FN ISI Export Format VR 1.0 PT J AU Pfandzelter, R Igel, T Winter, H TI Real-time study of nucleation, growth, and ripening during Fe/Fe(100) homoepitaxy using ion scattering SO PHYSICAL REVIEW B NR 24 AB Real-time studies of submonolayer epitaxy via scattering of fast ions are applicable over a wide range of growth temperatures and deposition rates. Computer simulations of ion trajectories and nucleation theory yield quantitative information on atomistic growth processes. For homoepitaxy of Fe on Fe(100), we deduce island densities, monomer diffusion barrier, cluster binding energies, and post-deposition island ripening. Detailed information on transitions in critical cluster size is obtained. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1993, SURF SCI, V298, P421 BARTELT NC, 1996, PHYS REV B, V54, P11741 BRUNE H, 1998, SURF SCI REP, V31, P121 DELUCA PM, 1999, SURF SCI, V426, PL407 ERNST HJ, 1992, PHYS REV B, V46, P1929 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 HANNON JB, 1997, PHYS REV LETT, V79, P2506 JIANG Q, 1994, PHYS REV B, V50, P11116 JIANG Q, 1995, SURF SCI, V324, P357 MORGENSTERN K, 1996, PHYS REV LETT, V76, P2113 PFANDZELTER R, 1999, NUCL INSTRUM METH B, V157, P291 PFANDZELTER R, 1998, PHYS REV B, V57, P15496 PFANDZELTER R, 1997, SURF SCI, V389, P317 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1987, PHYS REV B, V36, P4153 VENABLES JA, 1984, REP PROG PHYS, V47, P399 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 0 BP R2299 EP R2302 PG 4 JI Phys. Rev. B PY 2000 PD JUL 15 VL 62 IS 4 GA 341VT J9 PHYS REV B UT ISI:000088612200015 ER PT J AU LaBella, VP Bullock, DW Ding, Z Emery, C Harter, WG Thibado, PM TI Monte Carlo derived diffusion parameters for Ga on the GaAs(001)-(2x4) surface: A molecular beam epitaxy-scanning tunneling microscopy study SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 26 AB The migration of individual Ga atoms on the technologically important GaAs(001)-(2 X 4) reconstructed surface has been studied as a function of substrate temperature and As-4 pressure using a combined molecular beam epitaxy and scanning tunneling microscope ultrahigh vacuum multichamber facility. We have deposited 10% of a plane of Ga onto a GaAs(001) surface with a low defect density (<1%) and with large terraces (>0.5 mu m) to avoid the influence of surface defects like step edges and vacancies. Both the island number density and the geometry are measured and compared to Monte Carlo solid-on-solid simulations. Basic diffusion parameters, such as the activation energy, directional hopping-rate ratio, directional sticking- probability ratio, etc., are reported. (C) 2000 American Vacuum Society. [S0734-2101(00)08204-X]. CR 1998, COMPD SEMICOND, V4, P25 BRAUN W, 1998, PHYS REV LETT, V80, P4935 CURRENT MI, 1996, J VAC SCI TECHNOL A, V14, P1115 HOVE JM, 1987, J CRYST GROWTH, V81, P13 ITOH M, 1998, PHYS REV LETT, V81, P633 JOHNSON FG, 1993, J VAC SCI TECHNOL B, V11, P823 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JOHNSON MD, 1993, SURF SCI, V298, P392 KARPOV SY, 1994, SURF SCI, V314, P79 KASU M, 1995, J APPL PHYS, V78, P3026 KAUS M, 1995, APPL PHYS LETT, V67, P2842 KLEY A, 1997, PHYS REV LETT, V79, P5278 KLUNKER C, 1998, PHYS REV B, V58, PR7556 LABELLA VP, IN PRESS PHYS REV LE LABELLA VP, 1999, PHYS REV LETT, V83, P2989 MADHUKAR A, 1994, APPL PHYS LETT, V64, P2727 MO YW, 1991, PHYS REV LETT, V66, P1998 NEAVE JH, 1985, APPL PHYS LETT, V47, P100 NORENBERG H, 1997, J APPL PHYS, V81, P2611 PAI WW, 1997, PHYS REV LETT, V79, P3210 SHEN