V7-8, P666 SEITZ F, 1949, DISCUSS FARADAY SOC, V5, P271 STEARNS MB, 1963, PHYS REV, V129, P1136 TOULEMONDE M, IN PRESS PHYS REV B ZIEGLER JF, 1985, STOPPING RANGES IONS, V1 TC 20 BP 671 EP 677 PG 7 JI Europhys. Lett. PY 1993 PD FEB 20 VL 21 IS 6 GA KP294 J9 EUROPHYS LETT UT ISI:A1993KP29400007 ER PT J AU RIXECKER, G SCHAAF, P GONSER, U TI CRYSTALLIZATION BEHAVIOR OF AMORPHOUS FE73.5CU1NB3SI13.5B9 SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 43 AB Iron-based amorphous alloys have attracted technological and scientific interest due to their soft magnetic properties. Recently it was found that amorphous alloys like Fe73.5Cu1Nb3Si13.5B9 (FINEMET(TM)) have a transition to the nanocrystalline state after proper annealing, thus exhibiting excellent magnetic properties. An attempt was made to investigate the crystallization behaviour of this alloy, which is not yet fully known. The investigation was carried out by combining several methods, namely Mossbauer spectroscopy, x-ray diffraction, scanning and transmission electron microscopy as well as microprobe analysis. The alloy was studied after annealing at various temperatures for various times. The corresponding phase analyses are presented. Even after increasing the time of annealing at 950-degrees-C from 1 h to 90 h significant changes in the phases were found. It became evident that the question of phase composition can be solved only by a combination of different methods . CR 1942, STRUCTURE REPORT, V9, P61 ALP EE, 1984, J NON-CRYST SOLIDS, V61-2, P871 ARITA M, 1985, T JPN I MET, V26, P710 ARONSSON B, 1959, ACTA CHEM SCAND, V13, P433 CAMPBELL SJ, 1990, MODERN INORGANIC CHE, V3, P183 CHOO WK, 1977, METALL TRANS A, V8, P417 EGGERS H, 1938, MITT KAISER WILHELM, V20, P199 FASISKA EJ, 1965, ACTA CRYSTALLOGR, V19, P463 FUJINAMI M, 1990, JPN J APPL PHYS 2, V29, PL477 GOLDSCHMIDT HJ, 1960, J IRON STEEL I, V194, P169 GONSER U, 1991, HYPERFINE INTERACT, V66, P95 HERZER G, 1990, 1990 INTERMAG90 C BR HERZER G, 1989, IEEE T MAGN, V25, P3327 HESSE J, 1979, J PHYS E, V12, P526 HILZINGER HR, 1990, J MAGN MAGN MATER, V83, P370 JIANG JZ, 1991, Z METALLKD, V82, P698 JING J, 1989, J NON-CRYST SOLIDS, V113, P167 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KOHMOTO O, 1990, JPN J APPL PHYS 2, V29, PL1460 KOSTER U, 1991, MAT SCI ENG A-STRUCT, V133, P611 KRAMER A, 1990, HYPERFINE INTERACT, V54, P591 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI KUNDIG W, 1969, NUCL INSTRUM METHODS, V75, P336 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 LIMBACH CT, 1988, PHYSICA B & C, V149, P263 NOH TH, 1990, J APPL PHYS, V67, P5568 PEARSON WB, 1972, CRYSTAL CHEM PHYSICS PRICE DC, 1981, AUST J PHYS, V34, P51 RAGHAVAN V, 1984, T INDIAN I METALS, V37, P421 RON M, 1971, PHYS REV B, V4, P774 SAWA T, 1990, J APPL PHYS, V67, P5565 SCHAAF P, 1992, ACTA METALL MATER, V40, P373 STEARNS MB, 1963, PHYS REV, V129, P1136 WAGNER FE, 1976, J PHYS-PARIS, V37, P673 YELSUKOV YP, 1989, PHYS MET METALLOGR, V67, P87 YELSUKOV YP, 1986, PHYS MET METALLOGR, V62, P85 YELSUKOV YP, 1985, PHYS MET METALLOGR, V60, P83 YOSHIZAWA Y, 1989, IEEE T MAGN, V25, P3324 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 YVON K, 1969, FORTRAN 4 PROGRAM IN ZEMCIK T, 1991, MATER LETT, V10, P313 TC 49 BP 10295 EP 10310 PG 16 JI J. Phys.-Condes. Matter PY 1992 PD DEC 14 VL 4 IS 50 GA KE178 J9 J PHYS-CONDENS MATTER UT ISI:A1992KE17800017 ER PT J AU VORONINA, EV AGEYEV, AL YELSUKOV, EP TI USING AN IMPROVED PROCEDURE OF FAST DISCRETE FOURIER-TRANSFORM TO ANALYZE MOSSBAUER-SPECTRA HYPERFINE PARAMETERS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 15 AB In this paper, the authors propose to supplement the mathematical processing of Mossbauer spectra (MS) by means of Fourier transforms using a regular algorithm with an iteration refinement method. The use of a priori information concerning the solution in the form of the condition of its nonnegativity allows to increase the resolution in the spectrum without the appearance of oscillations characteristic of the solutions obtained by the Fourier transform method alone. The MS of Fe-Si alloys of low concentration were processed according to the given computational scheme to evaluate the influence of the II and III coordination shells on the parameters of the hyperfine interaction on the Fe nucleus. CR AFANASIEV AM, 1990, APPLIED MOSSBAUER C, P188 BILLARD L, 1975, SOLID STATE COMMUN, V17, P113 CRANSHAW TE, 1966, PHYS LETT, V21, P481 CRANSHOW TE, 1964, P INT C MAGNETISM LO, P141 DOROFEEV GA, 1982, METALLOFIZIKA, V4, P38 DUBIEL SM, 1982, J MAGN MAGN MATER, V28, P261 GRUNER G, 1972, SOLID STATE COMMUN, V10, P347 JOHNSON CE, 1963, P PHYS SOC LOND, V81, P1079 NOVIKOV GV, 1987, VINITI41121387 PREPR STEARNS MB, 1963, PHYS REV, V129, P1136 TIKHONOV AN, 1983, REGULAIRUYUSHCHIE AL VINCZE I, 1982, NUCL INSTRUM METHODS, V199, P247 VORONINA EV, 1990, PHYS STATUS SOLIDI B, V160, P625 VORONINA EV, 1988, VINITI57951388 PREPR YELSUKOV YP, 1989, PHYS MET METALLOGR, V67, P87 TC 3 BP 90 EP 94 PG 5 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1993 PD JAN VL 73 IS 1 GA KG334 J9 NUCL INSTRUM METH PHYS RES B UT ISI:A1993KG33400013 ER PT J AU JOHRI, UC SINGRU, RM RAI, KN TI MOSSBAUER STUDIES OF SUPER SENDUST ALLOY SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 14 AB Super sendust (pseudo-binary) alloy having a composition 3.87 (wt%) Al, 5.00 (wt%) Si, 2.96 (wt%) Ni and 88.17 (wt%) Fe was synthesized using an aluminothermic process. Samples of this alloy sintered at 1273 K for 6 h, 1173 K for 8 h and 1073 K for 8 h were studied by Mossbauer spectroscopy. The spectra recorded in the range 80-926 K were analyzed to obtain the temperature dependence of the Mossbauer parameters. These data, along with the X-ray diffraction measurements, indicate a possible configuration of atoms in this alloy. A magnetic ordering temperature T(c) almost-equal-to 926 K is also indicated by the present studies. CR ALCAZAR GAP, 1987, J PHYS F MET PHYS, V17, P2323 LESOILLE MR, 1970, PHYS STATUS SOLIDI, V37, P127 MASUMOTO H, 1937, JAPAN INS METALS, V1, P127 MIURA M, 1986, JPN J APPL PHYS 1, V25, P1192 ONO K, 1962, J PHYS SOC JPN, V17, P1747 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25 PICKART SJ, 1961, PHYS REV, V123, P1163 STEARNS MB, 1964, J APPL PHYS, V35, P1095 STEARNS MB, 1968, PHYS REV, V168, P588 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1971, PHYS REV B, V4, P4069 UNIYAL GC, 1986, THESIS INDIAN I TECH WINDOW B, 1971, J PHYS E, V4, P401 YAMAMOTO T, 1978, T JPN I MET, V19, P326 TC 0 BP 145 EP 153 PG 9 JI J. Magn. Magn. Mater. PY 1992 PD NOV VL 117 IS 1-2 GA JZ594 J9 J MAGN MAGN MATER UT ISI:A1992JZ59400024 ER PT J AU KOPCEWICZ, M JACKIEWICZ, E KULIK, T TI MOSSBAUER STUDY OF THE STRUCTURE AND STABILITY OF AMORPHOUS FE77.5-X-YMXNYSI13.5B9 ALLOYS SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 19 AB The rf collapse effect is employed to study directly, by using Mossbauer spectroscopy, the quadrupole splitting in the ferromagnetic amorphous Fe77.5-x-yMxNySi13.5B9 alloys, and to derive information about changes of the short-range order when Cu, Nb, and Ta atoms are introduced. The substitution of iron by large Ta atoms caused a marked change of the local structure, while introduction of Nb and Cu did not affect the short-range order. The stability of the amorphous phase is affected by the rf exposure. The