FN ISI Export Format VR 1.0 PT Journal AU Lazar, L Jiang, JS Felcher, GP Inomata, A Bader, SD TI Oscillatory exchange bias in Fe/Cr double superlattices SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 17 AB In the [Fe/Cr](AF)/Cr-x/[Fe/Cr](F) double superlattices consisting of a ferromagnetic Fe/Cr superlattice on top of an antiferromagnetic Fe/Cr superlattice, the exchange coupling between the superlattices is determined by the thicknesses (x of the Cr spacer layer. The oscillating behavior of the exchange bias field of a series of (211)-oriented Fe/Cr double superlattices was determined by superconducting quantum interference device (SQUID) and magneto-optic Kerr effect (MOKE) measurements. For x > 13 Angstrom a negative strongly oscillating character of the exchange bias was observed. At very thick x the exchange bias vanishes. The most immediate result is the fact that the exchange bias field is always negative, regardless of the sign of the coupling between the ferromagnetic and the antiferromagnetic superlattices. The detailed dependence of the exchange bias field as a function of the intersuperlattice thickness of Cr is explained in terms of the interaction between the two superlattices in collinear configuration. (C) 2001 Elsevier Science B.V. All rights reserved. CR FULLERTON EE, 1993, PHYS REV B, V48, P15755 JIANG JS, 2000, PHYS REV B, V61, P9653 KIWI M, 1999, EUROPHYS LETT, V48, P573 KNELLER EF, 1991, IEEE T MAGN, V27, P3588 KOON NC, 1997, PHYS REV LETT, V78, P4865 LEIGHTON C, 1999, PHYS REV B, V60, P12837 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 NOGUES J, 1996, PHYS REV LETT, V76, P4524 OHKOSHI M, 1985, IEEE TRANSL J MAGN J, V1, P37 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TANG C, 1984, J APPL PHYS, V55, P2226 TEVELTHUIS SGE, 2000, APPL PHYS LETT, V77, P2222 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 TC 0 BP 299 EP 303 PG 5 JI J. Magn. Magn. Mater. PY 2001 PD FEB VL 223 IS 3 GA 399NA J9 J MAGN MAGN MATER UT ISI:000166818200015 ER PT Journal AU Liou, YH Pong, WF Tsai, MH Chang, KH Hseih, HH Chang, YK Chien, FZ Tseng, PK Lee, JF Liou, Y Huang, JCA TI Structural characterization of the Co/Cr multilayers by x-ray- absorption spectroscopy SO PHYSICAL REVIEW B NR 22 AB We have performed Cr and Co K-edge x-ray-absorption measurements to investigate the dependence of local electronic and atomic structures on the Cr-layer thickness in epitaxial Co(1 (1) over bar 00) (40 Angstrom)/Cr(211) (t(Cr)) (t(Cr) = 2, 3, 5, 7, and 9 Angstrom) multilayers. The Cr K x-ray-absorption near-edge fine structure (XANES) spectra of the Co/Cr multilayers indicate an abrupt transition of the Cr layer from hep to bee structure when the thickness of the Cr layer is increased to exceed similar to 5 Angstrom or three atomic layers. Our results offer an upper limit for the ability of the Co/Cr interface to stabilize the hcp structure in the thin Cr layer. The numbers of nearest-neighbor and next-nearest- neighbor atoms in the Cr and Co layers determined by extended x-ray-absorption fine-structure measurements performed at the Cr and Co K edge, respectively, are consistent with the XANES results. CR 1990, TABLE PERIODIC PROPE BOHER P, 1991, J APPL PHYS, V70, P5507 FRENKEL AI, 1993, PHYS REV B, V48, P12449 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 HARRISON WA, 1980, ELECT STRUCTURE PROP HENRY Y, 1993, PHYS REV B, V47, P15037 HUANG JCA, 1996, J APPL PHYS 2A, V79, P4790 HUANG JCA, 1995, PHYS REV B, V52, P13110 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 LEFEVRE P, 1995, PHYS REV B, V52, P11462 LEFEVRE P, 1996, SURF SCI, V352, P923 PAPPAS DP, 1990, PHYS REV LETT, V64, P3179 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIZZINI S, 1993, PHYS REV B, V47, P8754 PIZZINI S, 1992, PHYS REV B, V46, P1253 PRINZ GA, 1985, PHYS REV LETT, V54, P1051 REHR JJ, 1991, J AM CHEM SOC, V113, P5135 REHR JJ, 1992, PHYS REV LETT, V69, P3397 SATO N, 1987, J APPL PHYS, V61, P1979 SHAM TK, 1997, PHYS REV B, V55, P7585 VAVRA W, 1993, PHYS REV B, V47, P5500 YAO YD, 1996, J APPL PHYS 2B, V79, P6533 TC 0 BP 9616 EP 9620 PG 5 JI Phys. Rev. B PY 2000 PD OCT 1 VL 62 IS 14 GA 363HV J9 PHYS REV B UT ISI:000089830500058 ER PT Journal AU Dantas, AL Carrico, AS Stamps, RL TI Local modes of thin magnetic films SO PHYSICAL REVIEW B NR 22 AB We calculate the frequency of rigid displacement domain wall excitations of a Neel wall in a thin uniaxial ferromagnetic film. The domain wall is pinned by a line defect running along the uniaxial axis. We study the effect of an external field applied along the magnetization of one of the domains. The restoring force originates from energy fluctuations resulting from spin motion within the domain wall width and the excitation frequency turns zero when the external field approaches the threshold value for depinning the domain wall from the defect. The results are applied to the study of excitations of a Neel wall in a thin uniaxial ferromagnetic film exchange coupled to a uniaxial two-sublattice antiferromagnetic substrate. CR BERGER A, 1994, PHYS REV LETT, V73, P193 CARARA M, 1998, J APPL PHYS, V84, P3792 CIZEAU P, 1997, PHYS REV LETT, V79, P4669 DANTAS AL, 1999, J PHYS-CONDENS MAT, V11, P2707 ERIC E, 1992, PHYS REV LETT, V68, P859 ERNESTO J, 1999, PHYS REV B, V59, P11892 ERNESTO J, 1998, PHYS REV LETT, V81, P2144 GREGG JF, 1996, PHYS REV LETT, V77, P1580 GUNTHER L, 1994, PHYS REV B, V49, P3926 LIU Y, 1998, J APPL PHYS 1, V83, P5922 MACHADO FLA, 1996, J APPL PHYS 2B, V79, P6558 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MALOZEMOFF AP, 1979, MAGNETIC DOMAIN WALL MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 NARAYAN O, 1996, PHYS REV LETT, V77, P3855 ONO T, 1999, SCIENCE, V284, P468 PIERCE DT, 1999, J MAGN MAGN MATER, V200, P290 RUEDIGER U, 1998, PHYS REV LETT, V80, P5639 TANIYAMA T, 1999, PHYS REV LETT, V80, P2780 TATARA G, 1991, SCIENCE, V66, P2802 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 0 BP 8650 EP 8653 PG 4 JI Phys. Rev. B PY 2000 PD OCT 1 VL 62 IS 13 GA 361QH J9 PHYS REV B UT ISI:000089733800024 ER PT Journal AU te Velthuis, SGE Jiang, JS Felcher, GP TI Switching of the exchange bias in Fe/Cr(211) double- superlattice structures SO APPLIED PHYSICS LETTERS NR 15 AB The reversal of the direction of the exchange bias in a "double-superlattice" system which consists of an Fe/Cr antiferromagnetic (AF) superlattice which is ferromagnetically coupled with an Fe/Cr ferromagnetic (F) superlattice through a Cr spacer layer, is observed. Magnetometry and polarized neutron reflectometry show that a switch in the bias direction occurs at a field (similar to 447 Oe) well below the field (14 kOe) necessary to saturate the AF superlattice and well below the field (2 kOe) where the AF superlattice initiates a spin- flop transition. The switching of the exchange bias cannot be explained in terms of a model of uniform rotation, but rather by breakdown into domains and reversal of the AF layers. The transparency of magnetic behavior of the double superlattice may be useful in understanding the behavior of traditional exchange bias systems. (C) 2000 American Institute of Physics. [S0003- 6951(00)00240-0]. CR DANTAS AL, 1999, PHYS REV B, V59, P1223 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 JIANG JS, 2000, J VAC SCI TECHNOL 1, V18, P1264 JIANG JS, 2000, PHYS REV B, V61, P9653 LAAR L, UNPUB MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 NOGUES J, 2000, PHYS REV B, V61, PR6455 RAKHMANOVA S, 1998, PHYS REV B, V57, P476 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 1 BP 2222 EP 2224 PG 3 JI Appl. Phys. Lett. PY 2000 PD OCT 2 VL 77 IS 14 GA 357WZ J9 APPL PHYS LETT UT ISI:000089524900048 ER PT Journal AU Kwok, CT Cheng, FT Man, HC TI Laser surface modification of UNS S31603 stainless steel. Part I: microstructures and corrosion characteristics SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING NR 41 AB Laser surface alloying using various elements (Co, Ni, Mn, C, Cr, Mo, Si) and alloys/compounds (AlSiFe, Si3N4 and NiCrSiB) on austenitic stainless steel UNS S31603 was attemped. Alloying materials in powder form were preplaced on the surface of the substrate by flame spraying or pasting. The surface was then scanned by a high power laser beam to achieve surface alloying. The microstructures of the alloyed layers were studied by scanning electron microscopy, optical microscopy and X-ray diffractometry, and the corrosion characteristics in 3.5% NaCl solution at 23 degrees C were studied by potentiodynamic polarisation. The performance of the laser alloyed surfaces varied depending on the type and amount of alloying materials used, and on the laser processing parameters. The specimens alloyed with Co, Ni, Mn, C or NiCrSiB contained austenite as the main phase, with carbides and carbides/borides as the minor phases in C-alloyed and NiCrSiB-alloyed specimens. For specimens alloyed with Cr or Mo, the major phase was ferrite. In the case of Si or Si3N4, the major phase was an intermetallic Fe,Si. When A1SiFe was used, the major phase could be ferrite or Fe3Al. depending on the dilution ratio. The largest improvement in corrosion resistance was achieved with Si and Si3N4, leading to a noble shift in the pitting potential of 170 and 211 mV, respectively, and a corresponding noble shift in the protection potential of 130 and 221 mV. For NiCrSiB, the effect on the corrosion resistance depended on the degree of dilution. For all the other alloying materials, the corrosion resistance either remained unchanged or deteriorated mainly due to the presence of some ceramic or intermetallic phases which acted as sites of pit initiation. (C) 2000 Elsevier Science S.A. All rights reserved. CR *ASTM, 1992, ANN BOOK ASTM STAND BAROUX B, 1995, CORROSION MECH THEOR, P273 BRANDIS H, 1984, P C STAINL STEEL, V84, P217 BROWN A, 1974, MET SCI, V8, P317 CROW WB, 1972, CORROSION, V28, P77 CULLITY BD, 1978, ELEMENTS XRAY DIFFRA, P411 DRAPER CW, 1984, HIGH TEMP MATER PROC, V6, P213 FREES N, 1983, WEAR, V88, P57 GADAG SP, 1995, J MATER PROCESS TECH, V51, P150 GATELY NVH, 1987, MATER SCI ENG, V90, P333 GATELY NVH, 1988, SURF COAT TECH, V35, P69 GIREN BG, 1998, SURFACE ENG, V14, P325 GONALEZ JL, 1992, APPL STAINLESS STEEL, V2, P1009 GRIGORYANTS AG, 1984, ELECTROCHEM IND BIOL, V2, P46 GRIGORYANTS AG, 1982, ELECTROCHEM IND BIOL, V5, P35 GUO X, 1989, THERMAL SPRAY TECHNO, P159 HEATHCOCK CJ, 1981, WEAR, V74, P11 HULL FC, 1973, WELD J, V52, PS193 HYATT CV, 1998, METALL MATER TRANS A, V29, P1677 KANEKO H, 1966, J JPN I MET, V30, P157 KWOK CT, 1998, SURF COAT TECH, V107, P31 KWOK CT, 1998, SURF COAT TECH, V99, P295 LI R, 1992, CHIN J MET SCI TECHN, V8, P335 LOMBARDI CSM, 1997, CORROS PREVENTIO OCT, P40 MAJUMDAR JD, 1999, MAT SCI ENG A-STRUCT, V276, P50 MASSALSKI TB, 1990, BINARY ALLOY PHASE D, P148 MASSALSKI TB, 1990, BINARY ALLOY PHASE D, P417 MATSUMURA M, 1990, ASTM STP, V1049, P521 MCCAFFERTY E, 1986, J ELECTROCHEM SOC, V133, P1090 OKADA T, 1988, WEAR, V124, P21 RICHMAN RH, 1997, J MATER ENG PERFORM, V6, P633 ROBINSON JM, 1995, MATER SCI TECH SER, V11, P611 SANG KZ, 1995, WEAR, V189, P20 SEDRIKS AJ, 1986, CORROSION, V42, P376 SHAEFFLER AL, 1949, METAL PROGR, V56, P680 TOMLINSON WJ, 1991, J MATER SCI, V26, P804 TOMLINSON WJ, 1990, SURF ENG, V6, P281 TOMLINSON WJ, 1995, WEAR, V185, P59 TSAI WT, 1994, MAT SCI ENG A-STRUCT, V183, P239 VAKULA SI, 1991, PHYS CHEM MAT TREAT, V25, P181 ZHOU KS, 1982, WEAR, V80, P101 TC 0 BP 55 EP 73 PG 19 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PY 2000 PD OCT 15 VL 290 IS 1-2 GA 345YA J9 MATER SCI ENG A-STRUCT MATER UT ISI:000088841800009 ER PT Journal AU Diaz-Ortiz, A Sanchez, JM Moran-Lopez, JL TI Phase transitions in confined antiferromagnets SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH NR 23 AB Confinement effects on the phase transitions in antiferromagnets are studied as a function of the surface coupling v and the surface field h for b.c.c.