XQ, 1994, JPN J APPL PHYS 1, V33, P11 SMATHERS JB, 1998, J VAC SCI TECHNOL B, V16, P3112 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THIBADO PM, 1999, J VAC SCI TECHNOL B, V17, P253 YANG H, 1999, J CRYST GROWTH, V201, P88 YANG H, 1999, J VAC SCI TECHNOL B, V17, P1778 TC 0 BP 1526 EP 1531 PG 6 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 2000 PD JUL-AUG VL 18 IS 4 PN 1 GA 335ZH J9 J VAC SCI TECHNOL A UT ISI:000088276800092 ER PT J AU Bonanno, P Canepa, M Cantini, P Moroni, R Mattera, L Terreni, S TI Surfactant properties of chemisorbed oxygen in Fe/Fe(001) homoepitaxy: a He diffraction study SO SURFACE SCIENCE NR 28 AB He diffraction measurements show that preadsorption of an O(1 x 1) phase on Fe(001) promotes two-dimensional growth of Fe at temperatures below 400 K, ill contrast to the island growth observed on the bare Fe(001) surface. Oxygen floats at the surface, acting as a surfactant. After repeated cycles of film annealing and Fe re-deposition, a beat is observed in the pattern of He reflectivity measured as a function of deposition time. The beat is assigned to the growth on surface domains characterized by a different surfactant efficiency. (C) 2000 Elsevier Science B.V. All rights reserved. CR BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BISIO F, 1999, PHYS REV LETT, V83, P4868 CAMARERO J, 1998, PHYS REV LETT, V81, P850 CAMARERO J, 1994, PHYS REV LETT, V73, P2448 CANEPA M, 1997, PHYS REV B, V56, P4233 CANEPA M, 1991, REV SCI INSTRUM, V62, P1431 COHEN PI, 1989, SURF SCI, V216, P222 COPEL M, 1989, PHYS REV LETT, V63, P632 CROTTINI A, 1997, PHYS REV LETT, V79, P1527 DABIRAN AM, 1998, SURF REV LETT, V5, P783 FARIAS D, 1998, REP PROG PHYS, V61, P1575 GOMEZ LJ, 1985, PHYS REV B, V31, P2551 HEIMANN P, 1978, PHYS REV B, V18, P3537 HINCH BJ, 1989, EUROPHYS LETT, V10, P341 KUNKEL R, 1990, PHYS REV LETT, V65, P733 MARKOV I, 1996, PHYS REV B, V53, P4148 OPPO S, 1993, PHYS REV LETT, V71, P2437 PANZNER G, 1985, PHYS REV B, V32, P3472 POELSEMA B, 1992, SURF SCI, V272, P269 SIMMONS GW, 1975, SURF SCI, V48, P373 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TOLKES C, 1998, PHYS REV LETT, V80, P2877 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VOIGTLANDER B, 1993, SURF SCI LETT, V292, P775 XU H, 1991, SURF SCI, V255, P73 YATA M, 1997, PHYS REV B, V56, P10579 ZENG H, 1995, PHYS REV LETT, V74, P582 ZHANG ZY, 1994, PHYS REV LETT, V72, P693 TC 1 BP 697 EP 701 PG 5 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200132 ER PT J AU Moroni, R Bisio, F Canepa, M Mattera, L TI Study of the growth and the magnetism of ultrathin films of Cr on Fe SO SURFACE SCIENCE NR 27 AB The surface magnetic properties of ultrathin Cr films grown on an O/Fe/Ag(100) substrate have been studied by means of spin polarized metastable de-excitation spectroscopy. The presence of oxygen on top of the Fe film inhibits the segregation of Ag and strongly reduces Fe/Cr intermixing. The magnetization of the outermost Cr layer is zero immediately after its deposition, whereas, upon annealing up to 500 K, a net magnetization is observed which reverse its direction as a function of the film thickness already from a 3 ML thick film. The magnetization reversal is in agreement with the layered antiferromagnetic structure of Cr clearly observed for thicker films. (C) 2000 Elsevier Science B.V. All rights reserved. CR ALLAN G, 1978, SURF SCI, V74, P79 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BISIO F, 1999, PHYS REV LETT, V83, P4868 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BONANNO