FN ISI Export Format VR 1.0 PT J AU Chumakov, AI Ruffer, R Leupold, O Barla, A Thiess, H Asthalter, T Doyle, BP Snigirev, A Baron, AQR TI High-energy-resolution x-ray optics with refractive collimators SO APPLIED PHYSICS LETTERS NR 17 AB We have tested the concept of a high-resolution x-ray monochromator with a refractive collimator as an optical element. Two options were examined, where the refractive collimator was included either instead of, or in addition to the first crystal of the high-resolution monochromator. The first approach offers an easy means of improving the energy resolution of conventional optical schemes by few orders of magnitude while still accepting the entire angular divergence of the primary beam. The second approach improves the performance of existing devices with very high-energy resolution and simplifies the design of future optical schemes. (C) 2000 American Institute of Physics. [S0003-6951(00)04927- 5]. CR BARON AQR, 1999, APPL PHYS LETT, V74, P1492 BARON AQR, 1996, J SYNCHROTRON RADIAT, V6, P953 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1997, P SOC PHOTO-OPT INS, V3151, P262 ELLEAUME P, 1998, NUCL INSTRUM METH A, V412, P483 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KOHRA K, 1978, NUCL INSTRUM METHODS, V152, P161 LENGELER B, 1998, J APPL PHYS, V84, P5855 MINKIEWICZ VJ, 1967, PHYS REV, V162, P528 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SIDDONS DP, 1993, PHYS REV LETT, V70, P359 SNIGIREV A, 1996, NATURE, V384, P49 TOELLNER T, 1992, SPIE, V1740, P218 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TC 0 BP 31 EP 33 PG 3 JI Appl. Phys. Lett. PY 2000 PD JUL 3 VL 77 IS 1 GA 329CZ J9 APPL PHYS LETT UT ISI:000087889700011 ER PT J AU Keppler, C Achterhold, K Ostermann, A van Burck, U Chumakov, AI Ruffer, R Sturhahn, W Alp, EE Parak, FG TI Nuclear forward scattering of synchrotron radiation by deoxymyoglobin SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS NR 23 AB Nuclear forward scattering of synchrotron radiation is used to determine the quadrupole splitting and the mean square displacement of the iron atom in deoxymyoglobin in the temperature range between 50 K and 243 K. Above 200 K an abnormally fast decay of the forward scattered intensity at short times after the synchrotron flash is observed, which is caused by protein-specific motions. The results strongly support the picture that protein dynamics seen at the position of the iron can be understood by harmonic motions in the low temperature regime while in the physiological regime diffusive motions in limited space are present. The shape of the resonance broadening function is investigated. An inhomogeneous broadening with a Lorentzian distribution indicating dipole interactions results in a better agreement with the experimental data than the common Gaussian distribution. CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 ALP EE, 1994, HYPERFINE INTERACT, V90, P323 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 DEBROE ME, 1993, NEPHROL DIAL TRANS S, V1, P1 EICHER H, 1974, J PHYS PARIS C, V6, P363 FRAUENFELDER H, 1988, ANNU REV BIOPHYS BIO, V17, P451 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KNAPP EW, 1983, J CHEM PHYS, V78, P4701 MELCHERS B, 1996, BIOPHYS J, V70, P2092 PARAK F, 1982, J MOL BIOL, V161, P177 PARAK F, 1986, METHOD ENZYMOL, V131, P568 PARAK F, 1993, PHYSICA A, V201, P332 PARAK F, 1987, PROTEIN STRUCTURE MO, P65 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STONEHAM AM, 1969, REV MOD PHYS, V41, P82 TEALE FWJ, 1959, BIOCHIM BIOPHYS ACTA, V35, P543 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TRAMELL GT, 1978, PHYS REV B, V19, P3835 VANBURCK U, 1992, PHYS REV B, V46, P6207 TC 0 BP 146 EP 152 PG 7 JI Eur. Biophys. J. Biophys. Lett. PY 2000 VL 29 IS 2 GA 329AH J9 EUR BIOPHYS J BIOPHYS LETT UT ISI:000087883600008 ER PT J AU Barla, A Ruffer, R Chumakov, AI Metge, J Plessel, J Abd-Elmeguid, MM TI Direct determination of the phonon density of states in beta-Sn SO PHYSICAL REVIEW B NR 19 AB The phonon density of states (DOS) of beta-Sn has been directly determined using nuclear inelastic scattering of synchrotron radiation by Sn-119 nuclei. The obtained phonon DOS is in good agreement with theoretical calculations and provides an accurate estimation of the Lamb-Mossbauer factor, the mean- square displacement of the atoms and the lattice contribution to the specific heat in beta-Sn. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BROVMAN EG, 1966, FIZ TVERD TELA, V8, P1120 CHUMAKOV AI, 1998, PHYS REV B, V58, P254 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 DESHPANDE VT, 1961, ACTA CRYSTALLOGR, V14, P355 HOHENEMSER C, 1965, PHYS REV, V139, PA185 HULTGREN R, 1973, SELECTED VALUES THER, P481 KOTOV BA, 1968, SOV PHYS-SOLID STATE, V10, P402 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 PRICE DL, 1966, P ROY SOC LOND A MAT, V300, P25 RAVELO R, 1997, PHYS REV LETT, V79, P2482 RAYNE JA, 1960, PHYS REV, V120, P1658 ROWE JM, 1965, PHYS REV LETT, V14, P554 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SHAPIRO VG, 1964, SOVIET PHYS J EXPT T, V19, P1321 SINGWI KS, 1960, PHYS REV, V120, P1093 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 WOLFRAM T, 1963, PHYS REV, V129, P2483 TC 0 BP R14881 EP R14884 PG 4 JI Phys. Rev. B PY 2000 PD JUN 1 VL 61 IS 22 GA 325AL J9 PHYS REV B UT ISI:000087654100001 ER PT J AU Brand, RA Voss, J Calvayrac, Y TI Phonon- and phason-dynamics in Al-Cu-Fe quasicrystals SO HYPERFINE INTERACTIONS NR 32 AB The lattice dynamics of quasicrystals includes local phason jumps as well as phonons. Phason dynamics is important for the understanding of both the structure and atomic motion in quasicrystals, leading to short-ranged atomic motion not involving vacancies in addition to diffusion. We have studied the phason and phonon dynamics of icosahedral i- Al62Cu25.5Fe12.5. Quasielastic Mossbauer spectroscopy (QMS) was used to probe the iron phason dynamics. Inelastic nuclear- resonant absorption (INA) of synchrotron radiation and inelastic neutron scattering (INS) were used to study the iron- partial as well as the total vibrational DOS (VDOS). We find from preliminary QMS studies that iron atoms jump on a time scale about two orders of magnitude slower than that found for copper. The EFG shows an abrupt change in slope at ca. 825 K which may be related to a transition from simple (isolated) to more complicated (co-operative) phason jumps. From INA we find that the iron-partial VDOS differs radically from that of the total (neutron-weighted) generalised VDOS measured by INS. Both these properties are related to the specific local environments of Fe and Cu in i-AlCuFe. CR BEE M, 1988, QUASIELASTIC NEUTRON BRAND RA, IN PRESS BRAND RA, 1999, IN PRESS J PHYS COND BRAND RA, 1999, MOSSBAUER SPECTROSCO, P299 BRAND RA, 1999, PHYS REV B, V59, PR1414 CALVAYRAC Y, 1990, J PHYS-PARIS, V51, P417 CHRISTIANSEN J, 1976, Z PHYS B CON MAT, V24, P177 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CODDENS G, 1995, J PHYS I, V5, P771 CODDENS G, 1997, PHYS REV LETT, V78, P4209 CORNIERQUIQUANDON , 1991, PHYS REV B, V44, P2071 DOLINSEK J, 1998, PHYS REV LETT, V81, P3671 FRENKEL DM, 1986, PHYS REV B, V34, P3649 GRATIAS D, 1999, IN PRESS P SPRING SC JENA P, 1976, PHYS REV LETT, V36, P418 KALUGIN P, 1985, J PHYS LETT-PARIS, V46, P601 KALUGIN PA, 1993, EUROPHYS LETT, V21, P921 KATZ A, 1995, P 5 INT C QUAS, P164 KLEIN T, 1993, J NON-CRYST SOLIDS, V153, P562 LITTERST FJ, 1983, HYPERFINE INTERACT, V14, P21 MOUSSA F, 1987, PHYS REV B, V36, P8951 NISHIYAMA K, 1976, PHYS REV LETT, V37, P357 QUILICHINI M, 1997, REV MOD PHYS, V69, P277 QUIQUANDON M, 1996, J PHYS-CONDENS MAT, V8, P2487 ROTH J, 1998, EUR PHYS J B, V6, P425 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SEPIOL B, 1995, HYPERFINE INTERACT, V59, P149 SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951 SPRINGER T, 1972, SPRINGER TRACTS PHYS, V64 VOGL G, 1990, HYPERFINE INTERACT, V53, P197 WOLF D, 1983, PHILOS MAG A, V47, P147 YOSHIDA Y, 1989, HYPERFINE INTERACT, V47-8, P95 TC 0 BP 277 EP 285 PG 9 JI Hyperfine Interact. PY 2000 VL 126 IS 1-4 GA 323TL J9 HYPERFINE INTERACTIONS UT ISI:000087581000043 ER PT J AU Adams, B Fernandez, P Lee, WK Materlik, G Mills, DM Novikov, DV TI Parametric down conversion of X-ray photons SO JOURNAL OF SYNCHROTRON RADIATION NR 14 AB Parametric down conversion of X-ray photons in diamond crystals was detected in two experiments, both using the phase-matching scheme first employed in the X-rap regime by Eisenberger & McCall [Phys. Rev. Lett. (1971), 26, 684-688]. The conversion events were detected by a combination of time-correlation spectroscopy and energy discrimination, using Si drift-chamber detectors. The time-correlation spectra give a direct comparison of the conversion rate over the accidental coincidence rate. Mechanisms for possible detection of false events and ways to cross check against them are discussed in detail. CR ADAMS B, 1999, ICFA 17 ADV BEAM DYN BRENDEL J, 1991, PHYS REV LETT, V66, P1142 BRINKMANN R, 1997, NUCL INSTRUM METH A, V393, P86 EISENBERGER P, 1971, PHYS REV LETT, V26, P684 FREUND I, 1969, PHYS REV LETT, V23, P854 FRIBERG S, 1985, PHYS REV LETT, V54, P2011 HONG CK, 1987, PHYS REV LETT, V59, P2044 JACKSON JD, 1975, CLASSICAL ELECTRODYN KWIAT PG, 1993, PHYS REV A, V48, P867 KWIAT PG, 1993, PHYS REV A, V47, PR2472 OU ZY, 1988, PHYS REV LETT, V61, P54 RARITY JG, 1990, PHYS REV LETT, V64, P2495 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 YODA Y, 1998, J SYNCHROTRON RADIAT, V5, P980 TC 0 BP 81 EP 88 PG 8 JI J. Synchrot. Radiat. PY 2000 PD MAR 1 VL 7 PN 2 GA 304UM J9 J SYNCHROTRON RADIAT UT ISI:000086502600005 ER PT J AU Baron, AQR Tanaka, Y Goto, S Takeshita, K Matsushita, T Ishikawa, T TI An X-ray scattering beamline for studying dynamics SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS NR 31 AB We describe the design of an instrument for the investigation of sample dynamics: the SPring-8 High Resolution Beamline (BL35XU). The primary purpose of the beamline is high resolution (similar to meV) inelastic X-ray scattering measurements. The secondary purpose is nuclear resonant scattering measurements. Construction of the beamline will begin in the summer of 1999 and commissioning will start in the spring of 2000. (C) 2000 Elsevier Science Ltd. All rights reserved. CR *ESRF, BP220 ESRF BARON AQR, IN PRESS HYPEFINE IN BARON AQR, 1997, PHYS REV LETT, V79, P2823 BRENNAN S, 1992, REV SCI INSTRUM, V63, P850 BURKEL E, 1987, EUROPHYS LETT, V3, P957 BURKEL E, 1991, SPRINGER TRACTS MODE, V125 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 CROMER DT, 1968, ACTA CRYSTALLOGR A, V24, P321 CROMER DT, 1970, J CHEM PHYS, V59, P1891 CROMER DT, 1970, J CHEM PHYS, V53, P1891 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, UNPUB GOTO S, 1998, J SYNCHROTRON RADIAT, V5, P1202 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KITAMURA H, 1998, J SYNCHROTRON RADIAT, V5, P184 KITAMURA H, SPRING 8 INSERTION D KITAMURA H, UNPUB MASCIOVECCHIO C, 1996, NUCL INSTRUM METH B, V117, P339 MASCIOVECCHIO C, 1996, NUCL INSTRUM METH B, V111, P181 MCMASTER WH, 1969, COMPLICATION XRAY CR MOCHIZUKI T, UNPUB RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAKURAI Y, 1998, J SYNCHROTRON RADIAT, V5, P1195 SCHWOERERBOHNING M, 1998, PHYS REV LETT, V80, P5572 SCHWOERERBOHNING M, 1998, REV SCI INSTRUM, V69, P3109 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1992, OPTICS HIGH BRIGHTNE, P218 TC 0 BP 461 EP 465 PG 5 JI J. Phys. Chem. Solids PY 2000 PD MAR VL 61 IS 3 GA 286XL J9 J PHYS CHEM SOLIDS UT ISI:000085474100027 ER PT J AU Burkel, E TI Phonon spectroscopy by inelastic x-ray scattering SO REPORTS ON PROGRESS IN PHYSICS NR 210 AB The present synchrotron sources with brilliant x-ray beams, due to high photon fluxes, small source sizes and high collimation, have revolutionized x-ray physics. Enormous progress has been initiated in all established x-ray methods, with the aim of the development of new types of spectroscopy. This is particularly true for the spectroscopy of the dynamics in condensed matter. Meanwhile, there are two powerful x-ray methods with very high- energy resolution available for the study of low energetic excitations like phonons. This review summarizes the developments of these methods focusing on these instrumental developments of the spectrometers using either crystal optics in close-to-backscattering geometry or nuclear resonant techniques. Applications to measurements of phonon dispersion curves and of phonon density of states in ordered and disordered solids and in liquids are presented. It is shown how x-ray results are stimulating improvements in the theoretical approaches to the dynamics. New insights into the dynamics of liquids are discussed. The sensitivities of the spectroscopies allow the study of vibrational behaviour in very small amounts of material even in nanometre-sized thin films or panicles. We can already analyse the phonon spectrum of a monolayered nuclear resonant isotope. Prospects of the techniques are also demonstrated. CR *ESRF, 1995, 19941995 ESRF, P11 AHLERS G, 1970, PHYS REV A, V2, P1505 ALEFELD B, 1968, NEUTRON INELASTIC SC, P381 ALEFELD B, 1966, SIT BER BAY AKAD WIS, P109 ALEXANDER S, 1982, J PHYS PARIS LETT, V43, P625 ANGELL CA, 1991, J NON-CRYST SOLIDS, V131, P13 ASHCROFT NW, 1966, PHYS LETT, V23, P48 BACON GE, 1962, NEUTRON DIFFRACTION BARON AQR, 1998, J PHYS CHEM SOLIDS BARON AQR, 1997, PHYS REV LETT, V79, P2823 BENASSI P, 1996, PHYS REV LETT, V77, P3835 BESSON JM, 1992, PHYSICA B, V180, P907 BLUME M, 1985, J APPL PHYS, V57, P3615 BODENSTEINER T, 1990, J NON-CRYST SOLIDS, V117, P116 BOON JB, 1980, MOL HYDRODYNAMICS BORN M, 1942, REPTS PROGR PHYS, V9, P356 BOTTOM VE, 1965, A ACAD BRASILEIRA CI, V37, P407 BOTTOM VE, 1971, SCI INSTRUM, V42, P196 BRAND RA, 1999, PHYS REV B, V59, PR1414 BROCKHOUSE BN, 1961, INELASTIC SCATTERING, P531 BRUESCH P, 1987, SPRINGER SERIES SOLI BRUESCH P, 1986, SPRINGER SERIES SOLI BRUESCH P, 1982, SPRINGER SERIES SOLI BUCHENAU U, 1986, PHYS REV B, V34, P5665 BUCHENAU U, 1988, PHYS REV LETT, V60, P1318 BURKEL E, 1987, EUROPHYS LETT, V3, P957 BURKEL E, 1987, HASYLAB ANN REPORT, P337 BURKEL E, 1986, HASYLAB ANN REPORT, P383 BURKEL E, 1991, INELASTIC SCATTERING, V125 BURKEL E, 1995, INT J THERMOPHYS, V16, P1135 BURKEL E, 1991, J APPL CRYSTALLOGR, V24, P1042 BURKEL E, 1999, J NON-CRYST SOLIDS, V250, P70 BURKEL E, 1994, J PHYS-CONDENS MAT, V6, PA225 BURKEL E, 1989, P SPIE, V1140, P426 BURKEL E, 1999, PHYSICA B, V263, P412 BURKEL E, 1995, PHYSICA B, V219, P98 BURKEL E, 1992, PHYSICA B, V180, P840 BURKEL E, 1992, REV SCI INSTRUM, V63, P1094 BURKEL E, 1998, STRONGLY COUPLED COU, P123 BURKEL E, 1993, Z NATURFORSCH A, V48, P289 CANALES M, 1994, PHYS REV E, V50, P3656 CHIHARA J, 1987, J PHYS F MET PHYS, V17, P295 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1999, IN PRESS CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1999, NUCL RESONANT SCATTE CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4528 CHUMAKOV AI, 1997, SPIE, V3152, P262 COCHRAN W, 1967, HDB PHYSIK, V25 COOPER MJ, 1967, ACTA CRYSTALLOGR, V23, P357 DESCHEPPER IM, 1983, PHYS REV LETT, V50, P974 DESCHEPPER LM, 1994, PHYS LETT A, V104, P29 DEUTSCH M, 1989, PHYS REV B, V40, P11666 DORNER B, 1972, ACTA CRYSTALL A-CRYS, VA-28, P319 DORNER B, 1985, ADV SOLID STATE PHYS, V25, P685 DORNER B, 1980, J PHYS C SOLID STATE, V13, P6607 DORNER B, 1966, JUL412NP DORNER B, 1986, NUCL INSTRUM METH A, V246, P450 DORNER B, 1983, NUCL INSTRUM METHODS, V208, P587 DORNER B, 1987, Z PHYS B CON MAT, V69, P179 DOTY, 1996, ENCY MAGNETIC RESONA, P4475 DOTY FD, 1981, REV SCI INSTRUM, V52, P1868 ECKERT J, 1978, PHYS REV B, V18, P3074 EGGER H, 1984, APPL PHYS A-MATER, V35, P41 ELWENSPOEK M, 1978, MOL PHYS, V35, P1221 ELWENSPOEK M, 1977, MOL PHYS, V34, P33 FAK B, 1992, 92FA0085 I LAUE LANG FENG YP, 1993, PHYS REV LETT, V71, P537 FERNANDEZ P, 1997, SPIE, V3151, P271 FOLEY M, 1994, J PHYS-CONDENS MAT, V6, P5231 FORET M, 1996, PHYS REV LETT, V77, P3831 FREUND A, 1971, 2 C INT METH AN RAY, V10, P129 FREUND A, 1972, J CRYST GROWTH, V13, P247 