(110) films. Unusual topologies for the phase diagram are attained for particular combinations of v and h. It is shown that some of the characteristics of the finite-temperature behavior of the system are driven by its low-temperature properties and consequently can be explained in terms of a ground-state analysis. Cluster variation free energies are used for the investigation of the finite temperature behavior. CR BINDER K, 1992, J CHEM PHYS, V96, P1444 BINDER K, 1983, PHASE TRANSITIONS CR DIAZORTIZ A, 1997, COMP MATER SCI, V8, P79 DIAZORTIZ A, IN PRESS DIAZORTIZ A, 1998, PHYS REV LETT, V81, P1146 DIAZORTIZ A, 1998, SOLID STATE COMMUN, V107, P285 DOSCH H, 1992, CRIT PHENOMENA SURFA, V126 DOWBEN PA, 1990, SURFACE SEGRETATION DREWITZ A, 1997, PHYS REV LETT, V78, P1090 EVANS R, 1990, J PHYS-CONDENS MAT, V2, P8989 FISHER ME, 1981, J CHEM PHYS, V75, P5857 FULLERTON EE, 1993, PHYS REV B, V48, P15755 KEFFER F, 1973, PHYS REV LETT, V31, P1061 KIKUCHI R, 1951, PHYS REV, V81, P998 LEIDL R, 1998, PHYS REV B, V57, P1908 MICHELETTI C, 1997, J PHYS A-MATH GEN, V30, PL233 MICHELETTI C, 1999, PHYS REV B, V59, P6239 MILLS DL, 1968, PHYS REV LETT, V20, P18 NAKANISHI H, 1983, J CHEM PHYS, V78, P3279 NAKANISHI H, 1982, PHYS REV LETT, V49, P1565 TRALLORI L, 1998, PHYS REV B, V57, P5923 TRALLORI L, 1994, PHYS REV LETT, V72, P1925 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 389 EP 394 PG 6 JI Phys. Status Solidi B-Basic Res. PY 2000 PD JUL VL 220 IS 1 GA 344PV J9 PHYS STATUS SOLIDI B-BASIC RE UT ISI:000088768800069 ER PT Journal AU Jiang, JS Felcher, GP Inomata, A Goyette, R Nelson, CS Bader, SD TI Exchange bias in Fe/Cr double superlattices SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 27 AB Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed "double superlattice" structures where a ferromagnetic (F) and an antiferromagnetic (BF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains. (C) 2000 American Vacuum Society. [S0734- 2101(00)02204-1]. CR BRUNO P, 1995, PHYS REV B, V52, P411 CAMLEY RE, 1999, J VAC SCI TECHNOL 1, V17, P1335 DIENY B, 1991, PHYS REV B, V43, P1297 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KIWI M, 1999, EUROPHYS LETT, V48, P573 KOON NC, 1997, PHYS REV LETT, V78, P4865 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 NIKITENKO VI, 1998, PHYS REV B, V57, PR8111 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1990, PHYS REV B, V42, P10583 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 SUHL H, 1998, PHYS REV B, V58, P258 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TANG C, 1984, J APPL PHYS, V55, P2226 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 WANG RW, 1994, PHYS REV LETT, V72, P920 ZABEL H, 1994, PHYSICA B, V198, P156 TC 2 BP 1264 EP 1268 PG 5 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 2000 PD JUL-AUG VL 18 IS 4 PN 1 GA 335ZH J9 J VAC SCI TECHNOL A UT ISI:000088276800044 ER PT Journal AU Inomata, A Jiang, JS You, CY Pearson, JE Bader, SD TI Magnetic stability of novel exchange coupled systems SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 11 AB The magnetic stability of two different interfacial exchange coupled systems is investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10(7) times, For uniaxial Fe/Cr(211) exchange biased "double-superlattice" systems, small but rapid initial decay of exchange bias field HE and the remanent magnetization is observed. Also the Sm-Co/Fe bilayers grown epitaxially with uniaxial in-plane anisotropy show similar decay, However, the HE Of biaxial and random in-plane bilayers shows gradual decay without large reduction of the magnetization. These different decay behaviors are explained by their different microstructure and interfacial spin configurations. (C) 2000 American Vacuum Society. [S0734- 2101(00)02104-7]. CR BENAISSA M, 1998, IEEE T MAGN 1, V34, P1204 CHARAP SH, 1997, IEEE T MAGN 2, V33, P978 DIENY B, 1991, PHYS REV B, V43, P1297 FULLERTON EE, 1997, APPL PHYS LETT, V71, P1579 FULLERTON EE, 1998, PHYS REV B, V58, P12193 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GIDER S, 1998, SCIENCE, V281, P797 KNELLER EF, 1991, IEEE T MAGN, V27, P3588 NIKITENKO VI, 1998, PHYS REV B, V57, PR8111 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PACCARD D, 1966, PHYS STATUS SOLIDI, V16, P301 TC 0 BP 1269 EP 1272 PG 4 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 2000 PD JUL-AUG VL 18 IS 4 PN 1 GA 335ZH J9 J VAC SCI TECHNOL A UT ISI:000088276800045 ER PT Journal AU Vavassori, P Grimsditch, M Fullerton, E Giovannini, L Zivieri, R Nizzoli, F TI Brillouin light scattering study of an exchange coupled asymmetric trilayer of Fe/Cr SO SURFACE SCIENCE NR 10 AB The magnetic response of a (211) oriented asymmetric Fe trilayer [Fe(100 Angstrom)/Cr(9 Angstrom)/Fe(20 Angstrom)/Cr(20 Angstrom)/Fe(20 Angstrom)], in which the thickness of the Cr spacer layers was chosen to produce ferromagnetic coupling (F) between the two thinner Fe layers and antiferromagnetic coupling (AF) between the thicker Fe layer and the adjacent thin one, has been investigated using magnetization and Brillouin light scattering (BLS) measurements. The coupling coefficients, extracted by fitting the BLS and magnetization measurements with a theory treating the static and dynamic response on an equal footing? produced consistent values of the magnetic parameters. Our results confirm that the theoretical model used in interpreting both static and dynamic properties is valid even in systems in which F and AF coupling of the layers are simultaneously present. The theoretical model has also been extended to include the field dependence of the intensity of the Brillouin peaks. The calculated intensities are compared with the BLS spectra at different applied fields. (C) 2000 Elsevier Science B.V. All rights reserved. CR COCHRAN JF, 1988, J MAGN MAGN MATER, V73, P299 COCHRAN JF, 1990, PHYS REV B, V42, P508 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRIMSDITCH M, 1996, PHYS REV B, V54, P3385 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 REZENDE SM, 1998, J APPL PHYS, V84, P958 SANDERCOCK JR, 1982, LIGHT SCATTERING SOL, V3, P173 SMIRNOV VI, 1964, COURSE HIGHER MATH, V4 WETTLING W, 1975, J PHYS C SOLID STATE, V8, P211 TC 1 BP 880 EP 884 PG 5 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200167 ER PT Journal AU Levchenko, VD Morosov, AI Sigov, AS TI Phase diagram of a thin ferromagnetic film on the surface of an antiferromagnet SO JETP LETTERS NR 8 AB Magnetic characteristics of a thin ferromagnetic film on the surface of an antiferromagnet are examined. Due to the roughness of the film-substrate interface, the system is frustrated, giving rise to domain walls of new type. The distributions of the order parameters in the domain walls are studied by mathematical modeling, and the phase diagram is obtained. (C) 2000 MAIK "Nauka/Interperiodica". CR ARIAS R, 1999, PHYS REV B, V59, P11871 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 ESCORCIAAPARICIO EJ, 1999, PHYS REV B, V59, P11892 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 FREYSS M, 1997, PHYS REV B, V56, P6047 LEVCHENKO VD, 1998, J EXP THEOR PHYS+, V87, P985 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 TC 0 BP 373 EP 376 PG 4 JI Jetp Lett. PY 2000 VL 71 IS 9 GA 326TF J9 JETP LETT-ENGL TR UT ISI:000087751000007 ER PT Journal AU Hopster, H TI Temperature dependent magnetic domain structure in ultrathin Fe films on Cr(100) SO JOURNAL OF APPLIED PHYSICS NR 4 AB Magnetic microscopy is used to study the temperature dependent magnetization structures in 2 nm Fe films on Cr(100). Above the Cr Neel temperature, the Fe films can be magnetized into a single domain state. When the films are cooled below the Neel temperature the Fe magnetization has a tendency to turn perpendicular (in-plane) resulting in a spatially varying magnetization direction. The resulting magnetization structures are highly reproducible. The tendency of the Fe magnetization to rotate is attributed to frustration due to atomic steps. It is suggested that the local angle of magnetization rotation reflects the average step density. (C) 2000 American Institute of Physics. [S0021-8979(00)65608-6]. CR BERGER A, 1994, PHYS REV LETT, V73, P193 HOPSTER H, 1999, PHYS REV LETT, V83, P1227 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 TC 0 BP 5475 EP 5477 PG 3 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200260 ER PT Journal AU Shobaki, J Al-Omari, IA Hasan, MK Azez, KA Al-Akhras, MAH Albiss, BA Hamdeh, HH Mahmood, SH TI Mossbauer and structural studies of Fe0.7-xVxAl0.3 alloys SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 20 AB We report the Mossbauer and structural studies of the alloy system Fe0.7-xVxAl0.3 where x = 0, 0.02, 0.06, 0.1, 0.2, and 0.3. X-ray diffraction indicates that all the samples studied have single phase with body center cubic structure. The lattice parameter (a) increases with increasing the vanadium concentration. Room temperature Mossbauer studies show magnetic ordering for small values of x and paramagnetic behavior for large values of x. The Mossbauer spectra were fitted by a distribution of magnetic hyperfine fields for small values of x and two singlets were added for large Values of x. The relation between the hyperfine field and the isomer shift in the hyperfine field distribution is linear. The average hyperfine field and isomer shift were found to decrease with increasing V concentration. The results are interpreted in terms of local environmental effects on the hyperfine interactions. (C) 2000 Elsevier Science B.V. All rights reserved. CR ARROTT A, 1959, PHYS REV, V114, P1420 BERGER A, 1994, PHYS REV LETT, V73, P193 DUBIEL SM, 1984, J MAGN MAGN MATER, V45, P298 DVIES A, 1996, PHYS REV LETT, V76, P4175 GALKIN VY, IN PRESS J PHYS COND GALKIN VY, 1998, J MAGN MAGN MATER, V186, PL1 GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO MIRBT S, 1997, PHYS REV B, V55, P67 MOTOYA K, 1983, PHYS REV B, V28, P6183 OKAMOTO H, 1971, METALL T, V2, P569 OKPALUGO DE, 1985, J PHYS F MET PHYS, V15, P681 OKPALUGO DE, 1985, J PHYS F MET PHYS, V15, P2025 OLIVER WF, IN PRESS OMARI I, 1989, J MAGN MAGN MATER, V78, P183 RAYMOND S, 1998, PHYSICA B, V241, P297 SHAPIRO SM, 1988, SPIN WAVES MAGNETIC, V2 SHERRINGTON D, 1975, PHYS REV LETT, V35, P1972 SWANN PR, 1969, T METALL SOC AIME, V245, P851 WAGNER V, 1998, J MAGN MAGN MATER 1, V177, P71 YELSUKOV EP, 1992, J MAGN MAGN MATER, V115, P271 TC 0 BP 51 EP 55 PG 5 JI J. Magn. Magn. Mater. PY 2000 PD APR VL 213 IS 1-2 GA 305FQ J9 J MAGN MAGN MATER UT ISI:000086529100009 ER PT Journal AU Jiang, JS Felcher, GP Inomata, A Goyette, R Nelson, C Bader, SD TI Exchange-bias effect in Fe/Cr(211) double superlattice structures SO PHYSICAL REVIEW B NR 28 AB Shifted hysteresis loops characteristic of the exchange-bias effect between a ferromagnet (F) and an antiferromagnet (AF) are demonstrated in "double-superlattice" structures. Utilizing the well-established oscillatory interlayer exchange coupling in Fe/Cr, we have constructed [Fe/Cr](AF)/Cr/[Fe/Cr](F) double superlattices where Fe/Cr superlattices with appropriate Cr- spacer thickness represent the F and the AF. The double superlattices are (211)-oriented epitaxial films sputter grown on single-crystal MgO(110) substrates. The AF/F interface is coherent compared to conventional exchange-bias interfaces consisting of dissimilar AF and F phases. Magnetization results show that AF/F exchange coupling affects the nucleation of reverse magnetic domains, and that the magnitude of the exchange-bias field is given directly by the classic formula for collinear spin structures. The collinear spin distribution is confirmed by polarized neutron reflectivity. CR BERKOWITZ AE, 1965, J APPL PHYS, V36, P3330 DIENY B, 1991, PHYS REV B, V43, P1297 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KOON NC, 1997, PHYS REV LETT, V78, P4865 KOUVEL JS, 1960, J PHYS CHEM SOLIDS, V16, P132 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 MORAN TJ, 1995, J APPL PHYS, V78, P1887 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PARKIN SSP, 1991, PHYS REV B, V44, P7131 PARKIN SSP, 1990, PHYS REV B, V42, P10583 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 SPERIOSU V, UNPUB TAKANO K, 1997, PHYS REV LETT, V79, P1130 TANG C, 1984, J APPL PHYS, V55, P2226 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WANG RW, 1994, PHYS REV LETT, V72, P920 ZABEL H, 1994, PHYSICA B, V198, P156 TC 3 BP 9653 EP 9656 PG 4 JI Phys. Rev. B PY 2000 PD APR 1 VL 61 IS 14 GA 303TW J9 PHYS REV B UT ISI:000086441800062 ER PT Journal AU Zablotskii, V Kisielewski, M Tsiganenko, O Ferre, J TI Coercivity of ultrathin magnetic films with perpendicular anisotropy SO ACTA PHYSICA POLONICA A NR 14 AB The calculation of the temperature dependence of the domain wall coercivity of ultrathin magnetic films with perpendicular anisotropy is reported. In this case, the magnetization reversal is supposed to occur through domain wall motion. The proposed model takes into account thermal bending fluctuations of the domain wall, which is pinned by crystal defects such as grain boundaries. A fitting procedure, applied to recently published experimental data on the field induced domain wall velocity in Au/Co films, allows us to find out realistic values of the involved parameters. CR BARNES JR, 1994, J APPL PHYS, V76, P2974 BERGER A, 1994, PHYS REV LETT, V73, P193 FAHNLE M, 1980, PHYS STATUS SOLIDI B, V96, P343 FERRE J, 1997, PHYS REV B, V55, P15092 HILZINGER HR, 1976, J MAGN MAGN MATER, V2, P11 JAMET JP, 1996, J MAGN SOC JAPN, V20, P217 KIRILYUK A, 1993, IEEE T MAGN, V29, P2518 KIRILYUK A, 1997, J MAGN MAGN MATER, V171, P45 KLAASSEN KB, 1994, IEEE T MAGN, V30, P375 LANDAY LD, 1964, STATP PHYSICS 1, P565 LEMERLE S, 1997, MAGNETIC HYSTERESIS, P537 SCHMIDT W, 1992, J MAGN MAGN MATER, V114, PL1 THOMSON T, 1997, IEEE T MAGN 2, V33, P795 YAO YD, 1996, J APPL PHYS 2B, V79, P6533 TC 0 BP 471 EP 474 PG 4 JI Acta Phys. Pol. A PY 2000 PD MAR VL 97 IS 3 GA 299HN J9 ACTA PHYS POL A UT ISI:000086193100027 ER PT Journal AU Nikitenko, VI Gornakov, VS Shapiro, AJ Shull, RD Liu, K Zhou, SM Chien, CL TI Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer SO PHYSICAL REVIEW LETTERS NR 20 AB Real-time magneto-optical indicator film images reveal distinct asymmetry in the motion of a single domain wall in a wedged- NiFe/uniform-FeMn bilayer due to the nucleation and behavior of an exchange spring in the antiferromagnetic layer Magnetization reversal from the round stare begins at the thick. end of the wedge where the exchange anisotropy field (H-E) is minimal and the magnetostatic field (H-MS) is maximal, whereas reversal into the ground state begins from the thin end where H-E is maximal and H-MS is minimal. CR BERGER A, 1994, PHYS REV LETT, V73, P193 