P, 2000, SURF SCI, V454, P697 CARBONE C, 1987, PHYS REV B, V36, P2433 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DREYSSE H, 1997, SURF SCI REP, V28, P65 DUNNING FB, 1985, COMMENTS SOLID STATE, V12, P17 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FERRO P, 1998, SURF SCI, V407, P212 HAGSTRUM H, 1965, PHYS REV A, V139, P526 HAGSTRUM HD, 1966, PHYS REV, V150, P495 HAGSTRUM HD, 1954, PHYS REV, V96, P336 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KUNKEL R, 1990, PHYS REV LETT, V65, P773 MEIER F, 1982, PHYS REV LETT, V48, P645 MORONI R, 1999, SURF SCI, V433, P676 ONELLION M, 1984, PHYS REV LETT, V52, P380 PERUCHETTI JC, 1986, SOLID STATE COMMUN, V59, P517 SALVIETTI M, 1997, J MAGN MAGN MATER, V165, P230 SALVIETTI M, 1996, PHYS REV B, V54, P14758 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 0 BP 875 EP 879 PG 5 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200166 ER PT J AU Fichthorn, KA Scheffler, M TI Island nucleation in thin-film epitaxy: A first-principles investigation SO PHYSICAL REVIEW LETTERS NR 26 AB We describe a theoretical study of the role of adsorbate interactions in island nucleation and growth, using Ag/Pt(lll) heteroepitaxy as an example. From density-functional theory, we obtain the substrate-mediated Ag adatom pair interaction and we find that, past the short range, a repulsive ring is formed about the adatoms. The magnitude of the repulsion is comparable to the diffusion barrier. In kinetic Monte Carlo simulations, we find that the repulsive interactions lead to island densities over an order of magnitude larger than those predicted by nucleation theory and thus identify a severe limitation of its applicability. CR BALES GS, 1994, PHYS REV B, V50, P6057 BARTH JV, 2000, PHYS REV LETT, V84, P1732 BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187 BOGICEVIC A, IN PRESS BOGICEVIC A, 1998, PHYS REV LETT, V81, P637 BRINER BG, 1997, EUROPHYS NEWS, V28, P97 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1999, PHYS REV B, V60, P5991 BRUNE H, 1995, PHYS REV B, V52, P14380 BRUNE H, 1996, SURF SCI, V349, PL115 EINSTEIN TL, 1996, HDB SURFACE SCI, V1, P577 EINSTEIN TL, 1973, PHYS REV B, V7, P3629 FICHTHORN KA, 1991, J CHEM PHYS, V95, P1090 FISCHER B, 1999, PHYS REV LETT, V82, P1732 FUCHS M, 1999, COMPUT PHYS COMMUN, V119, P67 GUNTHER S, 1994, PHYS REV LETT, V73, P553 MICHELY T, 1993, PHYS REV LETT, V70, P3943 OVESSON S, 1999, PHYS REV LETT, V83, P2608 PERDEW JP, 1996, PHYS REV LETT, V77, P3865 RATSCH C, 1998, PHYS REV B, V58, P13163 RATSCH C, 1997, PHYS REV B, V55, P6750 RUGGERONE P, 1997, CHEM PHYS SOLID SURF, V8, P490 STAMPFL C, 1999, PHYS REV LETT, V83, P2993 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1973, PHILOS MAG, V27, P697 ZHANG CM, 1997, J CRYST GROWTH, V174, P851 TC 0 BP 5371 EP 5374 PG 4 JI Phys. Rev. Lett. PY 2000 PD JUN 5 VL 84 IS 23 GA 320QJ J9 PHYS REV LETT UT ISI:000087411600034 ER PT J AU Wu, J Liu, BG Zhang, ZY Wang, EG TI Reaction limited aggregation in surfactant-mediated epitaxy SO PHYSICAL REVIEW B NR 64 AB A theoretical model for reaction limited aggregation (RLA) is introduced to study the effect of a monolayer of surfactant on the formation of two-dimensional islands in heteroepitaxial and homoepitaxial growth. In this model the basic atomic processes are considered as follows. A stable island consists of the adatoms that have exchanged positions with the surfactant atoms beneath them. Movable active adatoms may (a) diffuse on the surfactant terrace, (b) exchange