high-magnetostriction Fe77.5Si13.5B9 and Fe76.5Cu1Si13.5B9 alloys crystallized due to rf exposure. Lower-magnetostriction alloys containing Nb and Ta remained amorphous without traces of the crystalline phases being detected. CR CHOO WK, 1977, METALL TRANS A, V8, P417 HERZER G, 1991, MAT SCI ENG A-STRUCT, V133, P1 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 KOPCEWICZ M, 1980, APPL PHYS, V23, P1 KOPCEWICZ M, 1986, HYPERFINE INTERACT, V27, P413 KOPCEWICZ M, 1988, J MAGN MAGN MATER, V72, P119 KOPCEWICZ M, 1983, J MAGN MAGN MATER, V40, P139 KOPCEWICZ M, 1986, J PHYS F MET PHYS, V16, P929 KOPCEWICZ M, 1990, MAT SCI ENG A-STRUCT, V132, P880 KOPCEWICZ M, 1989, MOSSBAUER SPECTROSCO, V3, P243 KOPCEWICZ M, 1983, SOLID STATE COMMUN, V48, P531 KOPCEWICZ M, 1990, STRUCT CHEM, V2, P313 KULIK T, IN PRESS LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 LECAER G, 1981, PHYS STATUS SOLIDI A, V64, P2751 STEARNS MB, 1963, PHYS REV, V129, P1136 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6047 ZUBEREK R, UNPUB TC 5 BP 219 EP 224 PG 6 JI J. Magn. Magn. Mater. PY 1992 PD NOV VL 117 IS 1-2 GA JZ594 J9 J MAGN MAGN MATER UT ISI:A1992JZ59400034 ER PT J AU BECKER, JA DEHEER, WA TI THE FERROMAGNETISM OF IRON AND NICKEL CLUSTERS IN A MOLECULAR- BEAM SO BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS NR 33 AB The magnetic properties of small Fe(N) and Ni(N) clusters are studied in a molecular beam by their Stern-Gerlach deflections. The magnetization of the particles is measured as a function of applied magnetic field H, size N and vibrational temperature T(vib) (almost-equal-to 200-1300 K). The intrinsic magnetic moments per atom mu at T almost-equal-to 300 K are 2.2 mu(B) for Fe130 and 0.5 mu(B) for Ni560. A bulk-like magnetization curve is found for Ni560 and for Fe130 at T(vib) almost-equal- to 1000 K mu is found to be only slightly reduced compared with its low temperature value. The results are compared with the Heisenberg model. Anomalously low magnetization for strongly cooled Fe(N) clusters (N = 120 - 140) is found to be related to the rotational speeds. The distinct roles of rotational and vibrational temperatures for the ferromagnetism of isolated Fe clusters are rationalized in a model. CR AMIRAV A, 1980, CHEM PHYS, V51, P31 ANDERSON JB, 1974, MOL BEAMS LOW DENSIT BALLONE P, 1991, PHYS REV B, V44, P1035 BEAN CP, 1959, J APPL PHYS, V30, PS120 BINDER K, 1970, J PHYS CHEM SOLIDS, V31, P391 BUCHER JP, 1991, PHYS REV LETT, V66, P3052 CHENG HP, 1991, J CHEM PHYS, V94, P3735 DEHEER W, 1991, Z PHYS D ATOM MOL CL, V19, P241 DEHEER WA, 1990, PHYS REV LETT, V65, P488 DEHEER WA, 1987, PHYS REV LETT, V59, P1805 JENSEN PJ, 1991, Z PHYS D ATOM MOL CL, V21, P349 KHANNA SN, 1991, PHYS REV LETT, V67, P742 KITTEL C, 1986, INTRO SOLID STATE PH KLOTS CE, 1991, Z PHYS D ATOM MOL CL, V20, P105 KNICKELBEIN MB, 1990, J CHEM PHYS, V93, P94 MAISSE LI, 1970, HDB THIN FILM TECHNO MERIKOSKI J, 1991, PHYS REV LETT, V66, P938 MILANI P, 1991, PHYS REV B, V44, P8346 PASTOR GM, 1988, CHEM PHYS LETT, V148, P459 PERSSON JL, IN PRESS PERSSON JL, 1991, THESIS UCLA LOS ANGE RUDERMAN MA, 1954, PHYS REV, V96, P99 SLICHTER CP, 1978, PRINCIPLES MAGNETIC STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1971, PHYS REV B, V4, P4069 STEARNS MB, 1976, PHYS REV B, V13, P1183 STEARNS MB, 1973, PHYS REV B, V8, P4383 STEARNS MB, PHYS REV B, V4, P4081 STEARNS MB, 1978, PHYSICS TODAY APR, P34 VONALLMEN M, 1987, LASER BEAM INTERACTI WEAST RC, 1977, CRC HDB CHEM PHYSICS, V71 YOSIDA K, 1957, PHYS REV, V106, P893 ZACHARIAS H, 1984, J CHEM PHYS, V81, P3148 TC 16 BP 1237 EP 1243 PG 7 JI Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. PY 1992 PD SEP VL 96 IS 9 GA JX362 J9 BER BUNSEN-GES PHYS CHEM CHEM UT ISI:A1992JX36200032 ER PT J AU ELSUKOV, EP KONYGIN, GN BARINOV, VA VORONINA, EV TI LOCAL ATOMIC ENVIRONMENT PARAMETERS AND MAGNETIC-PROPERTIES OF DISORDERED CRYSTALLINE AND AMORPHOUS IRON SILICON ALLOYS SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 41 AB The dependences of the specific saturation magnetization sigma(C), magnetic ordering temperature T(C)(C), average hyperfine field H(C)BAR and average isomer shift delta(C)BAR on Si concentration are measured in crystalline Fe-Si alloys disordered by mechanical crushing. It is shown that topological disordering does not determine the magnetic properties. The peculiarities found are explained in terms of the local atomic structure parameters depending on the number of Si nearest neighbours of an Fe atom. CR ANISIMOV VI, 1986, FIZ MET METALLOVED+, V62, P730 ARAYS S, 1968, PHYS STATUS SOLIDI, V33, P683 ARAYS S, 1965, PHYS STATUS SOLIDI, V11, P121 BANSAL C, 1982, J MAGN MAGN MATER, V27, P1955 CRANSHAW TE, 1977, PHYSICA B & C, V86, P391 DUBOVTSEV IA, 1971, PISMA ESKP TEOR FIZ, V14, P205 ELSUKOV EP, 1989, FIZ MET METALLOVED, V67, P301 ELSUKOV EP, 1985, FIZ MET METALLOVED, V60, P925 ELSUKOV EP, 1983, FIZ MET METALLOVED, V55, P337 ELSUKOV EP, 1986, FIZ MET METALLOVED+, V62, P719 ELSUKOV EP, 1991, IZV AKAD NAUK SSSR M, V1, P172 ELSUKOV EP, 1990, METALLOFIZIKA, V12, P75 ELSUKOV EP, 1989, METALLOFIZIKA, V11, P52 ELSUKOV EP, 1990, PHYS STATUS SOLIDI A, V117, P291 ETTWIG HH, 1972, Z METALLKD, V63, P453 FALLOT M, 1936, ANN PHYS-PARIS, V6, P305 GELD PV, 1971, SILITZIDYM PEREKHODN GLASER FW, 1956, T AIME, V206, P1290 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 JACCARINO V, 1965, PHYS REV LETT, V15, P258 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI KUDIELKA H, 1977, Z KRISTALLOGR, V145, P177 MANGIN P, 1978, J APPL PHYS, V49, P1709 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MEINHARDT D, 1963, Z PHYS, V174, P472 NICULESCU V, 1977, J PHYS SOC JPN, V42, P1538 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25 PARSONS D, 1958, PHILOS MAG, V3, P1174 PEPPERHOFF W, 1968, ARCH EISENHUTTENWES, V39, P307 PEPPERHOFF W, 1967, Z ANGEW PHYS, V22, P496 RYZHENKO BV, 1984, FIZ MET METALLOVED+, V58, P1153 RYZHENKO BV, 1987, FIZ TVERD TELA+, V29, P196 SHIGA M, 1982, J PHYS F MET PHYS, V12, P537 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 SIDORENKO FA, 1982, J PHYS CHEM SOLIDS, V43, P297 SNIMADA Y, 1976, J APPL PHYS, V47, P4156 STEARNS MB, 1963, PHYS REV, V129, P1136 VORONINA EV, 1990, PHYS STATUS SOLIDI B, V160, P625 WERTHEIM G, 1966, EFFEKT MESSBAUERA ZABOROV AV, 1983, PHYS STATUS SOLIDI B, V116, P227 ZABOROV AV, 1983, PHYS STATUS SOLIDI B, V116, P511 TC 25 BP 7597 EP 7606 PG 10 JI J. Phys.