BROWN WF, 1963, MICROMAGNETICS DIENY B, 1991, PHYS REV B, V43, P1297 DIMITROV DV, 1998, PHYS REV B, V58, P12090 ECKHART F, 1991, IEEE T MAGN, V27, P3588 FULLERTON EE, 1998, PHYS REV B, V58, P12193 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 KOON NC, 1997, PHYS REV LETT, V78, P4865 LANDAU L, 1935, PHYS Z SOWJETUNION, V8, P153 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 NIKITENKO VI, 1998, PHYS REV B, V57, PR8111 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TAKANO K, 1997, PHYS REV LETT, V79, P1130 UNGURIS J, 1991, PHYS REV LETT, V67, P140 ZHOU SM, 1998, PHYS REV B, V58, P14717 TC 6 BP 765 EP 768 PG 4 JI Phys. Rev. Lett. PY 2000 PD JAN 24 VL 84 IS 4 GA 276RT J9 PHYS REV LETT UT ISI:000084891700047 ER PT Journal AU Costa, AT Castro, JDE Muniz, RB TI Oscillatory exchange coupling between iron layers separated by chromium SO PHYSICAL REVIEW B NR 56 AB The exchange coupling J between Fe layers separated by nonmagnetic Cr is calculated for Fe/Cr/Fe (001) trilayer structures as a function of the spacer thickness N for several temperatures T. It is shown that for perfectly sharp interfaces J(N,T) is entirely dominated by short period oscillations for 0 K less than or equal to T less than or equal to 500 K and N varying from 5 to 50 atomic planes. At zero temperature the amplitude of J decays as N-3/2 for large values of N. This behavior is caused by the particular type of singularity in the nesting of the Cr Fermi which is responsible for one of the dominant short-period oscillations of J(N). A strong temperature dependence of the coupling strength is obtained for some values of N, in excellent agreement with experiments. The effect of interface mixing on J(N) reduces the overall coupling strength, as well as the relative importance of the short period oscillatory components, and causes a phase shift in the oscillations of J(N). [S0163-1829(99)03317-2]. CR ALMEIDA BG, 1998, J MAGN MAGN MATER 2, V177, P1170 AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BRUNO P, 1996, PHYS REV LETT, V76, P4254 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 CHAPPERT C, 1991, EUROPHYS LETT, V15, P553 COEHOORN R, 1991, PHYS REV B, V44, P9331 COSTA AT, 1997, PHYS REV B, V55, P3724 CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988 DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1992, MATER RES SOC S P, V231, P133 DRCHAL V, 1996, PHYS REV B, V53, P15036 ECASTRO JD, 1996, PHYS REV B, V53, P13306 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FERREIRA MS, 1996, J MAGN MAGN MATER, V154, PL1 FERREIRA MS, 1996, J PHYS-CONDENS MAT, V8, P11259 FREYSS M, 1996, PHYS REV B, V54, P12677 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1997, J APPL PHYS 2A, V81, P4350 HEINRICH B, 1991, PHYS REV B, V44, P9348 KOELLING DD, 1994, PHYS REV B, V50, P273 KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125 KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105 LANG P, 1996, PHYS REV B, V53, P9092 MATHON J, 1997, PHYS REV B, V56, P11797 MATHON J, 1995, PHYS REV LETT, V74, P3696 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1992, J MAGN MAGN MATER, V104, P1819 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 VEGA A, 1995, EUROPHYS LETT, V31, P561 VICTORA RH, 1986, MAGNETIC ELECT PROPE, P25 WANG Y, 1990, PHYS REV LETT, V65, P2732 TC 0 BP 11424 EP 11431 PG 8 JI Phys. Rev. B PY 1999 PD MAY 1 VL 59 IS 17 GA 272CA J9 PHYS REV B UT ISI:000084631900057 ER PT Journal AU Velthuis, SGET Felcher, GP Jiang, JS Inomata, A Nelson, CS Berger, A Bader, SD TI Magnetic configurations in exchange-biased double superlattices SO APPLIED PHYSICS LETTERS NR 21 AB The layer-by-layer magnetization of a "double-superlattice" Fe/Cr(211) exchange-bias junction was determined by polarized neutron reflectometry. An n-layered [Fe/Cr](n) antiferromagnetic (AF) superlattice is coupled with an m- layered [Fe/Cr](m) ferromagnetic (F) superlattice, to provide a controlled exchange bias. In low magnetic fields, the magnetizations of the two superlattices are collinear. The two magnetized states (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. At higher fields, the AF moments flop to the direction perpendicular to the applied field. The structure, thus determined, explains the magnitude of the bias field. (C) 1999 American Institute of Physics. [S0003-6951(99)03052-1]. CR BERKOWITZ AE, 1965, J APPL PHYS, V36, P3330 FULLERTON EE, 1994, J APPL PHYS, V75, P6461 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 JIANG JS, UNPUB JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KOON NC, 1997, PHYS REV LETT, V78, P4865 KOUVEL JS, 1960, J PHYS CHEM SOLIDS, V16, P132 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MORAN TJ, 1995, J APPL PHYS, V78, P1887 NEVOT L, 1980, REV PHYS APPL, V15, P761 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PARRATT LG, 1954, PHYS REV, V95, P359 SCHULTHESS TC, 1998, PHYS REV LETT, V81, P4516 STILES MD, 1999, PHYS REV B, V59, P3722 TANG C, 1984, J APPL PHYS, V55, P2226 VANDERZAAG PJ, 1996, J APPL PHYS 2A, V79, P5103 TC 0 BP 4174 EP 4176 PG 3 JI Appl. Phys. Lett. PY 1999 PD DEC 27 VL 75 IS 26 GA 269YH J9 APPL PHYS LETT UT ISI:000084504700043 ER PT Journal AU Zabel, H TI Magnetism of chromium at surfaces, at interfaces and in thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 113 AB The spin density wave (SDW) magnetism of thin epitaxial Cr films has recently become the focus of interest because of its mediating role in exchange coupled superlattices. While the incommensurate SDW magnetism and the Neel temperature are well established for bulk Cr, the question arises of how these properties are altered in thin films and superlattices either due to dimensionality effects or due to proximity with the ferromagnetic or paramagnetic boundary layers. After a brief introduction to the basic properties of bulk Cr, this review provides an overview of the SDW magnetism in thin Cr films, starting with surface properties and continuing with the discussion of Cr films of various thickness. The emphasis is more on SDW order in different confined environments than on exchange coupling. The scaling of the Neel temperature with thickness, the critical thickness for the onset of SDW order, the orientation of the SDW wave vector in different environments and the enhancement of SDW order due to proximity effects are extensively discussed. Most important is the role of the interface roughness in case of contact with a ferromagnetic layer. Conflicting results obtained with different experimental techniques are critically reviewed and an interpretation of the SDW order depending on interface quality is proposed. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALLAN G, 1979, PHYS REV B, V19, P4774 ANKNER JF, 1995, J APPL PHYS, V81, P3765 ARROTT A, 1967, PHYS REV, V153, P624 BARBER MN, 1983, PHASE TRANSITIONS CR, V8, P145 BASTOW TJ, 1966, PHYS REV, V141, P510 BAUER E, 1999, J PHYS-CONDENS MAT, V11, P9365 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BERLOWITZ PJ, 1989, SURF SCI, V209, P345 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUGEL S, 1989, PHYS REV B, V39, P1392 BLUGEL S, 1992, PHYS REV LETT, V68, P851 BLUGEL S, 1988, PHYS REV LETT, V60, P1077 BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1998, PHYS REV LETT, V81, P914 BYKOV VN, 1958, DOKL AKAD NAUK SSSR, V4, P1149 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMUYNCK S, 1998, PHYS REV LETT, V81, P2562 ELMERS HJ, 1995, INT J MOD PHYS B, V9, P3115 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12677 FU CL, 1986, PHYS REV B, V33, P1611 FU CL, 1986, PHYS REV B, V33, P1755 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, 1996, PHYS REV B, V54, P9304 FULLERTON EE, 1996, PHYS REV LETT, V17, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1996, PHYSICA B, V221, P370 GIBBS D, 1988, PHYS REV B, V37, P562 GREMPEL DR, 1981, PHYS REV B, V24, P3928 HANF MC, 1989, PHYS REV B, V39, P1546 HILL JP, 1995, PHYS REV B, V51, P10336 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HIRAI K, 1998, J PHYS SOC JPN, V67, P1776 HIRAI K, 1997, J PHYS SOC JPN, V66, P560 HIRAI K, 1993, J PHYS SOC JPN, V62, P690 HIRAI K, 1999, PHYS REV B, V59, PR6612 HUCHT A, 1998, COMMUNICATION IDZERDA YU, 1993, J APPL PHYS, V73, P6204 IDZERDA YU, 1993, PHYS REV B, V48, P4144 JANDELEIT J, 1994, SURF SCI, V319, P287 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 KAZANSKY AK, 1995, PHYS REV B, V52, P9477 KEUNE W, 1996, J APPL PHYS 1, V79, P4265 KIM SK, 1996, SURF SCI, V349, P160 KLEBANOFF LE, 1986, PHYS REV B, V33, P5301 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KLEBANOFF LE, 1984, PHYS REV B, V30, P1048 KOTANI A, 1975, J PHYS SOC JPN, V38, P974 KREMBEL C, 1990, VACUUM, V41, P460 KUBLER J, 1980, J MAGN MAGN MATER, V20, P277 LAURENT DG, 1981, PHYS REV B, V23, P4977 LAWLER JF, 1996, PHYS REV B, V53, P11159 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 LOVESEY SW, 1984, THEORY NEUTRON SCATT MATTSON J, 1990, MATER RES SOC S P, V160, P231 MEERSSCHAUT J, 1995, J MAGN MAGN MATER, V148, P23 MEERSSCHAUT J, 1998, PHYS REV B, V57, PR5575 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 METOKI N, 1994, PHYS REV B, V49, P17351 MIBU K, 1999, J MAGN MAGN MATER, V198, P689 MIBU K, 1998, J PHYS SOC JPN, V67, P2633 MORI M, 1993, J PHYS CONDENS MATT, V5, PL77 NAKAJIMA S, 1975, J PHYS SOC JPN, V38, P330 NIKLASSON AMN, 1999, PHYS REV LETT, V82, P4544 NIKLASSON AMN, 1998, THESIS UPPSALA U OHRESSER P, 1996, SURF SCI, V352, P567 OVERHAUSER AW, 1962, PHYS REV, V128, P1437 PFLAUM J, 1999, J MAGN MAGN MATER, V198, P453 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIZZAGALLI L, 1996, PHYS REV B, V54, P12216 ROUYER D, 1995, SURF SCI, V322, P34 ROUYER D, 1994, SURF SCI, V307, P477 SCHEURER F, 1997, PHYS REV B, V56, P13490 SCHMITTE T, 1999, IN PRESS EUROPHYS LE SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SHINN ND, 1988, J VAC SCI TECHNOL A, V6, P597 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 SONNTAG P, 1995, PHYS REV B, V52, P7363 SONNTAG P, 1994, PHYS REV B, V49, P2869 STIERLE A, IN PRESS STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TERAOKA Y, 1977, PHYSICA B, V86, P321 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, EUROPHYS LETT, V31, P561 VEGA A, 1995, PHYS REV B, V51, P11546 VENUS D, 1996, PHYS REV B, V53, PR1733 VICTORA RH, 1995, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WERNER SA, 1962, PHYS REV, V155, P528 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 XU ZD, 1995, PHYS REV B, V52, P15393 TC 12 BP 9303 EP 9346 PG 44 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100007 ER PT Journal AU Pierce, DT Unguris, J Celotta, RJ Stiles, MD TI Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 90 AB The interplay between interfacial disorder and the antiferromagnetic order in Cr lends to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Tr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr lends to results not explained by the conventional model. For nearly ideal interfaces, the Fe-Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results. (C) 1999 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1997, J APPL PHYS 2A, V81, P3765 ARNOTT AS, 1990, KINETICS ORDERING GR, P321 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, COMMUNICATION COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D, V13, P925 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, J APPL PHYS 2A, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12667 FULLERTON EE, COMMUNICATION FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GEERKEN BM, 1982, J PHYS F MET PHYS, V12, P603 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1999, PHYS REV B, V59, P14520 HEINRICH B, 1991, PHYS REV B, V44, P9348 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEERSSCHAUT J, 1998, THESIS KATHOLIEKE U MIRBT S, 1997, PHYS REV B, V56, P287 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHMIDT CM, 1999, IN PRESS PHYS REV B, V60 SCHREYER A, COMMUNICATION SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 1996, PHYSICA B, V221, P366 SHI ZP, 1994, PHYS REV B, V49, P15159 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 THEISBROHL K, 1998, PHYS REV B, V57, P4747 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, IN PRESS J MAGN MAGN UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VEGA A, 1995, EUROPHYS LETT, V31, P561 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG RW, 1992, PHYS REV B, V46, P11681 WANG Y, 1990, PHYS REV LETT, V65, P2732 WERNER SA, 1967, PHYS REV, V155, P528 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 13 BP 290 EP 321 PG 32 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700019 ER PT Journal AU Qiu, ZQ Bader, SD TI Surface magneto-optic Kerr effect (SMOKE) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 51 AB The purpose of this article is to stimulate interest in the power of the surface magneto-optic Kerr effect (SMOKE) technique to address a range of contemporary issues associated with the physics of interfacial magnetic materials. Magneto- optics is introduced from both historical and modern perspectives. Experimental considerations are briefly considered. Topics highlighted include the phases of face- centered Fe, the phenomenon of oscillatory magnetic coupling, the two-dimensional spin-reorientation transition, step-induced magnetic anistropies