positions with the surfactant atoms beneath them and become island seeds (seed exchange), or (c) stick to stable islands and become stuck but still active adatoms. The rate-limiting step for the formation of a stable island is the seed exchange. Furthermore, a stuck but still active adatom must overcome a sizable potential-energy barrier to exchange positions with the surfactant atom beneath it and become a member of the stable island (aided exchange). The seed exchange process can occur with an adatom or collectively with an addimer. In the case of dimer exchange, the diffusing adatoms on the surfactant terrace can meet and (after exchanging) form stable dimers, which can then become island seeds. Systematic kinetic Monte Carlo simulations and rate- equation analysis of the model are carried out. The key finding of these simulations is that a counterintuitive fractal-to- compact island shape transition can be induced either by increasing deposition flux or by decreasing growth temperature. This major qualitative conclusion is valid for both the monomer and the dimer seed exchanges and for two different substrate lattices (square and triangular, respectively), although there are some quantitative differences in the flux and temperature dependence of the island density. The shape transition observed is contrary to the prediction of the classic diffusion-limited aggregation (DLA) theory, but in excellent qualitative agreement with recent experiments. In rationalizing the main finding, it is crucial to realize that the adatoms stuck to a stable island edge are still active and are surrounded by the surfactant atoms. Therefore, these stuck atoms cannot capture incoming adatoms before they join the island through aided exchange. As a result, an incoming adatom must on average hit the island many times before it finally finds a free edge site to stick to. This search is effectively equivalent to edge diffusion in DLA theory. The stuck adatoms thus act as shields which prevent other mobile adatoms from sticking to the stable islands. This shielding effect, determined by the aided exchange barrier and the density of the mobile adatoms, plays an essential role in inducing the above shape transition in surfactant-mediated epitaxial growth. CR BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648 BEGLEY AM, 1993, PHYS REV B, V48, P1779 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1998, SURF SCI REP, V31, P121 CAMARERO J, 1996, PHYS REV LETT, V76, P4428 CAMARERO J, 1994, PHYS REV LETT, V73, P244 CHANG TC, 1999, PHYS REV LETT, V83, P1191 COPEL M, 1994, PHYS REV LETT, V72, P1236 COPEL M, 1989, PHYS REV LETT, V63, P632 DEMIGUEL JJ, COMMUNICATION EAGLESHAM DJ, 1991, APPL PHYS LETT, V58, P2276 EAGLESHAM DJ, 1993, PHYS REV LETT, V70, P966 EGELHOFF WF, 1996, J APPL PHYS, V79, P2491 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 FEIBELMAN PJ, 1998, PHYS REV LETT, V81, P168 FIORENTINI V, 1995, APPL PHYS A-MATER, V60, P399 FU TY, 1996, PHYS REV B, V54, P5932 HWANG IS, 1998, PHYS REV LETT, V80, P4229 HWANG IS, 1998, SURF SCI, V41, PL741 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1996, SURF SCI, V359, P37 KALFF M, 1998, PHYS REV LETT, V81, P1255 KANDEL D, CONDMAT9901177 KANDEL D, 1997, PHYS REV LETT, V78, P499 KANDEL D, 1995, PHYS REV LETT, V75, P2742 KAXIRAS E, 1993, EUROPHYS LETT, V21, P685 KO YJ, 1996, PHYS REV LETT, V76, P3160 LIU BG, 1999, PHYS REV LETT, V83, P1195 LIU SD, 1995, PHYS REV LETT, V74, P4495 LIU SD, 1993, PHYS REV LETT, V71, P2967 MARKOV I, 1994, PHYS REV