-Condes. Matter PY 1992 PD SEP 14 VL 4 IS 37 GA JP827 J9 J PHYS-CONDENS MATTER UT ISI:A1992JP82700007 ER PT J AU KNOBEL, M TURTELLI, RS RECHENBERG, HR TI COMPOSITIONAL EVOLUTION AND MAGNETIC-PROPERTIES OF NANOCRYSTALLINE FE73.5CU1NB3SI13.5B9 SO JOURNAL OF APPLIED PHYSICS NR 23 AB Melt-spun FeCuNbSiB ribbons were annealed at 540-550-degrees-C for various times (less-than-or-equal-to 1 h). The development of a nanocrystalline structure was investigated by means of Mossbauer spectroscopy. From measured hyperfine fields and intensities the crystalline phase was inferred to be pure Fe1- xSix, with x=0.18 after 1 h annealing. The residual amorphous volume fraction was determined to be congruent-to 50%. With help of these results it has been possible to evaluate the amorphous contribution to magnetostriction in the nanocrystalline state. The development of a nanocrystalline structure was found to play a role in the main mechanisms of magnetic disaccommodation. CR ALLIA P, 1991, APPL PHYS LETT, V59, P2454 ALLIA P, 1991, J MAGN MAGN MATER, V101, P49 ALLIA P, 1986, PHYS REV B, V33, P422 ALLIA P, 1982, PHYS REV B, V26, P6141 FUJINAMI M, 1990, JPN J APPL PHYS 2, V29, PL477 GAWIOR W, IN PRESS J MAGN MAGN GLEITER H, 1989, PROG MATER SCI, V33, P223 GROSSINGER R, UNPUB HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HERZER G, 1990, IEEE T MAGN, V26, P1397 HERZER G, 1989, IEEE T MAGN, V25, P3327 HERZER G, 1991, IN PRESS J MAGN MAGN HONO K, 1991, APPL PHYS LETT, V58, P2180 KOHMOTO O, 1991, JPN J APPL PHYS, V29, PL146 KOSTER U, 1991, MAT SCI ENG A-STRUCT, V133, P611 KRONMULLER H, 1984, IEEE T MAGN, V20, P1388 NARITA K, 1980, IEEE T MAGN, V16, P435 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMAMOTO T, 1991, DEV SENDUST OTHER FE, P26 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1991, MAT SCI ENG A-STRUCT, V133, P176 YOSHIZAWA Y, 1990, MATER T JIM, V31, P307 ZEMCIK T, 1991, MATER LETT, V10, P313 TC 28 BP 6008 EP 6012 PG 5 JI J. Appl. Phys. PY 1992 PD JUN 15 VL 71 IS 12 GA HZ316 J9 J APPL PHYS UT ISI:A1992HZ31600040 ER PT J AU TERNES, T MEISEL, W GRIESBACH, P HANZEL, D GUTLICH, P TI AES AND CEMS ANALYSIS OF THE FORMATION OF LAYERS ON SI STEEL UNDER THERMAL-TREATMENT IN A FLUX OF H-2/WATER VAPOR SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY NR 7 AB The near surface diffusion and reaction processes in iron- silicon steel (3.1 wt.% Si) during 10 min decarburization in water vapour/hydrogen have been studied. The decarburization temperature has been varied between 506 and 714-degrees-C for the fixed partial pressure ratio pH2O/pH2 = 0.017. An outer layer of SiO2 forms on the surface with its thickness increasing with temperature. From 600-degrees-C upwards, the decarburization process is hindered and a cementite layer is formed below the SiO2 layer. The formation of fayalite at the surface has been studied at a fixed decarburization temperature with pH2O/pH2 ranging from 0.017 to 0.49. The scale thickness reduces abruptly just before the ratio pH2O/pH2 necessary for the wustite formation is reached. Obviously, a new layer is formed which reduces the oxygen diffusion that much that a transition from internal to external oxidation occurs. CR MARINI P, 1982, J MAGN MAGN MATER, V26, P15 MULLER EW, 1981, MOSSBAUER EFF REF DA, V4, P89 MUNSTER P, 1980, ARCH EISENHUTTENWES, V51, P319 STEARNS MB, 1965, J APPL PHYS, V36, P913 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMAZAKI T, 1969, T ISIJ, V9, P66 TC 0 BP 79 EP 82 PG 4 JI Fresenius J. Anal. Chem. PY 1991 VL 341 IS 1-2 GA GF410 J9 FRESENIUS J ANAL CHEM UT ISI:A1991GF41000018 ER PT J AU GONSER, U SCHAAF, P TI SURFACE PHASE-ANALYSIS BY CONVERSION X-RAY AND CONVERSION ELECTRON MOSSBAUER-SPECTROSCOPY SO FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY NR 34 AB Mossbauer spectroscopy can be performed in transmission and backscattering geometry. The backscattered conversion electrons and X-rays can be used for nondestructive phase analysis on surfaces. Based on their different interactions in materials, they enable analyses of different depths. It is of particular interest to measure backscattering radiation and gamma-ray transmission simultaneously. Based on the hyperfine parameters of the Mossbauer spectra information about phases, structures, defects and magnetic properties can be obtained. Besides the qualitative analysis in general an accurate quantitative phase analysis is possible. For example spectra of laser treated alloys are shown. It is the purpose of this note to demonstrate the use of these different types of radiation (electrons, X-ray and gamma-ray) in analyzing surface phenomena. CR AMENDE W, 1985, HARTEN WERKSTOFFEN B AUBERTIN F, 1989, HYPERFINE INTERACT, V45, P379 BERGMANN HW, 1986, T86072 BMFT FACH FOR BERGMANN HW, 1989, THIN SOLID FILMS, V174, P33 BERGMANN HW, 1980, Z METALLKD, V71, P658 BLAES L, 1986, HYPERFINE INTERACT, V29, P1571 BLAES L, 1988, Z METALLKD, V79, P278 CARBUCICCHIO M, 1985, THIN SOLID FILMS, V126, P293 GONSER U, 1981, J MAGN MAGN MATER, V23, P279 GONSER U, 1986, TOP CURR PHYS, V40, P409 GONSER U, 1981, TOPICS APPLIED PHYSI, V25 GONSER U, 1975, TOPICS APPLIED PHYSI, V5 GONSER U, 1981, TOPICS CURRENT PHYSI, V25 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 KERN R, 1989, NONDESTRUCTIVE CHARA, P598 LANOTTE L, 1984, J MAGN MAGN MATER, V42, P183 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 LIMBACH CT, 1988, PHYSICA B & C, V149, P263 LIN CJ, 1984, J NON-CRYST SOLIDS, V61-2, P767 MORDIKE BL, 1987, LASER TREATMENT MATE MOSSBAUER RL, 1958, Z PHYS, V151, P124 NASU S, 1980, J PHYS-PARIS, V41, P690 OK HN, 1981, PHYS REV B, V23, P2257 SCHAAF P, 1990, HYPERFINE INTERACT, V58, P2541 SCHAAF P, 1990, HYPERFINE INTERACT, V57, P2095 SCHAAF P, 1990, HYPERFINE INTERACT, V57, P2101 SCHAAF P, 1989, HYPERFINE INTERACT, V46, P541 SCHAAF P, 1990, SPRECHSAAL PUBLISHIN, P871 SCHAAF P, 1989, Z METALLKD, V80, P77 SCHUBERT E, 1989, OPTO ELEKTRONIK MAGA, V5, P334 STEARNS MB, 1963, PHYS REV, V129, P1136 STEEN WM, 1988, P ECLAT 88, P60 WEGENER H, 1965, MOSSBAUER EFFEKT SEI WHITTLE GL, 1985, J MAGN MAGN MATER, V50, P278 TC 9 BP 131 EP 135 PG 5 JI Fresenius J. Anal. Chem. PY 1991 VL 341 IS 1-2 GA GF410 J9 FRESENIUS J ANAL CHEM UT ISI:A1991GF41000029 ER PT J AU ELSUKOV, EP CHURAKOV, VP KONYGIN, GN BAYANKIN, VY TI EFFECT OF ORDER-DISORDER TRANSITIONS ON THE ELECTRONIC- STRUCTURE OF FE-SI ALLOYS SO RUSSIAN METALLURGY NR 10 CR ANISIMOV VI, 1986, FIZ MET METALLOVED+, V62, P730 CRANSHAW TE, 1966, PHYS LETT, V23, P481 ELSUKOV EP, 1988, ALL UNION C APPLIE 2, P164 ELSUKOV EP, 1986, FIZ MET METALLOVED+, V62, P719 ELSUKOV EP, 1986, FIZ MET METALLOVED+, V62, P730 ERKHARUT K, 1985, XRAY FLUORESCENCE AN KUDIELKA H, 1977, Z KRISTALLOGR, V145, P1787 NEMNONOV SA, 1962, FIZ MET METALLOVED+, V14, P535 NEMNONOV SA, FIZ MET METALLOVED+, V14, P666 STEARNS MB, 1963, PHYS REV, V129, P1136 TC 0 BP 174 EP 176 PG 3 JI Russ. Metall. PY 1991 IS 1 GA GF945 J9 RUSS MET-ENGL TR UT ISI:A1991GF94500036 ER PT J AU SANYAL, AS MUKERJI, J BANDYOPADHYAY, S TI MOSSBAUER STUDY OF THE INFLUENCE OF FE-SI-N LIQUID IN THE SYNTHESIS OF BETA-SI3N4 FROM SILICA SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY NR 27 AB Mossbauer spectra of the products obtained by carbothermal reduction and nitridation of silica in the presence of iron in the temperature range 1200-degrees to 1540-degrees-C were studied. The preponderance of beta-Si3N4 over the alpha-form at a higher reaction temperature were assumed to be related to the formation of an Fe-Si-N liquid. The liquid did not alter its composition with the variation of reduction temperature. Iron had no effect on the reaction mechanism below 1300- degrees-C. CR AGGARWAL K, 1979, PHYS STATUS SOLIDI A, V53, PK95 BAHGAT AA, 1983, J NON-CRYST SOLIDS, V56, P243 BANDOPADHYAY S, IN PRESS CERAM INT BERGMAN B, 1990, J EUR CERAM SOC, V6, P3 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 BOYER SM, 1978, J MATER SCI, V13, P1637 CHART TG, 1970, HIGH TEMP HIGH PRESS, V2, P461 EICKEL KH, 1970, PHYS STATUS SOLIDI, V39, P121 FOCT J, 1988, ACTA METALL MATER, V36, P501 FOCT J, 1986, HYPERFINE INTERACT, V28, P1075 HENDRY A, 1975, SPECIAL CERAMICS, V6, P199 HUANG ZK, 1984, CERAM INT, V10, P14 INOUE H, 1982, J AM CERAM SOC, V65, PC205 KOMEYA K, 1975, J MATER SCI, V10, P1243 LEE JG, 1977, NITROGEN CERAMICS, P175 