in FCC and BCC systems, and spin frustration at the interface between ferromagnetic and antiferromagnetic films. (C) 1999 Elsevier Science B.V. All rights reserved. CR ALLENSPACH R, 1992, PHYS REV LETT, V69, P3385 ARGYRES PN, 1955, PHYS REV, V97, P334 BADER SD, 1991, J MAGN MAGN MATER, V100, P440 BADER SD, 1986, J MAGN MAGN MATER, V53, P295 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CHOI HJ, 1998, PHYS REV B, V57, P12713 CHOI HJ, 1999, PHYS REV LETT, V82, P1947 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 FARADAY M, 1846, T ROY SOC LOND, V5, P592 FAWCETT E, 1988, REV MOD PHYS, V60, P209 GRADMANN U, 1986, APPL PHYS A-SOLID, V39, P101 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HULME HR, 1932, P ROY SOC LOND A MAT, V135, P237 KASHUBA A, 1993, PHYS REV LETT, V70, P3155 KASHUBA AB, 1993, PHYS REV B, V48, P10335 KAWAKAMI RK, 1998, PHYS REV B, V58, PR5924 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KERR J, 1878, PHILOS MAG, V5, P161 KERR J, 1877, PHILOS MAG, V3, P339 KITTEL C, 1965, PHYS REV A, V83, P208 LI DQ, 1994, PHYS REV LETT, V72, P3112 LIU C, 1991, PHYS REV B, V44, P2205 LIU C, 1988, PHYS REV LETT, V60, P2422 MACEDO WAA, 1988, PHYS REV LETT, V61, P475 MAXWELL JC, 1973, TREATISE ELECTRICITY, V2, P399 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MERMIN ND, 1966, PHYS REV LETT, V17, P1133 MONTANO PA, 1987, PHYS REV LETT, V59, P1041 MOOG ER, 1985, SUPERLATTICE MICROST, V1, P543 MORUZZI VL, 1986, PHYS REV B, V34, P1784 NEEL L, 1954, J PHYS RADIUM, V15, P225 NEWKIRK JB, 1957, T AIME, V209, P1214 PAPPAS DP, 1992, PHYS REV B, V45, P8169 PAPPAS DP, 1990, PHYS REV LETT, V64, P3179 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PESCIA D, 1990, PHYS REV LETT, V65, P2599 QIU ZQ, 1992, PHYS REV B, V46, P8195 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 RADER O, 1994, PHYS REV LETT, V72, P2247 THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 VOIGT W, 1915, HDB ELEKTRIZITAT MAG, V4, P393 VOIGT W, 1908, MAGNETO ELEKTROOPTIC WANG Y, 1990, PHYS REV LETT, V65, P2732 WEAVER JH, 1988, CRC HDB CHEM PHYSICS, P387 XHONNEUX P, 1992, PHYS REV B, V46, P556 YAFET Y, 1988, PHYS REV B, V38, P9145 ZAK J, 1990, J MAGN MAGN MATER, V89, P107 ZAK J, 1991, PHYS REV B, V43, P6423 TC 1 BP 664 EP 678 PG 15 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700040 ER PT Journal AU Hopster, H TI Magnetic domain formation in Fe films on Cr(100) SO PHYSICAL REVIEW LETTERS NR 19 AB Magnetic domain images of thin (2 nm) Fe films on Cr(100) are presented. Upon cooling a single-domain state transforms into a state with a locally varying in-plane magnetization direction. This transformation is partially reversible and highly reproducible. It is suggested that the in-plane rotation is driven by frustration that favors 90 degrees coupling, and that the local magnetization direction reflects mu m-scale variations of the atomic scale roughness. CR AZEVEDO A, 1996, PHYS REV LETT, V76, P4837 BERGER A, 1994, PHYS REV LETT, V73, P193 BODEKER P, 1998, PHYS REV LETT, V81, P914 DAYKIN AC, 1997, J APPL PHYS, V82, P2447 DEMUYNCK S, 1998, PHYS REV LETT, V81, P2562 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 HOPSTER H, 1997, MATER RES SOC SYMP P, V475, P569 IJIRI Y, 1998, PHYS REV LETT, V80, P608 KOON NC, 1997, PHYS REV LETT, V78, P4865 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 PAPPAS DP, 1990, THESIS U CALIFORNIA RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHWABENHAUSEN J, 1997, PHYS REV B, V15, P15119 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 1 BP 1227 EP 1230 PG 4 JI Phys. Rev. Lett. PY 1999 PD AUG 9 VL 83 IS 6 GA 223ZL J9 PHYS REV LETT UT ISI:000081871400038 ER PT Journal AU Escorcia-Aparicio, EJ Wolfe, JH Choi, HJ Ling, WL Kawakami, RK Qiu, ZQ TI Magnetic phases of thin Fe films grown on stepped Cr(001) SO PHYSICAL REVIEW B NR 17 AB Magnetic phases of Fe films grown on curved Cr(001) with steps parallel to [100] are studied using the surface magneto-optic Ken: effect (SMOKE). We found that the atomic steps (1) induce an in-plane uniaxial magnetic anisotropy with the easy magnetization axis parallel to the step edges, and (2) generate magnetic frustration either inside the Fe film or at the Fe-Cr interface, depending pn the Fe film thickness and the vicinal angle. For thickness greater than 35 Angstrom, the Fe him forms a single magnetic domain and undergoes an in-plane magnetization switching due to the competition of the step- induced anisotropy and the Fe-Cr interfacial frustration. For thickness less than 35 Angstrom, the Fe film forms multiple magnetic domains at low vicinal angle, and transforms into a single domain at high vicinal angle. A magnetic phase diagram in the 30-45 Angstrom thickness range was obtained using a wedge-shaped Fe film. [S0163-1829(99)02918-5]. CR BERGER A, 1994, PHYS REV LETT, V73, P193 CHOI HJ, 1998, PHYS REV B, V57, P12713 ERNESTO J, 1998, PHYS REV LETT, V81, P2144 FAWCETT E, 1988, REV MOD PHYS, V60, P209 IJIRI Y, 1998, PHYS REV LETT, V80, P608 JOLY Y, 1989, PHYS REV B, V40, P10119 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KOON NC, 1997, PHYS REV LETT, V78, P4865 MEIER F, 1982, PHYS REV LETT, V48, P645 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 MORAN TJ, 1996, J APPL PHYS 2A, V79, P5109 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 SCHEURER F, 1993, SURF SCI, V298, P107 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WEBER W, 1995, NATURE, V374, P788 WEBER W, 1995, PHYS REV B, V52, P14440 TC 1 BP 11892 EP 11896 PG 5 JI Phys. Rev. B PY 1999 PD MAY 1 VL 59 IS 18 GA 197HN J9 PHYS REV B UT ISI:000080359500042 ER PT Journal AU Escorcia-Aparicio, EJ Choi, HJ Wolfe, JH Ling, WL Kawakami, RK Qiu, ZQ TI Modification of the magnetic properties of Fe/Cr(001) by controlling the compensation of a vicinal Cr(001) surface SO JOURNAL OF APPLIED PHYSICS NR 11 AB The degree of compensation of a normally uncompensated Cr(001) surface is controlled by using a curved substrate with steps parallel to the [100] direction. In this way, the degree of frustration caused by steps at the interface between an Fe overlayer and the Cr substrate can be systematically varied. Previous work on flat Cr(001) at temperatures below the Cr ordering temperature (311 K) has identified a critical Fe thickness of similar to 35-38 Angstrom, below which the Fe films display a reduced remanence. For our curved Cr substrate, below this critical Fe thickness three phases are observed for low (similar to 5 degrees) miscut angle respectively: (i) multidomain; (ii) single domain with magnetization perpendicular to the step edges; and (iii) single domain with magnetization parallel to the step edges. At the same temperature, for Fe films above the critical thickness, region (i) disappears and only regions (ii) and (iii) remain. In a second experiment, the adsorption of submonolayer Au on the Fe is observed to increase the strength of the step-induced anisotropy and accordingly vary the position of the transition from regions (ii) to (iii). (C) 1999 American Institute of Physics. [S0021-8979(99)39908-4]. CR BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 CHOI HJ, 1998, PHYS REV B, V57, P12713 ESCORCIAAPARICIO EJ, 1998, IEEE T MAGN 1, V34, P1219 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KOON NC, 1997, PHYS REV LETT, V78, P4865 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MORAN TJ, 1996, J APPL PHYS 2A, V79, P5109 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 WEBER W, 1995, NATURE, V374, P788 TC 0 BP 4961 EP 4963 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2A GA 188MK J9 J APPL PHYS UT ISI:000079850700228 ER PT Journal AU Bodeker, P Schreyer, A Zabel, H TI Spin-density waves and reorientation effects in thin epitaxial Cr films covered with ferromagnetic and paramagnetic layers SO PHYSICAL REVIEW B NR 63 AB We report about synchrotron and neutron-scattering studies investigating incommensurate spin-density waves (I-SDW's) in epitaxially grown thin Cr(001) films, including surface and interface effects. These studies show that thin ferromagnetic cap layers of Fe, Ni, and Co with a thickness of only 2-3 nm have a strong effect on the propagation and orientation of the I-SDW's in Cr. For thick Cr films there exist essentially only transverse I-SDW's propagating parallel to the:film plane with the spins oriented normal to the planet and at right angles to the in-plane magnetization of the ferromagnetic cap layers. With decreasing Cr thickness a different transverse I-SDW grows at the expense of the in-plane ones, now propagating normal to the plane and with spins parallel or antiparallel to the film magnetization. At a Cr thickness of about 250 Angstrom, the transverse out-of-plane I-SDW completely dominates the phase diagram of Cr. All other domains are suppressed and a spin-flip transition does not occur above 10 K in strong contrast to bulk. For in-plane propagation of the T-SDW we find a coexisting commensurate spin-density wave (C-SDW) which vanishes during the reorientation to. out-of-plane propagation with Cr thickness. Finally,for Cr thicknesses well below the period of the I-SDW, the Cr can only order as a C-SDW. The behavior of the SDW's in thin Cr films with ferromagnetic cap layers can be understood in terms of competing interactions at the rough interfaces inducing frustration and by finite-size and strain effects. We have also investigated the effect of Cu and Pd cap layers on the SDW. The Cu cover is similar to a Cr/vacuum interface, whereas the effect of the Pd cover is intermediate between the ferromagnetic layers and Cu. [S0163- 1829(99)11513-3]. CR ARROTT A, 1966, MAGNETISM B, V2, P295 ARROTT A, 1967, PHYS REV, V153, P624 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 BLUGEL S, 1989, EUROPHYS LETT, V9, P597 BLUGEL S, 1989, PHYS REV B, V39, P1392 BODEKER P, IN PRESS PHYSICA B BODEKER P, 1998, PHYS REV LETT, V81, P914 BODEKER P, 1997, PHYSICA B, V234, P464 BRUCKEL T, 1993, ACTA CRYSTALLOGR A, V49, P679 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DEMUYNCK S, 1998, PHYS REV LETT, V81, P2562 DONNER W, 1994, J APPL PHYS, V75, P6421 DONNER W, 1993, PHYS REV B, V48, P14745 DURBIN SM, 1985, J PHYS F MET PHYS, V15, PL221 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 DURBIN SM, 1981, J PHYS F MET PHYS, V11, PL223 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FREYSS M, 1997, PHYS REV B, V56, P6047 FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GIBBS D, 1988, PHYS REV B, V37, P562 HILL JP, 1997, PHYS REV B, V55, PR8662 HILL JP, 1995, PHYS REV B, V51, P10336 HUCHT A, COMMUNICATION JUNGBLUT R, 1990, J APPL PHYS, V70, P5923 LIPPERT M, 1994, EUROPHYS LETT, V27, P537 LOVESEY SW, 1984, THEORY NEUTRON SCATT MEERSSCHAUT J, 1998, PHYS REV B, V57, PR5575 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 METOKI N, 1994, PHYS REV B, V49, P17351 MIBU K, UNPUB OVERHAUSER AW, 1962, PHYS REV, V128, P1437 PEOPLE R, 1985, APPL PHYS LETT, V47, P322 SCHMITTE T, UNPUB SCHREIBER F, 1995, PHYS REV B, V51, P2920 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 SONNTAG P, 1995, PHYS REV B, V52, P7363 SONNTAG P, 1994, PHYS REV B, V49, P2869 STIERLE A, 1997, EUROPHYS LETT, V37, P365 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STREMPFER J, 1997, EUROPHYS LETT, V40, P569 THEISBROHL K, 1998, PHYS REV B, V57, P4747 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, EUROPHYS LETT, V31, P561 WERNER SA, 1967, PHYS REV, V155, P528 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 WIJN HPJ, 1991, DATA SCI TECHNOLOGY WILLIAMS IS, 1981, PHILOS MAG B, V43, P955 YU CT, 1998, PHYS REV B, V37, P2955 ZABEL H, 1998, J PHYS D APPL PHYS, V31, P656 ZABEL H, 1998, NATO ASI E, V349 ZEIDLER T, 1996, PHYS REV B, V53, P3256 TC 6 BP 9408 EP 9431 PG 24 JI Phys. Rev. B PY 1999 PD APR 1 VL 59 IS 14 GA 186WT J9 PHYS REV B UT ISI:000079754300046 ER PT Journal AU Nogues, J Schuller, IK TI Exchange bias SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 355 AB We review the phenomenology of exchange bias and related effects, with emphasis on layered antiferromagnetic (AFM)- ferromagnetic (FM) structures. A compilation of materials exhibiting exchange bias and some of the techniques used to study them is given. Some of the applications of exchange bias are discussed. The leading theoretical models are summarized. Finally some of the factors controlling exchange bias as well as some of the unsolved issues associated with exchange bias are discussed. (C) 1999 Elsevier Science B.V. All rights reserved. CR ABDULRAZZAQ W, 1991, J APPL PHYS, V69, P5078 AHARONI A, 1959, J APPL PHYS, V30, P1956 AKTAS B, 1993, J MAGN MAGN MATER, V119, P339 ALLEGRANZA O, 1993, J APPL PHYS, V73, P6218 AMBROSE T, 1994, APPL PHYS LETT, V65, P1967 AMBROSE T, 1997, PHYS REV B, V56, P83 ATAKA T, 1993, 17 C MAGN JAP, P35 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAILEY SB, 1970, J APPL PHYS, V41, P194 BAILEY WE, 1996, J APPL PHYS 2B, V79, P6393 BALL AR, 1996, APPL PHYS LETT, V69, P583 BALL AR, 1996, APPL PHYS LETT, V69, P1489 BALL AR, 1995, J MAGN MAGN MATER, V148, P46 BALL AR, 1996, PHYSICA B, V211, P388 BAYLEGUILLEMAUD P, 1996, IEEE T MAGN 2, V32, P4627 BEAN CP, 1960, STRUCTURE PROPERTIES, P331 BECK PA, 1978, PROG MATER SCI, V23, P1 BERGER A, 1994, PHYS REV LETT, V73, P193 BERKOWITZ AE, 1965, J APPL PHYS, V36, P3330 BERKOWITZ AE, 1964, J