B, V50, P11271 MASSIES J, 1993, PHYS REV B, V48, P8502 MEAKIN P, 1983, PHYS REV A, V27, P1495 MEMMEL N, 1995, PHYS REV LETT, V75, P485 MENDOZADIAZ G, 1997, J CRYST GROWTH, V178, P45 MICHELY T, 1998, NATO ADV STUDIES I B, V360 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MO YW, 1991, PHYS REV LETT, V66, P1998 OHNO T, 1994, PHYS REV LETT, V73, P460 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 SCHEUCH V, 1994, SURF SCI, V318, P115 SCHROEDER K, 1998, PHYS REV LETT, V80, P2873 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TOURNIE E, 1995, J CRYST GROWTH, V150, P460 TROMP RM, 1992, PHYS REV LETT, V68, P954 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VILLAIN J, 1992, J PHYS I, V2, P2107 VOIGTLANDER B, 1995, PHYS REV B, V51, P7583 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WADO H, 1995, J CRYST GROWTH, V147, P320 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLTER H, 1993, SURF SCI, V298, P173 WULFHEKEL W, 1996, SURF SCI, V348, P227 XU WT, 1998, SOLID STATE COMMUN, V107, P557 YU BD, 1994, PHYS REV B, V50, P14631 YU BD, 1994, PHYS REV LETT, V72, P3190 ZHANG ZY, 1995, PHYS REV LETT, V74, P3644 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZHANG ZY, 1994, PHYS REV LETT, V72, P693 ZHANG ZY, 1997, SCIENCE, V276, P377 ZHANG ZY, 1996, SURF REV LETT, V3, P1449 TC 0 BP 13212 EP 13222 PG 11 JI Phys. Rev. B PY 2000 PD MAY 15 VL 61 IS 19 GA 316GK J9 PHYS REV B UT ISI:000087159100113 ER PT J AU Gladyszewski, G Temst, K Mae, K Schad, R Belien, F Kunnen, E Verbanck, G Bruynseraede, Y Moons, R Vantomme, A Blasser, S Langouche, G TI Structure of Ag/Fe superlattices probed at different length scales SO THIN SOLID FILMS NR 47 AB We report on the growth and structure of Ag(001)/Fe(001) superlattices studied in situ by reflection high-energy electron diffraction (RHEED) and ex situ by Rutherford backscattering and channeling spectroscopy (RBS/C), X-ray diffraction (XRD) and atomic force microscopy (AFM). These complementary characterization methods have been compared and applied to a detailed investigation of the epitaxial quality and the interface roughness. The apparent inconsistency in the results is explained by the difference in length scale probed by the four characterization techniques. (C) 2000 Elsevier Science S.A. All rights reserved. CR 1996, J MAGN MAGN MAT, V1, P156 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BEHRN RJ, 1990, NATO ASI SERIES E, V184 BERGER A, 1996, PHYS REV LETT, V76, P519 BRUYNSERAEDE Y, 1996, THIN SOLID FILMS, V275, P1 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 CHU WK, 1978, BACKSCATTERING SPECT DOOLITTLE LR, 1985, NUCL INSTRUM METH B, V9, P344 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, 1992, PHYS REV B, V45, P9292 GLADYSZEWSKI G, 1996, J MAGN MAGN MATER, V156, P381 GLADYSZEWSKI G, 1992, MATER LETT, V12, P419 GLADYSZEWSKI G, 1996, PHYS REV B, V54, P11672 GLADYSZEWSKI G, 1991, THIN SOLID FILMS, V204, P473 GLADYSZEWSKI G, 1989, THIN SOLID FILMS, V170, P99 HEINRICH B, 1987, PHYS REV LETT, V59, P1756 HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363 HUES SM, 1993, BULL JAN, P41 KRIM J, 1993, PHYS REV LETT, V70, P57 LAGALLY MG, 1988, REFLECTION HIGH ENER, P139 LARSEN PK, 1988, RHEED REFLECTION ELE LI SX, 1995, J APPL PHYS, V78, P405 LUO YS, 1995, J APPL PHYS, V77, P1482 MAZZONE AM, 1992, THIN SOLID FILMS, V216, P145 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MITURA Z, 1995, APPL PHYS A-MATER, V60, P227 MITURA Z, 1988, J PHYS F MET PHYS, V18, P183 MIYAZAKI E, 1991, INTRO APPL