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MEKATA M, 1972, J PHYS SOC JPN, V33, P62 NOZIK AJ, 1969, SOLID STATE COMMUN, V7, P1677 OSWALD RS, 1978, SOLID STATE COMMUN, V26, P883 SANYAL AS, 1986, J MATER SCI LETT, V5, P787 SATO Y, 1984, J MATER SCI, V19, P1749 SHIRANE G, 1962, PHYS REV, V126, P49 SIDDIQI SA, 1985, J MATER SCI, V20, P3230 STEARNS MB, 1963, PHYS REV, V129, P1136 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 WAPPLING R, 1968, CHEM PHYS LETT, V2, P160 YAMAOKA T, 1973, J PHYS SOC JPN, V35, P63 TC 4 BP 2312 EP 2314 PG 3 JI J. Am. Ceram. Soc. PY 1991 PD SEP VL 74 IS 9 GA GF916 J9 J AMER CERAM SOC UT ISI:A1991GF91600046 ER PT J AU JIANG, J ZEMCIK, T AUBERTIN, F GONSER, U TI INVESTIGATION OF THE PHASES AND MAGNETIZATION ORIENTATION IN CRYSTALLINE FE73.5CU1NB3SI16.5B6 ALLOY SO JOURNAL OF MATERIALS SCIENCE LETTERS NR 11 CR ARITA M, 1985, J JPN I MET, V49, P431 HILZINGER HR, 1985, IEEE T MAGN, V21, P2020 JING J, 1989, J NON-CRYST SOLIDS, V113, P167 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 STEARNS MB, 1963, PHYS REV, V129, P1136 TOMASHEVSKII N, IN PRESS TOSHIZAWA Y, 1989, J JPN I MET, V53, P241 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 ZAVETA K, 1990, IN PRESS APR P INT C ZEMCIK T, 1990, IN PRESS APR P INT C ZEMCIK T, IN PRESS MATER LETT TC 7 BP 763 EP 764 PG 2 JI J. Mater. Sci. Lett. PY 1991 PD JUL 1 VL 10 IS 13 GA FX074 J9 J MATER SCI LETT UT ISI:A1991FX07400010 ER PT J AU MIYAZAKI, M ICHIKAWA, M KOMATSU, T MATUSITA, K NAKAJIMA, K OKAMOTO, S TI MAGNETIC-PROPERTIES AND MOSSBAUER-SPECTRA OF SPUTTERED FE-AL- SI-NI SUPERSENDUST FILMS SO JOURNAL OF APPLIED PHYSICS NR 26 AB Fe-Al-Si-Ni supersendust films containing 2.7 at. % Ni atoms with a thickness of 1-mu-m were deposited on crystallized-glass substrates by rf planar magnetron sputtering, and the changes in magnetic properties and structure due to the sputtering conditions and annealing were examined. The films with excellent soft magnetic properties and high magnetic-flux density which are good candidates for new recording-head materials were obtained by annealing as-deposited films at 500- degrees-C. It was found through conversion electron Mossbauer spectroscopy (CEMS) that the disordered structure of alpha type in as-sputtered films transformed into the ordered structure consisting of a mixture of B2 and DO3 types at the temperature of 500-degrees-C. The CEMS studies also revealed that Ni atoms are located at the corner in the bcc structure. CR ARITA M, 1985, J JPN I MET, V49, P431 BOZORTH RM, 1951, PHYS REV, V83, P871 GYOTOKU A, 1989, J MAGN SOC JPN, V13, P89 HAYASHI K, 1988, J APPL PHYS, V64, P772 JOHNSON CE, 1963, P PHYS SOC LOND, V81, P1079 KOBAYASHI T, 1988, J APPL PHYS, V64, P3157 KOUVEL JS, 1969, MAGNETISM METALLURGY, V2, P549 KUMURA T, 1987, J APPL PHYS, V61, P271 MIURA M, 1986, JPN J APPL PHYS 1, V25, P1192 MIYAZAKI M, 1990, 14TH ANN C MAGN JAP, V14, P34 MIYAZAKI M, 1991, J APPL PHYS, V69, P1556 NISHIOKA K, 1989, IEEE T MAGN, V25, P2602 ONO K, 1962, J PHYS SOC JPN, V17, P1747 SELISSKY IP, 1941, J PHYS, V4, P567 SHIBAYA H, 1977, IEEE T MAGN, V13, P1029 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1963, PHYS REV, V129, P1136 SUGENOYA S, 1989, J MAGN SOC JPN, V13, P351 TAKAHASHI M, 1987, IEEE T MAGN, V23, P3068 TAKAHASHI M, 1987, J MAGN SOC JPN, V11, P299 TAKAHASHI M, 1987, OYO BUTURI, V56, P1289 UMESAKI M, 1982, IEEE T MAGN, V18, P1182 WATANABE Y, 1990, IEEE T MAGN, V26, P1500 YAMAMOTO T, 1976, J JPN I MET, V40, P975 YAMANAKA K, 1971, J JPN I MET, V35, P566 ZAIMOVSKY AS, 1941, J PHYS, V4, P569 TC 6 BP 7207 EP 7214 PG 8 JI J. Appl. Phys. PY 1991 PD MAY 15 VL 69 IS 10 GA FM771 J9 J APPL PHYS UT ISI:A1991FM77100057 ER PT J AU ZALUSKI, L ZALUSKA, A KOPCEWICZ, M SCHULZ, R TI STRUCTURAL-CHANGES AND PHYSICAL-PROPERTIES OF FE-NI-BASED METALLIC GLASSES RAPIDLY HEATED BY PULSED ELECTRICAL CURRENTS SO JOURNAL OF MATERIALS RESEARCH NR 10 AB Fe-Ni-Si-B metallic glasses have been annealed and crystallized using short electrical current pulses. Two types of electrical heat treatment have been used. The first one is an isothermal annealing treatment using a very high initial heating rate while the second one is a thermal spike applied on an amorphous sample held at various initial temperatures. The microstructure of the alloys after heat treatment has been characterized by x-ray diffraction, transmission electron microscopy, and Mossbauer spectroscopy. The thermal and magnetic properties of the samples measured by DSC and hysteresis loop tracer have been studied after the various heat treatments and correlated with the microstructure of the alloys. The crystallization at high temperatures produces the gamma phase only, while at low temperatures, a mixture of the gamma and alpha phases (the alpha phase being predominant) is usually observed. The samples initially held at liquid nitrogen temperature and heat treated with a thermal spike remain amorphous and show improved magnetic properties (lower coercive field and higher induction at saturation) without loss of ductility. CR GONSER U, 1983, J MAGN MAGN MATER, V31-4, P1605 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HILZINGER HR, 1988, MATER SCI ENG, V99, P101 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 ROMIG AD, 1980, METALL TRANS A, V11, P1151 STEARNS MB, 1963, PHYS REV, V129, P1136 ZALUSKA A, 1985, 5TH P INT C RAP QUEN, P235 ZALUSKA A, 1986, INT J RAPID SOLIDIF, V2, P205 ZALUSKA A, 1988, MATER SCI ENG, V97, P347 ZALUSKI L, 1989, ACTA PHYS POL A, V76, P117 TC 4 BP 1028 EP 1034 PG 7 JI J. Mater. Res. PY 1991 PD MAY VL 6 IS 5 GA FK039 J9 J MATER RES UT ISI:A1991FK03900017 ER PT J AU MIYAZAKI, M ICHIKAWA, M KOMATSU, T MATUSITA, K NAKAJIMA, K TI MOSSBAUER STUDY ON STRUCTURAL-CHANGES IN SPUTTERED FE-AL-SI THIN-FILMS SO JOURNAL OF APPLIED PHYSICS NR 21 AB The sendust alloy films of Fe74.3Al9.8Si15.9 with a thickness of 1-mu-m were deposited on crystallized-glass substrates by rf planar magnetron sputtering, and the microscopic structural changes in the films due to the annealing were investigated with a conversion electron Mossbauer spectroscopy (CEMS). The films annealed at 500-degrees-C exhibited excellent soft magnetic properties as for recording-head materials. The CEMS studies revealed that the disordered structure of alpha-type in as-sputtered films transformed into the ordered structure of DO3-type at the temperature of 500-degrees-C. The structure of the films annealed at 400-degrees-C deviated largely from the DO3 ordered structure, and the DO3 ordered structure was gradually destroyed by annealing above 600-degrees-C. The magnetic and electrical properties in the films were well explained with the microscopic structural changes clarified through the Mossbauer spectra. CR ARITA M, 1985, J JPN I MET, V49, P431 ARROTT A, 1959, PHYS REV, V114, P1420 BROMMER PE, 1970, J PHYS-PARIS, V32, P105 COUGHLIN TM, 1985, IEEE T MAGN, V21, P1897 DOBRZYNSKI L, 1987, PHYS STATUS SOLIDI A, V101, P567 FRACKOWIAK JE, 1986, HYPERFINE INTERACT, V28, P1067 HIRABAYASHI A, 1961, ACTA METALL, V9, P497 JONES FW, 1938, P ROY SOC LOND A MAT, V166, P376 MIURA M, 1986, JPN J APPL PHYS 1, V25, P1192 NAGO K, 1988, J MAGN SOC JPN, V12, P597 ONO K, 1962, J PHYS SOC JPN, V17, P1747 SATO H, 1959, PHYS REV, V114, P1427 SHIBAYA H, 1977, IEEE T MAGN, V13, P1029 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1963, PHYS