APPL PHYS, V35, P925 BERRY SD, 1993, J MAGN MAGN MATER, V123, P126 BERRY SD, 1993, MATER RES SOC S P, V313, P779 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BONA GL, 1988, APPL PHYS LETT, V52, P166 BORCHERS JA, 1995, PHYS REV B, V51, P8276 BOSTANJOGLO O, 1972, INT J MAGN, V3, P135 BOSTANJOGLO O, 1971, PHYS STATUS SOLIDI A, V7, P173 BRANSKY J, 1970, J APPL PHYS, V41, P183 BRODKORB W, 1970, PHYS STATUS SOLIDI A, V3, P333 BURKETT SL, 1997, IEEE T MAGN 2, V33, P3544 BURKETT SL, 1997, J APPL PHYS 2B, V81, P4912 BURKETT SL, 1997, J MAGN MAGN MATER, V168, PL233 CAIN WC, 1990, IEEE T MAGN, V26, P2412 CAIN WC, 1989, IEEE T MAGN, V25, P2787 CAIN WC, 1990, J APPL PHYS, V67, P5722 CAIN WC, 1987, J APPL PHYS, V61, P4170 CAMPBELL IA, 1986, PHYS REV B, V33, P3540 CAO W, 1994, J ELECTRON MATER, V23, P1043 CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 CAREY MJ, 1993, J APPL PHYS, V73, P6892 CHAPMAN JN, 1996, J APPL PHYS 2B, V79, P6452 CHARP SH, 1971, J APPL PHYS, V42, P1426 CHEN MM, 1993, IEEE T MAGN, V29, P4077 CHEN Y, 1991, MOD PHYS LETT, V5, P1781 CHEN YJ, 1991, J APPL PHYS, V70, P5822 CHEN YJ, 1991, J APPL PHYS, V69, P4523 CHENG SF, 1996, J APPL PHYS 2B, V79, P6234 CHOE G, 1997, APPL PHYS LETT, V70, P1766 CHOE G, 1997, IEEE T MAGN 2, V33, P3691 CHOPRA HD, 1997, J APPL PHYS 2A, V81, P4017 CHOPRA HD, 1997, NANOSTRUCT MATER, V9, P451 CHOUKH AM, 1997, IEEE T MAGN 2, V33, P3676 DANAN H, 1971, J PHYS C SOLID STATE, V32, P131 DARNELL FJ, 1961, J APPL PHYS, V32, PS186 DAUGHTON JM, 1993, IEEE T MAGN, V29, P2705 DEVASAHAYAM AJ, 1995, IEEE T MAGN, V31, P3820 DEVASAHAYAM AJ, 1997, IEEE T MAGN 1, V33, P2881 DEVASAHAYAM AJ, 1996, IEEE T MAGN 2, V32, P4654 DIENY B, 1994, J MAGN MAGN MATER, V136, P335 DIENY B, 1991, PHYS REV B, V43, P1297 DIMITROV DV, 1996, J APPL PHYS 2A, V79, P5106 DING J, 1996, J APPL PHYS 2B, V79, P5892 EFIMOVA NN, 1996, LOW TEMP PHYS, V22, P824 EGELHOFF WF, 1996, J APPL PHYS, V79, P2491 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 EVERITT BA, 1996, IEEE T MAGN 2, V32, P4657 FARROW RFC, 1997, J APPL PHYS 2B, V81, P4986 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FREELAND JW, 1997, UNPUB FREITAS PP, 1994, APPL PHYS LETT, V65, P493 FREITAS PP, 1994, J APPL PHYS, V75, P6480 FROLOV GI, 1969, PHYS MET METALLOGR, V28, P777 FUJII Y, 1987, J MAGN SOC JPN S1, V11, P329 FUJIKATA J, 1996, IEEE T MAGN 2, V32, P4621 FUJIKATA J, 1995, J MAGN SOC JAPAN, V19, P365 FUJIMORI H, 1988, J PHYS-PARIS, V49, P1931 FUJITA M, 1997, J APPL PHYS 2B, V81, P4909 FUJIWARA H, 1996, J APPL PHYS 2B, V79, P6286 FUKAMICHI K, 1997, J MAGN SOC JAPAN, V21, P1062 FUKE HN, 1997, J APPL PHYS 2A, V81, P4004 FULCOMER E, 1972, J APPL PHYS, V43, P4184 FULCOMER E, 1972, J APPL PHYS, V43, P4190 GANGOPADHYAY S, 1992, IEEE T MAGN, V28, P3174 GANGOPADHYAY S, 1993, J APPL PHYS, V73, P6964 GANGOPADHYAY S, 1992, NANOSTRUCT MATER, V1, P449 GEOGHEGAN DS, 1995, MATER SCI FORUM, V179, P629 GILLIES MF, 1995, J APPL PHYS, V78, P5554 GLAZER AA, 1967, B ACAD SCI USSR PHYS, V31, P738 GLAZER AA, 1966, B ACAD SCI USSR PHYS, V30, P1105 GLAZER AA, 1972, JETP LETT, V15, P259 GLAZER AA, 1986, PHYS MET METALLOGR, V61, P54 GLAZER AA, 1970, PHYS MET METALLOGR, V30, P226 GLAZER AA, 1968, PHYS MET METALLOGR, V26, P289 GLAZER AA, 1966, PHYS STATUS SOLIDI, V16, P745 GLAZER AA, 1967, SOV PHYS-SOLID STATE, V8, P2413 GOKEMEIJER NJ, 1997, J APPL PHYS 2B, V81, P4999 GOKEMEIJER NJ, 1997, PHYS REV LETT, V79, P4270 GONTARZ R, 1971, CZECH J PHYS B, V21, P519 GOODMAN AM, 1997, IEEE T MAGN 1, V33, P2902 GORNAKOV VS, 1997, J APPL PHYS 2B, V81, P5215 GOTO E, 1965, J APPL PHYS, V36, P2951 GREINER JH, 1966, J APPL PHYS, V37, P1474 GREINER JH, 1961, J APPL PHYS S, V32, PS188 GUARISCO D, 1997, IEEE T MAGN 2, V33, P3595 GURNEY BA, 1997, J APPL PHYS 2A, V81, P3998 HAGEDORN FB, 1970, J APPL PHYS, V41, P2491 HAGEDORN FB, 1967, J APPL PHYS, V38, P3641 HAMAKAWA Y, 1996, IEEE T MAGN, V32, P149 HAN DH, 1997, APPL PHYS LETT, V70, P664 HAN DH, 1997, J APPL PHYS, V81, P340 HAN DH, 1997, J APPL PHYS 2A, V81, P4519 HAN DH, 1997, J APPL PHYS 2B, V81, P4996 HASEGAWA H, 1988, PHYS REV B, V38, P4863 HASEGAWA H, 1988, PHYSICA B, V149, P175 HASEGAWA N, 1996, IEEE T MAGN 2, V32, P4618 HEFFNER H, 1960, J APPL PHYS, V31, P2316 HEIM DE, 1994, IEEE T MAGN, V30, P216 HELLMAN F, 1987, APPL PHYS LETT, V50, P296 HEMMES K, 1988, J PHYS D, V21, P228 HEMPSTEAD RD, 1978, IEEE T MAGN, V14, P521 HOSHINO K, 1996, JPN J APPL PHYS 1, V35, P607 HOSHINO K, 1994, JPN J APPL PHYS PT 1, V33, P1327 HOSHIYA H, 1997, IEEE T MAGN 1, V33, P2878 HOWARD JK, 1988, J APPL PHYS, V64, P6118 HSU CM, 1994, J APPL PHYS, V76, P4793 HWANG C, 1991, MATER RES SOC S P, V232, P217 IJIRI Y, 1998, PHYS REV LETT, V80, P608 IKARASHI K, 1996, 20 ANN C MAGN JAP, P275 IWASAKI H, 1997, IEEE T MAGN 1, V33, P2875 IWASAKI Y, 1997, J APPL PHYS 2B, V81, P5021 IWATA T, 1970, J PHYS SOC JPN, V28, P582 JACOBS IS, 1963, MAGNETISM, P271 JANSSEN MMP, 1970, J APPL PHYS, V41, P399 JUNGBLUT R, 1994, J APPL PHYS, V75, P6659 JUNGBLUT R, 1995, J MAGN MAGN MATER, V148, P300 KANAI H, 1996, J MAGN SOC JAPAN, V20, P361 KHRUSTALEV BP, 1973, PHYS MET METALLOGR, V36, P204 KIM YK, 1995, IEEE T MAGN, V31, P3823 KISHI H, 1996, IEEE T MAGN 1, V32, P3380 KISHI H, 1997, J MAGN SOC JAPAN, V21, P521 KITAKAMI O, 1996, J MAGN MAGN MATER, V164, P43 KLEMMER TJ, 1997, APPL PHYS LETT, V70, P2915 KODAMA RH, 1997, J APPL PHYS 2B, V81, P5552 KODAMA RH, 1997, PHYS REV LETT, V79, P1393 KOIKE F, 1996, J MAGN SOC JAPAN, V20, P365 KOOI CF, 1962, J PHYS SOC JAPAN SB1, V17, P599 KOOLS JCS, 1996, IEEE T MAGN 2, V32, P3165 KOON NC, 1997, PHYS REV LETT, V78, P4865 KORENIVSKI V, 1996, J APPL PHYS 2B, V79, P5926 KOUVEL JS, 1985, J MAGN MAGN MATER, V53, P139 KOUVEL JS, 1963, J PHYS CHEM SOLIDS, V24, P795 KOUVEL JS, 1961, J PHYS CHEM SOLIDS, V21, P57 KOUVEL JS, 1959, J PHYS CHEM SOLIDS, V11, P220 KUHLOW B, 1971, PHYS LETT A, V34, P223 KUHLOW B, 1971, Z ANGEW PHYS, V32, P54 KUMAGAI S, 1997, JPN J APPL PHYS, V36, P1498 KUNG KTY, 1991, J APPL PHYS, V69, P5634 KURTI N, 1988, SELECTED WORKS L NEE LAI CH, 1995, IEEE T MAGN, V31, P2609 LAI CH, 1996, IEEE T MAGN 1, V32, P3419 LAI CH, 1997, J APPL PHYS 2A, V81, P3989 LAI CH, 1997, J APPL PHYS 2B, V81, P4990 LAI CH, 1996, J APPL PHYS 2B, V79, P6389 LAYADI A, 1987, IEEE T MAGN, V23, P2993 LAYADI A, 1988, J APPL PHYS, V64, P6101 LAYADI A, 1988, J APPL PHYS, V63, P3808 LEAL JL, 1994, IEEE T MAGN, V30, P3831 LEDERMAN D, 1997, PHYS REV B, V56, P2332 LEDERMAN D, 1993, PHYS REV B, V48, P8365 LEE SS, 1997, IEEE T MAGN 2, V33, P3547 LEE SS, 1997, J APPL PHYS 2B, V81, P5298 LENSSEN KMH, 1997, J APPL PHYS 2B, V81, P4915 LENSSEN KMH, 1997, SENSOR ACTUAT A-PHYS, V60, P90 LIN CL, 1995, IEEE T MAGN, V31, P4091 LIN HM, 1995, NANOSTRUCT MATER, V6, P977 LIN T, 1994, APPL PHYS LETT, V65, P1183 LIN T, 1995, IEEE T MAGN, V31, P2584 LIN T, 1996, IEEE T MAGN 1, V32, P3443 LIN X, 1994, J APPL PHYS, V76, P6543 LIN X, 1994, J APPL PHYS, V75, P6676 LIN XD, 1997, IEEE T MAGN 2, V33, P3987 LIND DM, 1994, J APPL PHYS, V76, P6284 LIND DM, 1993, J APPL PHYS, V73, P6886 LOFFLER J, 1997, MATER SCI FORU 1 & 2, V235, P699 LOFFLER J, 1997, NANOSTRUCT MATER, V9, P523 LOMMEL JM, 1962, J APPL PHYS, V33, P1160 LUBORSKY FS, 1962, ELECTROTECHNOLOG SEP, P107 MALBIN MG, 1974, PHYS MET METALLOGR, V38, P63 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MALOZEMOFF AP, 1988, PHYS REV B, V37, P7673 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MARCH NH, 1984, J MAGN MAGN MATER, V44, P1 MASSANET O, 1964, CR HEBD ACAD SCI, V258, P1752 MASSENET O, 1965, IEEE T MAGN, V1, P63 MATSUMOTO M, 1997, J MAGN SOC JAPAN, V21, P509 MATSUYAMA K, 1997, IEEE T MAGN 1, V33, P3283 MAURI D, 1987, J APPL PHYS, V62, P2929 MAURI D, 1987, J APPL PHYS, V62, P3047 MCGUIRE TR, 1993, IEEE T MAGN, V29, P2714 MCMICHAEL RD, 1995, IEEE T MAGN, V31, P3930 MCMICHAEL RD, 1997, IEEE T MAGN 2, V33, P3589 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MEIKLEJOHN WH, 1958, J APPL PHYS, V29, P454 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MELO LV, 1997, IEEE T MAGN 1, V33, P3295 MICHEL RP, 1996, IEEE T MAGN 2, V32, P4651 MILLER BH, 1996, APPL PHYS LETT, V69, P3932 MILLER BH, 1997, J APPL PHYS 2B, V81, P5002 MILLER MM, 1997, IEEE T MAGN 1, V33, P3388 MILLER MM, 1997, J APPL PHYS 2A, V81, P4284 MILTENYI P, IN PRESS PHYS REV B MILTENYI P, 1997, UNPUB MIYAMOTO N, 1995, J MAGN SOC JAPAN, V19, P105 MIYAMOTO Y, 1997, IEEE T MAGN, V32, P4672 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 MORAN TJ, 1996, J APPL PHYS 2A, V79, P5109 MORITA H, 1986, J PHYS F MET PHYS, V16, P507 MYDOSH JA, 1975, AIP C P, V24, P131 NAKAMOTO K, 1996, IEEE T MAGN 1, V32, P3374 NAKATANI R, 1997, IEEE T MAGN 2, V33, P3682 NAKATANI R, 1997, J MAGN MAGN MATER, V173, P321 NAKATANI R, 1994, JPN J APPL PHYS PT 1, V33, P133 NAKATANI R, 1996, MATER T JIM, V37, P1458 NEEL L, 1967, CR ACAD SCI C CHIM, V264, P1002 NISHIOKA K, 1995, IEEE T MAGN, V32, P3949 NISHIOKA K, 1996, J APPL PHYS, V80, P4528 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 NOGUES J, IN PRESS PHYS REV B NOGUES J, 1996, PHYS REV LETT, V76, P4624 NOGUES J, 1998, UNPUB NOGUES J, 1997, UNPUB OGRADY K, 1996, J MAGN MAGN MATER, V156, P253 OHKOSHI M, 1985, IEEE TRANSL J MAGN J, V1, P37 OLIVEIRA NJ, 1997, J APPL PHYS 2B, V81, P4903 OSHIMA N, 1996, JPN J APPL PHYS PT 2, V33, PL1585 PACCARD D, 1966, PHYS STATUS SOLIDI, V16, P301 PAPAEFTHYMIOU V, 1990, J APPL PHYS, V67, P4487 PARK CM, 1996, INTERMAG IEEE NEW YO, PEA10 PARK CM, 1996, J APPL PHYS 2B, V79, P6228 PARK CM, 1997, J KOREAN PHYS SOC, V31, P508 PARK CM, 1997, UNGYONG MULLI, V10, P221 PARKIN SSP, 1990, MAGNETIC PROPERTIES, V2, P110 PARKIN SSP, 1990, PHYS REV B, V42, P10538 PECHAN MJ, 1987, PHYS REV LETT, V59, P132 PORTIER X, 1997, IEEE T MAGN 2, V33, P3679 RAMIREZ R, 1997, B AM PHYS SOC, V42, P445 RAVE W, 1987, IEEE T MAGN, V23, P2164 ROUXBUISSON H, 1971, CZECH J PHYS B, V21, P516 RUSSAK MA, 1989, J ELECTROCHEM SOC, V136, P1793 SAITO M, 1997, J MAGN SOC JAPAN, V21, P525 SAITO M, 1997, J MAGN SOC JPN, V21, P505 SAKAMOTO N, 1962, J PHYS SOC JPN, V17, P99 SALANSKY NM, 1974, SOV PHYS JETP, V38, P1011 SALANSKY NM, 1970, SOV PHYS JETP, V30, P823 SALANSKY NM, 1969, SOV PHYS JETP, V29, P238 SALANSKY NM, 1976, SOV PHYS-SOLID STATE, V17, P1865 SALANSKY NM, 1970, THIN SOLID FILMS, V6, P129 SALANSKY NM, 1969, THIN SOLID FILMS, V4, P105 SANOYAN YS, 1974, PHYS MET METALLOGR, V38, P231 SCHLENKER C, 1971, CZECH J PHYS B, V21, P506 SCHLENKER C, 1986, J MAGN MAGN MATER, V54, P801 SCHLENKER C, 1967, J PHYS, V28, P611 SCHLENKER C, 1968, J PHYS C SOLID STATE, V29, P157 SCHLENKER C, 1968, PHYS STATUS SOLIDI, V28, P507 SCHLENKER C, 1971, PHYS STATUS SOLIDI A, V4, PK79 SCHMID H, 1960, COBALT, V6, P8 SCOTT JC, 1985, J APPL PHYS, V57, P3681 SEREDKIN VA, 1987, PHYS MET METALLOGR, V63, P34 SEREDKIN VA, 1983, SOV TECH PHYS LETT, V9, P621 SHARP RW, 1966, J APPL PHYS, V37, P1462 SHEN JX, 1996, J APPL PHYS 2A, V79, P5008 SHIPIL EV, 1994, IEEE T MAGN, V30, P797 SMARDZ L, 1991, VACUUM, V42, P283 SMITH N, 1997, IEEE T MAGN 1, V33, P3385 SMITH N, 1991, J APPL PHYS, V69, P2471 SOEYA S, 1997, J APPL PHYS, V81, P6488 SOEYA S, 1996, J APPL PHYS, V80, P1006 SOEYA S, 1996, J APPL PHYS, V79, P1604 SOEYA S, 1995, J APPL PHYS, V77, P5838 SOEYA S, 1994, J APPL PHYS, V76, P5356 SOEYA S, 1993, J APPL PHYS, V74, P6297 SPAGNA S, 1996, J APPL PHYS 2A, V79, P4926 SPAGNA S, 1995, REV SCI INSTRUM, V66, P5570 SPERIOSU VS, 1990, IBM J RES DEV, V34, P884 SPERIOSU VS, 1987, IEEE T MAGN, V23, P2999 SPERIOSU VS, 1990, MAGN REC C NEW YORK STAMPS RL, 1997, J APPL PHYS 2A, V81, P4485 STAMPS RL, 1996, PHYS REV B, V54, P4159 STEARNS MB, 1984, J APPL PHYS, V55, P1729 STOECKLEIN W, 1988, PHYS REV B, V38, P6847 STROM V, 1997, J APPL PHYS 2B, V81, P5003 SUHL H, 1998, PHYS REV B, V58, P158 SUZUKI Y, 1996, J APPL PHYS 2B, V79, P5923 SUZUKI Y, 1996, MATER RES SOC SYMP P, V401, P473 SUZUKI Y, 1996, PHYS REV B, V53, P14016 TADOKORO S, 1996, J MAGN SOC JPN, V20, P357 TAGAYA K, 1979, J PHYS SOC JPN, V46, P53 TAKAHASHI M, 1980, JPN J APPL PHYS, V19, P1093 TAKANO K, 1997, J APPL PHYS 2B, V81, P5262 TAKANO K, 1997, PHYS REV LETT, V79, P1130 TAKIGUCHI M, 1996, 20 C MAGN JAP MAGN S, P140 TAMARI K, 1985, IEEE TRANSL J MAGN J, V1, P975 TAN M, 1996, J APPL PHYS, V79, P5021 TANG C, 1984, J APPL PHYS, V55, P2226 TANG DD, 1995, IEEE T MAGN, V31, P3206 TANG L, 1997, J APPL PHYS 2B, V81, P4906 TANOUE S, 1997, J MAGN SOC JAPAN, V21, P529 TERASHIMA T, 1987, THIN SOLID FILMS, V152, P455 TOKUNAGA T, 1990, J APPL PHYS, V67, P4417 TONEY MF, 1991, J APPL PHYS, V70, P6227 TONG HC, 1997, IEEE T MAGN 1, V33, P2884 TSANG C, 1989, IEEE T MAGN, V25, P3692 TSANG C, 1982, IEEE T MAGN, V18, P1149 TSANG C, 1982, J APPL PHYS, V53, P2605 TSANG C, 1981, J APPL PHYS, V52, P2471 TSANG C, 1993, P IEEE, V81, P1344 TSUCHIYA Y, 1997, MATER T JIM, V38, P91 TSUCHIYA Y, 1996, REC ELEC COMMUN ENG, V65, P153 TSUNODA M, 1997, IEEE T MAGN 2, V33, P3688 TSUNODA M, 1997, J MAGN MAGN MATER, V171, P29 TSUNODA M, 1997, J MAGN SOC JAPAN, V21, P513 TSUNODA M, 1996, J MAGN SOC JAPAN, V20, P393 UMEMOTO T, 1997, JPN J APPL PHYS 1, V36, P6746 UNEYAMA K, 1997, IEEE T MAGN 2, V33, P3685 UNEYAMA K, 1997, J MAGN SOC JAPAN, V21, P517 UYAMA H, 1997, APPL PHYS LETT, V71, P1258 UYAMA H, 1997, J MAGN SOC JPN, V21, P911 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P479 VANDERZAAG PJ, 1996, J APPL PHYS 2A, V79, P5103 VANDERZAAG PJ, 1995, J MAGN MAGN MATER, V148, P346 VLASOV KB, 1964, B ACAD