FUJI Y, 1982, 895 SSRL FULTZ B, 1996, J APPL PHYS, V79, P8318 FULTZ B, 1995, PHYS REV B, V52, P3315 FULTZ B, 1998, PHYS REV LETT, V80, P3304 FULTZ B, 1997, PHYS REV LETT, V79, P5937 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GILLIS NS, 1968, PHYS REV, V175, P1110 GONZALEZ LE, 1993, J PHYS-CONDENS MAT, V5, P4283 GONZE X, 1994, PHYS REV B, V50, P13035 GOODWIN HA, 1987, CHEM PHYS LETT, V139, P470 GOTZE W, 1990, LIQUIDS FREEZING GLA, P287 GRAEFF W, 1982, NUCL INSTRUM METHODS, V195, P97 GRUENSTEUDEL H, 1999, THESIS U LUBECK AACH HALCOUSSIS C, 1996, 5 JOURN MAT COND ORL HALCOUSSIS C, 1997, THESIS ROSTOCK U HEIDEMANN A, 1970, Z PHYS, V238, P208 HOFMANN M, 1994, PHYS REV, V50, P13041 HOFMANN W, 1992, Z PHYS B CON MAT, V88, P169 HORTON GK, 1974, DYNAMICAL PROPERTIES, V1 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 JAMES RW, 1963, SOLID STATE PHYS, V15, P53 JOYNSON RF, 1954, PHYS REV, V94, P851 KARCH K, 1994, PHYS REV B, V50, P17054 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KEUNE W, 1999, NUCL RESONANT SCATTE KLEIN T, 1993, J NON-CRYST SOLIDS, V153, P562 KOHLRAUSCH R, 1854, POGG ANN PHYS CHEM, V91, P56 KOHN VG, 1998, PHYS REV B, V58, P8437 KRISCH M, 1997, ERFORSCHUNG DYNAMIK KRISCH MH, 1997, PHYS REV B, V56, P8691 KULDA J, 1996, SOLID STATE COMMUN, V99, P799 LAGOMARSINO S, 1996, J APPL PHYS, V79, P4471 LEIBOWITZ L, 1971, J APPL PHYS, V42, P2135 LIPKIN HI, 1960, ANN PHYS, V9, P332 LIPKIN HJ, 1994, PHYS REV, V52, P10073 LOVESEY SW, 1977, TOPICS CURRENT PHYSI, V3 MASCIOVECCHIO C, 1996, NUCL INSTRUM METH B, V111, P181 MASCIOVECCHIO C, 1996, PHYS REV LETT, V76, P3356 MERMET A, 1998, PHYS REV LETT, V80, P4205 MINKIEWICZ VJ, 1968, PHYS REV, V174, P267 MINKIEWICZ VJ, 1967, PHYS REV, V162, P528 MINKIEWICZ VJ, 1973, PHYS REV A, V8, P1513 MONACO G, 1998, PHYS REV LETT, V80, P2161 MONCTON DE, 1983, NUCL INSTRUM METHODS, V208, P579 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 MORKEL C, 1993, PHYS REV E, V47, P2575 MORLEY GL, 1969, PHYS REV, V180, P245 MUSGRAVE M, 1962, P R SOC, P474 NAKAYAMA T, 1998, J PHYS-CONDENS MAT, V10, PL41 NELMES RJ, 1995, PHYS REV B, V51, P15723 OKASAKI A, 1973, JPN J APPL PHYS, V12, P783 OKASAKI A, 1973, MATER RES B, V8, P545 PARAK F, 1999, NUCL RESONANT SCATTE PEIERLS RE, 1955, QUANTUM THEORY SOLID PEISL J, 1976, DEFECTS THEIR STRUCT, P381 PILGRIM WC, 1999, J NON-CRYST SOLIDS, V250, P96 PINES D, 1966, THEORY QUANTUM LIQUI PINSKER ZG, 1978, DYNAMICAL SCATTERING PLATZMAN PM, 1974, NATO ADV STUDY I SER PLATZMAN PM, 1970, PHYS REV B, V2, P3556 QUILICHINI M, 1992, J PHYS II, V2, P125 QUILICHINI M, 1990, J PHYS-PARIS, V51, P1785 RAHMAN A, 1974, PHYS REV A, V10, P368 RASOLT M, 1985, PHYS REV B, V31, P1615 REESE RA, 1971, PHYS REV A, V3, P1688 ROHLSBERGER R, 1997, HASYLAB ANN REPORT ROHLSBERGER R, 1999, IN PRESS ROHLSBERGER R, 1999, J APPL PHYS, V86, P584 ROHLSBERGER R, 1997, NUCL INSTRUM METH A, V394, P251 ROHLSBERGER R, 1999, NUCL RESONANT SCATTE ROHLSBERGER R, 1999, PHYSICA B, V263, P574 ROHLSBERGER R, 1999, PHYSICA B, V263, P581 ROHLSBERGER R, 1994, THESIS HAMBURG U ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 ROLL A, 1993, HASYLAB ANN REPORT, P849 ROUSSEAU DL, 1988, BIOL APPL RAMAN SPEC, V3 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUOCCO G, 1996, NATURE, V379, P521 SACHS G, 1930, Z PHYS, V60, P481 SACHS G, 1930, Z TECH PHYS, V64, P344 SASSAROLI M, 1986, J BIOL CHEM, V261, P3704 SASTRY S, 1991, J CHEM PHYS, V95, P7775 SCHELL N, 1996, J SYNCHROTRON RADIAT, V3, P316 SCHOBER H, 1993, J PHYS-CONDENS MAT, V5, P6165 SCHWOERERBOHNIN , 1995, THESISU ERLANGENNURN SCHWOERERBOHNIN M, 1994, HASYLAB ANN REPORT SCHWOERERBOHNIN M, 1999, IN PRESS SCHWOERERBOHNING M, 1997, P SOC PHOTO-OPT INS, V3151, P282 SCHWOERERBOHNING M, 1998, PHYS REV LETT, V80, P5572 SCHWOERERBOHNING M, 1999, PHYS STATUS SOLIDI B, V215, P177 SCHWOERERBOHNING M, 1998, REV SCI INSTRUM, V69, P3109 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, ESRF BEAMLINE HDB SETTE F, 1994, ESRF NEWSLETTER, V22 SETTE F, 1996, PHYS REV LETT, V74, P83 SETTE F, 1995, PHYS REV LETT, V75, P850 SETTE F, 1998, SCIENCE, V280, P1550 SETTLES M, 1996, BIOL MACROMOLECULAR SEYFERT C, 1996, CZECH J PHYS, V46, P471 SEYFERT C, 1999, IN PRESS J PHYS COND SEYFERT C, 1998, THESIS U ROSTOCK SHIMOJO F, 1994, J PHYS SOC JPN, V63, P141 SHYDKO YV, 1998, PHYS REV B, V57, P94968 SINN H, 1995, INT J THERMOPHYS, V16, P1135 SINN H, 1996, J PHYS-CONDENS MAT, V8, P9369 SINN H, 1997, PHYS REV LETT, V78, P1715 SINN H, 1996, THESIS U ERLANGENNUR SLUSHER RE, 1976, PHYS REV B, V13, P1086 SOKOLOV AP, 1995, PHYS REV B, V52, PR9815 STURHAHN W, 1999, IN PRESS STURHAHN W, 1999, NUCL RESONANT SCATTE STURHAHN W, 1995, PHYS REV LETT, V74, P3832 SUCK JB, 1983, GLASSY METALS 2 TOPI, V53 SUCK JB, 1993, J NON-CRYST SOLIDS, V153, P573 SUROVTSEV NV, 1998, J PHYS-CONDENS MAT, V10, PL113 SWINGI KS, 1960, PHYS REV, V120, P1093 SYKORA B, 1970, Z ANGEW PHYS, V30, P320 TEXEIRA J, 1985, PHYS REV LETT, V54, P1985 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1997, UNPUB UCHINOKURA K, 1974, J PHYS CHEM SOLIDS, V35, P171 VANARKEL AE, 1927, Z KRISTALLOGR, V27, P25 VANHOVE L, 1954, PHYS REV, V95, P249 VENKATARAMAN CT, 1996, REV SCI INSTRUM, V67, P3365 VERBENI R, 1996, J SYNCHROTRON RADIAT, V3, P62 VERKERK P, 1992, PHYSICA B, V180, P834 VONLAUE M, 1940, RONTGENSTRAHLINTERFE WALKER CB, 1956, PHYS REV, V103, P547 WALLIS G, 1969, J APPL PHYS, V40, P3946 WANG J, 1992, SCIENCE, V258, P775 WARREN BE, 1969, XRAY DIFFRACTION WARREN JL, 1967, PHYS REV, V158, P805 WINDL W, 1993, PHYS REV B, V48, P3164 TC 0 BP 171 EP 232 PG 62 JI Rep. Prog. Phys. PY 2000 PD FEB VL 63 IS 2 GA 286ZX J9 REP PROGR PHYS UT ISI:000085479700003 ER PT J AU Rohlsberger, R TI Techniques for inelastic X-ray scattering with mu eV-resolution SO HYPERFINE INTERACTIONS NR 35 AB A new spectroscopic technique is introduced that allows tuning of a mu eV-wide beam of synchrotron radiation over a range of a few meV. It relies on nuclear resonant scattering that is subject to the Doppler effect in high speed rotary motion. Two mechanisms are discussed how to extract the resonantly scattered radiation out of the broad band of synchrotron radiation: (a) grazing incidence reflection from a rotating disk in combination with a polarization filtering technique and (b) deflection of resonantly scattered radition via the recently discovered Nuclear Lighthouse Effect. Implications for inelastic X-ray scattering and elastic nuclear resonant scattering are discussed. CR BARON AQR, 1996, PHYS REV LETT, V77, P4808 BERMEJO FJ, 1994, PHYS LETT A, V195, P236 BORN M, 1978, PRINCIPLES OPTICS BURKEL E, 1991, INELASTIC SCATTERING BURKEL E, 1994, J PHYS CONDENS MAT A, V6, P225 CAPRION D, 1996, PHYS REV LETT, V77, P675 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 DOTY FD, 1996, ENCY MAGNETIC RESONA, P4475 DOTY FD, 1981, REV SCI INSTRUM, V52, P1868 FENG YP, 1993, PHYS REV LETT, V71, P537 HANNON JP, 1989, PHYSICA B, V159, P161 KROL A, 1989, PHYS REV B, V38, P8579 MANDEL L, 1995, OPTICAL COHERENCE QU MASCIOVECCHIO C, 1998, PHYS REV LETT, V80, P544 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 PHILLIPS WA, 1981, AMORPHOUS SOLIDS LOW ROHLSBERGER R, 1994, 9406 DESY HASYLAB ROHLSBERGER R, 1997, HASYLAB ANN REPORT ROHLSBERGER R, IN PRESS ROHLSBERGER R, IN PRESS PHYS REV LE ROHLSBERGER R, 1997, NUCL INSTRUM METH A, V394, P251 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUOCCO G, 1996, NATURE, V379, P521 SCHIFF LI, 1986, QUANTUM MECH SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 SIDDONS DP, 1995, NUCL INSTRUM METH B, V103, P371 SINHA SK, 1998, PHYS REV B, V57, P2740 SINN H, 1997, PHYS REV LETT, V78, P1715 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TOELLNER TS, 1996, THESIS NW U EVANSTON WANG J, 1992, SCIENCE, V258, P775 TC 2 BP 69 EP 90 PG 22 JI Hyperfine Interact. PY 2000 VL 125 IS 1-4 GA 288VZ J9 HYPERFINE INTERACTIONS UT ISI:000085586300004 ER PT J AU Smirnov, GV TI Synchrotron Mossbauer source of Fe-57 radiation SO HYPERFINE INTERACTIONS NR 31 AB A non-radioactive source of Mossbauer radiation is described for use in Mossbauer absorption and scattering spectroscopy. The radiation is generated by synchrotron X-rays in an iron borate single crystal set in diffraction conditions at the Neel temperature (75.3 degrees C). Like a conventional Mossbauer source the new Synchrotron Mossbauer (SM) source emits single- line radiation of about natural linewidth, but in addition the emitted radiation is fully recoilless, highly directed and of pure linear polarization. An extremely high suppression of the electronic scattering is achieved. The latter circumstance allows one to perform Mossbauer experiments using pulsed synchrotron radiation in a steady state mode as in a normal Mossbauer measurement. The theory of the SM source is developed. First Mossbauer spectra obtained with the SM source are shown. Applications of the SM source are discussed. CR BALDWIN GC, 1997, REV MOD PHYS, V69, P1085 BARON AQR, 1997, NUCL INSTRUM METH A, V400, P124 CHUMAKOV AI, 1990, PHYS REV B, V41, P9545 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GUSEV MV, 1993, ICAME 93 VANC GUSEV MV, 1992, THESIS KURCHATOV I M HOY GR, 1967, J CHEM PHYS, V47, P961 JASCHKE J, IN PRESS KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1973, Z NATURFORSCH A, VA 28, P1351 KAGAN Y, 1968, ZH EKSP TEOR FIZ, V27, P819 KIKUTA S, 1991, JPN J APPL PHYS 2, V30, PL1686 KOHN VG, 1994, SOV PHYS JETP, V78, P357 KUNDIG W, 1967, NUCL INSTRUM METHODS, V48, P219 MATHIAS E, 1963, ARK FYS, V24, P97 MATTHIAS E, 1962, PHYS REV, V125, P261 NIELSEN A, 1967, NUCL INSTRUM METHODS, V52, P173 PANKHURST QA, 1998, HE182 ESRF ROSE ME, 1957, ELEMENTARY THEORY AN RUBY SL, 1974, J PHYS-PARIS, V35, P209 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHUPP G, 1994, HYPERFINE INTERACT, V92, P1149 SMIRNOV GV, 1997, AIP C P, V389, P323 SMIRNOV GV, 1986, JETP LETT+, V43, P352 SMIRNOV GV, 1997, PHYS REV B, V55, P5811 SMIRNOV GV, 1994, RESONANT ANOMALOUS X, P609 STEPHENS TA, 1997, PHYS REV LETT, V78, P366 TRAMMELL GT, 1979, PHYS REV B, V19, P3835 TRAMMELL GT, 1978, PHYS REV B, V18, P165 ZELEPUKHIN MV, 1985, SEIRES GEN NUCL PHYS, V4, P76 ZELEPUKHIN MV, 1990, THESIS KURCHATOV I M TC 0 BP 91 EP 112 PG 22 JI Hyperfine Interact. PY 2000 VL 125 IS 1-4 GA 288VZ J9 HYPERFINE INTERACTIONS UT ISI:000085586300005 ER PT J AU Shvyd'ko, YV TI MOTIF: Evaluation of time spectra for nuclear forward scattering SO HYPERFINE INTERACTIONS NR 22 AB The computer program MOTIF calculates time dependences for nuclear forward scattering (NFS) of synchrotron radiation and allows fully automatic fits of experimental data. A multiple scattering technique of calculations directly in space and time is used. The source code of MOTIF is written in Fortran 77. It has been worked out since 1993 and tested on several Unix platforms by fitting the NFS time spectra of Fe-57, Sn-119, Eu- 151, Dy-161, and Ta-181 nuclei in various compounds with different time-independent and time-dependent hyperfine interactions. CR 1992, NUCL DATA SHEETS, V67, P195 AFANASEV AM, 1985, PHYS STATUS SOLIDI B, V131, P299 AFANASEV AM, 1963, SOV PHYS JETP, V18, P1139 DEAK L, 1996, PHYS REV B, V53, P6158 GERDAU E, 1986, PHYS REV LETT, V57, P1141 HAAS M, 1997, PHYS REV B, V56, P14082 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KOHN VG, 1998, PHYS REV B, V57, P5788 RANDL OG, 1994, PHYS REV B, V49, P8768 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHVYDKO YV, 1993, EUROPHYS LETT, V22, P305 SHVYDKO YV, 1999, PHYS REV B, V59, P9132 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SHVYDKO YV, 1996, PHYS REV B, V54, P14942 SHVYDKO YV, 1996, PHYS REV LETT, V77, P3232 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STEVENS JG, 1976, MOSSBAUER EFFECT DAT STURHAHN W, 1994, PHYS REV B, V49, P9285 TRAMMELL GT, 1979, PHYS REV B, V19, P3835 TRAMMELL GT, 1978, PHYS REV B, V18, P165 TC 0 BP 173 EP 188 PG 16 JI Hyperfine Interact. PY 2000 VL 125 IS 1-4 GA 288VZ J9 HYPERFINE INTERACTIONS UT ISI:000085586300009 ER PT J AU Smirnov, GV TI General properties of nuclear resonant scattering SO HYPERFINE INTERACTIONS NR 47 AB The process of nuclear resonant scattering resonant scattering is considered on the basis of an optical model. The coherent properties coherent properties of the radiation and scattering mechanism are described. The complementary pictures of gamma- ray resonant scattering in energy and time domains are presented. Special attention is paid to scattering of a gamma quantum by an ensemble of nuclei. The central concept of the theory of nuclear resonant scattering, the nuclear exciton, nuclear exciton as a delocalized nuclear excitation, is described in detail. It is shown that both temporal and spatial aspects of coherence play a crucial role in the evolution of the nuclear exciton. A large place is given to the analysis of resonant scattering of synchrotron radiation by nuclear ensembles. CR AFANASEV AM, 1967, SOV PHYS JETP, V21, P124 ARTHUR J, 1990, J APPL PHYS, V67, P5704 BARON AQR, 1997, PHYS REV LETT, V79, P2823 BERGMANN U, 1994, PHYS REV B, V49, P1513 BERGMANN U, 1994, RESONANT ANOMALOUS X, P619 BLUME M, 1968, PHYS REV, V171, P417 CHUMAKOV AI, 1997, PHYS REV B, V56, PR8455 COUSSEMENT R, 1996, PHYS REV B, V54, P16003 DEWAARD H, 1991, HYPERFINE INTERACT, V68, P143 EWALD PP, 1916, ANN PHYSIK, V49, P1 GERDAU E, 1988, HYPERFINE INTERACT, V40, P49 GERDAU E, 1986, PHYS REV LETT, V57, P1141 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 HANNON JP, 1994, RESONANT ANOMALOUS X, P565 HELISTO P, 1981, PHYS LETT A, V85, P177 HOLLAND RE, 1960, PHYS REV LETT, V4, P181 JEX H, 1997, EUROPHYS LETT, V40, P317 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1972, P INT AT EN AG S MOS, P143 KAGAN Y, 1973, Z NATURFORSCH A, VA 28, P1351 KIKUTA S, 1997, AIP, V389, P351 KIKUTA S, 1994, RESONANT ANOMALOUS X, P635 LYNCH FJ, 1960, PHYS REV, V120, P513 PERLOW GJ, 1978, PHYS REV LETT, V40, P896 POPOV SL, 1994, EUROPHYS LETT, V28, P439 RUFFER R, 1992, AIP C P, V258, P539 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1992, SYNCHROTRON RAD NEWS, V5, P25 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SIDDONS DP, 1995, NUCL INSTRUM METH B, V103, P371 SIDDONS DP, 1993, PHYS REV LETT, V70, P359 SMIRNOV GV, 1997, AIP C P, V389, P323 SMIRNOV GV, 1992, HYPERFINE INTERACT, V72, P63 SMIRNOV GV, 1986, HYPERFINE INTERACT, V27, P203 SMIRNOV GV, ICAME 97 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 SMIRNOV GV, 1996, PHYS REV LETT, V77, P183 SMIRNOV GV, 1994, RESONANT ANOMALOUS X, P609 SMIRNOV GV, 1989, ZH EKSP TEOR FIZ+, V95, P777 STURHAHN W, 1998, HYP INTERACT, V113, P57 STURHAHN W, 1996, PHYS REV B, V53, P171 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TRAMMELL GT, 1961, CHEM EFFECTS NUCLEAR, V1, P75 TRAMMELL GT, 1978, PHYS REV B, V18, P165 VANBURCK U, 1986, HYPERFINE INTERACT, V27, P219 VANBURCK U, 1998, JAHRESBERICHT HASYLA VANBURCK U, 1997, JAHRESBERICHT HASYLA, P881 TC 0 BP 31 EP 77 PG 47 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700004 ER PT J AU Ruffer, R Ruter, HD Gerdau, E TI Hyperfine spectroscopy in diffraction geometry SO HYPERFINE INTERACTIONS NR 56 AB With the advent of third generation synchrotron radiation sources nuclear Bragg diffraction became a powerful technique for the determination of hyperfine parameters and the electronic and magnetic structure of single crystals. Basic features are discussed theoretically and experimentally and are illustrated by examples such as YIG, FeBO3, alpha-Fe2O3, and Fe3BO6. CR 1998, SPRING 8 ANN REPORTS 1997, SPRING 8 ANN REPORTS 1996, SPRING 8 ANN REPORTS *ESRF, 1993, ESRF ANN REP, P87 AFANASEV AM, 1965, JETP LETT, V2, P81 ALP EE, 1994, HYPERFINE INTERACT, V90, P323 ANDLAUER B, 1977, PHYSICA B & C, V89, P50 BATTERMAN BW, 1964, REV MOD PHYS, V36, P681 BERNAL I, 1963, ACTA CRYSTALLOGR, V16, P849 BROWN DE, 1992, PHYS REV LETT, V69, P699 BROWN DE, 1993, THESIS STANFORD U ST CAPITAN M, 1999, IN PRESS CARTER GC, 1977, PROGR MATH SCI, V20 CHUMAKOV AI, 1991, EUROPHYS LETT, V17, P269 CHUMAKOV AI, 1992, HYPERFINE INTERACT, V71, P1341 DIEHL R, 1975, ACTA CRYSTALLOGR B, V31, P1662 