REV, V129, P1136 TAKAHASHI M, 1987, IEEE T MAGN, V23, P3068 TAKAHASHI M, 1987, J MAGN SOC JAPAN, V11, P303 TAKAHASHI M, 1988, J MAGN SOC JPN, V12, P305 TAKAHASHI M, 1987, J MAGN SOC JPN, V11, P299 TAKAHASHI M, 1986, J MAGN SOC JPN, V10, P307 YAMANAKA K, 1971, J JPN I MET, V35, P566 TC 16 BP 1556 EP 1563 PG 8 JI J. Appl. Phys. PY 1991 PD FEB 1 VL 69 IS 3 GA EW671 J9 J APPL PHYS UT ISI:A1991EW67100067 ER PT J AU NOMURA, K UJIHIRA, Y SUEKI, M KAWASHIMA, N TI MOSSBAUER SPECTROMETRIC STUDY OF DEFORMED FE-SI-AL ALLOY (SENDUST) SO HYPERFINE INTERACTIONS NR 6 CR ARITA M, 1985, T JPN I MET, V26, P710 CHANG YJ, 1982, ACTA METALL MATER, V30, P1185 HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526 MASUMOTO H, 1937, JAPAN INS METALS, V1, P127 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMANAKA K, 1971, J JPN I MET, V35, P566 TC 5 BP 839 EP 845 PG 7 JI Hyperfine Interact. PY 1990 PD JUL VL 54 IS 1-4 GA DT416 J9 HYPERFINE INTERACTIONS UT ISI:A1990DT41600071 ER PT J AU KOPCEWICZ, M ZALUSKI, L ZALUSKA, A TI CRYSTALLIZATION OF THE AMORPHOUS FE45NI35SI10B10 ALLOY DUE TO PULSE HEATING SO HYPERFINE INTERACTIONS NR 10 CR GONSER U, 1983, J MAGN MAGN MATER, V31-4, P1605 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HILZINGER HR, 1988, MATER SCI ENG, V99, P101 KOSTER U, 1981, GLASSY METALS, V1, P225 LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083 LUBORSKY FE, 1983, AMORPHOUS METALLIC A MATYJA H, IN PRESS PHIL MAG STEARNS MB, 1963, PHYS REV, V129, P1136 ZALUSKA A, 1986, INT J RAPID SOLIDIF, V2, P205 ZALUSKI L, 1989, IN PRESS ACTA PHYS P TC 2 BP 1009 EP 1012 PG 4 JI Hyperfine Interact. PY 1990 PD JUL VL 55 IS 1-4 GA DW176 J9 HYPERFINE INTERACTIONS UT ISI:A1990DW17600021 ER PT J AU FUJINAMI, M HASHIGUCHI, Y YAMAMOTO, T TI CRYSTALLINE TRANSFORMATIONS IN AMORPHOUS FE73.5CU1NB3SI16.5B6 ALLOY SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS NR 12 CR ARITA M, 1985, J JPN I MET, V49, P431 CHANG CF, 1983, J MATER SCI, V18, P2297 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 KATAOKA N, 1989, JPN J APPL PHYS 2, V28, PL1820 KEMENY T, 1979, PHYS REV B, V20, P476 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI, P136 MASUMOTO T, 1977, J JPN I MET, V41, P730 OK HN, 1980, PHYS REV B, V22, P3471 STEARNS MB, 1963, PHYS REV, V129, P1136 TAKAHASHI M, 1981, JPN J APPL PHYS, V20, P1821 YOSHIZAWA Y, 1988, J APPL PHYS, V64, P6044 YOSHIZAWA Y, 1989, J JPN I MET, V53, P241 TC 24 BP L477 EP L480 PG 4 JI Jpn. J. Appl. Phys. Part 2 - Lett. PY 1990 PD MAR VL 29 IS 3 GA CW532 J9 JPN J APPL PHYS PT 2 UT ISI:A1990CW53200029 ER PT J AU LEE, JF LEE, MD TSENG, PK TI FISCHER-TROPSCH SYNTHESIS ON SUPPORTED IRON CATALYSTS PREPARED FROM IRON(III) CHLORIDE - PRETREATMENT EFFECTS ON PHASE-CHANGES AND CATALYTIC PROPERTIES SO APPLIED CATALYSIS NR 28 CR AMELSE JA, 1981, J CATAL, V72, P95 AMELSE JA, 1978, J PHYS CHEM-US, V82, P558 ANDERSON RB, 1956, CATALYSIS, V4, P119 BARRAULT J, 1985, APPL CATAL, V14, P133 BAUMINGER R, 1961, PHYS REV, V122, P1447 BERNAS H, 1967, J PHYS CHEM SOLIDS, V28, P17 BOUDART M, 1975, J CATAL, V37, P486 DANON J, 1968, CHEM APPL MOESSBAUER, P159 DRY ME, 1981, CATALYSIS SCI TECHNO, V1, P159 HOBSON MC, 1970, J CATAL, V16, P254 KIKUCHI E, 1979, J CATAL, V57, P27 KUNDIG W, 1967, CZECH J PHYS B, V17, P467 KUNDIG W, 1966, PHYS REV, V142, P327 LECAER G, 1982, J PHYS CHEM-US, V86, P4799 LECAER G, 1976, J SOLID STATE CHEM, V19, P19 MATSUMOTO H, 1978, J CATAL, V53, P331 MCILWRICK CR, 1973, J PHYS E SCI INSTRUM, V6, P1208 NEWSOME DS, 1980, CATAL REV, V21, P275 NIEMANTSVERDRIET J, 1981, J CATAL, V72, P385 NIEMANTSVERDRIET J, 1980, J PHYS CHEM-US, V84, P3363 PERRICHON V, 1983, APPL CATAL, V7, P21 PERRICHON V, 1984, J MOL CATAL, V25, P207 PERRY RH, 1984, PERRYS CHEM ENG HDB, P3 RAUPP GB, 1979, J CATAL, V58, P337 STEARNS MB, 1963, PHYS REV, V129, P1136 TANG RY, 1987, J CATAL, V106, P440 TAUSTER SJ, 1978, J AM CHEM SOC, V100, P170 TOPSOE H, 1973, J CATAL, V31, P346 TC 6 BP 193 EP 209 PG 17 PY 1989 PD AUG 1 VL 52 IS 3 GA AM050 J9 APPL CATAL UT ISI:A1989AM05000003 ER PT J AU DUFOUR, C BRUSON, A GEORGE, B MARCHAL, G MANGIN, P TI MOSSBAUER-EFFECT STUDY OF FE-SI MULTILAYERS SO JOURNAL DE PHYSIQUE NR 9 CR BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BRUSON A, 1985, J APPL PHYS, V58, P1229 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 LEPETRE Y, 1984, OPT LETT, V9, P433 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MARCHAL G, 1975, PHILOS MAG, V32, P1007 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 STEARNS MB, 1963, PHYS REV, V129, P1136 UNDERWOOD JH, 1981, APPL OPTICS, V20, P3027 TC 5 BP 1781 EP 1782 PG 2 PY 1988 PD DEC VL 49 IS C-8 PN 3 GA U7014 J9 J PHYS-PARIS UT ISI:A1988U701400073 ER PT J AU VIEFHAUS, H TI CHEMICAL AND MATRIX EFFECTS IN AUGER-ELECTRON SPECTROSCOPY SO FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE NR 3 CR INDEN G, 1971, Z METALLKD, V62, P627 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 TC 2 BP 329 EP 330 PG 2 PY 1989 VL 333 IS 4-5 GA U2977 J9 FRESENIUS Z ANAL CHEM UT ISI:A1989U297700014 ER PT J AU YELSUKOV, YP KONYGIN, GN TI NUCLEAR GAMMA-RESONANCE SPECTROSCOPY OF DISORDERED IRON-SILICON ALLOYS SO FIZIKA METALLOV I METALLOVEDENIE NR 31 CR AMIGUD GG, 1981, FIZ MET METALLOVED+, V51, P955 ANDREEVA LP, 1965, FIZ MET METALLOVED+, V19, P70 ANDREEVA LP, 1968, T UPI, P15 BANSAL C, 1982, J MAGN MAGN MATER, V27, P195 BARINOV VA, 1986, THESIS AN SSSR SVERD BEK G, 1986, METALLICHESKIE STEKL, P127 DANON I, 1970, KHIMICHESKIE PRIMENE, P130 DELYAGIN NN, 1985, U VSES SOV YAD SPEKT, P9 DOROFEEV GA, 1982, METALLOFIZIKA, V4, P38 ELSUKOV EP, 1983, FIZ MET METALLOVED, V55, P337 ELSUKOV EP, 1986, FIZ MET METALLOVED+, V62, P719 GELD PV, 1971, SILITSIDY PEREKHODNY, P207 GLEZER AM, 1979, IZV AN SSSR FIZ+, V43, P1415 GRANSHAW TE, 1966, PHYS LETT, V23, P481 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 KOLOBOVA KM, 1968, FIZ MET METALLOVED+, V26, P634 KUBASHEVSKI O, 1985, DIAGRAMMY SOSTOYANIY KUDIELKA H, 1977, Z KRISTALLOGR, V145, P177 LITVINOV VS, 1982, YADERNAYA GAMMA REZO, P131 MANGIN P, 1978, J APPL PHYS, V49, P1709 MARCHAL G, 1976, J PHYSIQUE, V37, P763 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MEINHARDT D, 1965, ARCH EISENHUTTENWES, V36, P293 NEMNONOV SA, 1962, FIZ MET METALLOVED, V14, P666 NICULESCU V, 1977, J PHYS SOC JPN, V42, P1538 OVCHINNIKOV VV, 1981, FIZ TVERD TELA+, V23, P617 OVCHINNIKOV VV, 1981, FIZ TVERD TELA+, V23, P3095 SHABANOVA IN, 1977, RENTGENOVSKAYA FOTOE, P45 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 WASEDA Y, 1977, J MATER SCI, V12, P1927 TC 0 BP 301 EP 310 PG 10 JI Fiz. Metallov Metalloved. PY 1989 PD FEB VL 67 IS 2 GA T6832 J9 FIZ METAL METALLOVED UT ISI:A1989T683200013 ER PT J AU FULTZ, B HAMDEH, HH TI KINETICS OF ORDERING IN METALLIC ALLOYS SO HYPERFINE INTERACTIONS NR 70 CR ALCKSCYCV LA, 1977, PHYS MET METALL, V44, P1235 ALCKSCYCV LA, 1977, PHYS MET METALL, V43, P879 ASANO A, 1974, THESIS NW U ATHANASSIADIS G, 1977, PHYS STATUS SOLIDI A, V40, P425 BETHE HA, 1935, P ROY SOC LOND A MAT, V150, P552 BRAGG WL, 1934, P ROY SOC LOND A MAT, V145, P699 BRANDES EA, 1983, SMITHELLS METALS REF, PCH13 BRUMMER O, 1972, ANN PHYS-BERLIN, V28, P135 CLEGG DW, 1973, METAL SCI J, V7, P48 CRANSHAW TE, 1986, IND APPLICATIONS MOS, PCH2 CRANSHAW TE, 1972, J PHYS F MET PHYS, V2, P615 CRANSHAW TE, 1966, PHYS LETT, V21, P481 CSER L, 1967, PHYS STATUS SOLIDI, V20, P581 CSER L, 