SURFACE S ORTEGA JE, 1993, PHYS REV B, V47, P16441 PAN F, 1992, J PHYS CONDENS MATT, V4, P519 PAN F, 1993, J PHYS-CONDENS MAT, V5, PL315 PAPPAS DP, 1992, PHYS REV B, V45, P8169 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 QUINN AJ, 1997, SURF SCI, V385, P395 RICHTER R, 1985, PHYS REV LETT, V54, P2704 SCANLON MR, 1995, APPL PHYS LETT, V66, P46 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHULLER IK, 1990, MRS BULL, V15, P33 SCHULLER IK, 1994, SOLID STATE COMMUN, V92, P141 STEARNS MB, 1989, PHYS REV B, V40, P8256 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TEMPLIER C, 1985, PHYS STATUS SOLIDI A, V92, P511 TEMST K, 1995, APPL PHYS LETT, V67, P3429 VALLES JM, 1990, MATER RES SOC S P, V195, P375 WESTWOOD ARC, 1963, J APPL PHYS, V34, P3335 WOOTEN CL, 1994, PHYS REV B, V49, P10023 YU CT, 1995, PHYS REV B, V52, P1123 TC 0 BP 51 EP 62 PG 12 JI Thin Solid Films PY 2000 PD MAY 1 VL 366 IS 1-2 GA 314VT J9 THIN SOLID FILMS UT ISI:000087078800010 ER PT J AU Fahsold, G Pucci, A Rieder, KH TI Growth of Fe on MgO(001) studied by He-atom scattering SO PHYSICAL REVIEW B NR 39 AB With He-atom scattering we studied the epitaxial growth of Fe ultrathin films deposited on in situ cleaved MgO(001). The measurements at Various substrate temperatures (140 less than or equal to T less than or equal to 670 K) start with bare MgO(001) and extend to him thicknesses beyond the complete coverage of the substrate. From the development of specular intensity with Fe deposition we estimate saturation island densities, give a quantitative description of the evolution of their size and shape, and calculate a thickness for coalescence of all islands. The observed three-dimensional metal island growth behavior is suppressed at low temperature (140 K) where a monolayer film almost completely covers the substrate. For increased substrate temperatures a decreased island density and an increased interlayer mass transport from substrate level onto the islands leads to a temperature and thickness dependent change in island shape. CR BRUNE H, 1998, SURF SCI REP, V31, P121 COMSA G, 1992, ATOMIC MOL BEAM METH, V2, P463 DURIEZ C, 1990, SURF SCI, V230, P123 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 FAHSOLD G, IN PRESS THIN SOLID FAHSOLD G, 1999, SURF SCI, V433, P162 FAHSOLD G, UNPUB HAAS G, IN PRESS PHYS REV LE HENRY CR, 1985, J PHYS-PARIS, V46, P1217 HENRY CR, 1998, VACUUM, V50, P157 JORDAN SM, 1999, PHYS REV B, V59, P7350 KOCH R, COMMUNICATION KONIG G, THESIS FREIE U BERLI, P95 KRAUTH O, 1999, J CHEM PHYS, V110, P3113 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAIRSON BM, 1995, J APPL PHYS, V78, P4449 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 LEVI AC, 1995, SURF SCI, V342, P307 LI C, 1991, PHYS REV B, V43, P780 LIU C, 1992, J MAGN MAGN MATER, V111, PC225 LOCK A, 1990, KINETICS ORDERING GR MAGG N, 1999, THESIS U HEIDELBERG MEUNIER M, 1994, SURF SCI, V307, P514 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MUHGE T, 1994, APPL PHYS A-MATER, V59, P659 MUSOLINO V, 1998, SURF SCI, V402, P413 OVERBURY SH, 1975, CHEM REV, V75, P547 PALMBERG PW, 1967, APPL PHYS LETT, V11, P33 PARK YS, 1995, APPL PHYS LETT, V66, P2140 PRIEBE A, 1999, THESIS U HEIDELBERG RIEDER KH, 1982, SURF SCI, V118, P57 SANGWAL K, 1997, SURF SCI, V383, P78 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 TOENNIES JP, 1991, SPRINGER SERIES SURF, V21, P111 URANO T, 1988, J PHYS SOC JPN, V57, P3403 YINNON AT, 1998, SURF SCI, V410, PL721 ZHOU JB, 1997, SURF SCI, V375, P221 TC 2 BP 8475 EP 8483 PG 9 JI