DIEHL R, 1975, SOLID STATE COMMUN, V17, P743 FAIGEL G, 1988, PHYS REV LETT, V61, P2794 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 FRAUENFELDER H, 1968, ALPHA BETA GAMMA RAY, V2, P1156 GERDAU E, 1986, PHYS REV LETT, V57, P1141 GERDAU E, 1985, PHYS REV LETT, V54, P835 HANNON JP, 1989, PHYSICA B, V159, P161 HASTINGS JB, 1989, PHYS REV LETT, V63, P2252 HOLLATZ R, 1990, HYPERFINE INTERACT, V58, P2457 HOLLATZ R, 1988, HYPERFINE INTERACT, V42, P1141 HOLLATZ R, 1992, THESIS U HAMBURG HAM JASCHKE J, 1999, NUCL INSTRUM METH B, V155, P189 JASCHKE J, 1999, THESI SU HAMBURG HAM KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1978, PHYS LETT A, V68, P339 KAMZIN AS, 1993, ZH EKSP TEOR FIZ+, V104, P3489 KIKUTA S, 1994, NUCL RESONANT SCATTE, P635 KOTRBOVA M, 1985, J CRYST GROWTH, V71, P607 RUFFER R, 1986, 8602 HASYLAB RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1992, HYPERFINE INTERACT, V71, P1353 RUFFER R, 1990, HYPERFINE INTERACT, V58, P2467 RUFFER R, 1988, HYPERFINE INTERACT, V42, P1161 RUFFER R, 1989, PHYS REV LETT, V63, P2677 RUFFER R, 1987, PHYS REV LETT, V58, P2359 RUFFER R, 1985, THESIS U HAMBURG HAM RUTER HD, 1990, HYPERFINE INTERACT, V58, P2473 RUTER HD, 1990, HYPERFINE INTERACT, V58, P2477 SIDDONS DP, 1989, PHYS REV LETT, V62, P1384 SMIRNOV GV, 1986, HYPERFINE INTERACT, V27, P203 STURHAHN W, 1991, EUROPHYS LETT, V14, P821 STURHAHN W, 1994, PHYS REV B, V49, P9285 THIESS H, 1999, IN PRESS TRAMMELL GT, 1978, PHYS REV B, V18, P165 VANBURCK U, 1986, HYPERFINE INTERACT, V27, P219 VANBURCK U, 1987, PHYS REV LETT, V59, P355 WILLS BTM, 1952, P PHYS SOC B, V65, P950 WINKLER G, 1981, VIEWEG TRACTS PURE A, V5 WINKLER H, 1983, Z PHYS B CON MAT, V49, P331 WOLFE R, 1969, SOLID STATE COMMUN, V7, P949 TC 0 BP 405 EP 426 PG 22 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700012 ER PT J AU Chumakov, AI Niesen, L Nagy, DL Alp, EE TI Nuclear resonant scattering of synchrotron radiation by multilayer structures SO HYPERFINE INTERACTIONS NR 51 AB Multilayer structures form a particular class of samples employed in nuclear resonant scattering of synchrotron radiation. Their specific properties lead to unusual energy and time characteristics of nuclear resonant scattering, which differ much from those of single crystals. The analysis of these distinctions is presented. Several approaches to achieve pure nuclear reflections with multilayers are discussed. Finally, we review the studies of multilayer structures with nuclear resonant scattering of synchrotron radiation. CR AFANASEV AM, 1965, JETP LETT, V2, P81 AFANASEV AM, 1990, PHYS STATUS SOLIDI A, V122, P459 AFANASEV AM, 1973, SOV PHYS JETP, V37, P987 AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BARON AQR, 1994, PHYS REV B, V50, P10354 BOTTYAN L, 1998, HYPERFINE INTERACT, V113, P295 CHUMAKOV AI, 1992, JETP LETT+, V55, P509 CHUMAKOV AI, 1991, JETP LETT+, V53, P271 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 CHUMAKOV AI, 1991, PISMA ESKP TEOR FIZ, V54, P220 DEAK L, 1993, CONDENSED MATTER STU, P269 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DEAK L, 1999, J APPL PHYS, V85, P1 GUSEV MV, 1993, JETP LETT+, V58, P257 HANNON JP, 1985, PHYS REV B, V32, P6374 HJORVARSSONB, UNPUB HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 KABANIC VA, 1989, VERSION NUCL RESONAN KIESSIG H, 1931, ANNLN PHYS, V10, P769 KOHLHEPP J, 1997, PHYS REV B, V55, P696 KOHN VG, 1998, JETP LETT, V87, P1 MATTSON JE, 1993, PHYS REV LETT, V71, P185 MIRZABABAEV RM, 1971, PHYS LETT A, V37, P441 MORUP S, 1976, APPL PHYS, V11, P63 NAGY DL, 1997, BALKAN PHYS LETT, V5, P240 NAGY DL, 1997, CONDENSED MATTER STU, P17 NAGY DL, 1999, P MOSSB SPECTR MAT S, P323 NIESEN L, 1998, PHYS REV B, V58, P8590 NIESEN L, UNPUB PARRATT LG, 1954, PHYS REV, V45, P359 ROHLSBERGER R, 1994, 9406 DESY HASYLAB ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1993, J APPL PHYS, V74, P1933 ROHLSBERGER R, 1994, THESIS HAMBURG U ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHINJO T, 1991, SURF SCI REP, V21, P49 SHVYDKO YV, 1989, J PHYS-CONDENS MAT, V1, P10563 SMIRNOV GV, 1970, JETP LETT, V9, P70 SMIRNOV GV, 1980, THESIS KURCHATOV I A SMIRNOV GV, 1980, ZH EKSP TEOR FIZ+, V51, P603 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TRAMMELL GT, 1977, AIP C P, V38, P46 TRAMMELL GT, 1961, CHEM EFFECTS NUCLEAR, V1, P75 VANBURCK U, 1980, J PHYS C SOLID STATE, V13, P4511 VANBURCK U, 1990, J PHYS-CONDENS MAT, V2, P3989 VANBURCK U, 1987, PHYS REV LETT, V59, P355 VANDENBERGHE RE, 1989, MOSSBAUER SPECTROSCO, V3, P150 VANDERHEIJDEN PAA, 1996, J MAGN MAGN MATER, V159, PL293 VOOGT FC, 1998, PHYS REV B, V57, PR8107 TC 1 BP 427 EP 454 PG 28 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700013 ER PT J AU Rohlsberger, R TI Nuclear resonant scattering of synchrotron radiation from thin films SO HYPERFINE INTERACTIONS NR 44 AB The optical properties of thin films containing Mossbauer isotopes undergo dramatic changes in the vicinity of a nuclear resonance. Remarkable phenomena are observed in the energetic and temporal response of X-rays resonantly scattered in grazing incidence geometry. These properties allow an effective discrimination of the resonantly scattered radiation from the nonresonant electronic charge scattering. In contrast to Bragg scattering from single crystals, the reflectivity of film systems can be tailored by their design and the way of preparation. As a result, several optical elements have been developed for ultra-narrow bandpass filtering of synchrotron radiation: Grazing-Incidence Antireflection (GIAR) films, nuclear resonant multilayers and reflection gratings. Moreover, resonant scattering in grazing incidence geometry is a very attractive tool to study properties of thin films themselves. This has led to applications, e.g., in the study of surface magnetism and the determination of vibrational properties of thin films. Such investigations benefit from the outstanding brilliance of third-generation synchrotron radiation sources, extending the sensitivity of the method into the monolayer regime. CR ALP EE, 1993, PHYS REV LETT, V70, P3351 ANDREEVA MA, 1991, PHYS STATUS SOLIDI A, V127, P455 BANSMANN J, IN PRESS BARON AQR, 1994, PHYS REV B, V50, P10354 BERNSTEIN S, 1963, PHYS REV, V132, P1625 BETHGE H, 1995, SURF SCI, V331, P878 BORN M, 1978, PRINCIPLES OPTICS CHUMAKOV AI, 1991, EUROPHYS LETT, V17, P269 CHUMAKOV AI, 1992, JETP LETT+, V55, P509 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 ELMERS HJ, 1995, PHYS REV LETT, V75, P2031 FENG YP, 1993, PHYS REV LETT, V71, P537 FROST JC, 1985, APPL PHYS LETT, V47, P581 GERDAU E, 1990, HYPERFINE INTERACT, V58, P2433 GERDAU E, 1985, PHYS REV LETT, V54, P835 GRADMANN U, 1986, APPL PHYS A-MATER, V39, P101 HANNON JP, 1985, PHYS REV B, V32, P5068 HANNON JP, 1985, PHYS REV B, V32, P6363 HANNON JP, 1979, PHYS REV LETT, V43, P636 KISHIMOTO S, 1992, REV SCI INSTRUM, V63, P824 KOLBECK C, 1995, THESIS U HAMBURG LAGOMARSINO S, 1996, J APPL PHYS, V79, P4471 LUCAS CA, 1991, EUROPHYS LETT, V14, P343 METGE J, 1990, NUCL INSTRUM METH A, V292, P187 NAGY DL, 1997, BALKAN PHYS LETT, V5, P240 NIESEN L, 1998, PHYS REV B, V58, P8590 ROHLSBERGER R, 1994, 9406 DESY HASYLAB ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1994, HYPERFINE INTERACT, V92, P1107 ROHLSBERGER R, 1999, J APPL PHYS, V86, P584 ROHLSBERGER R, 1993, J APPL PHYS, V74, P1933 ROHLSBERGER R, 1997, NUCL INSTRUM METH A, V394, P251 ROHLSBERGER R, 1999, PHYSICA B, V263, P581 ROHLSBERGER R, 1994, THESIS U HAMBURG ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SIDDONS DP, 1995, NUCL INSTRUM METH B, V103, P371 STURHAHN W, 1999, J MAGN MAGN MATER, V198, P590 STURHAHN W, 1994, PHYS REV B, V49, P9285 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TOLAN M, 1992, EUROPHYS LETT, V20, P223 VANBURCK U, 1992, PHYS REV B, V46, P6207 WANG J, 1992, SCIENCE, V258, P775 TC 0 BP 455 EP 479 PG 25 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700014 ER PT J AU Lubbers, R Wortmann, G Grunsteudel, HF TI High-pressure studies with nuclear scattering of synchrotron radiation SO HYPERFINE INTERACTIONS NR 72 AB The nuclear forward scattering (NFS) of synchrotron radiation is especially suited for probing magnetism at high pressure (h.p.), here in the Mbar range, by the nuclear resonances of Fe-57 and Eu-151. We report on high-pressure NFS studies with the 14.4 keV transition of Fe-57, presenting at first the pressure induced alpha-epsilon transformation in iron. Then a systematic study of magnetic RFe2 Laves phases of cubic C15 structure (YFe2, GdFe2) and hexagonal C14 structure (ScFe2, TiFe2) at pressures up to 100 GPa (= 1 Mbar) is given. First, high-pressure NFS studies performed with the 21.5 keV resonance of Eu-151 are also presented, probing valence transitions in EuNi2Ge2 and the magnetism in the CsCl-type h.p. phase of EuTe. Finally, we discuss future applications, such as high-pressure studies of phonon densities of states, using the inelastic channel of nuclear scattering of synchrotron radiation. CR ABDELMEGUID MM, 1990, PHYS REV B, V42, P1048 ALP EE, 1993, PHYS REV LETT, V70, P3351 ARMITAGE JGM, 1986, J PHYS F MET PHYS, V16, PL141 BANCROFT D, 1956, J APPL PHYS, V27, P291 BARLA A, IN PRESS BARON AQR, 1994, NUCL INSTRUM METH A, V343, P517 BARON AQR, 1996, PHYS REV LETT, V77, P4808 BAUMINGER ER, 1978, MOSSBAUER ISOMER SHI, P661 BROUHA M, 1973, J APPL PHYS, V44, P1813 BURZO E, 1990, LANDOLTBORNSTEIN 3, V19 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1998, PHYS REV B, V58, P254 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CORT G, 1982, J APPL PHYS, V53, P2064 DIFABRIZIO, 1998, J VAC SCI TECH B, V11, P3855 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 FORMAN RA, 1972, SCIENCE, V176, P284 FREUND AK, 1998, P SOC PHOTO-OPT INS, V3448, P1 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GONCHARENKO IN, 1997, EUROPHYS LETT, V37, P633 GONCHARENKO IN, 1998, PHYS REV LETT, V80, P1082 GRUNSTEUDEL HF, 1998, AUST J PHYS, V51, P453 GRUNSTEUDEL HF, 1996, HYPERFINE INTERACT C, V1, P509 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 HESSE HJ, 1997, J ALLOY COMPD, V246, P220 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 JAYARAMAN A, 1974, PHYS REV B, V9, P2513 KEAVNEY DJ, 1995, PHYS REV LETT, V74, P4531 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KISHIMOTO S, 1991, NUCL INSTRUM METH A, V309, P603 KLEIN UF, 1976, J MAGN MAGN MATER, V3, P50 KOYAMA I, 1996, JPN J APPL PHYS 1, V35, P6297 LEUPOLD O, 1996, EUROPHYS LETT, V35, P671 LU J, 1999, THESIS U PADERBORN LU JG, 1996, ITAL PHY SO, V50, P243 LUBBERS R, 1998, HS583 ESRF LUBBERS R, IN PRESS LUBBERS R, 1994, THESIS PADERBORN MORI K, 1998, J ALLOY COMPD, V270, P35 MOSER J, 1979, J MAGN MAGN MATER, V12, P77 MOSER J, UNPUB NASU S, 1994, HYP INTERACT, V90, P54 NISHIHARA Y, 1985, J PHYS SOC JPN, V54, P1122 NOWIK I, 1983, HYPERFINE INTERACT, V13, P89 PASTERNAK MP, 1996, MOSSBAUER SPECTROSCO, V2, P167 PASTERNAK MP, 1997, PHYS REV LETT, V79, P5046 PIPKORN DN, 1964, PHYS REV, V135, PA1604 PLEINES M, 1999, HYP INTERACT, V120, P181 PLEINES M, 1998, THESIS U PADERBORN POUND RV, 1961, PHYS REV LETT, V4, P337 REIS G, UNPUB REISS G, 1999, THESIS PADERBORN RUBY SL, 1974, J PHYS PARIS C, V6, P209 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER W, 1994, ESRF HIGHLIGHTS, P36 RUFFER W, 1994, ESRF NEWSLETTER, V22, P12 SAUER C, 1983, J MAGN MAGN MATER, V38, P225 SETO M, 1995, PHYS REV LETT, V74, P3828 SNIGIREV A, 1996, NATURE, V384, P49 STRECKER M, 1999, HYP INTERACT, V120, P187 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TAYLOR RD, 1991, J APPL PHYS, V69, P6126 TOELLNER T, 1992, SPIE, V1740, P218 VANBURCK U, 1992, PHYS REV B, V46, P6207 VONBARGEN N, 1990, HIGH PRESSURE RES, V6, P133 WILLIAMSON DL, 1978, MOSSBAUER ISOMER SHI, P317 WILLIAMSON DL, 1972, PHYS REV B, V6, P6126 WOHLFARTH EP, 1981, PHYSICS SOLIDS HIGH, P175 WORTMANN G, 1991, PHYS REV B, V43, P5261 ZHANG L, 1999, AM MINERAL, V84, P447 TC 0 BP 529 EP 559 PG 31 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700017 ER PT J AU Leupold, O Winkler, H TI Relaxation experiments with synchrotron radiation SO HYPERFINE INTERACTIONS NR 26 AB Relaxation phenomena show up in standard energy-domain Mossbauer spectra via line broadening. The evaluation of such spectra is in most cases done by applying the stochastic theory of lineshape mainly developed in the 60's and 70's. Due to the time structure and the polarization of the synchrotron radiation nuclear resonance forward scattering in the time domain gives valuable additional information on relaxation mechanisms. We report here mainly on Nuclear Forward Scattering (NFS) experiments, investigating the paramagnetic relaxation of high-spin Fe2+ and Fe3+ ions, superparamagnetic relaxation and briefly on recent investigations of charge fluctuations in Eu3S4. CR ALP EE, 1995, NUCL INSTRUM METH B, V97, P526 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARTON CMP, 1973, MOSSBAUER EFFECT DAT, P395 BERKOOZ O, 1968, SOLID STATE COMMUN, V6, P185 BHARGAVA SC, 1979, J PHYS C SOLID STATE, V12, P2879 BLUME M, 1968, PHYS REV, V174, P351 BLUME M, 1962, PHYS REV, V127, P1587 BOMINAAR EL, 1992, INORG CHEM, V31, P1845 BUNKER BC, 1982, J AM CHEM SOC, V104, P4593 CLAUSER MJ, 1971, PHYS REV B, V3, P583 EDMONDS RA, 1957, ANGULAR MOMENTUM QUA GRANDJEAN F, 1989, MOSSBAUER SPECTROSCO, V3, P513 HAAS M, 1998, IN PRESS PHYS REV HAAS M, 1997, PHYS REV B, V56, P14082 LEUPOLD O, 1996, 1 HASYLAB, P73 LEUPOLD O, 1996, EUROPHYS LETT, V35, P671 LEUPOLD O, 1998, HYPERFINE INTERACT, V113, P81 LEUPOLD O, 1996, ITAL PHY SO, V50, P857 MORUP S, 1980, APPLICATIONS MOSSBAU, V2, P1 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 STURHAHN W, 1994, PHYS REV B, V49, P9285 THOSAR BV, 1983, ADV MOSSBAUER SPECTR TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 WICKMAN HH, 1966, MOSSBAUER EFFECT MET, V2, P39 WINKLER H, 1994, HYPERFINE INTERACT, V91, P841 WINKLER H, 1988, J CHEM PHYS, V89, P732 TC 0 BP 571 EP 593 PG 23 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700019 ER PT J AU Leupold, O Chumakov, AI Alp, EE Sturhahn, W Baron, AQR TI Noniron isotopes SO HYPERFINE INTERACTIONS NR 50 AB This article reports on experimental developments and first results for Mossbauer isotopes other than Fe-57. We will restrict ourselves to basic features of the resonances of Tm- 169, Sn-119, Kr-83, Ta-181, and Eu-151 and want to point out remarkable differences in instrumentation - like monochromator design - compared with Fe-57. Some applications can be found in other sections of this issue. CR ALP EE, 1995, NUCL INSTRUM METH B, V97, P526 ALP EE, 1993, PHYS REV LETT, V70, P3351 BARON AQR, 1996, EUROPHYS LETT, V34, P331 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARON AQR, 1995, PHYS REV B, V51, P16384 BARON AQR, 1997, UNPUB BARTON CMP, 1973, MOSSBAUER EFFECT DAT, P395 BERGMANN U, 1994, PHYS REV B, V50, P5957 BOND WL, 1960, ACTA CRYSTALLOGR, V13, P814 CHUMAKOV AI, IN PRESS CHUMAKOV AI, 1998, PHYS REV B, V58, P254 CHUMAKOV AI, 1995, PHYS REV LETT, V75, P549 CHUMAKOV AI, UNPUB DORNOW VA, 1979, NUCL INSTRUM METHODS, V163, P491 FIRESTONE RB, 1991, NUCL DATA SHEETS, V62, P101 GOLDWIRE HC, 1977, PHYS REV B, V16, P1875 GRANDJEAN F, 1989, MOSSBAUER SPECTROSCO, V3, P513 HARMATZ B, 1976, NUCL DATA SHEETS, V19, P33 HAZONI Y, 1962, PHYS LETT, V2, P337 HEIDEMANN A, 1976, PHYS REV LETT, V36, P213 HU M, 1999, NUCL INSTRUM METHODS, V430, P430 ISHIKAWA T, 1992, REV SCI INSTRUM, V43, P824 JOHNSON DE, 1995, PHYS REV B, V51, P7909 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1969, JETP LETT, V9, P91 KAINDL G, 1970, PHYS LETT B, V32, P364 KAINDL G, 1973, PHYS REV B, V8, P1912 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KISHIMOTO S, 1998, J SYNCHROTRON RADIAT, V5, P275 KISHIMOTO S, 1992, REV SCI INSTRUM, V63, P824 KOYAMA I, 1996, JPN J APPL PHYS 1, V35, P6297 LEUPOLD O, 1996, EUROPHYS LETT, V35, P671 LEUPOLD O, 1996, ITAL PHY SO, V50, P857 METGE J, 1990, NUCL INSTRUM METH A, V292, P187 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 MOUCHEL D, 1981, Z PHYS A-HADRON NUCL, V300, P85 PLEINES M, 1998, THESIS U PADERBORN ROHLSBERGER R, 2000, PHYS REV LETT, V84 