1967, PHYS STATUS SOLIDI, V20, P591 DAVIES RG, 1965, PHILOS MAG, V12, P297 DEFONTAINE D, 1979, SOLID STATE PHYS, V34, P73 DEMAYO B, 1981, PHYS REV B, V24, P6503 DRIJVER JW, 1974, J PHYS, V35, P465 ENGLISH AT, 1966, T AIME, V236, P14 FISHMAN SG, 1970, PHYS REV B, V2, P1451 FLINN PA, 1961, PHYS REV, V124, P34 FRACKOWIAK JE, 1986, HYPERFINE INTERACT, V28, P1067 FRACKOWIAK JE, 1985, PHYS STATUS SOLIDI A, V87, P109 FULTZ B, 1988, HYPERFINE INTERACT, V41, P607 FULTZ B, 1976, IN PRESS ACTA METALL, V15, P233 FULTZ B, IN PRESS ACTA METALL FULTZ B, 1987, J CHEM PHYS, V87, P1604 FULTZ B, 1986, PHYS REV B, V34, P4480 FULTZ B, UNPUB FULTZ B, UNPUB ACTA METALL GENIN JM, 1972, SCRIPTA METALL, V8, P15 GROS Y, 1970, J PHYS, V31, P459 GSCHWEND K, 1978, J CHEM PHYS, V69, P5006 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HAMDCH HH, UNPUB PHYS REV B HEILMANN A, 1967, Z METALLKD, V58, P113 HERGT R, 1970, PHYS STATUS SOLIDI, V41, P255 JACUCCI G, 1984, NONTRADITIONAL METHO, P259 KANASHIRO M, 1976, SOLID STATE COMMUN, V19, P1127 KAWAHARA K, 1983, J MATER SCI, V18, P1709 KHOI LD, 1975, J PHYS F MET PHYS, V5, PL203 KIKUCHI R, 1972, J CHEM PHYS, V57, P4962 KIKUCHI R, 1970, J CHEM PHYS, V53, P2702 KIKUCHI R, 1969, J CHEM PHYS, V51, P161 KIKUCHI R, 1951, PHYS REV, V81, P988 KUPER AB, 1956, PHYS REV, V104, P1536 LESOILLE MR, 1970, PHYS STATUS SOLIDI, V37, P127 LOSIEVSKAYA SA, 1973, PHYS STATUS SOLIDI A, V16, P647 LUKASIAK M, 1985, ACTA PHYS POL A, V68, P79 MARCINKOWSKI MJ, 1963, ELECT MICROSCOPY STR, P333 MARGULIES S, 1961, NUCL INSTRUM METHODS, V12, P131 MICDEMA AR, 1980, PHYSICA B, V100, P1 NEWKIRK LR, 1971, J APPL PHYS, V42, P5250 NICULESCU V, 1976, PHYS REV B, V14, P4160 NICULESCU V, 1976, PHYS REV B, V13, P3176 OKI K, 1979, T JPN I MET, V20, P451 POPC DP, 1985, J MET, V37, P39 SAITO Y, 1976, J STAT PHYS, V15, P233 SATO H, 1976, ACTA METALL MATER, V24, P797 SATO H, 1970, PHYSICAL CHEM ADV TR, V10, PCH10 SCHWARTZ LH, 1976, APPLICATIONS MOSSBAU, V1, PCH2 STEARNS MB, 1978, J APPL PHYS, V49, P1555 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1971, PHYS REV B, V4, P4069 STEARNS MB, 1976, PHYS REV B, V13, P1183 STEARNS MB, 1974, PHYS REV B, V9, P2311 VANKAMPEN NG, 1981, STOCHASTIC PROCESSES, PCH5 VINCZE I, 1973, J PHYS F MET PHYS, V3, P647 WERTHEIM GK, 1970, PHYS REV B, V1, P1263 WERTHEIM GK, 1964, PHYS REV LETT, V12, P24 TC 3 BP 55 EP 72 PG 18 JI Hyperfine Interact. PY 1989 PD MAR VL 45 IS 1-4 GA T8624 J9 HYPERFINE INTERACTIONS UT ISI:A1989T862400005 ER PT J AU DIKSHIT, SJ GODBOLE, VP CHAUDHARI, SM KANETKAR, SM OGALE, SB TI SYNTHESIS OF COMPOSITE THIN-FILMS BY SIMULTANEOUS USE OF PULSED LASER AND CONVENTIONAL THERMAL EVAPORATION SO APPLIED PHYSICS LETTERS NR 16 CR BHIDE VG, 1968, PHYS REV, V172, P345 BOWEN HK, 1986, SCI AM, V255, P147 CHOU TW, 1986, SCI AM, V255, P43 DIJKKAMP D, 1987, APPL PHYS LETT, V51, P619 FEDER R, 1970, J APPL CRYSTALLOGR, V3, P372 GODBOLE VP, 1985, PHYS REV B, V31, P5703 HANABUSA M, 1987, MATER SCI REP, V2, P51 JOSHI S, 1988, J APPL PHYS, V64, P5647 MITRIKOV M, 1985, JPN J APPL PHYS S, V24, P169 ROSSITER MJ, 1965, J PHYS CHEM SOLIDS, V26, P775 SANDERS HJ, 1984, CHEM ENG NEWS 0709, P26 SATO T, 1987, JPN J APPL PHYS 2, V26, PL1487 SAWICKA BD, 1978, HYPERFINE INTERACT, V5, P147 SAWICKA BD, 1981, TOP CURR PHYS, V2, P139 STEARNS MB, 1963, PHYS REV, V129, P1136 VISPUTE RD, 1988, J MATER RES, V3, P1180 TC 7 BP 775 EP 777 PG 3 JI Appl. Phys. Lett. PY 1989 PD FEB 20 VL 54 IS 8 GA T2667 J9 APPL PHYS LETT UT ISI:A1989T266700033 ER PT J AU KUMARAN, JTT BANSAL, C TI A MOSSBAUER-EFFECT INVESTIGATION OF FE HYPERFINE FIELDS IN FE3- XMNXSI ALLOYS SO SOLID STATE COMMUNICATIONS NR 6 CR BURCH TJ, 1981, PHYS REV B, V24, P3866 NICULESCU V, 1976, PHYS REV B, V13, P3167 NICULESCU VA, 1983, J MAGN MAGN MATER, V39, P223 STEARNS MB, 1963, PHYS REV, V129, P1136 WINDOW B, 1971, J PHYS E, V4, P401 YOON S, 1977, J PHYS F MET PHYS, V7, P1079 TC 7 BP 779 EP 783 PG 5 JI Solid State Commun. PY 1989 PD FEB VL 69 IS 7 GA T2394 J9 SOLID STATE COMMUN UT ISI:A1989T239400014 ER PT J AU GEVONDYAN, TA ERMOLAEV, AV SEREGIN, VT STRAKHOV, LP TI MOSSBAUER STUDY OF STRONG MAGNETIC INCLUSIONS IN SILICON SO FIZIKA TVERDOGO TELA NR 12 CR 1970, KHIMICHESKOE PRIMENE KEISAKU K, 1987, PHYS REV LETT, V58, P1359 KOSEVICH AM, 1968, ZH EKSP TEOR FIZ, V55, P1131 MILEVSKII LS, 1976, IAN SSSR NEORG MATER, V12, P1382 NISHCHEV KN, 1979, VESTN LENIN U FIZ KH, P99 REGEL AR, 1984, FIZ TEKH POLUPROVODN, V18, P1153 SEREGIN PP, 1976, FTT, V18, P592 SHARP EJ, 1967, PHYS REV, V158, P511 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1963, PHYS REV, V129, P1136 TSMOTS VM, 1987, SOLID STATE COMMUN, V63, P1 ZADOROZHNYI AI, 1980, FIZ TVERD TELA+, V22, P2934 TC 0 BP 2528 EP 2530 PG 3 JI Fiz. Tverd. Tela PY 1988 PD AUG VL 30 IS 8 GA Q4456 J9 FIZ TVERD TELA UT ISI:A1988Q445600053 ER PT J AU DOBRZYNSKI, L GIEBULTOWICZ, T KOPCEWICZ, M PIOTROWSKI, M SZYMANSKI, K TI NEUTRON AND MOSSBAUER STUDIES OF FE3-XALXSI ALLOYS SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH NR 27 CR ATHANASSIADIS G, 1977, PHYS STATUS SOLIDI A, V40, P425 BURCH TJ, 1982, J MAGN MAGN MATER, V27, P55 BURCH TJ, 1979, PHYS REV B, V19, P2933 COWDERY SJ, 1979, MATER RES BULL, V14, P91 DOBRZYNSKI L, 1983, SOLID STATE COMMUN, V46, P217 DUBIEL SM, 1982, PHYS REV B, V26, P1574 HERGT R, 1970, PHYS STATUS SOLIDI, V41, P255 HUFFMAN GP, 1971, J APPL PHYS, V42, P1606 HUFFMAN SP, 1973, AMORPHOUS MAGNETISM, P283 JAPA E, 1979, PHYS STATUS SOLIDI B, V96, PK65 LING MC, 1981, PHYS REV B, V24, P3712 MAGER S, 1979, PHYS STATUS SOLIDI A, V52, P249 MOTOYA K, 1983, PHYS REV B, V28, P6183 NICULESCU V, 1976, PHYS REV B, V14, P4160 ONO K, 1962, J PHYS SOC JPN, V17, P1747 PICKART S, 1975, PHYS LETT A, V53, P321 RIMLINGER L, 1971, SCRIPTA METALL, V5, P357 SCHNEEWEISS O, 1983, PHYS STATUS SOLIDI A, V79, P125 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 SHULL RD, 1976, SOLID STATE COMMUN, V20, P863 STEARNS MB, 1968, PHYS REV, V168, P588 STEARNS MB, 1964, PHYS REV, V135, P1095 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1972, PHYS REV B, V6, P3326 SUWALSKI J, 1977, PHYS STATUS SOLIDI A, V41, P191 SWINTENDICK AC, 1976, SOLID STATE COMMUN, V19, P511 TAYLOR A, 1958, J PHYS CHEM SOLIDS, V6, P16 TC 8 BP 567 EP 575 PG 9 JI Phys. Status Solidi A-Appl. Res. PY 1987 PD JUN 16 VL 101 IS 2 GA J7092 J9 PHYS STATUS SOLIDI A-APPL RES UT ISI:A1987J709200031 ER PT J AU YELSUKOV, YP BARINOV, VA KONYGIN, GN TI INFLUENCE OF ORDER-DISORDER TRANSITION ON STRUCTURAL AND MAGNETIC-PROPERTIES OF BCC IRON-SILICON ALLOYS SO FIZIKA METALLOV I METALLOVEDENIE NR 24 CR ARAJS S, 1965, PHYS STATUS SOLIDI, V11, P121 BOGACHEV IN, 1974, 4 VSES SOV UP AT E 1, P201 BOZORT R, 1956, FERROMAGNETIZM, P66 ELSUKOV EP, 1983, FIZ MET METALLOVED, V55, P337 ETTWIG HH, 1972, Z METALLKD, V63, P453 FALLOT M, 1936, ANN PHYS-PARIS, V6, P305 FARQUHAR MC, 1945, J IRON STEEL I, V152, P457 GEMPARLE A, 1968, T AM I MIN MET ENG, V242, P2287 GLASER FW, 1956, T AIME, V206, P1290 GLEZER AM, 1974, 4 VSES SOV UP AT E 2, P97 GLEZER AM, 1983, 7 VSES SOV UP AT EG, P93 INDEN G, 1972, Z METALLKD, V63, P253 MEINHARDT D, 1965, ARCH EISENHUTTENWES, V36, P293 MEINHARDT D, 1963, Z PHYS, V174, P472 NOSOVA GI, 1984, 3 VSES SEM STRUKT DI, P40 PARSONS D, 1958, PHILOS MAG, V3, P1174 PEPPERHOFF W, 1968, ARCH EISENHUTTENWES, V39, P307 PEPPERHOFF W, 1967, Z ANGEW PHYS, V22, P496 PHRAGMEN GJ, 1926, J IRON STEEL I, V114, P397 RICHTER F, 