Phys. Rev. B PY 2000 PD MAR 15 VL 61 IS 12 GA 299MV J9 PHYS REV B UT ISI:000086203100085 ER PT J AU Bartelt, MC Hannon, JB Schmid, AK Stoldt, CR Evans, JW TI Island formation during deposition or etching SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS NR 105 AB The behavior of a non equilibrium lattice-gas model for irreversible formation of two-dimensional islands during submonolayer deposition or etching is examined in detail. In particular, recent developments in describing capture of diffusing species by islands of various sizes are reviewed. Both exact and geometric descriptions of capture are discussed, elucidating the role of the local environment of the islands, and its dependence on island size, on adatom capture and individual island growth rates. Limitations in mean-field treatments of capture are noted. These results are applied to characterize the growth of Ag islands on Ag(100), Cu/Co islands on Ru(0001), and pits on Si(001) etched with molecular oxygen. (C) 2000 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1996, PHYS REV B, V54, P14742 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1995, PHYS REV LETT, V74, P2066 ATWATER HA, 1993, MATER RES SOC S P, V280, P363 BABCOCK KL, 1990, PHYS REV A, V41, P1952 BALES GS, 1994, PHYS REV B, V50, P6057 BARDOTTI L, 1998, PHYS REV B, V57, P12544 BARTELT MC, 1999, PHYS REV B, V59, P3125 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1993, PHYS REV B, V47, P13891 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1998, PHYS REV LETT, V81, P1901 BARTELT MC, 1999, SURF SCI, V423, P189 BARTELT MC, 1993, SURF SCI, V298 BIHAM O, 1998, SURF SCI, V400, P29 BILLIA B, 1991, METALL TRANS A, V22, P3041 BOISVERT G, 1998, PHYS REV B, V57, P1881 BOISVERT G, 1997, PHYS REV B, V56, P7643 BOISVERT G, 1995, PHYSR EV B, V51, P9078 BOTT M, 1996, PHYS REV LETT, V76, P1304 BROMANN K, 1995, PHYS REV LETT, V75, P677 BRUNE H, 1995, PHYS REV B, V52, P14380 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1998, SURF SCI REP, V31, P121 BRUNE H, 1995, THIN SOLID FILMS, V264, P230 DELANNAY R, 1994, PHYSICA A, V212, P1 DURR H, 1995, SURF SCI, V328, PL527 ERHLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, PHYS REV LETT, V69, P458 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1989, PHYS REV A, V40, P2868 EVANS JW, 1993, SURF SCI, V284, PL437 EVANS JW, UNPUB FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FEIBELMAN PJ, 1998, PHYS REV LETT, V81, P168 FRANKL DR, 1970, ADV PHYS, V19, P409 FUOSS P, 1993, MATER RES SOC S P, V312, P255 GERVOIS A, 1993, DISORDER GRANULAR ME GIESEN M, 1998, PHYS REV LETT, V80, P552 HALPERN V, 1969, J APPL PHYS, V40, P4626 HANNON JB, 1998, PHYS REV LETT, V81, P4676 ICKINGKONERT GS, 1998, SURF SCI, V398, P37 KLIR GJ, 1993, ADV COMPUTERS, V36 KOEHLER JS, 1963, J PHYS SOC JAPAN S3, V18, P1 LECAER G, 1993, J PHYS I, V3, P1777 LEMAITRE J, 1992, CR ACAD SCI II, V315, P35 LEMAITRE J, 1991, EUROPHYS LETT, V14, P77 LEMAITRE J, 1993, PHILOS MAG B, V67, P347 LEWIS B, 1970, SURF SCI, V21, P273 LIU SD, 1997, SURF SCI, V392, PL56 MOMBACH JCM, 1993, PHYS REV E, V47, P3712 MULHERAN PA, 1998, PHIL MAG LETT, V78, P247 MULHERAN PA, 1995, PHIL MAG LETT, V72, P55 MULHERAN PA, 1996, PHYS REV B, V53, P10262 MULLER B, 1996, PHYS REV B, V54, P17858 NADAL JP, 1994, STAT MECH STAT INFER NYBERG GL, 1993, PHYS REV B, V48, P14509 PAI WW, 1997, PHYS REV LETT, V79, P3210 PEDERSEN MO, 1997, SURF SCI, V387, P86 PIMPINELLI A, 1999, PHYSICS CRYSTAL GROW POPESCU MN, 1998, PHYS REV B, V58, P1613 PREPARATA FP, 1985, COMPUTATIONAL