USSR PHYS SER, V28, P338 VLASOV KB, 1962, FIZ MAGNIT MATERIALO, V14, P487 VLASOV KB, 1962, PHYS MET METALLOGR, V14, P498 WAKSMANN B, 1968, J APPL PHYS, V39, P1389 WAKSMANN B, 1968, J PHYS C SOLID STATE, V29, P128 WANG G, 1996, IEEE T MAGN 2, V32, P4660 WANG QT, 1989, J MAGN MAGN MATER, V78, P190 WANG SX, 1997, IEEE T MAGN, V33, P2369 WATANABE K, 1994, J MAGN SOC JAPAN, V18, P355 WONG BY, 1996, IEEE T MAGN 1, V32, P3425 WONG BY, 1996, J APPL PHYS, V79, P7896 YAO YD, 1996, MAT SCI ENG A-STRUCT, V217, P281 YAO YD, 1995, NANOSTRUCT MATER, V6, P933 YELON A, 1971, PHYS THIN FILMS, V6, P205 YERUKHIMOV AS, 1981, PHYS MET METALLOGR, V52, P45 YERUKHIMOV AS, 1977, PHYS MET METALLOGR, V44, P70 YODA H, 1996, IEEE T MAGN 1, V32, P3363 YUITOO I, 1993, J JPN I MET, V57, P549 ZAKHAROV YV, 1971, SOV PHYS JETP, V32, P517 ZAKHAROV YV, 1983, SOV PHYS-SOLID STATE, V25, P1928 ZAKHAROV YV, 1980, SOV PHYS-SOLID STATE, V22, P2137 ZHU JG, 1997, J APPL PHYS 2A, V81, P4336 ZUYEV AV, 1976, PHYS MET METALLOGR, V42, P32 ZVEGINTSEV AG, 1969, SOV PHYS J, V6, P16 TC 81 BP 203 EP 232 PG 30 JI J. Magn. Magn. Mater. PY 1999 PD FEB VL 192 IS 2 GA 168TW J9 J MAGN MAGN MATER UT ISI:000078709600001 ER PT Journal AU Nikitenko, VI Gornakov, VS Dedukh, LM Kabanov, YP Khapikov, AF Shapiro, AJ Shull, RD Chaiken, A Michel, RP TI Direct experimental study of the magnetization reversal process in epitaxial and polycrystalline films with unidirectional anisotropy SO JOURNAL OF APPLIED PHYSICS NR 15 AB Direct observation of the magnetization reversal of epitaxial NiO/NiFe bilayers grown on (001) MgO and on polycrystalline Si substrates was performed by using the magneto-optical indicator film technique. It was shown that the unidirectional-axis magnetization reversal proceeds by domain nucleation and growth. A new phenomenon, an asymmetry in the activity of the domain nucleation centers, has been revealed. Remagnetization of the bilayer is shown to be governed by defect structures in the antiferromagnetic layer. (C) 1998 American Institute of Physics. CR BERGER A, 1994, PHYS REV LETT, V73, P193 CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 DIMITROV DV, 1996, J APPL PHYS 2A, V79, P5106 FARROW RFC, 1997, J APPL PHYS 2B, V81, P4986 GORNAKOV VS, 1997, J APPL PHYS 2B, V81, P5215 JUNGBLUT R, 1994, J APPL PHYS, V75, P6659 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAURI D, 1998, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MICHEL RP, 1996, IEEE T MAGN 2, V32, P4651 MIYAZAKI T, 1989, J MAGN MAGN MATER, V81, P86 MORAN TJ, 1995, J APPL PHYS, V78, P1887 NIKITENKO VI, 1970, PHYS STATUS SOLIDI A, V3, P383 SCHLENKER C, 1986, J MAGN MAGN MATER, V54, P801 TAKAHASHI M, 1980, JPN J APPL PHYS, V19, P1093 TC 6 BP 6828 EP 6830 PG 3 JI J. Appl. Phys. PY 1998 PD JUN 1 VL 83 IS 11 PN 2 GA 152UQ J9 J APPL PHYS UT ISI:000077795500202 ER PT Journal AU Levchenko, VD Sigov, YS Morozov, AI Sigov, AS TI "Unusual'' domain walls in multilayer systems: ferromagnet plus layered antiferromagnet SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS NR 10 AB The structure and conditions for the onset of a new type of domain wall in multilayer systems comprising a ferromagnet and a layered antiferromagnet is investigated by numerical simulation. Domain walls occur as the result of frustrations produced by interface roughness, i. e., by the existence of atomic steps on them. The domain walls are investigated both in a ferromagnetic film on a layered antiferromagnetic substrate and in multilayer structures. It is shown that a domain wall broadens with increasing distance from the interface; this trend is attributed to the nontrivial dependence of the wall energy on the thickness of the layer. The structure of the domain walls in multilayer ferromagnet- layered antiferromagnet systems varies dramatically as a function of the energies of interlayer and in-layer exchange interactions between adjacent layers. (C) 1998 American Institute of Physics. [S1063- 7761(98)01911-8]. CR BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BOUARAB S, 1995, PHYS REV B, V52, P10127 COURANT R, 1962, METHODS MATH PHYSICS, V2 COURANT R, 1953, METHODS MATH PHYSICS, V1 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FULLERTON EE, 1997, PHYS REV B, V56, P5469 FULLERTON EE, 1997, PHYS REV LETT, V77, P1382 MOROZOV AI, 1995, JETP LETT, V61, P911 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TC 2 BP 985 EP 990 PG 6 JI J. Exp. Theor. Phys. PY 1998 PD NOV VL 87 IS 5 GA 146BE J9 J EXP THEOR PHYS UT ISI:000077406700019 ER PT Journal AU Escorcia-Aparicio, EJ Choi, HJ Ling, WL Kawakami, RK Qiu, ZQ TI 90 degrees magnetization switching in thin Fe films grown on stepped Cr(001) SO PHYSICAL REVIEW LETTERS NR 17 AB The ferromagnetic/antiferromagnetic interfacial interaction was investigated in thin Fe films grown on stepped Cr(001) with the steps parallel to the [100]direction. Above the Neel temperature of the Cr, the atomic steps induce a uniaxial magnetic anisotropy with the easy axis parallel to the step edges. Below the Neel temperature, the Fe-Cr interfacial interaction favors the Fe magnetization perpendicular to the step edges. The competition between the Fe-Cr interaction and the step-induced magnetic anisotropy re suits in an in-plane 90 degrees magnetization switching from perpendicular to the step edges at low step-density to parallel to the seep edges at high step density. CR BERGER A, 1994, PHYS REV LETT, V73, P193 CHEN J, 1992, PHYS REV LETT, V68, P1212 ESCORCIAAPARICIO EJ, 1998, IEEE T MAGN 1, V34, P1219 FAWCETT E, 1988, REV MOD PHYS, V60, P209 IJIRI Y, 1998, PHYS REV LETT, V80, P608 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KITTEL C, 1996, INTRO SOLID STATE PH, P446 KOON NC, 1997, PHYS REV LETT, V78, P4865 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MORAN TJ, 1998, APPL PHYS LETT, V72, P617 MORAN TJ, 1996, J APPL PHYS 2A, V79, P5109 NOGUES J, 1996, APPL PHYS LETT, V68, P3186 PURCELL ST, 1991, PHYS REV LETT, V67, P903 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 WEBER W, 1996, PHYS REV LETT, V76, P1940 TC 10 BP 2144 EP 2147 PG 4 JI Phys. Rev. Lett. PY 1998 PD SEP 7 VL 81 IS 10 GA 115TW J9 PHYS REV LETT UT ISI:000075682400040 ER PT Journal AU Fishman, RS Galkin, VY Ortiz, WA TI Susceptibility of dilutely doped CrFe alloys SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 27 AB For low dopant concentrations, Fe is the only impurity atom which exhibits Pauli paramagnetism below the Neel temperature T-N of a Cr host. A series of measurements on Cr1-xFex and (Cr- 2.7%Fe)(1-x)V-x alloys reveal that the magnetization M is sensitive to the amplitude of the spin-density wave (SDW) below T-N The Fe moment also depends on the period of the SDW and is about 6% larger in the incommensurate than in the commensurate SDW state. Surprisingly, the differential susceptibility dM/dH peaks at the field H-p. which is about 5 kOe for low temperatures and small V concentrations. While H-p increases with the temperature, it decreases with the V and Fe concentrations. These observations may be explained by making the radical assumption that the rigidity of the Fe moment is broken by its interaction with the SDW. Whereas part of the Fe moment is bound to the SDW by the nesting free energy, the remainder experiences a weak effective field exerted by the surrounding SDW and by the ferromagnetically coupled, nearest- neighbour pairs of Fe atoms. The peak in dM/dH occurs when the external field H overcomes the antiferromagnetic field experienced by the single Fe atoms. This model explains the temperature and doping dependence of H-p, as well as the difference between the Fe moments in the commensurate and incommensurate SDW hosts. CR AIDUN R, 1985, PHYS STATUS SOLIDI B, V128, P133 BABIC B, 1980, J PHYS CHEM SOLIDS, V41, P1303 BACON GE, 1969, J PHYS C SOLID STATE, V2, P238 BERGER A, 1994, PHYS REV LETT, V73, P193 CYWINSKI R, 1980, J PHYS F MET PHYS, V10, P693 FAWCETT E, 1993, J MAGN MAGN MATER, V119, P329 FAWCETT E, 1992, J MAGN MAGN MATER, V109, PL139 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FRIEDEL J, 1978, J PHYSIQUE, V39, P1225 GALKIN VY, 1998, IN PRESS J MAGN MAGN GALKIN VY, 1993, J MAGN MAGN MATER, V119, P321 GALKIN VY, 1998, J PHYS CONDENS MATT, V10, P4911 HAMAGUCHI Y, 1965, PHYS REV, V138, PA737 HEDGCOCK FT, 1977, J PHYS F MET PHYS, V7, P855 HEDMAN LE, 1978, J PHYSICUQ C, V39, P788 HERBERT IR, 1972, J PHYS CHEM SOLIDS, V33, P979 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 KAJZAR F, 1981, J PHYS CHEM SOLIDS, V42, P501 KELLY JR, 1979, J APPL PHYS, V50, P7516 MOZE O, 1988, J PHYS F MET PHYS, V18, P527 STERNLIEB BJ, 1994, PHYS REV B, V50, P16438 STREET R, 1968, J APPL PHYS, V39, P1050 WERNER SA, 1968, J APPL PHYS, V40, P1447 WERNER SA, 1968, J APPL PHYS, V39, P671 WERNER SA, 1967, PHYS REV, V155, P528 TC 0 BP 6347 EP 6366 PG 20 JI J. Phys.-Condes. Matter PY 1998 PD JUL 20 VL 10 IS 28 GA 104ZK J9 J PHYS-CONDENS MATTER UT ISI:000075047000015 ER PT Journal AU Escorcia-Aparicio, EJ Choi, HJ Ling, WL Kawakami, RK Qiu, ZQ TI The effect of interfacial steps on the ferromagnetic/antiferromagnetic interface of thin Fe films on Cr(001) SO IEEE TRANSACTIONS ON MAGNETICS NR 16 AB The effect of regular interfacial steps on the magnetic properties of ultrathin Fe films grown on Cr(001) is studied by using a curved Cr(001) substrate. Independent of the Fe-Cr interaction, the steps introduce a uniaxial anisotropy which favors an easy axis parallel to the step edges. For certain values of the vicinal angle, the Fe-Cr interaction can overcome the effect of the step-induced anisotropy and align the easy axis perpendicular to the step edges. CR BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 CHEN J, 1992, PHYS REV LETT, V68, P1212 DAVIES A, 1996, PHYS REV LETT, V76, P4175 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEINRICH B, 1997, J APPL PHYS, V81, P4359 HYUK J, UNPUB JOLY Y, 1989, PHYS REV B, V40, P10119 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KOON NC, 1997, PHYS REV LETT, V78, P4865 MEIER F, 1982, PHYS REV LETT, V48, P645 PIERCE DT, 1994, PHYS REV B, V49, P14564 SCHEURER F, 1993, SURF SCI, V298, P107 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TURTUR C, 1994, PHYS REV LETT, V72, P1557 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 2 BP 1219 EP 1221 PG 3 JI IEEE Trans. Magn. PY 1998 PD JUL VL 34 IS 4 PN 1 GA 101CP J9 IEEE TRANS MAGN UT ISI:000074852300128 ER PT Journal AU Galkin, VY Ortiz, WA Fishman, RS TI Local Fe moment in commensurate and incommensurate spin-density wave Cr matrix SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 18 AB It is well known that Fe is the only impurity atom which exhibits Pauli paramagnetism below the Neel temperature of a dilutely doped Cr host. Magnetic measurements on two complementary Cr alloys now reveal that the Fe moment is about 6% larger in the incommensurate than in the commensurate spin- density wave state. A phenomenological model is presented which explains this difference by dividing the Fe moment into bound and unbound parts. (C) 1998 Elsevier Science B.V. All rights reserved. CR BABIC B, 1980, J PHYS CHEM SOLIDS, V41, P1303 BACON GE, 1969, J PHYS C SOLID STATE, V2, P238 BERGER A, 1994, PHYS REV LETT, V73, P193 DAVIES A, 1996, PHYS REV LETT, V76, P4175 FAWCETT E, 1993, J MAGN MAGN MATER, V119, P329 FAWCETT E, 1992, J MAGN MAGN MATER, V109, PL139 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P245 FISHMAN RS, UNPUB FRIEDEL J, 1978, J PHYSIQUE, V39, P1225 GALKIN VY, IN PRESS J PHYS COND GALKIN VY, 1993, J MAGN MAGN MATER, V119, P321 HAMAGUCHI Y, 1965, PHYS REV, V138, PA737 HEDMAN LE, 1978, J PHYSIQUE, V39, PC6 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 KAJZAR F, 1981, J PHYS CHEM SOLIDS, V42, P501 MIRBT S, 1997, PHYS REV B, V55, P67 TC 1 BP L1 EP L6 PG 6 JI J. Magn. Magn. Mater. PY 1998 PD JUL VL 186 IS 1-2 GA ZV938 J9 J MAGN MAGN MATER UT ISI:000074357300001 ER PT Journal AU Nikitenko, VI Gornakov, VS Dedukh, LM Kabanov, YP Khapikov, AF Shapiro, AJ Shull, RD Chaiken, A Michel, RP TI Asymmetry of domain nucleation and enhanced coercivity in exchange-biased epitaxial NiO/NiFe bilayers SO PHYSICAL REVIEW B NR 21 AB Magnetization reversal processes in epitaxial NiO/NiFe bilayers were studied using the magneto-optic indicator film technique. The influence of dislocations on these processes was determined. Remagnetization parallel to the unidirectional anisotropy axis proceeds by domain nucleation and growth, with nucleation center activity being asymmetric with respect to the applied field sign. Magnetization reversal in the hard axis direction occurs by incoherent rotation. The enhanced coercivity and asymmetric nucleation can be explained by taking into account domain wall behavior in the antiferromagnetic layer. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 CAREY MJ, 1992, APPL PHYS LETT, V60, P3060 DIENY B, 1991, PHYS REV B, V43, P1297 GORNAKOV VS, 1997, J APPL PHYS 2B, V81, P5215 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 KHAPIKOV AF, 1998, PHYS REV LETT, V80, P2209 KOON NC, 1997, PHYS REV LETT, V78, P4865 MALOZEMOFF AP, 1988, J APPL PHYS, V63, P3874 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MASSENET O, 1965, IEEE T MAGN, V1, P63 MAURI D, 1987, J APPL PHYS, V62, P3047 MEIKLEJOHN WH, 1957, PHYS REV, V105, P904 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 MICHEL RP, 1996, IEEE T MAGN 2, V32, P4651 MORAN TJ, 1995, J APPL PHYS, V78, P1887 NIKITENKO VI, 1970, PHYS STATUS SOLIDI A, V3, P383 NOGUES J, 1996, PHYS REV LETT, V76, P4624 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 TAKAHASHI M, 1980, JPN J APPL PHYS, V19, P1093 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 20 BP R8111 EP R8114 PG 4 JI Phys. Rev. B PY 1998 PD APR 1 VL 57 IS 14 GA ZH083 J9 PHYS REV B UT ISI:000073070400014 ER PT Journal AU Sonntag, P Bodeker, P Schreyer, A Zabel, H Hamacher, K Kaiser, H TI Magnetic phase diagram for spin-density waves in thin epitaxial Cr(001) films SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 38 AB We have investigated the magnetic structure of thin [0 0 1] oriented Cr films using neutron and X-ray diffraction experiments to measure their spin density waves and the strain waves, respectively. For epitaxial Cr films with thicknesses between 1000 and 4000 Angstrom grown on Nb films on sapphire substrates, we provide phase diagrams including incommensurate transverse and longitudinal spin-density waves (SDW) as well as commensurate antiferromagnetic spin structures. The results show that for Cr(0 0 1) on Nb a single domain SDW prevails with a wave vector Q perpendicular to the surface. At low temperatures the SDW is longitudinal and becomes mostly transverse between 150 and 250 K, higher than in bulk Cr where the spin-Aip transition occurs at 123 K. Furthermore, the magnitude of Q is increased as compared to bulk Cr, These effects decrease with increasing film thickness. With neutron scattering we have also observed a commensurate antiferromagnetic phase with spins pointing out of the plane. The commensurate phase occurs at a temperature between 250 and 305 K and persists up to at least 340 K, far above the bulk Neel temperature of 311 K for the incommensurate phase. (C) 1998 Elsevier Science B.V. All rights reserved. CR ARROTT A, 1966, MAGNETISM B, V2, P295 BACON GE, 1961, ACTA CRYSTALLOGR, V14, P823 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARAK Z, 1982, J PHYS F MET PHYS, V12, P483 BERGER A, 1994, PHYS REV LETT, V73, P193 BINDER K, 1983, PHASE TRANSITIONS CR, P1 BYKOV VN, 1960, SOV PHYS DOKL, V4, P1070 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 FAWCETT E, 1978, I PHYS C SER, V39, P592 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FERRENBERG AM, 1991, PHYS REV B, V44, P5081 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GIBBS D, 1988, PHYS REV B, V37, P562 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 HILL JP, 1995, PHYS REV B, V51, P10336 KOTANI A, 1975, J PHYS SOC JPN, V38, P974 LOVESEY SW, 1984, THEORY NEUTRON SCATT, V2 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK JM, 1991, J BOHR ADV PHYS, V40, P99 MATTSON J, 1990, MATER RES SOC S P, V160, P231 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 METOKI N, 1993, J MAGN MAGN MATER, V126, P397 MORI M, 1993, J PHYS CONDENS MATT, V5, PL77 NAKAJIMA S, 1975, J PHYS SOC JPN, V38, P330 PYNN R, 1976, PHYS REV B, V13, P295 SHIRANE G, 1962, J PHYS SOC JAPAN SB3, V17, P35 SHULL CG, 1953, REV MOD PHYS, V25, P100 SONNTAG P, 1995, PHYS REV B, V52, P7363 SONNTAG P, 1994, PHYS REV B, V49, P2869 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WERNER SA, 1967, PHYS REV, V155, P528 WICHERT T, 1986, MICROSCOPIC METHODS, P317 WILKINSON MK, 1962, PHYS REV, V127, P2080 WILLIAMS IS, 1981, PHILOS MAG B, V43, P955 YOUNG CY, 1974, J PHYS F MET PHYS, V4, P1304 TC 6 BP 5 EP 18 PG 14 JI J. Magn. Magn. Mater. PY 1998 PD MAR VL 183 IS 1-2 GA ZD538 J9 J MAGN MAGN MATER UT ISI:000072696500002 ER PT Journal AU Fullerton, EE Sowers, CH Bader, SD TI Interplay between biquadratic coupling and the Neel transition in Fe/Cr94Fe6(001) superlattices SO PHYSICAL REVIEW B NR 26 AB The commensurate antiferromagnetic order of Cr94Fe6 alloy layers in epitaxial Fe/Cr94Fe6(001) superlattices was investigated by transport and magnetization techniques. Neel temperature T-N values are strongly thickness dependent, with T-N suppressed for Cr94Fe6 thicknesses < 36 Angstrom. Transport results indicate a broadening of the transition with an onset temperature T-0 > T-N by approximate to 150 K for all samples. The biquadratic Interlayer coupling of the Fe layers is enhanced for T-N < T < T-0 and suppressed below T-N. T-0 and T- N are identified with the onset on cooling of inhomogeneous and homogeneous order, respectively, within the spacer layers. The regime of inhomogeneous ordering of the spacer is believed to promote biquadratic coupling because of the dominance of interfacial exchange energies. CR ANKNER JF, IN PRESS J APPL PHYS BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BRUNO P, 1995, PHYS REV B, V52, P411 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 FULLERTON EE, 1995, MATER RES SOC SYMP P, V384, P145 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEDGCOCK FT, 1977, J PHYS F MET PHYS, V7, P855 HEINRICH B, 1993, ADV PHYS, V42, P523 KOELLING DD, 1994, PHYS REV B, V50, P273 LI DQ, 1997, PHYS REV LETT, V78, P1154 MAYSTRENKO LG, 1977, PHYS MET METALLOGR, V43, P79 SCHREYER A, UNPUB SHENDER EF, 1996, PHYS REV LETT, V76, P2583 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STILES MD, UNPUB STOEFFLER D, 1996, J MAGN MAGN MATER, V156, P114 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 9 BP 5468 EP 5473 PG 6 JI Phys. Rev. B PY 1997 PD SEP 1 VL 56 IS 9 GA XW942 J9 PHYS REV B UT ISI:A1997XW94200072 ER PT Journal AU Kim, IG Lee, JI Jang, YR Hong, SC TI Surface and interface magnetism in Fe overlayers on Cr(001) SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY NR 19 AB The surface and the interface magnetism in Fe overlayers on Cr(001) is investigated using the full-potential linearized augmented plane wave band method. In order to examine overlayer effects systematically, one-monolayer Fe (1Fe/Cr(001)) and two- monolayer Fe (2Fe/Cr(001)) on Cr(001) are considered. The results for the spin densities, the magnetic moments, and the density of states are presented. It is found that (i) the magnetic moment at the surface Fe in 1Fe/Cr(001) is 2.44 mu(B), which is smaller than that of the surface Fe in 2Fe/Cr(001) (2.84 mu(B)) and that of a clean bcc Fe surface (2.98 mu(B)), (ii) the magnetic moment of the interface Fe in 2Fe/Cr(001) is reduced to 1.88 mu(B), and (iii) the magnetic moments of the inner Cr layers in 2Fe/Cr(001) are found to be small (< 0.30 mu(B)) while the magnetic moments of the inner Cr layers in 1Fe/Cr(001) are slightly enhanced (similar to 0.70 mu(B)) compared with the bulk value (0.59 mu(B)). These features are due to a strong hybridization between the Fe-d and the Cr-d states, which is verified by the layer-projected density of states. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 DIENY B, 1991, PHYS REV B, V43, P1927 DUPAS C, 1990, J APPL PHYS, V67, P5680 HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064 HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 KANG JS, 1995, PHYS REV B, V51, P1039 KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107 LEVY PM, 1990, J APPL PHYS, V67, P5914 OHNISHI S, 1983, PHYS REV B, V28, P6741 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 SHINJO T, 1990, J PHYS SOC JPN, V59, P3061 UNGRIS J, 1991, PHYS REV LETT, V67, P140 VAVRA W, 1990, PHYS REV B, V42, P4889 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 WEINERT M, 1982, PHYS REV B, V26, P4571 WIMMER E, 1981, PHYS REV B, V24, P864 XU JH, 1993, PHYS REV B, V47, P165 TC 9 BP 491 EP 494 PG 4 JI J. Korean Phys. Soc. PY 1997 PD SEP VL 31 IS 3 GA XW230 J9 J KOREAN PHYS SOC UT ISI:A1997XW23000026 ER PT Journal AU Stoeffler, DCA TI Calculations of electronic and magnetic structures in ultra- thin magnetic systems SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 25 AB In this paper we first give a brief review of the different methods (first principle and semi-empirical) which can be used for theoretical studies of the magnetic properties of ultra- thin systems from an electronic structure point of view and we discuss their application domains. We then give a few examples of recent works concerning ultra-thin films and multilayers: (i) study of interfacial step induced extended magnetic defects in Fe/Cr(001) systems; (ii) determination of the induced polarisation in Ag/Fe/X (X=Pd, Cu, Ag and Au) muItilayered systems; (iii) role of interfacial defects (such as steps or ordered compounds) in the total magnetisation and the interlayer couplings; (iv) influence of the insertion of a noble metal monolayer (Cu) at the interface of muItilayered systems (Co/Ru and Co/Rh) on the interlayer couplings; and (v) influence of the stacking (hcp or fee) on the interlayer couplings in Co/Rh superlattices. Finally, we conclude by giving a few indications for possible future improvements of such simulations. CR BERGER A, 1994, PHYS REV LETT, V73, P193 BLAND JAC, 1995, J MAGN MAGN MATER, V148, P85 BLUGEL S, 1988, EUROPHYS LETT, V7, P743 BLUGEL S, IN PRESS BLUGEL S, 1992, PHYS REV LETT, V68, P851 BRUNO P, 1995, PHYS REV B, V52, P411 CORNEABORODI CC, 1997, J MAGN MAGN MATER, V165, P450 FULLERTON EE, 1995, PHYS REV B, V51, P6364 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 HERMAN F, 1991, J APPL PHYS, V69, P4786 STOEFFLER D, 1994, J APPL PHYS, V75, P6467 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P529 STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P557 STOEFFLER D, 1991, J MAGN MAGN MATER, V93, P386 STOEFFLER D, 1994, PHYS REV B, V49, P299 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 TURTUR C, 1994, PHYS REV LETT, V72, P1557 VEGA A, 1995, EUROPHYS LETT, V31, P561 WILLIAMS AR, 1979, PHYS REV B, V19, P6094 WIMMER E, 1981, PHYS REV B, V24, P864 WU RQ, 1995, PHYS REV B, V51, P17131 ZOLL S, 1997, J MAGN MAGN MATER, V165, P442 TC 5 BP 62 EP 69 PG 8 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200015 ER PT Journal AU Berger, A Fullerton, EE TI Phase diagram of imperfect ferromagnetic/antiferromagnetic bilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 8 AB The phase diagram for ferromagnetic/antiferromagnetic bilayers with imperfect interfaces is calculated, using an Ising spin- 1/2 model which is solved numerically in the mean field approximation for finite temperatures. We identify three stable phases: (i) domains in the ferromagnet, (ii) domains in the antiferromagnet and (iii) domain wails near the interfaces with homogeneous order within the layers. Phase transitions between these phases occur as a function of temperature, relative film thicknesses and step density. CR BERGER A, IN PRESS BERGER A, 1994, PHYS REV LETT, V73, P193 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 VEGA A, 1995, EUROPHYS LETT, V31, P561 WANG RW, 1992, PHYS REV B, V46, P11681 TC 10 BP 471 EP 474 PG 4 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200121 ER PT Journal AU Panaccione, G Sirotti, F Narducci, E Rossi, G TI Magnetic interface formation at Cr/Fe(100) and Fe/Cr/Fe(100): Magnetic dichroism in photoemission study SO PHYSICAL REVIEW B NR 39 AB The early stages of the growth of Cr/Fe(100) and Fe/Cr/Fe(100) interfaces have been investigated by magnetic dichroism in photoemission of Fe 3p and Cr 3p core levels as measured from chiral experiments employing linearly polarized synchrotron radiation. Evidence is obtained for a 30% larger magnetic moment of interface Cr atoms with respect to Cr atoms belonging to epitaxial ultrathin films and a 40% magnetic moment enhancement of top Fe interface atoms in the Fe/Cr/Fe(100) trilayer. The kinetic growth conditions (450 K) lead to a uniform overlayer growth, without intermixing, but dominated by islanding. As a consequence the formation of a single-surface ferromagnetic domain for Fe/Cr/Fe(100) is frustrated up to two Fe monolayer (ML) thickness. The line shape of Fe 3p photoemission in the frustrated regime is consistent with the presence of in-plane magnetic order at 90 degrees with respect to the substrate magnetization direction. The appearance of photoemission magnetic dichroism for Fe overlayer thicknesses exceeding 2 ML is interpreted as due to domain rotation towards the direction antiparallel to the Fe substrate magnetization. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALVARADO SF, 1988, PHYSICA B, V149, P43 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 CARBONE C, 1987, PHYS REV B, V36, P2433 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HILLEBRECHT FU, 1995, PHYS REV LETT, V75, P2883 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KITTEL C, 1976, INTRO SOLID STATE PH LEVY PM, 1990, J APPL PHYS, V67, P5914 PANACCIONE G, 1995, J ELECTRON SPECTROSC, V76, P189 ROSSI G, 1995, MATER RES SOC SYMP P, V384, P447 ROSSI G, 1995, NATO ADV STUDY I B, V345 ROSSI G, 1994, SOLID STATE COMMUN, V90, P557 ROSSI G, UNPUB ROTH C, 1993, PHYS REV LETT, V70, P3479 ROTH C, 1993, SOLID STATE COMMUN, V86, P647 SCLONZEWSKY JC, 1991, PHYS REV LETT, V67, P3172 SIROTTI F, 1995, PHYS REV B, V52, P17063 SIROTTI F, 1994, PHYS REV B, V49, P15682 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 THOLE BT, 1994, PHYS REV B, V50, P11474 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1994, PHYS REV B, V49, P14564 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANDERLAAN G, 1995, PHYS REV B, V51, P240 VANDERLAAN G, 1994, SOLID STATE COMMUN, V92, P427 VEGA A, 1995, PHYS REV B, V51, P11546 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WANG Y, 1990, PHYS REV LETT, V65, P2732 XU JH, 1993, PHYS REV B, V47, P165 XU ZD, 1995, PHYS REV B, V52, P15393 TC 14 BP 389 EP 396 PG 8 JI Phys. Rev. B PY 1997 PD JAN 1 VL 55 IS 1 GA WD788 J9 PHYS REV B UT ISI:A1997WD78800064 ER PT Journal AU Colino, JM Schuller, IK Korenivski, V Rao, KV TI Effects of annealing on the magnetoresistance and structure of Fe/Cr(110) superlattices SO PHYSICAL REVIEW B NR 25 AB We have performed magnetotransport, magnetization, and structural experiments on sputtered Fe(30 Angstrom)/Cr(12 Angstrom) (110) superlattices that were annealed at temperatures up to 400 degrees C. Interestingly, their giant magnetoresistance (Delta rho) is enhanced at intermediate temperatures, and strongly decreased at higher temperatures. If normalized to the antiferromagnetic coupling fraction of sample, the magnetoresistance increases over the entire annealing range. From low-angle x-ray-diffraction measurements, the enhancement of Delta rho arises from an interface redistribution because of either a slight interdiffusion, less correlated interfaces, or both. Further annealing causes extreme interdiffusion that is detrimental for the magnetoresistance because of a loss of antiferromagnetic coupling. CR ALTBIR D, 1995, J MAGN MAGN MATER, V149, PL246 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BELIEN P, 1994, PHYS REV B, V50, P9957 BERGER A, 1994, PHYS REV LETT, V73, P193 CHEN LH, 1993, APPL PHYS LETT, V63, P1279 COLINO JM, 1996, PHYS REV B, V53, P766 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV B, V45, P9292 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 GURNEY BA, 1993, PHYS REV LETT, V71, P4023 HALL MJ, 1993, PHYS REV B, V47, P12785 HEADRICK RL, 1993, PHYS REV B, V48, P9174 KELLY DM, 1994, PHYS REV B, V50, P3481 KORTRIGHT JB, 1991, J APPL PHYS, V70, P3620 NAKAJIMA H, 1993, J MAGN MAGN MATER, V126, P176 PARKIN SSP, 1992, APPL PHYS LETT, V61, P1358 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PARKIN SSP, UNPUB PETROFF F, 1991, J MAGN MAGN MATER, V93, P95 RENSING NM, 1994, J APPL PHYS, V76, P6617 RENSING NM, 1993, J MAGN MAGN MATER, V121, P436 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SCHULLER IK, 1980, PHYS REV LETT, V44, P1597 SEVENHANS W, 1986, PHYS REV B, V34, P5955 VANDERSTRAETEN H, 1991, J APPL CRYSTALLOGR, V24, P571 TC 10 BP 13030 EP 13033 PG 4 JI Phys. Rev. B PY 1996 PD NOV 1 VL 54 IS 18 GA VT682 J9 PHYS REV B UT ISI:A1996VT68200061 ER PT Journal AU Stoeffler, D Gautier, F TI Theoretical study of thin Fe films deposited on a Cr(001) substrate: Step-induced extended defects SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 6 AB In this paper we present a theoretical study of the magnetic properties of a few Fe monolayers deposited on a Cr(001) substrate containing monatomic steps, We use the real space recursion method in a tight binding framework to determine the electronic structures of non-periodic systems involving large numbers of inequivalent atoms (up to 1130). We investigate the nature of the magnetic defects induced in the Cr spacer layer by interfacial steps in relation to recent experiments. We show that even if a multidomain magnetic configuration of tile Fe overlayer is the most favoured one without an external applied field, defects can link two successive steps for thick Fe overlayers and rough interfaces. CR BERGER A, 1994, PHYS REV LETT, V73, P193 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 TURTUR C, 1994, PHYS REV LETT, V72, P1557 TC 1 BP 114 EP 116 PG 3 JI J. Magn. Magn. Mater. PY 1996 PD APR VL 156 IS 1-3 GA UV358 J9 J MAGN MAGN MATER UT ISI:A1996UV35800048 ER PT Journal AU Moraitis, G Khan, MA Dreysse, H Demangeat, C TI Spin-flop transition in FenCrm superlattices SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 12 AB Parallel and antiparallel configurations at Fe/Cr interfaces are discussed within the TB-LMTO method. A parallel configuration is shown to be the ground state in the ordered B2Fe0.5Cr0.5 alloy whereas an antiparallel configuration is shown to be present when the lattice parameter is increased by 5%, For Fe1Cr2 superlattices a similar spin-flop arises when the lattice parameter is increased only by 2%. CR ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571 BERGER A, 1994, PHYS REV LETT, V73, P193 BOUZAR H, COMMUNICATION MML 95 HERMAN F, 1991, J APPL PHYS, V69, P4783 HICKEN RJ, 1996, IN PRESS PHYS REV B MORONI EG, 1993, PHYS REV B, V47, P3255 MORUZZI VL, 1992, PHYS REV B, V46, P2864 SINGH DJ, 1994, J APPL PHYS, V76, P6688 STOEFFLER D, 1995, MATER RES SOC SYMP P, V384, P247 TURTUR C, 1994, PHYS REV LETT, V72, P1557 VEGA A, COMMUNICATION MML 95 VEGA A, 1995, EUROPHYS LETT, V31, P561 TC 8 BP 250 EP 252 PG 3 JI J. Magn. Magn. Mater. PY 1996 PD APR VL 156 IS 1-3 GA UV358 J9 J MAGN MAGN MATER UT ISI:A1996UV35800104 ER PT Journal AU Yao, YD Liou, Y Huang, JCA Liao, SY Klik, I Yang, WT Chang, CP Lo, CK TI Enhancement of magnetoresistance in Co(1(1)over-bar-00)/Cr(211) bilayered films on MgO(110) SO JOURNAL OF APPLIED PHYSICS NR 7 AB Epitaxial Co/Cr bilayered films have been successfully grown on the MgO(100) and MgO(110) substrates by molecular-beam epitaxy. According to the reflection high-energy electron-diffraction and x-ray-diffraction measurements the crystal structure of the film depends on orientation of the buffer and substrate. Epitaxial growth of biaxial Co(<11(2)over bar 0>)/Cr(100) on MgO(100) substrate and of uniaxial Co(<1(1)over bar 00>)/Cr(211) on MgO(110) substrate has been confirmed. The anisotropy magnetoresistance (AMR) is strongly influenced by the orientation of the Cr buffer. In Co(<11(2)over bar 0>)/Cr(100) on MgO(100) AMR is isotropic for all in-plane fields. However, for Co(<1(1)over bar 00>)/Cr(211) on MgO(110) we observed enhancement of AMR along the easy axis for temperatures below 150 K, while along the hard axis AMR has a local maximum at about 150 K. The easy axis data suggest that the longitudinal spin density wave of Cr and the crystal anisotropy of Co on Cr(211) plane dominate the enhancement of the AMR. (C) 1996 American Institute of Physics. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 HUANG JCA, 1995, PHYS REV B, V52, PR1310 LIOU Y, 1995, IEEE T MAGN, V31, P3927 LIOU Y, 1994, J APPL PHYS, V76, P6516 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 YAO YD, 1994, CHINESE J PHYS, V32, P863 TC 3 BP 6533 EP 6535 PG 3 JI J. Appl. Phys. PY 1996 PD APR 15 VL 79 IS 8 PN 2B GA UG878 J9 J APPL PHYS UT ISI:A1996UG87800353 ER PT Journal AU VEGA, A STOEFFLER, D DREYSSE, H DEMANGEAT, C TI MAGNETIC-ORDER TRANSITION IN THIN FE OVERLAYERS ON CR - ROLE OF THE INTERFACIAL ROUGHNESS SO EUROPHYSICS LETTERS NR 23 AB The distribution of magnetic domains in a thin Fe overlayer on Cr is calculated as a function of the coverage thickness in the presence of roughness at the interface. The spin-polarized electronic structure is determined by solving self-consistently a d-band model Hamiltonian in the mean-field approximation. Arising from a magnetic multidomain arrangement, a zero total magnetic moment is obtained when starting the Fe deposition. A transition towards a single Fe domain at a critical coverage thickness leads to a net magnetization in qualitative agreement with various experimental observations. This macroscopic magnetic behaviour is traced back to environment-dependent microscopic properties such as the local magnetic moments and magnetic ordering. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARTHELEMY A, 1994, PHYS WORLD NOV, P34 BERGER A, 1994, PHYS REV LETT, V73, P193 BLUGEL S, 1989, PHYS REV B, V39, P1392 CARBONE C, 1987, PHYS REV B, V36, P2433 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DIENY B, 1991, PHYS REV B, V43, P1297 DORANTESDAVILA J, 1991, SURF SCI, V251, P51 FU CL, 1986, J MAGN MAGN MATER, V54, P777 HARDNER HT, 1995, B APS, V40, P219 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 MEIKLEJOHN WH, 1962, J APPL PHYS, V33, P1328 MIETHANER S, 1995, IN PRESS J MAGN MAGN OKUNO SN, 1994, PHYS REV LETT, V72, P1553 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P3598 STOEFFLER D, 1995, IN PRESS J MAGN MAGN UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VEGA A, 1995, IN PRESS PHYS REV B, V51 VEGA A, 1994, PHYS REV B, V49, P12797 VICTORA RH, 1985, PHYS REV B, V31, P7335 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 ZUKROWSKI J, 1995, J MAGN MAGN MATER, V145, P57 TC 24 BP 561 EP 566 PG 6 JI Europhys. Lett. PY 1995 PD SEP 20 VL 31 IS 9 GA RX761 J9 EUROPHYS LETT UT ISI:A1995RX76100010 ER PT Journal AU SONNTAG, P BODEKER, P THURSTON, T ZABEL, H TI CHARGE-DENSITY WAVES AND STRAIN WAVES IN THIN EPITAXIAL CR(001) FILMS ON NB SO PHYSICAL REVIEW B NR 28 AB We have investigated the magnetic structure of thin epitaxial (001)-oriented Cr films grown on a Nb buffer layer on sapphire. By means of x-ray diffraction measurements the charge density waves (CDW) and strain waves (SW) in Cr films with thicknesses between 500 and 3000 Angstrom have been studied. The results show that there exists an orientational pinning effect at both the Cr surface and the interface between Cr and the Nb buffer layer which causes an enlargement of the CDW-SW period, and a single a domain mode having a q vector pointing perpendicular to the surface. This pinning behavior relaxes with increasing film thickness. CR ANKNER JF, 1990, THESIS U ILLINOIS UR BACON GE, 1961, ACTA CRYSTALLOGR, V14, P823 BERGER A, 1994, PHYS REV LETT, V73, P193 BROHL K, 1993, J CRYST GROWTH, V127, P682 BYKOV VN, 1960, SOV PHYS DOKL, V4, P1070 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DONNER W, 1993, PHYS REV B, V48, P14745 DOSCH H, 1992, SPRINGER TRACTS MODE, V126 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 DURBIN SM, 1981, J PHYS F MET PHYS, V11, PL223 FAWCETT E, 1988, REV MOD PHYS, V60, P209 GIBBS D, 1988, PHYS REV B, V37, P562 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HILL JP, 1995, PHYS REV B, V51, P10336 KOTANI A, 1975, J PHYS SOC JPN, V38, P974 KWO J, 1985, MRS S P, V37 METOKI N, 1993, J MAGN MAGN MATER, V126, P397 MORI M, 1993, J PHYS CONDENS MATT, V5, PL77 NAKAJIMA S, 1975, J PHYS SOC JPN, V38, P330 NIX WD, 1989, METALL TRANS A, V20, P2217 PYNN R, 1976, PHYS REV B, V13, P295 SONNTAG P, 1995, NUCL INSTRUM METH B, V97, P468 SONNTAG P, 1994, PHYS REV B, V49, P2869 STIERLE A, 1995, SURF SCI, V327, P9 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 WERNER SA, 1966, PHYS REV B, V155, P528 ZABEL H, 1994, APPL PHYS A, V58, P159 TC 14 BP 7363 EP 7368 PG 6 JI Phys. Rev. B PY 1995 PD SEP 1 VL 52 IS 10 GA RU943 J9 PHYS REV B UT ISI:A1995RU94300063 ER PT Journal AU FULLERTON, EE RIGGS, KT SOWERS, CH BADER, SD BERGER, A TI SUPPRESSION OF BIQUADRATIC COUPLING IN FE/CR(001) SUPERLATTICES BELOW THE NEEL TRANSITION OF CR SO PHYSICAL REVIEW LETTERS NR 27 CR BADER SD, 1994, J APPL PHYS, V76, P6419 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 BINDER K, 1983, PHASE TRANSITIONS CR, P1 CHEN K, 1993, PHYS REV B, V48, P3249 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FERRENBERG AM, 1991, PHYS REV B, V44, P5081 FITZSIMMONS MR, 1994, PHYS REV B, V50, P5600 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HOOD RQ, 1991, PHYS REV B, V44, P9989 KOELLING DD, 1994, PHYS REV B, V50, P273 MATTSON J, 1990, J APPL PHYS, V67, P4889 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, IN PRESS STOEFFLER D, 1993, MAGNETISM STRUCTURE, P411 STOEFFLER D, 1991, PHYS REV B, V44, P10389 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 57 BP 330 EP 333 PG 4 JI Phys. Rev. Lett. PY 1995 PD JUL 10 VL 75 IS 2 GA RG978 J9 PHYS REV LETT UT ISI:A1995RG97800037 ER PT Journal AU VEGA, A DEMANGEAT, C DREYSSE, H CHOUAIRI, A TI POSSIBILITY OF VARIOUS MAGNETIC CONFIGURATIONS IN THE CR (FE) MONOLAYER DEPOSITED ON VICINAL SURFACES OF FE (CR) SO PHYSICAL REVIEW B NR 39 CR ALLAN G, 1979, PHYS REV B, V19, P4774 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BAYREUTHER G, UNPUB BERGER A, 1994, PHYS REV LETT, V73, P193 BLUGEL S, 1989, PHYS REV B, V39, P1392 CARBONE C, 1987, PHYS REV B, V36, P2433 DONATH M, 1991, PHYS REV B, V43, P13164 DREYSSE H, 1994, EUROPHYS LETT, V27, P165 FALICOV LM, 1992, MRS S P, V231, P3 FREEMAN AJ, 1987, J APPL PHYS, V61, P3356 FU CL, 1986, PHYS REV B, V33, P1755 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, IN PRESS J MAGN MAGN GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HAMPEL K, 1993, PHYS REV B, V47, P4810 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 HERMAN F, 1991, J APPL PHYS, V69, P4783 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KLEBANOFF LE, 1984, PHYS REV B, V30, P1048 LEE KY, 1994, PHYS REV B, V49, P13906 MIETHANER S, 1994, IN PRESS J MAGN MAGN OHNISHI S, 1983, PHYS REV B, V28, P6741 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PURCELL ST, 1991, PHYS REV LETT, V67, P903 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VARMA CM, 1980, PHYS REV, V22, P3795 VEGA A, 1993, CZECH J PHYS, V43, P1045 VEGA A, 1991, J APPL PHYS, V69, P4544 VEGA A, 1994, PHYS REV B, V50, P3899 VEGA A, 1994, PHYS REV B, V49, P12797 VEGA A, 1993, PHYS REV B, V48, P985 VEGA A, 1993, PHYS REV B, V47, P4742 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 TC 35 BP 11546 EP 11554 PG 9 JI Phys. Rev. B PY 1995 PD MAY 1 VL 51 IS 17 GA QY781 J9 PHYS REV B UT ISI:A1995QY78100039 ER