1974, ARCH EISENHUTTENWES, V45, P107 SHABANOVA IN, 1977, RENTGENOVSKAYA FOTOE, P45 STEARNS MB, 1963, PHYS REV, V129, P1136 VLASOVA EN, 1972, FIZ MET METALLOVED+, V33, P130 WARLIMONT H, 1968, Z METALLKD, V59, P595 TC 0 BP 719 EP 723 PG 5 JI Fiz. Metallov Metalloved. PY 1986 PD OCT VL 62 IS 4 GA F7841 J9 FIZ METAL METALLOVED UT ISI:A1986F784100013 ER PT J AU COOK, DC TI STRAIN INDUCED MARTENSITE FORMATION IN STAINLESS-STEEL SO METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE NR 47 CR AMARISINIWARDEN DD, 1986, CLAY MIN ANTOLOVICH SD, 1971, METALL T, V2, P2135 BUGAYEV VN, 1983, ACTA METALL MATER, V31, P407 COOK DC, 1986, HYPERFINE INTERACT, V29, P1463 COOK DC, 1985, NUCL INSTRUM METH B, V12, P515 CRANSHAW TE, 1966, PHYS LETT, V21, P481 DECRISTOFARO N, 1977, METALL TRANS A, V8, P35 FISHER GJ, 1977, HDB STAINLESS STEELS, PCH1 FUJITA FE, 1975, TOP APPL PHYS, V5, P201 GAVRILYUK VG, 1983, FIZ MET METALLOVED+, V55, P520 GENIN JM, 1968, T TMS AIME, V242, P1491 GONSER U, 1966, ACTA METALL, V14, P259 GONSER U, 1971, INTRO MOSSBAUER SPEC, P155 GONSER U, 1963, J APPL PHYS, V34, P2373 GONSER U, 1975, SOLID STATE COMMUN, V17, P233 HANNA SS, 1961, 2ND P INT C MOSSB EF, P85 HAYASHI N, 1983, P INT ION ENG C KYOT, P1919 HEBERLE J, MOSSBAUER EFFECT MET, V7, P299 HESSE J, 1986, HYPERFINE INTERACT, V28, P475 HUCK B, 1986, HYPERFINE INTERACT, V28, P479 HUFFMAN GP, 1967, J APPL PHYS, V38, P735 HUFFMAN GP, 1981, MOSSBAUER EFFECT ITS, P265 JOHNSON CE, 1963, P PHYS SOC LOND, V81, P1079 JOHNSTON CE, 1961, PHYS REV LETT, V6, P450 KAMENOVA T, 1982, BULG J PHYS, V9, P138 KIM KJ, 1978, MATER SCI ENG, V33, P5 KLOSTERMAN JA, 1964, ACTA METALL, V12, P355 LESOILLE M, 1972, METALL TRANS, V3, P2681 LONGWORTH G, 1984, MOSSBAUER SPECTROSCO, V1, P227 MARCUS HL, 1967, J APPL PHYS, V38, P4750 MARCUS HL, 1967, PHYS REV, V162, P259 MULLER JB, 1983, Z PHYS B CON MAT, V54, P43 SAGARADZE VV, 1983, FIZ METAL METALLOVED, V55, P99 SAWICKI JA, 1983, HYPERFINE INTERACT, V13, P199 SCHWARTZ LH, 1976, METALL TRANS A, V7, P1567 SHIRANE G, 1963, PHYS REV, V131, P183 SOHMURA T, 1978, SOLID STATE COMMUN, V25, P43 STEARNS MB, 1964, J APPL PHYS, V35, P1095 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1964, PHYS REV LETT, V13, P313 VANDENBERGHE R, 1985, COMMUNICATION WERTHEIM GK, 1961, PHYS REV, V123, P755 WERTHEIM GK, 1964, PHYS REV LETT, V12, P24 WILLIAMSON DL, 1979, METALL TRANS A, V10, P1351 WIVEL C, 1981, J PHYS E SCI INSTRUM, V14, P605 YURCHIKOV EE, 1971, P C APP MOSSBAUER EF, P413 TC 23 BP 201 EP 210 PG 10 PY 1987 PD FEB VL 18 IS 2 GA F9514 J9 MET TRANS A-PHYS MET MATER SC UT ISI:A1987F951400003 ER PT J AU KAMAL, R RANI, M SAINI, MS TI REDUCTION OF MAGNETIC HYPERFINE FIELDS AND CURIE-TEMPERATURE ON SUBSTITUTION OF SILICON AND ALUMINUM IN COMPOUNDS OF THE TYPE ND2FE14B SO JOURNAL OF THE LESS-COMMON METALS NR 13 CR BUSCHOW KHJ, 1985, J LESS-COMMON MET, V109, P79 DWIGHT AE, 1973, 10TH P RAR EARTH C, V2, P1027 DWIGHT AE, 1975, J LESS-COMMON MET, V40, P285 GROSSINGER R, 1976, J MAGN MAGN MATER, V2, P196 GROSSINGER R, 1975, PHYS STATUS SOLIDI A, V28, PK135 RANI M, 1987, J LESS COMMON MET, V128 RANI M, 1986, J LESS-COMMON MET, V125, P97 STEARNS MB, 1968, PHYS REV, V168, P588 STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1971, PHYS REV B, V4, P4069 STEARNS MB, 1975, PHYS REV B, V12, P1626 VANNOORT HM, 1985, J LESS-COMMON MET, V113, PL9 TC 2 BP L7 EP L10 PG 4 PY 1986 PD NOV VL 125 GA F2814 J9 J LESS-COMMON METALS UT ISI:A1986F281400030 ER PT J AU JOSHEE, R PHASE, DM GHAISAS, SV KANETKAR, SM OGALE, SB BHIDE, VG TI CONVERSION ELECTRON MOSSBAUER SPECTROSCOPIC STUDY OF ION-BEAM MIXING AT FE-MO INTERFACE SO JOURNAL OF APPLIED PHYSICS NR 35 CR BHIDE VG, 1973, MOSSBAUER EFFECT ITS CHAMPENEY DC, 1979, REP PROG PHYS, V42, P1017 CHEN HS, 1980, REP PROG PHYS, V43, P353 DAVIES JA, 1981, SURFACE MODIFICATION DEKHTYAR AI, 1976, SOV PHYS SOLID STATE, V18, P5 GHOSE J, 1983, HYPERFINE INTERACT, V15, P755 GHOSE J, 1974, J SOLID STATE CHEM, V11, P239 GODBOLE VP, 1985, PHYS REV B, V31, P5703 GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO, P315 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HORNBOGEN E, 1961, J APPL PHYS, V32, P135 KELLER H, 1981, J APPL PHYS, V52, P5268 KODEMA T, 1977, CORROSION, V33, P5 LIU BX, 1983, APPL PHYS LETT, V42, P45 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MARCUS HL, 1967, J APPL PHYS, V38, P4750 MARCUS HL, 1967, PHYS REV, V162, P259 MAYER JW, 1970, ION IMPLANTATION SEM MAYER JW, 1981, NUCL INSTRUM METHODS, V182, P1 OGALE SB, 1985, J APPL PHYS, V57, P2915 OGALE SB, 1982, RADIAT EFF DEFECT S, V63, P73 PAINE BM, 1981, NUCL INSTRUM METHODS, V182, P115 PATANKAR J, 1985, NUCL INSTRUM METH B, V7-8, P720 SAWICKA BD, 1979, J PHYS PARIS, P576 SAWICKA BD, 1981, TOPICS CURRENT PHYSI, V2 SOOD DK, 1982, RADIAT EFF DEFECT S, V63, P141 STEARNS MB, 1963, PHYS REV, V129, P1136 STOUT DA, 1979, CORROSION, V35, P4 TSAUR BY, 1979, APPL PHYS LETT, V35, P225 TSAUR BY, 1979, APPL PHYS LETT, V34, P168 TSAUR BY, 1981, NUCL INSTRUM METHODS, V182, P67 TSAUR BY, 1979, PHYS LETT A, V71, P270 TYLISZCZAK T, 1983, HYPERFINE INTERACT, V15, P1001 WINDOW B, 1971, J PHYS E, V4, P401 ZHETBAEV AK, 1980, J PHYS PARIS, P387 TC 5 BP 388 EP 394 PG 7 JI J. Appl. Phys. PY 1986 PD JAN 15 VL 59 IS 2 GA AXL14 J9 J APPL PHYS UT ISI:A1986AXL1400014 ER PT J AU YELSUKOV, YP BARINOV, VA LAPINA, TP GALAKHOV, VR KONYGIN, GN TI ORDERING KINETICS IN FE3SI ALLOY SO FIZIKA METALLOV I METALLOVEDENIE NR 16 CR ELUSKOV E, 1983, FMM, V55, P337 ERMAKOV AE, 1981, FIZ MET METALLOVED+, V52, P1184 ETTWIG HH, 1972, Z METALLKD, V63, P453 FARGUHAR MC, 1945, J IRON STEEL I, V152, P457 GEMPARLE A, 1968, T AM I MIN MET ENG, V242, P2287 GLASER FW, 1956, T AIME, V206, P1290 GLEZER AM, 1983, 7 VSES SOV UP AT EG, P93 INDEN G, 1972, Z METALLKD, V63, P253 JEDER R, 1960, PHIL MAG, V5, P343 KAN R, 1968, FIZICHESKOE METALLOV, P277 MEINHARDT D, 1965, ARCH EISENHUTTENWES, V36, P293 MEINHARDT D, 1963, Z PHYS, V174, P472 PEPPERHOFF W, 1968, ARCH EISENHUTTENWES, V39, P307 RICHTER F, 1974, ARCH EISENHUTTENWES, V45, P107 STEARNS MB, 1963, PHYS REV, V129, P1136 WARLIMONT H, 1968, Z METALLKD, V59, P595 TC 0 BP 925 EP 930 PG 6 JI Fiz. Metallov Metalloved. PY 1985 VL 60 IS 5 GA AVS62 J9 FIZ METAL METALLOVED UT ISI:A1985AVS6200014 ER PT J AU ARITA, M NASU, S FUJITA, FE TI DETERMINATION OF LONG-RANGE-ORDER PARAMETER OF FE3SI ALLOY BY MEANS OF FE-57 MOSSBAUER-EFFECT SO TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS NR 20 CR BUDNICK JI, 1967, J APPL PHYS, V38, P1137 CHANG R, 1981, ACTA MET SINCA, V17, P88 CSER L, 1970, PHYS STATUS SOLIDI, V42, PK147 CULLY BD, 1978, ELEMENTS XRAY DIFFRA, PCH4 DRIJVER JW, 1977, PHYS REV B, V16, P985 HINES WA, 1976, PHYS REV B, V13, P4060 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI, P136 LESOILLE MR, 1970, PHYS STATUS SOLIDI, V37, P127 MEYER W, 1976, THESIS TH AACHEN OKI K, 1980, ENG SCI REP KYUSHU U, V2, P11 OKI K, 1981, T JPN I MET, V22, P771 OKI K, 1979, T JPN I MET, V20, P451 ONO K, 1962, J PHYS SOC JPN, V17, P1747 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25 SCHWARTZ LH, 1976, APPL MOSSBAUER SPECT, V1, P37 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1964, J APPL PHYS, V35, P1095 STEARNS MB, 1968, PHYS REV, V168, P588 STEARNS MB, 1963, PHYS REV, V129, P1136 YAMANAKA K, 1971, J JPN I MET, V35, P566 TC 15 BP 710 EP 720 PG 11 PY 1985 VL 26 IS 10 GA AUD48 J9 TRANS JPN INST MET UT