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAUER C, 1968, PHYS REV LETT, V21, P961 SAUER C, 1969, Z PHYS, V222, P439 SINGH B, 1988, NUCL DATA SHEETS, V55, P185 STURHAHN W, 1991, EUROPHYS LETT, V14, P821 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1991, THESIS U HAMBURG TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TOELLNER TS, 1996, THESIS NW U TRAMMELL GT, 1969, PHYS REV, V180, P337 VOITOVETSKII VK, 1981, PHYS LETT A, V83, P81 TC 0 BP 611 EP 631 PG 21 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700021 ER PT J AU Chumakov, AI Sturhahn, W TI Experimental aspects of inelastic nuclear resonance scattering SO HYPERFINE INTERACTIONS NR 50 AB We present an introduction to the technique of inelastic nuclear scattering. The details of experimental setup, instrumentation, and measuring procedure are discussed. The typical appearance of experimental results and a brief description of data treatment methods are illustrated by examples of recent studies. Finally, the scope of information on lattice dynamics that is accessible with inelastic nuclear scattering is outlined. CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 ALP EE, 1998, ADV PHOTON SOURCE RE, V1, P9 ALP EE, 1994, HYPERFINE INTERACT, V90, P323 BARON AQR, 1996, EUROPHYS LETT, V34, P331 BARON AQR, 1995, PHYS REV B, V51, P16384 BRAND R, 1999, PHYS REV B, V59, P1415 BROVMAN EG, 1966, FIZ TVERD TELA, V8, P1120 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1997, P SOC PHOTO-OPT INS, V3151, P262 CHUMAKOV AI, 1998, PHYS REV B, V58, P254 CHUMAKOV AI, 1997, PHYS REV B, V56, PR8455 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 DICKEY JM, 1969, PHYS REV, V188, P1407 FULTZ B, 1998, PHYS REV LETT, V80, P3304 FULTZ B, 1997, PHYS REV LETT, V79, P937 GRUNSTEUDEL H, 1998, HYPERFINE INTERACT, V113, P311 HARAMI T, 1998, HYPERFINE INTERACT C, V3, P61 HESSION PM, UNPUB HU MY, 1999, IN PRESS NUCL INST A JOHNSON DW, 1974, J PHYS D APPL PHYS, V7, P771 JONES W, 1985, THEORETICAL SOLID ST, V1, P237 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KIKUTA S, 1996, AIP C P, V389, P351 KOHN VG, 1998, PHYS REV B, V58, P8437 LIPKIN HI, 1960, ANN PHYS, V9, P332 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 LUBBERS R, 1998, HS583 ESRF MENENDEZ J, 1984, PHYS REV B, V29, P2051 METGE J, 1996, THESIS U HAMBURG MILLER AP, 1971, CAN J PHYS, V49, P704 MINKIEWICZ VJ, 1967, PHYS REV, V162, P528 REVOL JL, 1994, SYNCHROTRON RAD NEWS, V7, P23 ROHLSBERGER R, 1999, PHYSICA B, V263, P581 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHOBER HR, 1981, LANDOLTBORNSTEIN, V3, P56 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SETO M, 1996, NUOVO CIMENTO D, V18, P381 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, 1999, J MAGN MAGN MATER, V198, P590 STURHAHN W, 1996, PHYS REV B, V53, P171 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1997, UNPUB ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 0 BP 781 EP 808 PG 28 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700027 ER PT J AU Parak, F Achterhold, K TI Protein dynamics studied on myoglobin SO HYPERFINE INTERACTIONS NR 40 AB Two methods of inelastic scattering of synchrotron radiation were used to measure the dynamics of myoglobin in the temperature range from T = 60 K to 300 K. The inelastic Rayleigh scattering of metmyoglobin was analyzed by delayed elastic nuclear forward scattering of an iron foil. This yields averaged information on all phonons within the sample. The mean square displacement of the atoms due to this dynamics is [x(2)]/T = 2.1 . 10(-4) Angstrom(2) K-1 on average. Complementary information was obtained by phonon assisted nuclear scattering on deoxymyoglobin. This method selects the phonons coupling to the iron atom in the active center of the protein. The mean square displacement of the iron was measured to be [x(2)]/T = 0.6 . 10(-4) Angstrom(2) K-1. The results are in agreement with Mossbauer absorption experiments in the low temperature range. Above 200 K the results allow one to distinguish between harmonic and quasidiffusive dynamics within the protein. A comparison with Raman spectroscopy is made. CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 ASHER SA, 1981, METHOD ENZYMOL, V76, P371 AUSTIN RH, 1975, BIOCHEMISTRY-US, V14, P5355 CASE DA, 1979, J MOL BIOL, V132, P343 CHANG I, 1996, CHEM PHYS, V212, P221 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 CUSACK S, 1990, BIOPHYS J, V58, P243 DIETRICH S, 1989, PHYS REV B, V39, P8873 EVANS SV, 1990, J MOL BIOL, V213, P885 FRAUENFELDER H, 1979, NATURE, V280, P558 HARTMANN H, 1996, P NATL ACAD SCI USA, V93, P7013 HARTMANN H, 1982, P NATL ACAD SCI-BIOL, V79, P4967 JOHNSON DW, 1974, J PHYS D APPL PHYS, V7, P771 KENDREW JC, 1957, P ROY SOC LOND A MAT, V238, P305 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KRUPYANSKII YF, 1990, HYPERFINE INTERACT, V53, P59 KRUPYANSKII YF, 1982, Z NATURFORSCH C, V37, P57 KUBO R, 1962, J PHYS SOC JPN, V17, P1100 LAMB DC, 1998, EUR BIOPHYS J BIOPHY, V27, P113 LIPKIN HI, 1960, ANN PHYS, V9, P332 LOVESEY SW, 1984, THEORY NEUTRON SCATT MELCHERS B, 1996, BIOPHYS J, V70, P2092 NIENHAUS GU, 1989, HYPERFINE INTERACT, V47-8, P299 NIENHAUS GU, 1992, P NATL ACAD SCI USA, V89, P2902 PARAK F, 1971, ACTA CRYSTALLOGR A, V27, P573 PARAK F, 1987, EUR BIOPHYS J BIOPHY, V15, P237 PARAK F, 1992, HYPERFINE INTERACT, V71, P1319 PARAK F, 1982, J MOL BIOL, V161, P177 PARAK F, 1984, P NATL ACAD SCI-BIOL, V81, P7088 PERUTZ MF, 1966, J MOL BIOL, V21, P199 PRUSAKOV VE, 1995, BIOPHYS J, V68, P2524 ROUSSEAU DL, 1988, BIOL APPLICATIONS RA, V3, P133 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SASSAROLI M, 1986, J BIOL CHEM, V261, P3704 SCHLICHTING I, 1996, NATURE, V317, P808 SCHMIDT M, 1996, INT J QUANTUM CHEM, V59, P263 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTLES M, 1996, BIOL MACROMOLECULAR, P3 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TENG TY, 1994, NAT STRUCT BIOL, V1, P701 TC 0 BP 825 EP 840 PG 16 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700029 ER PT J AU Grunsteudel, H Paulsen, H Winkler, H Trautwein, AX Toftlund, H TI High-spin low-spin transition SO HYPERFINE INTERACTIONS NR 21 AB Temperature dependent nuclear inelastic-scattering (NIS) of synchrotron radiation was applied to investigate both spin states of the spin-crossover complex [Fe(tpa)(NCS)(2)] (tpa = tris(2-pyridylmethyl)amine). A remarkable increase of the iron- ligand bond stretching upon spin crossover has unambiguously been identified by comparing the measured NIS spectra with theoretical simulations based on density-functional calculations. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BECKE AD, 1993, J CHEM PHYS, V98, P5648 BINKLEY JS, 1980, J AM CHEM SOC, V102, P939 FRISCH MJ, 1995, GAUSSIAN 94 GORDON MS, 1982, J AM CHEM SOC, V104, P2797 GRUNSTEUDEL H, 1998, HYPERFINE INTERACT, V113, P311 GRUNSTEUDEL H, 1998, THESIS LUBEK GUTLICH P, 1994, ANGEW CHEM, V106, P2109 HOJLAND F, 1983, ACTA CHEM SCAND A, V37, P251 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KONIG E, 1991, STRUCT BOND, V76, P51 LEE CT, 1988, PHYS REV B, V37, P785 LIPKIN HI, 1960, ANN PHYS, V9, P332 PAULSEN H, 1999, PHYS REV B, V59, P975 PENG CY, 1996, J COMPUT CHEM, V17, P49 PIETRO WJ, 1982, J AM CHEM SOC, V104, P5039 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TAKEMOTO JH, 1973, INORG CHEM, V12, P705 TOELLNER T, 1992, SPIE, V1740, P218 WONG MW, 1996, CHEM PHYS LETT, V256, P391 TC 0 BP 841 EP 846 PG 6 JI Hyperfine Interact. PY 1999 VL 123 IS 1-8 GA 288VG J9 HYPERFINE INTERACTIONS UT ISI:000085584700030 ER PT J AU Grunsteudel, H Rusanov, V Winkler, H Meyer-Klaucke, W Trautwein, AX TI Mossbauer spectroscopy in the time domain applied to the study of single-crystalline guanidinium nitroprusside SO HYPERFINE INTERACTIONS NR 10 AB Guanidinium nitroprusside GNP, (CN3H6)(2)[Fe(CN)(5)NO] has been investigated in single-crystalline form by nuclear resonant forward scattering (NFS) using synchrotron radiation (Mossbauer spectroscopy in the time domain). This method provides a direct measure of effective absorber thickness and therefore also of the Lamb-Mossbauer factor f(LM). GNP has the advantage that all [Fe(CN5)NO](2-) anions are practically aligned within the crystal. For the two different crystal orientations, with the crystallographic a- and c-direction parallel to the synchrotron beam, respectively, we have obtained f(LM)((a)) = 0.122(10) and f(LM)((c)) = 0.206(10), i.e., GNP exhibits significant anisotropic vibrational behavior. The quantum beat pattern of the NFS spectra obtained for the two different crystal orientations is discussed on the basis of radiation characteristics of the polarized synchrotron beam and the multipole transitions of oriented Fe-57 nuclei. CR GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GOLDANSKII VI, 1968, CHEM APPLICATIONS MO, P102 GONSER U, 1981, MOSSBAUER SPECTROSCO, V2, P99 RETZLAFF C, 1987, THESIS U KOLN RETZLAFF C, 1989, Z KRISTALLOGR, V189, P141 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUSANOV V, 1996, J SOLID STATE CHEM, V123, P39 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1980, THESIS KURCHATOV I A STURHAHN W, 1994, PHYS REV B, V49, P9285 TC 1 BP 345 EP 351 PG 7 JI Hyperfine Interact. PY 1999 VL 122 IS 3-4 GA 258XG J9 HYPERFINE INTERACTIONS UT ISI:000083864500012 ER PT J AU Chumakov, AI TI Phonon spectroscopy with nuclear inelastic scattering of synchrotron radiation SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH NR 43 AB A new approach to phonon spectroscopy has been recently established using nuclear inelastic resonant scattering of synchrotron radiation. The review presents an introduction to this new method. CR ALP EE, 1994, HYPERFINE INTERACT, V90, P323 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARON AQR, 1995, PHYS REV B, V51, P16384 BERGMANN U, 1994, PHYS REV B, V49, P1513 BRAND RA, 1999, PHYS REV B, V59, PR1414 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1999, NUCL RESONANT SCATTE CHUMAKOV AI, 1997, P SOC PHOTO-OPT INS, V3151, P262 CHUMAKOV AI, 1998, PHYS REV B, V58, P254 CHUMAKOV AI, 1997, PHYS REV B, V56, PR8455 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 FULTZ B, 1998, PHYS REV LETT, V80, P3304 FULTZ B, 1997, PHYS REV LETT, V79, P937 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GRUNSTEUDEL H, 1998, HYPERFINE INTERACT, V113, P311 HARAMI T, 1998, HYPERFINE INTERACT C, V3, P61 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KEUNE W, 1999, NUCL RESONANT SCATTE KOHN VG, 1998, PHYS REV B, V58, P8437 LIPKIN HI, 1960, ANN PHYS, V9, P332 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 LUBBERS R, 1998, HS583 ESRFS PARAK F, 1999, NUCL RESONANT SCATTE ROHLSBERGER R, 1999, PHYSICA B, V263, P581 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHOBER HR, 1981, LANDOLTBORNSTEIN, V3, P56 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, IN PRESS J MAGN MAGN STURHAHN W, 1999, NUCL RESONANT SCATTE STURHAHN W, 1909, NUCL RESONANT SCATTT STURHAHN W, 1996, PHYS REV B, V53, P171 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 VANBURCK U, 1992, PHYS REV B, V46, P6207 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 0 BP 165 EP 175 PG 11 JI Phys. Status Solidi B-Basic Res. PY 1999 PD SEP VL 215 IS 1 GA 234ME J9 PHYS STATUS SOLIDI B-BASIC RE UT ISI:000082487800028 ER PT J AU Andreeva, MA TI Space-time characteristics of nuclear resonant excitation during Bragg reflection from multilayers SO JETP LETTERS NR 19 AB Mossbauer experiments using synchrotron radiation have opened up a new method for investigating nuclear-resonance scattering - in the time domain. It is shown that the field distribution in a multilayer structure, including periodic interlayers of a resonant isotope, under Bragg reflection conditions is substantially different in the energy and time differential regimes of investigation. For separate delay times the field does not decay into the medium, but rather it undergoes complicated dynamic beats. The positions of the antinodes of the "energy" and "temporal" standing waves are also different. In consequence the energy (Mossbauer) and temporal spectra of nuclear resonant reflection contain substantially different information about the structure of the films. (C) 1999 American Institute of Physics. [S0021-3640(99)00911-1]. CR AFANASEV AM, 1973, SOV PHYS JETP, V37, P987 ANDREEVA MA, 1999, IN PRESS J ALLOYS CO ANDREEVA MA, 1999, IN PRESS POVERKHNOST ANDREEVA MA, 1994, SOV PHYS JETP, V78, P956 FAIGEL G, 1988, PHYS REV LETT, V61, P2794 HAAS M, 1987, PHYS LETT A, V124, P370 KAGAN Y, 1978, PHYS LETT A, V68, P339 KOVALCHUK MV, 1986, SOV PHYS USP, V29, P426 LYNCH FJ, 1960, PHYS REV, V120, P513 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SEMENOV VG, 1999, IN PRESS IZV AKAD F SHVYDKO YV, 1989, J PHYS-CONDENS MAT, V1, P10563 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1986, HYPERFINE INTERACT, V27, P203 SMIRNOV GV, 1999, NUCL RESONANCE SCATT SPILLER E, 1972, APPL PHYS LETT, V20, P365 STURHAHN W, 1996, PHYS REV B, V53, P171 VANBURCK U, 1987, PHYS REV LETT, V59, P355 ZHELUDEVA SI, 1999, POVERKHNOST, P28 TC 1 BP 863 EP 868 PG 6 JI Jetp Lett. PY 1999 PD JUN 10 VL 69 IS 11 GA 215XL J9 JETP LETT-ENGL TR UT ISI:000081408700009 ER PT J AU Brand, RA Coddens, G Chumakov, AI Calvayrac, Y TI Partial phonon density of states of Fe in an icosahedral quasicrystal (Al62Cu25.5Fe12.5)-Fe-57 by inelastic nuclear- resonant absorption of 14.41-keV synchrotron radiation SO PHYSICAL REVIEW B NR 37 AB We use a recently developed method based on inelastic nuclear- resonant absorption of x rays to measure the iron-partial vibrational density of states (VDOS) in a quasicrystal. The results differ from those obtained by inelastic neutron scattering in an astounding way: whereas the neutron results exhibit a very smooth and featureless behavior, the iron- partial VDOS is strongly peaked at one energy value. CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 BAK P, 1986, PHYS REV B, V32, P5764 BAK P, 1985, PHYS REV LETT, V54, P1517 BOUDARD M, 1995, J PHYS-CONDENS MAT, V7, P7299 BOUDARD M, 1994, PHYS SCR T, V57, P84 CALVAYRAC Y, 1990, J PHYS-PARIS, V51, P417 CHUMAKOV A, 1998, HYPERFINE INTERACT, V113, P59 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 CODDENS G, 1993, ANN CHIM-SCI MAT, V18, P513 CODDENS G, 1993, EUROPHYS LETT, V23, P33 CODDENS G, 1989, J PHYS-PARIS, V24, P151 CODDENS G, 1997, PHYS REV LETT, V78, P4209 DEBOISSIEU M, 1993, J PHYS-CONDENS MAT, V5, P4945 DUGAIN F, 1998, INT C AP CRYST AP 97, P745 GOLDMAN AI, 1992, PHYS REV B, V45, P10280 GOLDMAN AI, 1991, PHYS REV B, V43, P8763 GOMPF F, 1972, P INT C INELASTIC SC, P137 HUNKLINGER S, 1990, PHONONS 89, P397 JANOT C, 1988, QUASICRYSTALLINE MAT, P337 KALUGIN PA, 1985, J PHYS LETT-PARIS, V46, PL601 KLEIN T, 1993, J NON-CRYST SOLIDS, V153, P562 KOHN VG, 1998, PHYS REV B, V58, P8437 LIPKIN HJ, 1962, ANN PHYS-NEW YORK, V18, P182 LYONNARD S, 1996, PHYS REV B, V53, P3150 MARSHALL W, 1971, THEORY THERMAL NEUTR MOUSSA F, 1987, PHYS REV B, V36, P8951 QUILICHINI M, 1990, J PHYS-PARIS, V51, P1785 QUILICHINI M, 1997, REV MOD PHYS, V69, P277 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SHECHTMAN D, 1984, PHYS REV LETT, V53, P1951 SQUIRES GL, 1971, INTRO THEORY THERMAL SRIVASTAVA GP, 1990, PHYSICS PHONONS STURHAHN W, 1995, PHYS REV LETT, V74, P3832 SUCK JB, 1993, J NON-CRYST SOLIDS, V153, P573 SUCK JB, 1988, QUASICRYSTALLINE MAT, P573 TC 4 BP R14145 EP R14148 PG 4 JI Phys. Rev. B PY 1999 PD JUN 1 VL 59 IS 22 GA 204TN J9 PHYS REV B UT ISI:000080780700002 ER PT J AU Tegze, M Faigel, G Marchesini, S Belakhovsky, M Chumakov, AI TI Three dimensional imaging of atoms with isotropic 0.5 angstrom resolution SO PHYSICAL REVIEW LETTERS NR 17 AB The local atomic environment of Co atoms in a CoO crystal was imaged by hard x-ray holography. The complete three dimensional picture of the first two cobalt neighbor shells with nearly isotropic resolution was obtained, using a combination of normal and inverse, synchrotron and laboratory experiments. No a priori knowledge of the structure was used. [ S0031- 9007(99)09354-0]. CR ADAMS B, 1998, PHYS REV