ISI:A1985AUD4800002 ER PT J AU ARITA, M NASU, S FUJITA, FE TI DETERMINATION OF LONG-RANGE-ORDER PARAMETER OF FE3SI ALLOY BY MEANS OF FE-57 MOSSBAUER-EFFECT SO JOURNAL OF THE JAPAN INSTITUTE OF METALS NR 18 CR BUDNICK JI, 1967, J APPL PHYS, V38, P1137 CHANG R, 1981, ACTA MET SINCA, V17, P88 CSER L, 1970, PHYS STATUS SOLIDI, V42, PK147 CULLY BD, 1978, ELEMENTS XRAY DIFFRA, PCH4 DRIJVER JW, 1977, PHYS REV B, V16, P985 HINES WA, 1976, PHYS REV B, V13, P4060 KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI, P136 LESOILLE MR, 1970, PHYS STATUS SOLIDI, V37, P127 MEYER W, 1976, THESIS TH AACHEN OKI K, 1981, T JPN I MET, V22, P771 OKI K, 1979, T JPN I MET, V20, P451 ONO K, 1962, J PHYS SOC JPN, V17, P1747 PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25 SCHWARTZ LH, 1976, APPL MOSSBAUER SPECT, V1, P37 SHINJO T, 1963, J PHYS SOC JPN, V18, P797 STEARNS MB, 1964, J APPL PHYS, V35, P1095 STEARNS MB, 1968, PHYS REV, V168, P588 STEARNS MB, 1963, PHYS REV, V129, P1136 TC 6 BP 431 EP 438 PG 8 JI J. Jpn. Inst. Met. PY 1985 VL 49 IS 6 GA ALB83 J9 J JPN INST METAL UT ISI:A1985ALB8300007 ER PT J AU GODBOLE, VP CHAUDHARI, SM GHAISAS, SV KANETKAR, SM OGALE, SB BHIDE, VG TI INTERFACE-SENSITIVE CONVERSION-ELECTRON MOSSBAUER STUDY OF ION- BEAM MIXING AT THE FE-AL INTERFACE SO PHYSICAL REVIEW B-CONDENSED MATTER NR 34 CR BHIDE VG, 1973, MOSSBAUER EFFECT ITS CROWDER BL, 1973, ION IMPLANTATION SEM CZJZEK G, 1970, PHYS REV B, V1, P957 DAVIES JA, 1981, SURFACE MODIFICATION FEDER R, 1970, J APPL CRYSTALLOGR, V3, P372 GODBOLE VP, 1983, NUCL INSTRUM METHODS, V209, P131 GONSER U, 1980, APPLICATIONS MOSSBAU, V2 HAGGSTROM L, 1973, PHYS SCRIPTA, V7, P125 HIRVONEN J, 1982, J APPL PHYS, V53, P3314 KUNDIG W, 1966, PHYS REV, V142, P327 LAU SS, 1981, NUCL INSTRUM METHODS, V182, P97 LIU BX, 1983, APPL PHYS LETT, V42, P45 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MAYER JW, 1970, ION IMPLANTATION SEM MAYER JW, 1981, NUCL INSTRUM METHODS, V182, P1 MAYER JW, 1981, SURFACE MODIFICATION NASU S, 1980, J PHYS-PARIS, V41, P385 OGALE SB, 1982, RADIAT EFF DEFECT S, V63, P73 OGALE SB, UNPUB J APPL PHYS PAINE BM, 1981, NUCL INSTRUM METHODS, V182, P115 PATANKAR J, UNPUB NUCL INSTRUM M PRESTON RS, 1972, METALL TRANS, V3, P1831 SAWICKA BD, 1978, HYPERFINE INTERACT, V5, P147 SAWICKA BD, 1981, TOPICS CURRENT PHYSI, V2 SOOD DK, COMMUNICATION STEARNS MB, 1966, PHYS REV, V147, P439 STEARNS MB, 1963, PHYS REV, V129, P1136 TSAUR BY, 1979, APPL PHYS LETT, V35, P225 TSAUR BY, 1979, APPL PHYS LETT, V34, P168 TSAUR BY, 1980, J APPL PHYS, V51, P5326 TSAUR BY, 1980, J APPL PHYS, V51, P5334 TSAUR BY, 1981, NUCL INSTRUM METHODS, V182, P67 TSAUR BY, 1979, PHYS LETT A, V71, P270 WINDOW B, 1971, J PHYS E, V4, P401 TC 36 BP 5703 EP 5711 PG 9 JI Phys. Rev. B-Condens Matter PY 1985 VL 31 IS 9 GA AGZ99 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1985AGZ9900012 ER PT J AU SATO, Y MOTOI, S TI MOSSBAUER STUDY OF IRON IN BETA-SILICON NITRIDE - EFFECTS OF HEAT-TREATMENT AND GAMMA-IRRADIATION SO JOURNAL OF MATERIALS SCIENCE NR 26 CR AGGARWAL K, 1979, PHYS STATUS SOLIDI A, V53, PK95 BARB D, 1974, REV ROUM PHYS, V19, P425 BLAAUW C, 1973, J PHYS C SOLID STATE, V6, P2371 CRANSHAW TE, 1966, PHYS LETT, V21, P481 DECRISTOFARO N, 1977, METALL TRANS A, V8, P35 DECRISTOFARO N, 1977, METALL TRANS A, V8, P425 DECRISTOFARO N, 1975, SCRIPTA METALL MATER, V9, P781 EIKEL KH, 1970, PHYS STATUS SOLIDI, V39, P121 GALAVANOV VV, 1959, FIZ TVERDOGO TELA, V1, P432 GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800 LEBEDEV AT, 1967, IZV VUZ FIZ, V10, P58 MAKSIMOV YV, 1974, PHYS MET METALL, V37, P36 MARCHAL G, 1976, SOLID STATE COMMUN, V18, P739 MARCHAND R, 1976, ACTA CRYSTALL B, V25, P2157 MEKATA M, 1972, J PHYS SOC JPN, V33, P62 MOZIK AJ, 1969, SOLID STATE COMMUN, V7, P1677 OEN OS, 1959, J APPL PHYS, V30, P1289 OSWALD R, 1976, J VAC SCI TECHNOL, V13, P40 OSWALD RS, 1978, SOLID STATE COMMUN, V26, P883 SATO Y, 1979, J PHYS CHEM SOLIDS, V40, P1 SATO Y, UNPUB STEARNS MB, 1963, PHYS REV, V129, P1136 VOJTECHOVSKY K, 1974, CZECH J PHYS, VB 24, P171 WANDJI R, 1971, PHYS STATUS SOLIDI B, V45, PK123 YAMAOKA T, 1973, J PHYS SOC JPN, V35, P63 YELSUKOV YP, 1977, PHYS MET METALL, V44, P29 TC 5 BP 1749 EP 1759 PG 11 JI J. Mater. Sci. PY 1984 VL 19 IS 6 GA SU264 J9 J MATER SCI UT ISI:A1984SU26400002 ER PT J AU NICULESCU, VA BURCH, TJ BUDNICK, JI TI A LOCAL ENVIRONMENT DESCRIPTION OF HYPERFINE FIELDS AND ATOMIC MOMENTS IN FE3-XTXSI ALLOYS SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 68 CR ALLEN SM, 1975, ACTA METALL MATER, V23, P1017 ANDERSON AGH, 1936, T ASM, V24, P375 BABANOVA EN, 1974, FIZ MET METALLOVED+, V38, P586 BARDOS DI, 1969, J APPL PHYS, V40, P1371 BECK PA, 1971, METALL T, V2, P2015 BERGNER RL, 1976, AIP C P, V29, P325 BLAAUW C, 1975, SOLID STATE COMMUN, V18, P729 BUDNICK JI, 1978, I PHYS C SER, V39, P197 BUDNICK JI, 1967, J APPL PHYS, V38, P1137 BURCH TJ, 1982, J MAGN MAGN MATER, V27, P55 BURCH TJ, 1981, PHYS REV B, V24, P3866 BURCH TJ, 1979, PHYS REV B, V19, P2933 BURCH TJ, 1974, PHYS REV LETT, V33, P421 BURCH TJ, 1968, THESIS FORDHAM U BURCH TJ, UNPUB CAMPBELL IA, 1969, J PHYS C SOLID STATE, V2, P1338 COLLINS MF, 1963, PHILOS MAG, V8, P401 ENDO K, 1976, J PHYS SOC JPN, V40, P674 ENGEL N, 1964, T ASM, V57, P610 FLUTSKAYA L, 1976, SOV PHYS SOLID STATE, V18, P1011 FUJITA Y, 1972, J PHYS CHEM SOLIDS, V33, P1443 GLADISEVSKII EI, 1956, FIZ MET METALLOV, V11, P454 HANSEN M, 1958, CONSTITUTION BINARY HEINE V, 1980, SOLID STATE PHYS, V35 HINES WA, 1976, PHYS REV B, V13, P4060 ISHIDA S, 1976, J PHYS SOC JPN, V41, P1570 KALVIUS GM, 1974, ATOMIC DATA NUCL DAT, V14, P639 KHOI LD, 1974, J PHYS F MET PHYS, V4, P2310 MAZZONE G, 1974, PHILOS MAG, V30, P1105 MUIR WB, COMMUNICATION MURTY HN, 1967, ACTA METALL NAKAMICHI T, 1981, SCI REP RES TOHOKU A, V30, P60 NATHANS R, 1958, J PHYS CHEM SOLIDS, V6, P38 NICULESCU V, 1978, B AM PHYS SOC NICULESCU V, 1977, J MAGN MAGN MATER, V5, P60 NICULESCU V, 1979, PHYS REV B, V19, P452 NICULESCU V, 1976, PHYS REV B, V14, P4160 NICULESCU V, 1976, PHYS REV B, V13, P3167 NICULESCU V, 1978, SOLID STATE COMMUN, V26, P607 NICULESCU V, 1977, SOLID STATE COMMUN, V24, P631 NICULESCU VA, 1981, PHYS REV B, V23, P2388 OGAWA S, 1951, J JAPAN I METALS B, V15, P8 OKAMOTO H, 1972, MONATSH CHEM, V103, P907 PAOLETTI A, 1964, NUOVO CEMENTO, V32, P1450 PICKART S, COMMUNICATION PICKART S, 1975, PHYS LETT A, V53, P321 RAJ K, 1976, JUN P JOINT INT MMM RUBINSTEIN M, 1966, PHYS REV LETT, V17, P1001 STEARNS MB, 1963, PHYS REV, V129, P1136 STEARNS MB, 1963, PHYS REV, V129, P1336 STEARNS MB, 1971, PHYS REV B, V4, P4069 STEARNS MB, 1971, PHYS REV B, V4, P4081 STEARNS MB, 1978, PHYS REV B, V17, P2809 STEARNS MB, 1976, PHYS REV B, V13, P1183 SWANN PR, 1972, METALL TRANS, V3, P409 SWITENDICK AC, 1976, SOLID STATE COMMUN, V19, P511 TAYLOR A, 1958, J PHYS CHEM SOLIDS, V6, P16 VIJAYARAGHAVAN R, 1977, J PHYS SOC JAPAN, P1779 WATSON RE, 1967, HYPERFINE INTERACT, P53 WATSON RE, 1961, PHYS REV, V123, P2027 WATSON RE, 1977, PHYS REV B, V15, P502 WEISS RJ, 1963, P PHYS SOC LOND, V82, P281 YAMAGATA H, 1972, J PHYS SOC JPN, V33, P400 YOON S, COMMUNICATION YOON S, 1977, J PHYS F MET PHYS, V7, P1079 YOON S, 1975, THESIS U SALFORD ZIEBECK KRA, 1974, J PHYS CHEM SOLIDS, V35, P1 ZIEBECK KRA, 1976, PHILOS MAG, V34, P973 TC 61 BP 223 EP 267 PG 45 JI J. Magn. Magn. Mater. PY 1983 VL 39 IS 3 GA SA308 J9 J MAGN MAGN MATER UT ISI:A1983SA30800001 ER