B, V57, P7526 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARTON JJ, 1991, PHYS REV LETT, V67, P3106 FAIGEL G, 1999, REP PROG PHYS, V62, P355 GOG T, 1995, PHYS REV B, V51, P6761 HUTTON JT, 1985, PHYS REV B, V31, P743 HUTTON JT, 1985, PHYS REV B, V31, P6420 KORECKI P, 1997, PHYS REV LETT, V79, P3518 KOSSEL W, 1935, Z PHYS, V94, P139 MARCHESINI S, 1998, SOLID STATE COMMUN, V105, P685 NOVIKOV DV, 1998, J SYNCHROTRON RADIAT, V5, P315 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SALDIN DK, 1995, PHYS REV B, V52, P2941 SZOKE A, 1986, AIP C P, V147 TEGZE M, 1991, EUROPHYS LETT, V16, P41 TEGZE M, 1996, NATURE, V380, P49 THEVUTHASAN S, 1991, PHYS REV LETT, V67, P469 TC 8 BP 4847 EP 4850 PG 4 JI Phys. Rev. Lett. PY 1999 PD JUN 14 VL 82 IS 24 GA 205CT J9 PHYS REV LETT UT ISI:000080804300028 ER PT J AU Andreeva, MA Irkaev, SM Semenov, VG Prokhorov, KA Salashchenko, NN Chumakov, AI Ruffer, R TI Moessbauer reflectometry of ultrathin multilayer Zr(10 nm)/[Fe- 57(1.6 nm)/Cr(1.7 nm)x26]/Cr(50 nm) film using synchrotron radiation SO JOURNAL OF ALLOYS AND COMPOUNDS NR 29 AB Time-resolved nuclear resonant reflectivity from ultrathin multilayer Zr(10 nm)/[Fe-57(1.6 nm)/Cr(1.7 nm)x26]/Cr(50 nm) film at grazing incidence angles of synchrotron radiation has been investigated at the Nuclear Resonance Beamline of the European Synchrotron Radiation Facility. For interpretation of the results, complementary measurements of X-ray reflectivity and grazing incidence Moessbauer spectra of reflectivity and secondary electron yield are invoked. Peculiarities and depth- selectivity of the Moessbauer reflectometry method in energy and rime domain are compared. It is shown that using this method the information about top layers of the multilayer structure can be obtained. Computer fitting of the energy and time spectra shows the decreasing of the hyperfine magnetic field in the upper layers of investigated multilayer structure. (C) 1999 Elsevier Science S.A. All rights reserved. CR ALEXANDROV ML, 1992, HYPERFINE INTERACT, V71, P1461 ANDREEVA MA, 1996, HYPERFINE INTERACT, V97-8, P605 ANDREEVA MA, 1995, HYPERFINE INTERACT, V96, P37 ANDREEVA MA, 1995, JETP LETT, V62, P905 ANDREEVA MA, 1998, NIZHNII NOVGOROD, P69 ANDREEVA MA, 1996, PHYS LETT A, V210, P359 ANDREEVA MA, 1991, PHYS STATUS SOLIDI A, V127, P455 ANDREEVA MA, 1999, POVERKHNOST, P59 ANDREEVA MA, 1997, POVERKHNOST, P62 ANDREEVA MA, 1994, ZH EKSP TEOR FIZ+, V105, P1767 BARON AQR, 1996, EUROPHYS LETT, V34, P331 CHECHIN AI, 1983, JETP LETT+, V37, P633 DEAK L, 1994, HYPERFINE INTERACT, V92, P1083 DIFONZO S, 1996, THIN SOLID FILMS, V287, P288 FROST JC, 1985, APPL PHYS LETT, V47, P581 GERDAU E, 1985, PHYS REV LETT, V54, P835 HANNON JP, 1985, PHYS REV B, V32, P5068 IRKAEV SM, 1995, NUCL INSTRUM METH B, V103, P351 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P545 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P554 KLINKHAMMER F, 1996, J MAGN MAGN MATER, V161, P49 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1997, PHYS REV B, V55, P5811 STURHAHN W, 1996, PHYS REV B, V53, P171 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 YONEDA Y, 1980, PHYS LETT A, V76, P152 ZHETBAEV AK, 1995, PHASE TRANSITIONS IM TC 3 BP 322 EP 332 PG 11 JI J. Alloy. Compd. PY 1999 PD MAY 5 VL 286 IS 1-2 GA 196DM J9 J ALLOYS COMPOUNDS UT ISI:000080293800057 ER PT J AU Rohlsberger, R Sturhahn, W Toellner, TS Quast, KW Alp, EE Bernhard, A Metge, J Ruffer, R Burkel, E TI Vibrational density of states of thin films measured by inelastic scattering of synchrotron radiation SO PHYSICA B NR 13 AB Vibrational spectra of thin films were measured by inelastic nuclear resonant scattering of synchrotron radiation in grazing incidence geometry. A strong enhancement of the inelastic signal was obtained by designing the layer system as X-ray waveguide and coupling the incident beam into a guided mode. This effect opens the possibility to study vibrational excitations in thin films that were so far impossible to obtain due to Aux limitations, (C) 1999 Elsevier Science B.V. All rights reserved. CR ALP EE, 1994, HYPERFINE INTERACT, V90, P323 BURKEL E, 1991, INELASTIC SCATTERING CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 FENG YP, 1993, PHYS REV LETT, V71, P537 FULTZ B, 1997, PHYS REV LETT, V79, P937 KROL A, 1998, PHYS REV B, V38, P8579 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 ROHLSBERGER R, IN PRESS RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1996, PHYS REV LETT, V77, P83 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TC 6 BP 581 EP 583 PG 3 JI Physica B PY 1999 PD MAR VL 263 GA 180AN J9 PHYSICA B UT ISI:000079362700160 ER PT J AU Paulsen, H Winkler, H Trautwein, AX Grunsteudel, H Rusanov, V Toftlund, H TI Measurement and simulation of nuclear inelastic-scattering spectra of molecular crystals SO PHYSICAL REVIEW B-CONDENSED MATTER NR 46 AB A procedure is presented that allows us to simulate from first principles the normalized spectra of nuclear inelastic scattering (MS) of synchrotron radiation by molecular crystals containing a Mossbauer isotope. Neglecting intermolecular vibrations the NIS spectrum is derived from the normal modes of the free molecule, that are calculated with the density- functional method B3LYP. At low temperatures the inelastic part of the calculated MS spectrum is a superposition of peaks that correspond to the individual vibrational modes of the molecule. The area of each peak is proportional to that part of the mean- square displacement of the Mossbauer isotope that is due to the corresponding vibrational mode. Angular-dependent NIS spectra have-been recorded for a guanidinium nitroprusside single crystal and temperature-dependent NIS spectra for the spin- crossover system [Fe(tpa)(NCS)(2)] [tpa=tris(2- pyridylmethyl)amine]. Qualitative agreement is achieved between measured and simulated spectra for different crystal orientations of guanidinium nitroprusside. A remarkable increase of the iron-ligand bond stretching upon spin crossover has unambiguously been identified by comparing the measured MS spectra of[Fe(tpa)(NCS)(2)] with the theoretical simulations. [S0163-1829(99)03102-1]. CR ANDZELM J, 1992, J CHEM PHYS, V96, P1280 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BATES JB, 1970, INORG CHEM, V9, P1376 BECKE AD, 1993, J CHEM PHYS, V98, P5648 BERCES A, 1996, TOP CURR CHEM, V182, P41 BINKLEY JS, 1980, J AM CHEM SOC, V102, P939 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 DELLEY B, 1997, J CHEM PHYS, V107, P10067 DELLEY B, 1994, J CHEM PHYS, V100, P5785 DITCHFIELD R, 1971, J CHEM PHYS, V54, P724 ESTRIN DA, 1996, INORG CHEM, V35, P3897 FOURNIER R, 1996, RECENT ADV DENSITY 1 FRISCH MJ, 1995, GAUSSIAN 94 REVISION FULTZ B, 1998, PHYS REV LETT, V80, P3304 GORDON MS, 1980, CHEM PHYS LETT, V76, P163 GORDON MS, 1982, J AM CHEM SOC, V104, P2797 GRUNSTEUDEL H, 1998, THESIS U LUBECK GUTLICH P, 1994, ANGEW CHEM, V106, P2109 HARIHARAN PC, 1974, MOL PHYS, V27, P209 HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213 HEHRE WJ, 1972, J CHEM PHYS, V56, P2257 HOJLAND F, 1983, ACTA CHEM SCAND A, V37, P251 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 JONAS V, 1996, J CHEM PHYS, V105, P3636 JUNG J, 1995, HYPERFINE INTERACT, V95, P107 KHANNA RK, 1969, INORG CHEM, V8, P2195 KONIG E, 1991, STRUCT BOND, V76, P51 LIPKIN HI, 1960, ANN PHYS, V9, P332 MARADUDIN AA, 1966, SOLID STATE PHYS, V18, P274 PALIANI G, 1971, J MOL STRUCT, V8, P63 PENG CY, 1996, J COMPUT CHEM, V17, P49 PIETRO WJ, 1982, J AM CHEM SOC, V104, P5039 PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233 RETZLAFF C, 1989, Z KRISTALLOGR, V189, P141 ROSCH N, 1986, J CHEM PHYS, V84, P5967 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 SOSA C, 1992, J PHYS CHEM-US, V96, P6630 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TAKEMOTO JH, 1973, INORG CHEM, V12, P705 TOELLNER T, 1992, SPIE, V1740, P218 TOSI L, 1973, SPECTROCHIM ACTA A, VA 29, P353 WACHTERS AJH, 1970, J CHEM PHYS, V52, P1033 WONG MW, 1996, CHEM PHYS LETT, V256, P391 TC 4 BP 975 EP 984 PG 10 JI Phys. Rev. B-Condens Matter PY 1999 PD JAN 1 VL 59 IS 2 GA 158JE J9 PHYS REV B-CONDENSED MATTER UT ISI:000078111600039 ER PT J AU Kohn, VG Chumakov, AI Ruffer, R TI Nuclear resonant inelastic absorption of synchrotron radiation in an anisotropic single crystal SO PHYSICAL REVIEW B-CONDENSED MATTER NR 20 AB The Singwi and Sjolander theory of nuclear resonant inelastic absorption of x rays is extended to the general case of an anisotropic single crystal. The energy dependence of nuclear inelastic absorption for the specific direction of the x-ray quantum relative to the crystal lattice is described using the density of phonon states, weighted by the projection of the phonon polarization vectors to the wave vector of the x-ray quantum. An applicability of the sum rules in the case of the anisotropic crystal is analyzed. The method of calculation of the phonon projected density of states from experimental data is proposed, where deconvolution of the data with the instrumental function of the monochromator and the subtraction of the multiphonon absorption is handled using the Fourier transformation. The results are illustrated by processing the experimental data of nuclear inelastic absorption of x rays in the anisotropic ferric berate FeBO3 single crystal. CR CARDONA M, 1982, LIGHT SCATTERING SOL, V2, P19 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 FULTZ B, 1997, PHYS REV LETT, V79, P937 GERDAU E, 1985, PHYS REV LETT, V54, P853 GHATAK AK, 1972, INTRO LATTICE DYNAMI JAMES RW, 1962, OPTICAL PRINCIPLES D JANTZ W, 1976, J PHYS C SOLID STATE, V9, P2229 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 LIPKIN HJ, 1962, ANN PHYS-NEW YORK, V18, P182 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHOBER HR, 1981, LANDOLTBORNSTEIN, V13, P56 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1996, THESIS NW U TRAMMELL GT, 1962, PHYS REV, V126, P1045 VANHOVE L, 1954, PHYS REV, V95, P249 TC 14 BP 8437 EP 8444 PG 8 JI Phys. Rev. B-Condens Matter PY 1998 PD OCT 1 VL 58 IS 13 GA 125HU J9 PHYS REV B-CONDENSED MATTER UT ISI:000076232100051 ER PT J AU Niesen, L Mugarza, A Rosu, MF Coehoorn, R Jungblut, RM Roozeboom, F Baron, AQR Chumakov, AI Ruffer, R TI Magnetic behavior of probe layers of Fe-57 in thin Fe films observed by means of nuclear resonant, scattering of synchrotron radiation SO PHYSICAL REVIEW B-CONDENSED MATTER NR 26 AB The magnetic behavior of epitaxial probe layers of Fe-57 down to a thickness of 1 monolayer (ML) has been investigated with the technique of nuclear resonant scattering by synchrotron radiation (NRS) in a grazing: incidence geometry. The samples consisted of 10-55 ML Fe deposited onto a Ge(100) substrate and covered with 2 nm Au. Probe layers of 1-10 ML Fe-57 were inserted at different depths in the Fe film. The technique yields spectroscopic information, i.e., magnetic hyperfine fields and isomer shifts, as well as structural information, such as layer thicknesses and interface roughness. The results show the existence of a nonmagnetic Ge/Fe interlayer of at least 10 ML thick after deposition at room temperature. Subsequent conversion electron Mossbauer spectroscopy (CEMS) data show that, although the samples were stored at room temperature, the interlayer diffusion proceeds as a function of time. The relative merits of NRS and CEMS for the investigation of ultrathin layers are discussed. CR ANDERSON GW, 1996, J APPL PHYS, V79, P5641 BARON AQR, 1994, NUCL INSTRUM METH A, V353, P665 BARON AQR, 1994, PHYS REV B, V50, P10354 BARON AQR, 1996, PHYS REV LETT, V77, P4808 BARON AQR, 1995, THESIS STANFORD BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 FOLKERTS W, 1992, J APPL PHYS, V71, P362 HANNON JP, 1985, PHYS REV B, V32, P5068 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KIESSIG H, 1931, ANNLN PHYS, V10, P769 LIU G, 1993, J MAGN MAGN MATER, V118, P99 MASSENET O, 1977, SOLID STATE COMMUN, V21, P37 NEVOT L, 1980, REV PHYS APPL, V15, P761 PATANKAR J, 1985, NUCL INSTRUM METH B, V7-8, P720 PRINZ GA, 1994, ULTRATHIN MAGNETIC S, V1, P35 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHURER PJ, 1993, PHYS REV B, V48, P2577 SHINTAKU K, 1993, PHYS REV B, V47, P14584 SHVYDKO YV, 1998, PHYS REV B, V57, P3552 SIDDONS DP, 1993, PHYS REV LETT, V70, P359 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 WAPPLING R, 1968, PHYS LETT A, V28, P173 WAPPLING R, 1970, PHYS SCR, V2, P233 WEYER G, 1976, MOSSBAUER EFFECT MET, V10, P301 TC 5 BP 8590 EP 8595 PG 6 JI Phys. Rev. B-Condens Matter PY 1998 PD OCT 1 VL 58 IS 13 GA 125HU J9 PHYS REV B-CONDENSED MATTER UT ISI:000076232100070 ER PT J AU Sturhahn, W Alp, EE Toellner, TS Hession, P Hu, M Sutter, J TI Introduction to nuclear resonant scattering with synchrotron radiation SO HYPERFINE INTERACTIONS NR 34 AB The concepts leading to the application of synchrotron radiation to elastic and inelastic nuclear resonant scattering are discussed. The resulting new experimental techniques are compared to conventional Mossbauer spectroscopy. A survey of situations that favor experiments with synchrotron radiation is offered. CR AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ALP EE, 1994, HYPERFINE INTERACT, V90, P323 ALP EE, 1995, NUCL INSTRUM METH B, V97, P526 BARON AQR, 1994, NUCL INSTRUM METH A, V343, P517 BLUME M, 1968, PHYS REV, V171, P417 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 FULTZ B, 1997, PHYS REV LETT, V79, P937 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X HANNON JP, 1968, PHYS REV, V169, P315 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1968, ZH EKSP TEOR FIZ, V27, P819 KISHIMOTO S, 1992, REV SCI INSTRUM, V63, P824 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 MARGULIES S, 1961, NUCL INSTRUM METHODS, V12, P131 METGE J, 1990, NUCL INSTRUM METH A, V292, P187 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 RUBY SL, 1974, J PHYS-PARIS, V35, P209 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1997, AIP C P, V389, P323 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 STURHAHN W, 1996, REV SCI INSTRUM, V67 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TOELLNER TS, 1994, NUCL INSTRUM METH A, V350, P595 TOELLNER TS, 1997, UNPUB VANBURCK U, 1990, EUROPHYS LETT, V13, P371 VISSCHER WM, 1960, ANN PHYS, V9, P194 TC 3 BP 47 EP 58 PG 12 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300005 ER PT J AU Chumakov, A Ruffer, R TI Nuclear inelastic scattering SO HYPERFINE INTERACTIONS NR 54 AB The development of the new field of nuclear inelastic scattering is reviewed. The experimental technique and the variety of applications are illustrated by recent results obtained at the Nuclear Resonance beamline of the European Synchrotron Radiation Facility. CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 ARTHUR J, 1995, P INT C APPL MOSSB E ASHCROFT NW, 1976, SOLID STATE PHYS, P48 AUER W, 1991, KALORISCHE ZUSTAND 4, V2, P478 BACON GE, 1975, NEUTRON DIFFRACTION BARON AQR, 1997, NUCL INSTRUM METH A, V400, P124 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BERGMANN U, 1994, PHYS REV B, V49, P1513 BROWN FC, 1967, PHYSICS SOLIDS, P182 BURKEL E, 1991, INELASTIC SCATTERING CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1998, IN PRESS PHYS REV B, V58 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 CHUMAKOV AI, 1997, PHYS REV B, V56, PR8455 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 DIEHL R, 1975, SOLID STATE COMMUN, V17, P743 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 FULTZ B, 1997, PHYS REV LETT, V79, P937 GERDAU E, 1985, PHYS REV LETT, V54, P835 GOODWIN HA, 1987, CHEM PHYS LETT, V139, P470 HARAMI T, IN PRESS HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 IZYUMOV YA, 1994, NEUTRON SPECTROSCOPY, P257 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KIKUTA S, 1996, AIP C P, V389, P351 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KISHIMOTO S, 1991, NUCL INSTRUM METH A, V309, P603 KOHN VG, UNPUB LEUPOLD O, COMMUNICATION LIPKIN HI, 1960, ANN PHYS, V9, P332 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 METGE J, 1997, P INT C APPL MOSSB E MILLER AP, 1971, CAN J PHYS, V49, P704 MINKIEWICZ VJ, 1967, PHYS REV, V162, P528 ROHLSBERGER R, 1997, NUCL INSTR METH PH A, V349, P251 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SETO M, COMMUNICATION SETO M, 1996, NUOVO CIMENTO D, V18, P381 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 SINGWI KS, 1960, PHYS REV, V120, P1093 SJOLANDER A, 1958, ARK FYS, V14, P315 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, 1996, PHYS REV B, V53, P171 TOELLNER T, 1992, SPIE, V1740, P218 TOELLNER TS, 1997, APPL PHYS LETT, V71, P2112 TOELLNER TS, 1996, THESIS W U VANBURCK U, 1992, PHYS REV B, V46, P6207 VISSCHER WM, 1960, ANN PHYS, V9, P194 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 13 BP 59 EP 79 PG 21 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300006 ER PT J AU Leupold, O Bernhard, A Gerdau, E Jaschke, J Ruter, HD Shvydko, Y de Waard, H Alp, EE Hession, P Hu, M Sturhahn, W Sutter, J Toellner, T Chumakov, AI Metge, J Ruffer, R TI Relaxation experiments with synchrotron radiation SO HYPERFINE INTERACTIONS NR 24 AB Relaxation phenomena show up in standard energy domain Mossbauer spectra via line broadening. The evaluation of such spectra is in most cases done by adopting the stochastic theory mainly developed in the 60s and 70s. Due to the time structure and the polarization of the synchrotron radiation nuclear resonance forward scattering in the time domain gives valuable information on relaxation mechanisms. We report here mainly on Nuclear Forward Scattering (NFS) experiments investigating the paramagnetic relaxation of the Fe3+ ion in (NH)(4)(Al0.95Fe0.05)-Fe-57(SO4)(2) . 12H(2)O and briefly on recent investigations on charge fluctuations in Eu3S4. CR ALP EE, 1995, NUCL INSTRUM METH B, V97, P526 ALP EE, 1993, PHYS REV LETT, V70, P3351 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARON AQR, 1995, PHYS REV B, V51, P16384 BARTON CMP, 1973, MOSSBAUER EFFECT DAT, P395 BERKOOZ O, 1968, SOLID STATE COMMUN, V6, P185 BHARGAVA SC, 1979, J PHYS C SOLID STATE, V12, P2879 BLUME M, 1968, PHYS REV, V174, P351 BLUME M, 1962, PHYS REV, V127, P1587 BUNKER BC, 1982, J AM CHEM SOC, V104, P4593 CHUMAKOV AI, 1995, PHYS REV LETT, V75, P549 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GRANDJEAN F, 1989, MOSSBAUER SPECTROSCO, V3, P513 JOHNSON DE, 1995, PHYS REV B, V51, P7909 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 LEUPOLD O, 1996, 1 HASYLAB, P73 LEUPOLD O, 1996, EUROPHYS LETT, V35, P671 LEUPOLD O, 1996, ITAL PHY SO, V50, P857 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 STURHAHN W, 1991, EUROPHYS LETT, V14, P821 STURHAHN W, 1994, PHYS REV B, V49, P9285 THOSAR BV, 1983, ADV MOSSBAUER SPECTR TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TC 3 BP 81 EP 95 PG 15 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300007 ER PT J AU Nasu, S TI High pressure experiments with synchrotron radiation SO HYPERFINE INTERACTIONS NR 25 AB Using a diamond anvil cell (DAC), high pressure Fe-57 Mossbauer spectroscopy has been performed with the nuclear forward scattering of synchrotron radiation. We used monochromatized synchrotron radiation from an in-vacuum type undulator as a high-density strong Mossbauer source with a quite small beam size. Pressure-induced magnetic hyperfine interactions at Fe-57 in SrFeO2.97 has been detected at 74 GPa by a quantum-beat modulation of the decay rate after collective nuclear excitation with the synchrotron radiation pulse. Evidence for a transition from antiferromagnetism to ferromagnetism of Fe in SrFeo(2.97) at 74 GPa and 300 K has been obtained from the nuclear forward scattering under a transverse magnetic field. CR BASSETT WA, 1967, REV SCI INSTRUM, V38, P37 BELL PMK, 1975, CARNEGIE I WASH YB, V74, P399 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 HANNON JP, 1989, PHYSICA B, V159, P161 HEAME GR, 1996, NUOVO CIMENTO, V18, P145 JAYARAMAN A, 1983, REV MOD PHYS, V55, P65 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KIKUTA S, 1992, HYPERFINE INTERACT, V71, P1491 KURIMOTO K, 1986, PHYSICA B & C, V139, P495 NASU S, 1994, HYPERFINE INTERACT, V90, P59 NASU S, 1992, HYPERFINE INTERACT, V70, P1063 NASU S, 1991, HYPERFINE INTERACT, V67, P529 NASU S, 1993, NUCL INSTRUM METH B, V76, P185 PASTERNAK M, 1989, HYPERFINE INTERACT, V47-8, P415 RUBY SL, 1974, J PHYS PARIS C, V6, P209 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 STEVENS JG, 1975, MOSSB EFFECT DATA IN, P60 STRUHAHN W, 1994, PHYS REV, V49, P9285 TAKANO M, 1991, PHYS REV LETT, V67, P3267 TAKEDA T, 1980, FERRITES P INT C 198, P395 TAKEDA T, 1972, J PHYS SOC JPN, V33, P967 TAYLOR RD, 1990, HYPERFINE INTERACT, V53, P159 VANBURCK U, 1992, PHYS REV B, V46, P6207 WERTHEIM GK, 1964, MOSSBAUER EFFECT PRI YAMAMOTO S, 1993, J APPL PHYS, V74, P500 TC 1 BP 97 EP 109 PG 13 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300008 ER PT J AU Bottyan, L Dekoster, J Deak, L Baron, AQR Degroote, S Moons, R Nagy, DL Langouche, G TI Layer magnetization canting in Fe-57/FeSi multilayer observed by synchrotron Mossbauer reflectometry SO HYPERFINE INTERACTIONS NR 13 AB Synchrotron Mossbauer reflectometry and GEMS results on a [Fe- 57(2.55 nm)/FeSi (1.57 nm)](10) multilayer (ML) on a Zerodur substrate are reported. CEMS spectra are satisfactorily fitted by alpha-Fe and an interface layer of random alpha-(Fe, Si) alloy of 20% of the 57Fe layer thickness on both sides of the individual Fe layers. Kerr loops show a fully compensated AF magnetic layer structure. Prompt X-ray reflectivity curves show the structural ML Bragg peak and Kiessig oscillations corresponding to a bilayer period and total film thickness of 4.12 and 41.2 nm, respectively. Grazing incidence nuclear resonant Theta-2 Theta scans and time spectra (E = 14.413 keV, lambda = 0.0860 nm) were recorded in different external magnetic fields (0 < B-ext < 0.95 T) perpendicular to the scattering plane. The lime integral delayed nuclear Theta-2 Theta scans reveal the magnetic ML period doubling. With increasing transversal external magnetic field, the antiferromagnetic ML Bragg peak disappears due to Fe layer magnetization canting, the extent of which is calculated from the fit of the time spectra and the Theta-2 Theta scans using an optical approach. In a weak external field the Fe layer magnetization directions are neither parallel with nor perpendicular to the external field. We suggest that the interlayer coupling in [Fe/FeSi](10) varies with the distance from the substrate and the ML consists of two magnetically distinct regions, being of ferromagnetic character near substrate and antiferromagnetic closer to the surface. CR BOTTYAN L, IN PRESS CHAIKEN A, 1996, PHYS REV B, V53, P5518 DEAK L, 1996, PHYS REV B, V53, P6158 DEKOSTER J, 1995, MATER RES SOC SYMP P, V382, P253 FULLERTON EE, 1995, PHYS REV B, V53, P5112 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 MATTSON JE, 1993, PHYS REV LETT, V71, P185 NAGY DL, 1992, HYPERFINE INTERACT, V71, P1349 NAGY DL, 1997, P 32 ZAK SCH PHYS ZA RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SAITO Y, 1996, JPN J APPL PHYS 2, V35, PL100 STEARNS MB, 1963, PHYS REV, V129, P1136 TOSCANO S, 1992, J MAGN MAGN MATER, V114, PL6 TC 6 BP 295 EP 301 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300021 ER PT J AU Grunsteudel, H Paulsen, H Meyer-Klaucke, W Winkler, H Trautwein, AX Grunsteudel, HF Baron, AQR Chumakov, AI Ruffer, R Toftlund, H TI Nuclear resonant scattering and molecular orbital calculations on an iron(II) spin-crossover complex SO HYPERFINE INTERACTIONS NR 22 AB Nuclear resonant scattering of synchrotron radiation was applied to investigate the spin-crossover complex Fe(tpa)(NCS)(2) (tpa = tris(2-pyridylmethyl)amine). The nuclear forward scattering experiments are compared with conventional Mossbauer experiments, and the nuclear inelastic scattering experiments are compared with the results from a theoretical normal mode analysis based on molecular orbital calculations. CR BEATTIE JK, 1988, ADV INORG CHEM RAD, V32, P1 BECKE AD, 1993, J CHEM PHYS, V98, P5648 BERGMANN U, 1994, PHYS REV B, V50, P5957 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 GALLOIS B, 1990, INORG CHEM, V29, P1152 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GOODWIN HA, 1976, COORDIN CHEM REV, V18, P293 GUTLICH P, 1994, ANGEW CHEM, V106, P2109 GUTLICH P, 1994, ANGEW CHEM INT EDIT, V33, P2024 GUTLICH P, 1981, STRUCT BOND, V44, P83 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KONIG E, 1991, STRUCT BOND, V76, P51 LEE CT, 1988, PHYS REV B, V37, P785 MEYERKLAUCKE M, 1997, C P ICBIC 8 YOK JAP PAULSEN H, UNPUB CHEM PHYS LETT RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOFTLUND H, 1989, COORDIN CHEM REV, V94, P67 VANBURCK U, 1992, PHYS REV B, V46, P6207 TC 3 BP 311 EP 317 PG 7 JI Hyperfine Interact. PY 1998 VL 113 IS 1-4 GA 124CT J9 HYPERFINE INTERACTIONS UT ISI:000076164300023 ER PT J AU Chumakov, AI Barla, A Ruffer, R Metge, J Grunsteudel, HF Grunsteudel, H Plessel, J Winkelmann, H Abd-Elmeguid, MM TI Nuclear inelastic scattering of synchrotron radiation by Sn-119 SO PHYSICAL REVIEW B-CONDENSED MATTER NR 23 AB We have investigated inelastic scattering of synchrotron radiation by Sn-119 nuclei using the radiative channel of nuclear deexcitation. The energy dependence of nuclear scattering of the 23.8795-keV x rays by a beta-Sn foil was measured with sub-meV energy resolution. In the conditions of the experiment the scattering was incoherent over the various nuclei and averaged over the phonon momentum transfer. The experimental data are compared with the theory of nuclear inelastic absorption. The general agreement is reasonable, however, some deviation is noted. The possible origin of the discrepancy is discussed. [S0163-1829(98)02626-5]. CR ALP EE, 1993, PHYS REV LETT, V70, P3351 BARLA A, UNPUB BARON AQR, 1997, NUCL INSTRUM METH A, V400, P124 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BROVMAN EG, 1966, FIZ TVERD TELA, V8, P1120 CHUMAKOV AI, 1997, PHYS REV B, V56, PR8455 CHUMAKOV AI, 1997, PHYS REV B, V56, P10758 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 DICKEY JM, 1969, PHYS REV, V188, P1407 FULTZ B, 1997, PHYS REV LETT, V79, P937 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KIKUTA S, 1994, HYPERFINE INTERACT, V90, P335 KOHN VG, UNPUB KOTOV BA, 1968, SOV PHYS-SOLID STATE, V10, P402 LIPKIN HI, 1960, ANN PHYS, V9, P332 LIPKIN HJ, 1995, PHYS REV B, V52, P10073 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, COMMUNICATION STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER T, 1992, SPIE, V1740, P218 TC 9 BP 254 EP 257 PG 4 JI Phys. Rev. B-Condens Matter PY 1998 PD JUL 1 VL 58 IS 1 GA ZY633 J9 PHYS REV B-CONDENSED MATTER UT ISI:000074643200052 ER PT J AU Grunsteudel, HF Hesse, HJ Ruffer, R Wortmann, G Chumakov, AI Baron, AQR Grunsteudel, H Leupold, O Metge, J TI Spatial distribution of magnetic and nonmagnetic phases in nuclear forward scattering of synchrotron radiation SO AUSTRALIAN JOURNAL OF PHYSICS NR 23 AB Nuclear forward scattering of synchrotron radiation has been demonstrated to permit conclusions on the spatial distribution of scattering centres. An outline of the method is given and implications for samples exhibiting domain structure are discussed. CR BANCROFT D, 1956, J APPL PHYS, V27, P291 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARON AQR, 1996, PHYS REV LETT, V77, P4808 FAIGEL G, 1987, PHYS REV LETT, V58, P2669 GERDAU E, 1986, PHYS REV LETT, V57, P1141 GERDAU E, 1985, PHYS REV LETT, V54, P835 GRUNSTEUDEL HF, 1996, HYPERFINE INTERACT C, V1, P509 GRUNSTEUDEL HF, 1997, THESIS U PADERBORN G HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 PIPKORN DN, 1964, PHYS REV, V135, PA1604 RUBY SL, 1974, J PHYS PARIS C, V6, P209 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1987, PHYS REV LETT, V58, P2359 SHVYDKO YV, 1996, PHYS REV B, V54, P14942 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1994, PHYS REV B, V49, P9285 TAYLOR RD, 1991, J APPL PHYS, V69, P6126 TOELLNER T, 1992, SPIE, V1740, P218 VANBURCK U, 1992, PHYS REV B, V46, P6207 VONBARGEN N, 1990, HIGH PRESSURE RES, V6, P133 WILLIAMSON DL, 1972, PHYS REV B, V6, P6126 TC 3 BP 453 EP 458 PG 6 JI Aust. J. Phys. PY 1998 VL 51 IS 2 GA ZT994 J9 AUST J PHYS UT ISI:000074150700020 ER PT J AU Andreeva, MA Gittsovich, VN Irkaev, SM Semenov, VG TI Coherent Mossbauer reflectometry of surfaces SO IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA NR 36 CR ALEXANDROV ML, 1992, HYPERFINE INTERACT, V71, P1461 ALP EE, 1993, PHYS REV LETT, V70, P3351 ANDREEVA MA, 1996, HYPERFINE INTERACT, V97-8, P605 ANDREEVA MA, 1992, JETP LETT, V55, P62 ANDREEVA MA, 1996, MESSBAUEROVSKAYA REN ANDREEVA MA, 1996, PHYS LETT A, V210, P359 ANDREEVA MA, 1991, PHYS STATUS SOLIDI A, V127, P455 ANDREEVA MA, 1995, PISMA ESKP TEOR FIZ, V62, P905 ANDREEVA MA, 1985, POVERKHNOST, P5 ANDREEVA MA, 1986, POVERKHNOST FIZIKA K, P145 ANDREEVA MA, 1994, SOV PHYS JETP, V78, P956 ANDREEVA MA, 1986, VESTN MOSK U FIZ AS+, V27, P57 ANDREEVA MA, 1987, ZH TEKH FIZ+, V57, P2009 BARON AQR, 1994, PHYS REV B, V50, P10354 BERNSTEIN S, 1963, PHYS REV, V132, P1625 BORN M, 1973, OSNOVY OPTIKI BOTTYAN L, 1995, 10 INT C HYP INT LEU, PR89 CHUMAKOV AI, 1996, NUCL INSTRUM METH A, V383, P642 FAIGEL G, 1990, HYPERFINE INTERACT, V58, P242 FROST JC, 1985, APPL PHYS LETT, V47, P581 HANNON JP, 1979, PHYS REV LETT, V43, P636 IRKAEV SM, 1995, NUCL INSTRUM METH B, V103, P351 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P545 IRKAEV SM, 1993, NUCL INSTRUM METH B, V74, P554 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 PALKIN AB, 1995, ZH TEKH FIZ+, V65, P159 PARRATT LG, 1954, PHYS REV, V95, P359 PONOMAREV YV, 1995, J XRAY SCI TECHNOLOG, V5, P379 ROHLSBERGER R, 1993, Z PHYS B CON MAT, V92, P489 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1991, NUCL INSTRUM METH A, V303, P495 SENTENOV VG, 1997, ICAME 97 RIO DE JAN, V14 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1994, PHYS REV B, V49, P9285 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TRAMMELL GT, 1978, PHYS REV B, V18, P165 TC 1 BP 406 EP 417 PG 12 JI Izv. Akad. Nauk Ser. Fiz. PY 1998 PD FEB VL 62 IS 2 GA ZB563 J9 IZV AKAD NAUK FIZ UT ISI:000072485100028 ER PT J AU Baron, AQR Ruffer, R Metge, J TI A fast, convenient, X-ray detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A- ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT NR 19 AB We investigate the response of 5 x 5 mm(2) silicon reach- through avalanche photodiodes followed by high bandwidth electronics to X-rays between 6 and 30 keV. In particular, we demonstrate high-dynamic range (similar to 10(9)) with maximum count rates in excess of 10(7) Hz, and good, similar to 20%, pulse-height resolution with the same amplification scheme. Single diodes have good efficiencies below 20 keV while a stack of diodes is shown to have better than 30% efficiency at 30 keV. The time resolution of these devices is about 1.6 ns. Application to nuclear scattering experiments with synchrotron radiation is discussed. CR ARTHUR J, 1996, NUOVO CIMENTO D, V18, P213 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BARON AQR, 1993, NUCL INSTRUM METH A, V343, P517 CARRIER C, 1990, IEEE T NUCL SCI, V37, P209 DAUTET H, 1997, COMMUNICATION GELEZUNAS VL, 1977, APPL PHYS LETT, V30, P118 GOG T, 1996, PHYS REV LETT, V76, P3132 GULLIKSON EM, 1995, APPL OPTICS, V34, P4662 HAUGER JA, 1994, NUCL INSTRUM METH A, V377, P362 JACOBONI C, 1977, SOLID STATE ELECTRON, V20, P77 KISHIMOTO S, 1995, REV SCI INSTRUM, V66, P2314 KISHIMOTO S, 1992, REV SCI INSTRUM, V63, P824 KNOLL GF, 1989, RAD DETECTION MEASUR, P121 LEUPOLD O, 1996, COMMUNICATION RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 TEGZE M, 1996, NATURE, V380, P49 TOELLNER TS, 1994, NUCL INSTRUM METH A, V350, P595 WEBB P, 1974, IEEE T NUCL SCI, VNS21, P151 WEBB PP, 1974, RCA REV, V35, P234 TC 8 BP 124 EP 132 PG 9 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PY 1997 PD NOV 21 VL 400 IS 1 GA YK334 J9 NUCL INSTRUM METH PHYS RES A UT ISI:A1997YK33400013 ER PT J AU Chumakov, AI Ruffer, R Baron, AQR Grunsteudel, H Grunsteudel, HF Kohn, VG TI Anisotropic inelastic nuclear absorption SO PHYSICAL REVIEW B-CONDENSED MATTER NR 13 AB The dynamics of iron atoms in the (FeBO3)-Fe-57 single crystal was studied using inelastic nuclear absorption. The energy spectra of nuclear recoil along several crystallographic directions were measured. The densities of phonon states, weighted by the projection of the phonon polarization vector in various directions were derived and the Lamb-Mossbauer factors along these directions were calculated. The projected density of states reveals a pronounced anisotropy, while the Lamb- Mossbauer factor shows no directional dependence. [S0163- 1829(97)08441-5]. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 DIEHL R, 1975, SOLID STATE COMMUN, V17, P743 KEPPLER C, 1997, EUR BIOPHYS J BIOPHY, V25, P221 KOHN VG, UNPUB LIPKIN HI, 1960, ANN PHYS, V9, P332 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1996, NUOVO CIMENTO D, V18, P381 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 15 BP 10758 EP 10761 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD NOV 1 VL 56 IS 17 GA YD476 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YD47600016 ER PT J AU Korecki, P Korecki, J Slezak, T TI Atomic resolution gamma-ray holography using the Mossbauer effect SO PHYSICAL REVIEW LETTERS NR 29 AB We have observed a strong (2%) angular modulation of the total backscattered conversion electron yield, measured as a function of the incidence angle of the 14.4 keV gamma rays from a Co-57 Mossbauer source irradiating thin epitaxial Fe-57 film grown on MgO(001). The measured 2D pattern is the first hologram of the local surrounding of the absorbing nuclei obtained due to nuclear resonant scattering of gamma rays. The real space holographic reconstruction shows distinct features corresponding to the nearest neighbor sites in the bcc alpha-Fe structure. CR BARTON JJ, 1990, J ELECTRON SPECTROSC, V51, P37 BARTON JJ, 1991, PHYS REV LETT, V67, P3106 BARTON JJ, 1988, PHYS REV LETT, V61, P1356 BLACK PJ, 1960, NATURE, V188, P481 CAPUTI LS, 1996, PHYS REV LETT, V77, P1059 CLARK LY, 1972, PHYS REV C, V6, P836 GOG T, 1995, PHYS REV B, V51, P6761 GOG T, 1996, PHYS REV LETT, V76, P3132 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1968, PHYS REV, V169, P315 HANNON JP, 1974, PHYS REV B, V9, P2791 HANNON JP, 1974, PHYS REV B, V9, P2811 HARP GR, 1991, J ELECTRON SPECTROSC, V57, P331 HARP GR, 1990, PHYS REV LETT, V65, P1012 KORECKI J, 1985, PHYS REV LETT, V55, P2491 LEN PM, 1997, PHYS REV B, V56, P1529 LEN PM, 1997, PHYS REV B, V55, PR3332 LEN PM, 1994, PHYS REV B, V50, P11275 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SWANSON KR, 1970, J APPL PHYS, V41, P3155 SZOKE A, 1986, AIP C P, V147 TEGZE M, 1991, EUROPHYS LETT, V16, P41 TEGZE M, 1996, NATURE, V380, P49 TERMINELLO LJ, 1993, PHYS REV LETT, V70, P599 THEVUTHASAN S, 1993, PHYS REV LETT, V70, P595 THEVUTHASAN S, 1991, PHYS REV LETT, V67, P469 TONG SY, 1991, PHYS REV LETT, V67, P3102 WEI CM, 1994, PHYS REV LETT, V72, P2434 TC 11 BP 3518 EP 3521 PG 4 JI Phys. Rev. Lett. PY 1997 PD NOV 3 VL 79 IS 18 GA YE565 J9 PHYS REV LETT UT ISI:A1997YE56500051 ER PT J AU Chumakov, AI Metge, J Baron, AQR Ruffer, R Shvydko, YV Grunsteudel, H Grunsteudel, HF TI Radiation trapping in nuclear resonant scattering of x rays SO PHYSICAL REVIEW B-CONDENSED MATTER NR 20 AB We report on the observation of radiation trapping in resonant scattering of 14.4 keV x rays by Fe-57 nuclei. Spatially incoherent excitation of nuclei was prepared by a short pulse of synchrotron radiation. The time evolution of the scattered radiation showed an exponential decay with the decay time longer than the natural lifetime. The results agree with the calculations based on the model of multiple spatially incoherent nuclear resonant scattering. CR AFANASEV AM, 1967, ZH EKSP TEOR FIZ, V25, P124 ARTHUR J, UNPUB BARON AQR, 1996, EUROPHYS LETT, V34, P331 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BERGMANN U, 1994, PHYS REV B, V49, P1513 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GOODWIN HA, 1987, CHEM PHYS LETT, V139, P470 GRADSHTEYN IS, 1980, TABLE INTEGRALS SERI, P318 HOLSTEIN T, 1947, PHYS REV, V72, P1212 HUENNEKENS J, 1987, PHYS REV A, V35, P2892 KAGAN Y, 1966, ZH EKSP TEOR FIZ+, V23, P178 LYNCH FJ, 1960, PHYS REV, V120, P513 MURRAY AJ, 1991, PHYS REV A, V44, P3162 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SMIRNOV GB, 1982, JETP LETT+, V35, P505 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1996, PHYS REV B, V53, P171 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 THIEBERGER P, 1968, PHYS REV, V171, P425 TC 7 BP R8455 EP R8458 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD OCT 1 VL 56 IS 14 GA YC731 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YC73100001 ER PT J AU Baron, AQR Franz, H Meyer, A Ruffer, R Chumakov, AI Burkel, E Petry, W TI Quasielastic scattering of synchrotron radiation by time domain interferometry SO PHYSICAL REVIEW LETTERS NR 35 AB We use synchrotron radiation and time resolved x-ray detection to measure structural relaxations of glycerol [C3H5(OH)(3)] having time scales of 30 to 200 ns at 1.5 Angstrom(-1) momentum transfer. Foils containing Fe-57 (14.4 keV nuclear resonance, 141 ns lifetime) are placed before and after the nonresonant sample, and a small difference (similar to 70 MHz) is established in their nuclear response frequencies. Quasielastic scattering from the sample perturbs the 70 MHz quantum beat pattern of the nuclear scattering. A simple model relates the perturbation to the dynamic structure factor of the sample. CR BARON AQR, 1994, NUCL INSTRUM METH A, V353, P665 BRAUER S, 1995, PHYS REV LETT, V74, P2010 BURKEL E, 1987, EUROPHYS LETT, V3, P957 CHAMPENEY DC, 1979, REP PROG PHYS, V42, P1017 CUMMINS HZ, 1964, PHYS REV LETT, V12, P150 ELWENSPOEK M, 1978, MOL PHYS, V35, P1221 GERDAU E, 1986, PHYS REV LETT, V57, P1141 GERDAU E, 1985, PHYS REV LETT, V54, P835 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KOHLRAUSCH R, 1854, POGG ANN PHYS CHEM, V91, P56 LOVESEY SW, 1994, THEORY NEUTRON SCATT, V1 MEYER A, 1997, Z PHYS B CON MAT, V103, P479 MEZEI F, 1980, NEUTRON SPIN ECHO, V128 MOSSBAUER RL, 1958, Z PHYS, V151, P124 NIENHAUS GU, 1994, HYPERFINE INTERACT, V90, P243 NIENHAUS GU, 1991, PHYS REV B, V43, P3345 PARAK F, 1993, PHYSICA A, V201, P332 PECORA R, 1985, DYNAMIC LIGHT SCATTE RICHTER D, 1989, DYNAMICS DISORDERED, V37 RUEBENBAUER K, 1994, PHYS REV B, V49, P15607 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 SINGWI KS, 1960, PHYS REV, V120, P1093 SINGWI KS, 1960, PHYS REV, V119, P863 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 THUNALBRECHT T, 1996, PHYS REV LETT, V77, P5437 TISCHLER JZ, 1994, RESONANT ANOMALOUS X, P647 VANHOVE L, 1954, PHYS REV, V95, P249 VOGL G, 1990, HYPERFINE INTERACT, V53, P197 VOGL G, 1996, MOSSBAUER SPECTROSCO, V2, P85 WUTTKE J, 1996, J CHEM PHYS, V105, P5177 TC 13 BP 2823 EP 2826 PG 4 JI Phys. Rev. Lett. PY 1997 PD OCT 13 VL 79 IS 15 GA YA302 J9 PHYS REV LETT UT ISI:A1997YA30200018 ER PT J AU Rohlsberger, R Gerdau, E Ruffer, R Sturhahn, W Toellner, TS Chumakov, AI Alp, EE TI X-ray optics for mu eV-resolved spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A- ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT NR 18 AB A new spectroscopic technique is introduced that allows tuning of a mu eV-wide beam of synchrotron radiation over a range of a few meV. It relies on nuclear resonant scattering in combination with a polarization filtering technique. The spectrometer consists of a crystal polarizer/analyzer pair in crossed setting with a grazing incidence reflection from a Fe- 57-coated rotating mirror in between that acts as Doppler shifter. The demonstrated features of the new technique lay a base for mu eV-resolved inelastic X-ray spectroscopy. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BERMEJO FJ, 1994, PHYS LETT A, V195, P236 BROCKHOUSE BN, 1961, INELASTIC SCATTERING BURKEL E, 1991, INELASTIC SCATTERING CAPRION D, 1996, PHYS REV LETT, V77, P675 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4258 GERDAU E, 1994, RESONANT ANOMALOUS X HANNON JP, 1985, PHYS REV B, V32, P6363 ROHLSBERGER R, 1994, 9406 DESY HASYLAB ROHLSBERGER R, IN PRESS RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1996, PHYS REV LETT, V77, P83 SIDDONS DP, 1995, NUCL INSTRUM METH B, V103, P371 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER TS, 1995, APPL PHYS LETT, V67, P1993 TC 9 BP 251 EP 255 PG 5 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PY 1997 PD JUL 11 VL 394 IS 1-2 GA XU638 J9 NUCL INSTRUM METH PHYS RES A UT ISI:A1997XU63800031 ER PT J AU Meyer, A Franz, H Wuttke, J Petry, W Wiele, N Ruffer, R Hubsch, C TI Nuclear resonant scattering of synchrotron radiation for the study of dynamics around the glass transition SO ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER NR 30 AB Motion of Fe-57 can be observed on a scale of nsec to mu sec through nuclear resonant forward scattering of synchrotron radiation. Additional information is obtained by measuring simultaneously incoherent nuclear resonant scattering at nonzero angles. In a glass, one measures the Lamb-Mossbauer factor; in the viscous phase, structural relaxation is observed directly. We apply the method to ferrocene/dibutylphthalate between 140 and 205 K. The mean relaxation times do not follow the observed temperature dependence of other, macroscopic relaxation measurements. We attribute this to a strong wavenumber dependence of the relaxation time. The prospects of nuclear resonant scattering for studying the dynamics of viscous liquids are discussed. CR ABRAS A, 1972, PHYS REV A-GEN PHYS, V6, P2343 ANGELL CA, 1976, ANN NY ACAD SCI, V279, P53 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BERGMANN U, 1994, PHYS REV B, V49, P1513 BUNBURY DSP, 1963, PHYS LETT, V6, P34 CHAMPENEY DC, 1972, J PHYS PART C SOLID, V5, P1903 COLMENERO J, 1992, PHYS REV LETT, V69, P478 DIXON PK, 1990, PHYS REV LETT, V65, P1108 DUFOUR J, 1994, J MOL LIQ, V62, P75 GAHL A, 1995, THESIS TU BRAUNSCHWE GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GOTZE W, 1992, REP PROG PHYS, V55, P241 GOTZE W, 1989, Z PHYS B CON MAT, V76, P175 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KISHIMOTO S, 1994, NUCL INSTRUM METH A, V351, P554 LUNKENHEIMER P, 1996, PHYS REV LETT, V77, P318 LYNCH FJ, 1960, PHYS REV, V120, P513 MENON N, 1994, PHYS REV LETT, V73, P963 MEYER A, 1996, EUROPHYS LETT, V36, P379 MEYER A, IN PRESS MEYER A, 1996, PHYS REV B, V53, P12107 NELSON P, 1995, TRANSP THEORY STAT P, V24 NIENHAUS GU, 1991, PHYS REV B, V43, P3345 PALUCH M, 1996, PHYS REV E, V54, P4008 RUBY SL, 1976, J PHYS-PARIS, V37, P745 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 WUTTKE J, 1996, PHYS REV E, V54, P5364 TC 6 BP 479 EP 484 PG 6 JI Z. Phys. B-Condens. Mat. PY 1997 PD JUL VL 103 IS 3-4 GA XL521 J9 Z PHYS B-CONDENS MATTER UT ISI:A1997XL52100017 ER PT J AU Keppler, C Achterhold, K Ostermann, A vanBurck, U Potzel, W Chumakov, AI Baron, AQR Ruffer, R Parak, F TI Determination of the phonon spectrum of iron in myoglobin using inelastic X-ray scattering of synchrotron radiation SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS NR 17 CR ACHTERHOLD K, 1996, EUR BIOPHYS J BIOPHY, V25, P43 ARGADE PV, 1984, J AM CHEM SOC, V106, P6593 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 CHURNAKOV AI, 1996, PHYS REV LETT, V76, P4258 CUPANE A, 1995, EUR BIOPHYS J, V23, P385 CUSACK S, 1990, BIOPHYS J, V58, P243 CUSACK S, 1988, J MOL BIOL, V202, P903 HARAMI T, 1996, C P SIF, V50, P831 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 MELCHERS B, 1996, BIOPHYS J, V70, P2092 NATKANIEC I, 1980, J PHYS C SOLID STATE, V13, P4265 NICKLOW RM, 1967, PHYS REV, V164, P922 PARAK F, 1995, CURRENT TOPICS BIOPH, V4 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 STEINBAZCH PJ, 1990, BIOCHEM, V30, P3988 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TC 10 BP 221 EP 224 PG 4 JI Eur. Biophys. J. Biophys. Lett. PY 1997 VL 25 IS 3 GA WJ163 J9 EUR BIOPHYS J BIOPHYS LETT UT ISI:A1997WJ16300008 ER PT J AU Achterhold, K Keppler, C vanBurck, U Potzel, W Schindelmann, P Knapp, EW Melchers, B Chumakov, AI Baron, AQR Ruffer, R Parak, F TI Temperature dependent inelastic X-ray scattering of synchrotron radiation on myoglobin analyzed by the Mossbauer effect SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS NR 12 CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4257 CUSACK S, 1990, BIOPHYS J, V58, P243 FRAUENFELDER H, 1988, ANNU REV BIOPHYS BIO, V17, P451 KNAPP EW, 1982, J PHYS CHEM-US, V86, P5042 MELCHERS B, 1996, BIOPHYS J, V70, P2092 MOSSBAUER RL, 1987, HYPERFINE INTERACT, V33, P199 PARAK F, 1982, J MOL BIOL, V161, P177 PARAK F, 1993, PHYSICA A, V201, P332 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SPRINGER T, 1972, SPRINGER TRACTS MODE, V64 VANBURCK U, 1992, PHYS REV B, V46, P6207 TC 8 BP 43 EP 46 PG 4 JI Eur. Biophys. J. Biophys. Lett. PY 1996 VL 25 IS 1 GA WC401 J9 EUR BIOPHYS J BIOPHYS LETT UT ISI:A1996WC40100007 ER PT J AU Shvydko, YV Chumakov, AI Baron, AQR Gerdau, E Ruffer, R Bernhard, A Metge, J TI Nuclear resonance small-angle scattering of x rays SO PHYSICAL REVIEW B-CONDENSED MATTER NR 21 AB A small-angle scattering technique is introduced fur probing spatial variation of magnetization in solids with resolution down to similar to 1 mu m(-1). The technique uses nuclear resonance scattering of synchrotron radiation. The sensitivity to spatial variation on magnetization due to domain walls and domain structure is demonstrated hy small-angle scattering of 14.431 keV synchrotron radiation from Fe-57 nuclei in unmagnetized alpha-Fe-57 polycrystalline foils. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 COLLINS MF, 1989, MAGNETIC CRITICAL SC GEHRING PM, 1993, PHYS REV LETT, V71, P1087 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GLATTER O, 1992, INT TABLES XRAY CRYS, VC, P81 GUINIER A, 1955, SMALL ANGLE SCATTERI HASTINGS JB, 1991, PHYS REV LETT, V66, P770 HUGHES DJ, 1953, PHYS REV, V92, P2025 HUGHES DJ, 1949, PHYS REV, V75, P565 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 LANGRIDGE S, 1994, EUROPHYS LETT, V25, P137 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 MULLERPFEIFFER S, 1994, PHYS REV B, V49, P15746 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, UNPUB SAVCHENKO MK, 1963, SOV PHYS JETP, V17, P528 SHILSTEIN SS, 1976, SOV PHYS-SOLID STATE, V18, P1886 SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 THURSTON TR, 1993, PHYS REV LETT, V70, P3151 VANHOVE L, 1954, PHYS REV, V95, P249 TC 5 BP 14942 EP 14945 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD DEC 1 VL 54 IS 21 GA VY201 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VY20100021 ER PT J AU Chumakov, AI Metge, J Baron, AQR Grunsteudel, H Grunsteudel, HF Ruffer, R Ishikawa, T TI An X-ray monochromator with 1.65 meV energy resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A- ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT NR 19 AB We report the performance of an X-ray monochromator having a 1.65 meV resolution at 14.413 keV and high throughput. A flux of 1.2 x 10(8) photons/s was obtained at a third generation synchrotron radiation source. This corresponds to 25% of the spectral density (photons/eV) of the incident X-ray beam within the 4.4 mu rad monochromator acceptance. Application of the monochromator in studies of nuclear inelastic absorption is demonstrated. CR BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BATTERMAN BW, 1962, PHYS REV, V127, P690 BURKEL E, 1991, INELASTIC SCATTERING CHUMAKOV AI, 1996, PHYS REV B, V54, PR9596 DORNER B, 1983, NUCL INSTRUM METHODS, V208, P587 FAIGEL G, 1987, PHYS REV LETT, V58, P2699 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GERDAU E, 1992, UNPUB HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 NAKAYAMA K, 1972, Z NATURFORSCH A, V28, P632 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1996, PHYS REV LETT, V77, P83 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER T, 1992, SPIE, V1740, P218 VANBURCK U, 1992, PHYS REV B, V46, P6207 VERBENI R, 1996, J SYNCHROTRON RADIAT, V3, P62 TC 16 BP 642 EP 644 PG 3 JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PY 1996 PD DEC 11 VL 383 IS 2-3 GA VZ889 J9 NUCL INSTRUM METH PHYS RES A UT ISI:A1996VZ88900047 ER PT J AU Baron, AQR Chumakov, AI Grunsteudel, HF Grunsteudel, H Niesen, L Ruffer, R TI Transverse x-ray coherence in nuclear scattering of synchrotron radiation SO PHYSICAL REVIEW LETTERS NR 25 AB The time response of nuclei excited by pulsed synchrotron radiation is affected by correlations in the nuclear response transverse to the beam direction. The coherent addition of the radiation scattered by nuclei having a distribution of Doppler shifts accelerates the decay in the forward scattering from a rotating foil of Fe-57 stainless steel. A model based on Huygens's construction shows good agreement with the data, allowing estimation of the source size or transverse coherence length. Implications for spectroscopic experiments using nuclear forward scattering are discussed. CR BARON AQR, 1994, NUCL INSTRUM METH A, V353, P665 BARON AQR, UNPUB BORN M, 1980, PRINCIPLES OPTICS, P382 BRAUER S, 1995, PHYS REV LETT, V74, P2010 CLOETENS P, 1996, J PHYS D APPL PHYS, V29, P133 FILHOL JM, COMMUNICATION GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GRADSHTEYN IS, 1980, TABLES INTEGRALS SER, P485 GRUNSTEUDEL HF, 1996, HYPERFINE INTERACT C, V1, P509 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 IZUMI K, 1995, JPN J APPL PHYS 1, V34, P4258 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 LOVESEY SW, 1994, INT SERIES MONOGRAPH, V1 MANDEL L, 1965, REV MOD PHYS, V37, P231 ROHLSBERGER R, COMMUNICATION RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SHVYDKO YV, IN PRESS PHYS REV B SMIRNOV GV, 1996, HYPERFINE INTERACT, V97-8, P551 SNIGIREV A, 1996, NUCL INSTRUM METH A, V370, P634 SNIGIREV A, 1995, REV SCI INSTRUM, V66, P5486 SUTTON M, 1991, NATURE, V352, P608 TOELLNER T, 1992, SPIE, V1740, P218 VANBURCK U, 1994, HYPERFINE INTERACT, V90, P313 VANBURCK U, 1992, PHYS REV B, V46, P6207 TC 12 BP 4808 EP 4811 PG 4 JI Phys. Rev. Lett. PY 1996 PD DEC 2 VL 77 IS 23 GA VV468 J9 PHYS REV LETT UT ISI:A1996VV46800030 ER PT J AU Chumakov, AI Ruffer, R Baron, AQR Grunsteudel, H Grunsteudel, HF TI Temperature dependence of nuclear inelastic absorption of synchrotron radiation in alpha-Fe-57 SO PHYSICAL REVIEW B-CONDENSED MATTER NR 19 AB Energy spectra of nuclear inelastic absorption of synchrotron radiation in alpha-Fe-57 were measured with 4.3-meV energy resolution in a temperature range 24-400 K. The temperature dependence of the recoil fraction and of the multiphonon contribution was determined. The density of phonon states was derived at each temperature and showed a 4% relative frequency change within the studied temperature range. CR ASHCROFT NW, 1976, SOLID STATE PHYS, P47 ASHCROFT NW, 1976, SOLID STATE PHYS, P465 BARON AQR, 1995, NUCL INSTRUM METH A, V352, P665 BERGMANN U, 1994, PHYS REV B, V50, P5957 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 EBERT H, 1971, LANDOLTBORNSTEIN 1, V2, P442 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 LIPKIN HI, 1960, ANN PHYS, V9, P332 LORD AE, 1965, J APPL PHYS, V36, P1620 MINKIEWICZ VJ, 1967, PHYS REV, V162, P528 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SCHOBER HR, 1981, LANDOLTBORNSTEIN, V13, P56 SETO M, 1996, NUOVO CIMENTO D, V18, P381 SETO M, 1995, PHYS REV LETT, V74, P3828 SINGWI KS, 1960, PHYS REV, V120, P1093 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER T, 1992, SPIE, V1740, P218 VALLERA AM, 1981, J PHYS C S12, V6, P398 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 28 BP R9596 EP R9599 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD OCT 1 VL 54 IS 14 GA VM546 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VM54600005 ER PT J AU Ruffer, R Chumakov, A TI Quasi-elastic and inelastic scattering using nuclear resonance techniques SO PHYSICA B NR 26 AB Third generation synchrotron radiation sources as ESRF offer an X-ray beam of high brilliance, i.e. high intensity, small cross-section, and small divergence, which opens the field of nuclear resonance spectroscopy as a standard technique. Besides this classical field new fields have been and will be opened, namely quasi-elastic and inelastic scattering both with 'resonant' and 'non-resonant' samples. Energy transfers between neV and eV and momentum transfers between 10(-4) and 30 Angstrom(-1) at energies ranging from 6 to 30 keV are accessible. The general lay-out and the parameters of the nuclear resonance beamline at ESRF are reported. Quasi-elastic and inelastic scattering techniques are discussed and illustrated by first experimental results. CR 1991, NUCL DATA SHEETS, V62, P101 ACHTERHOLD K, 1996, EUR BIOPHYS J, V1 ARTEMEV AN, 1968, SOV PHYS JETP, V27, P547 BALKO B, 1974, PHYS LETT A, VA 47, P171 CHAMPENEY DC, 1979, REP PROG PHYS, V42, P1017 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, IN PRESS CHUMAKOV AI, 1990, PHYS REV B, V41, P9545 CHUMAKOV AI, 1996, PHYS REV LETT, V76, P4257 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 ELLEAUME P, 1988, NUCL INSTRUM METH A, V266, P125 FARVACQUE L, 1995, ESRF NEWSLETTER, V24, P12 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 REVOL JL, 1994, SYNCHROTRON RAD NEWS, V7, P23 ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1995, P INT C APPL MOSSB E RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1991, NUCL INSTRUM METH A, V303, P495 SEPIOL B, 1996, PHYS REV LETT, V76, P3220 SEPIOL B, 1993, PHYS REV LETT, V71, P731 SETO M, 1995, PHYS REV LETT, V74, P3828 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER T, 1992, SPIE, V1740, P218 TC 1 BP 128 EP 134 PG 7 JI Physica B PY 1996 PD AUG VL 226 IS 1-3 GA VH548 J9 PHYSICA B UT ISI:A1996VH54800021 ER PT J AU Chumakov, AI Baron, AQR Ruffer, R Grunsteudel, H Grunsteudel, HF Meyer, A TI Nuclear resonance energy analysis of inelastic x-ray scattering SO PHYSICAL REVIEW LETTERS NR 20 AB Inelastic scattering of x rays by gaseous, liquid, and solid samples was measured using a nuclear transition as a reference for the energy analysis of the scattered radiation. The samples were irradiated by a beam of synchrotron radiation with a bandwidth of 6.4 meV. The scattered radiation was analyzed using a resonance detector with a bandpass of 0.5 mu eV. These studies introduce a new technique to measure the energy distribution of inelastic x-ray scattering. CR ARTEMEV AN, 1968, ZH EKSP TEOR FIZ, V54, P1028 BARON AQR, 1994, NUCL INSTRUM METH A, V343, P517 BURKEL E, 1991, INELASTIC SCATTERING CHEN SH, 1973, PHYS REV A, V8, P3163 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CUSACK S, 1990, BIOPHYS J, V58, P243 ELLIOTT JA, 1966, P PHYS SOC LOND, V89, P595 GABRYS B, 1984, MACROMOLECULES, V17, P560 GERDAU E, 1985, PHYS REV LETT, V54, P835 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 RUFFER R, 1993, ESRF ANN REPORT, P84 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUOCCO G, 1996, NATURE, V379, P521 SETO M, 1995, PHYS REV LETT, V74, P3828 SETTE F, 1995, PHYS REV LETT, V75, P850 SINGWI KS, 1960, PHYS REV, V119, P863 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TOELLNER T, 1992, SPIE, V1740, P218 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 19 BP 4258 EP 4261 PG 4 JI Phys. Rev. Lett. PY 1996 PD MAY 27 VL 76 IS 22 GA UM245 J9 PHYS REV LETT UT ISI:A1996UM24500040 ER PT J AU Ruffer, R Chumakov, AI TI Nuclear-resonance beamline at ESRF SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS NR 11 AB The Nuclear-Resonance Beamline at ESRF is dedicated to the excitation of nuclear levels by synchrotron radiation. The source of radiation and optical elements are optimized to provide an intense, highly monochromatic, collimated and stable X-ray beam of small cross-section at the Mossbauer transition energies between 6 keV and 30 keV. The set-up of the beamline allows to perform studies in diffraction, small-angle scattering, forward scattering and incoherent scattering. Equipment is available to maintain the sample at variable temperature and magnetic field. Fast detectors and timing electronics serve to separate the delayed nuclear scattering from the ''prompt'' electronic scattering and to measure the time spectra of nuclear radiation with sub-nanosecond resolution. The general layout and the parameters of the beamline are reported. Typical domains of applications are discussed and illustrated by first experimental results. CR CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, IN PRESS ELLEAUME P, 1988, NUCL INSTRUM METH A, V266, P125 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GRUNSTEUDEL HF, 1996, P SIF, V50, P853 REVOL JL, 1994, SYNCHROTRON RAD NEWS, V7, P23 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1991, NUCL INSTRUM METH A, V303, P495 SETO M, 1995, PHYS REV LETT, V74, P3828 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 TC 0 BP 375 EP 379 PG 5 JI Nuovo Cimento Soc. Ital. Fis. D-Condens. Matter At. Mol. Chem. Phys. Fluids Plasmas Biophys. PY 1996 PD FEB-MAR VL 18 IS 2-3 GA UL485 J9 NUOVO CIMENTO D-COND MATT AT UT ISI:A1996UL48500035 ER PT J AU Baron, AQR Chumakov, AI Ruffer, R Grunsteudel, HF Leupold, O TI Single-nucleus quantum beats excited by synchrotron radiation SO EUROPHYSICS LETTERS NR 27 AB We have observed single-nucleus quantum beats in the incoherent scattering of synchrotron radiation by the 14.4 keV transition of Fe-57. The 20 ns beat period characteristic of the nuclear excited-state splitting was clearly seen when enriched metallic samples were excited at the nuclear resonance energy or far from the resonance energy (i.e. accompanied by phonon excitation). The phase of the beat pattern is seen to change with the scattering angle in a manner consistent with the angular-momentum change of the (M1) transition. CR ALEXANDROV EB, 1964, OPT SPECTROSC, V17, P522 ALEXANDROV EB, 1964, OPT SPEKTROSK+, V17, P957 ARTHUR J, UNPUB BARON AQR, 1994, NUCL INSTRUM METH A, V353, P665 BARON AQR, 1994, NUCL INSTRUM METH A, V343, P517 BARON AQR, 1995, PHYS REV B, V51, P16384 BERGMANN U, 1994, PHYS REV B, V49, P1513 BROWN DE, 1992, PHYS REV LETT, V69, P699 CHAMPENEY DC, 1979, REP PROG PHYS, V42, P1017 DODD JN, 1964, P PHYS SOC LOND, V84, P176 FINK R, 1993, PHYS REV LETT, V70, P2455 GERDAU E, 1986, PHYS REV LETT, V57, P1141 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1974, PHYS REV B, V9, P2791 HANNON JP, 1989, PHYSICA B, V159, P161 HAROCHE S, 1973, PHYS REV LETT, V30, P948 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 SETO M, 1995, PHYS REV LETT, V74, P3828 SHIRLEY DA, 1972, ANNU REV PHYS CHEM, V23, P385 SMIRNOV GB, 1982, JETP LETT+, V35, P505 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 STURHAHN W, 1996, PHYS REV B, V53, P171 THIEBERGER P, 1968, PHYS REV, V171, P425 TRAMMELL GT, 1978, PHYS REV B, V18, P165 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 8 BP 331 EP 336 PG 6 JI Europhys. Lett. PY 1996 PD MAY 10 VL 34 IS 5 GA UM199 J9 EUROPHYS LETT UT ISI:A1996UM19900003 ER PT J AU Smirnov, GV TI Nuclear resonant scattering of synchrotron radiation SO HYPERFINE INTERACTIONS NR 104 AB The principal ideas of the theory and the main results of the experimental studies of the coherent resonant scattering of gamma-radiation by nuclear ensembles in matter are briefly over-viewed. An analysis of transmission of the Mossbauer gamma-radiation and of synchrotron radiation through a nuclear resonant medium is suggested using an approach based on the optical theory. The feasibilities of the nuclear resonant scattering of synchrotron radiation as a new technique for studying the hyperfine interactions and some other phenomena of the physics of condensed matter are considered. CR AFANASEV AM, 1965, JETP LETT, V2, P81 AFANASEV AM, 1967, ZH EKSP TEOR FIZ, V25, P124 AFANASEV AM, 1965, ZH EKSP TEOR FIZ, V21, P215 ALP EE, 1993, PHYS REV LETT, V70, P3351 ARTHUR J, 1990, J APPL PHYS, V67, P5704 ARTHUR J, 1989, PHYS REV LETT, V63, P1629 BARON AQR, 1995, PHYS REV B, V51, P16384 BARON AQR, 1994, PHYS REV B, V50 BERGMANN U, 1994, PHYS REV B, V50, P5957 BERGMANN U, 1994, RESONANT ANOMALOUS X, P619 BERNSTEIN S, 1963, PHYS REV, V132, P1625 BLACK PJ, 1960, NATURE, V188, P481 BLACK PJ, 1964, P PHYS SOC LOND, V84, P169 BROWN DE, 1992, PHYS REV LETT, V69, P699 CHECHIN AI, 1983, JETP LETT+, V37, P633 CHUMAKOV AI, 1995, EUROPHYS LETT, V30, P427 CHUMAKOV AI, 1992, EUROPHYS LETT, V17, P269 CHUMAKOV AI, 1992, HYPERFINE INTERACT, V71, P1341 CHUMAKOV AI, 1992, JETP LETT, V55, P70 CHUMAKOV AI, 1990, PHYS REV B, V41, P9545 CHUMAKOV AI, 1995, PHYS REV LETT, V75, P549 CHUMAKOV AI, 1993, PHYS REV LETT, V71, P2489 COHEN RL, 1978, PHYS REV LETT, V41, P381 DEWAARD H, 1991, HYPERFINE INTERACT, V68, P143 GERDAU E, 1988, HYPERFINE INTERACT, V40, P49 GERDAU E, 1985, PHYS REV LETT, V54, P835 GERDAU E, 1994, RESONANT ANOMALOUS X, P589 GUSEV MV, 1993, JETP LETT+, V58, P257 HANNON JP, 1969, PHYS REV, V186, P306 HANNON JP, 1968, PHYS REV, V169, P315 HANNON JP, 1985, PHYS REV B, V32, P6363 HANNON JP, 1985, PHYS REV B, V32, P6374 HANNON JP, 1979, PHYS REV LETT, V43, P636 HANNON JP, 1989, PHYSICA B, V159, P161 HANNON JP, 1994, RESONANT ANOMALOUS X, P565 HASTINGS JB, 1991, PHYS REV LETT, V66, P770 HELISTO P, 1981, PHYS LETT A, V85, P177 HOLLAND RE, 1960, PHYS REV LETT, V4, P181 IKONEN E, 1985, PHYS REV A, V32, P2298 ISHIKAWA T, 1992, REV SCI INSTRUM, V63, P1015 JOHNSON DE, 1995, PHYS REV B, V51, P7909 KAGAN Y, 1979, J PHYS C SOLID STATE, V12, P615 KAGAN Y, 1972, MOSSBAUER SPECTROSCO, P143 KAGAN Y, 1978, PHYS LETT A, V68, P339 KAGAN Y, 1973, Z NATURFORSCH A, VA 28, P1351 KAGAN Y, 1968, ZH EKSP TEOR FIZ, V27, P819 KIKUTA S, 1992, HYPERFINE INTERACT, V71, P1491 KIKUTA S, 1995, RESONANT ANOMALOUS X, P635 KIKUTA S, 1995, SAT M 16 EUR CRYST M KOHN VG, 1993, REPORT RUSSIAN RES C LYNCH FJ, 1960, PHYS REV, V120, P513 MOONEY TM, 1994, NUCL INSTRUM METH A, V347, P348 PERLOW GJ, 1978, PHYS REV LETT, V40, P896 POPOV SL, 1994, EUROPHYS LETT, V28, P439 ROHLSBERGER R, 1992, EUROPHYS LETT, V18, P561 ROHLSBERGER R, 1993, J APPL PHYS, V74, P1933 RUBY S, IN PRESS ICAME95 RUBY SL, 1974, J PHYS-PARIS, V35, P209 RUFFER R, 1994, ESRF NEWSLETTER, V22, P12 RUFFER R, 1996, HYPERFINE INTERACT, V97-8, P589 RUFFER R, 1992, SYNCHROTRON RAD NEWS, V5, P25 RUTER HD, 1990, HYPERFINE INTERACT, V58, P2473 RUTER HD, 1990, HYPERFINE INTERACT, V58, P2477 SEPPI EJ, 1962, PHYS REV, V128, P2334 SETO M, 1995, PHYS REV LETT, V74, P3828 SHVYDKO YV, 4 SEEH WORKSH MOSSB, P122 SHVYDKO YV, 1994, EUROPHYS LETT, V26, P215 SHVYDKO YV, 1993, EUROPHYS LETT, V22, P305 SHVYDKO YV, 1994, HYPERFINE INTERACT, V90, P287 SHVYDKO YV, IN PRESS ICAME95 SHVYDKO YV, 1993, J PHYS-CONDENS MAT, V5, P1557 SHVYDKO YV, 1993, J PHYS-CONDENS MAT, V5, P7047 SHVYDKO YV, 1991, JETP LETT+, V53, P231 SIDDONS DP, 1993, PHYS REV LETT, V70, P359 SINGWI KS, 1960, PHYS REV, V120, P1093 SMIRNOV GV, 1992, HYPERFINE INTERACT, V72, P63 SMIRNOV GV, 1986, HYPERFINE INTERACT, V27, P203 SMIRNOV GV, IN PRESS ICAME95 SMIRNOV GV, 1970, JETP LETT, V9, P70 SMIRNOV GV, 1986, JETP LETT+, V43, P352 SMIRNOV GV, 1970, JETP LETT+, V11, P400 SMIRNOV GV, 1971, P INT C APPL MOSSB E, P73 SMIRNOV GV, 1995, PHYS REV B, V52, P3356 SMIRNOV GV, 1994, RESONANT ANOMALOUS X, P609 SMIRNOV GV, 1989, SOV PHYS JETP, V68, P444 SMIRNOV GV, 1984, ZH EKSP TEOR FIZ, V59, P875 SMIRNOV GV, 1980, ZH EKSP TEOR FIZ+, V51, P603 STURHAHN W, 1991, EUROPHYS LETT, V14, P821 STURHAHN W, 1994, PHYS REV B, V49, P9285 STURHAHN W, 1995, PHYS REV LETT, V74, P3832 SUTHAHN W, 1991, THESIS HAMBURG GERMA TISCHLER JZ, 1994, RESONANT ANOMALOUS X, P647 TOELLNER TS, 1995, PHYS REV LETT, V74, P3475 TRAMMELL GT, 1961, CHEM EFFECTS NUCLEAR, V1, P75 TRAMMELL GT, 1962, PHYS REV, V126, P1054 TRAMMELL GT, 1979, PHYS REV B, V19, P3835 TRAMMELL GT, 1978, PHYS REV B, V18, P165 VANBURCK U, 1986, HYPERFINE INTERACT, V27, P219 VANBURCK U, IN PRESS ICAME95 VANBURCK U, 1992, PHYS REV B, V46, P6207 VANBURCK U, 1987, PHYS REV LETT, V59, P355 WU CS, 1960, PHYS REV LETT, V5, P432 ZHANG X, 1992, REV SCI INSTRUM, V63, P404 ZHANG XW, 1995, JPN J APPL PHYS 2, V34, PL330 TC 48 BP 551 EP 588 PG 38 JI Hyperfine Interact. PY 1996 VL 97-8 IS 1-4 GA UD208 J9 HYPERFINE INTERACTIONS UT ISI:A1996UD20800036 ER