GEOMET RATSCH C, 1998, PHYS REV B, V58, P13163 RATSCH C, 1995, SURF SCI, V329, P6599 RATSCH C, UNPUB RIVIER N, 1993, DISORDER GRANULAR ME SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STAUFFER D, 1992, INTRO PERCOLATION TH STOLDT CR, 1998, PHYS REV LETT, V81, P2950 STOLDT CR, 1998, PROG SURF SCI, V59, P67 STOWELL MJ, 1972, PHILOS MAG, V26, P349 STOWELL MJ, 1970, PHILOS MAG, V21, P125 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STOYANOV S, 1979, CURRENT TOPICS MATER, V3, P421 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWAN AK, 1997, SURF SCI, V391, PL1205 VENABLES JA, 1971, P ROY SOC LOND A MAT, V322, P331 VENABLES JA, 1973, PHILOS MAG, V27, P697 VILLAIN J, 1991, J PHYS, V11, P19 VOLMER M, 1925, Z PHYS CHEM, V119, P277 WALTON D, 1963, J CHEM PHYS, V38, P2698 WALTON D, 1962, J CHEM PHYS, V37, P2182 WALTON D, 1962, PHILOS MAG, V7, P1671 WEN JM, 1996, PHYS REV LETT, V76, P652 WEN JM, 1994, PHYS REV LETT, V73, P2591 WILLE LT, 1998, MRS P, V528, P253 WULFHEKEL W, 1996, SURF SCI, V348, P227 YU BD, 1997, PHYS REV B, V55, P13916 YU BD, 1996, PHYS REV LETT, V77, P1095 ZANGWILL A, 1995, SURF SCI, V326, PL483 ZHANG CM, 1998, SURF SCI, V406, P178 ZHANG Z, 1999, MORPHOLOGICAL ORG EP ZINKEALLMANG M, 1992, SURF SCI REP, V16, P377 ZINSMEISTER G, 1971, THIN SOLID FILMS, V7, P51 ZINSMEISTER G, 1969, THIN SOLID FILMS, V4, P362 ZINSMEISTER G, 1968, THIN SOLID FILMS, V2, P497 ZINSMEISTER G, 1966, VACUUM, V16, P529 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 0 BP 373 EP 403 PG 31 JI Colloid Surf. A-Physicochem. Eng. Asp. PY 2000 PD MAY 30 VL 165 IS 1-3 GA 287HV J9 COLLOID SURFACE A UT ISI:000085501200022 ER PT J AU Politi, P Krug, J TI Crystal symmetry, step-edge diffusion, and unstable growth SO SURFACE SCIENCE NR 31 AB We study the effect of crystal symmetry and step-edge diffusion on the surface current governing the evolution of a grouping crystal surface. We find there are two possible contributions to anisotropic currents, which both lead to the destabilization of the flat surface: terrace current j(t), which is parallel to the slope m=del z(x,t), and step current j(s), which has components parallel (j(s)(ii)) and perpendicular (js(perpendicular to)) to the slope. On a high-symmetry surface, terrace and step currents are generically singular at zero slope. and this does not allow one to perform the standard linear stability analysis. As far as a one-dimensional profile is considered, j(s)perpendicular to is irrelevant and j(s)(parallel to) suggests that mound sides align along [110] and [110] axes. On a vicinal surface, j(s) destabilizes against step bunching; its effect against step meandering depends on the step orientation, in agreement with the recent findings by Pierre-Louis et al. [Phys. Rev. Lett. 82 (1999) 3661]. (C) 2000 Elsevier Science B.V. All rights reserved. CR BALES GS, 1990, PHYS REV B, V41, P5500 CHAME A, 1996, BULG CHEM COMMUN, V29, P398 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 KALFF M, 1999, SURF SCI, V426, PL447 KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1993, PHYS REV LETT, V70, P3271 KRUG J, 1999, PHYSICA A, V263, P170 KRUG J, UNPUB MERIKOSKI J, 1997, SURF SCI, V387, P167 MURTY MVR, 1999, PHYS REV LETT, V83, P352 PIERRELOUIS O, 1999, PHYS REV LETT, V82, P3661 PIERRELOUIS O, 1998, PHYS REV LETT, V80, P4221 PIMPINELLI A, 1994, J PHYS-CONDENS MAT, V6, P2661 POLITI P, 2000, IN PRESS PHYS REP POLITI P, 1997, J PHYS I, V7, P797 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1996, SURF SCI, V369, P393 SCHINZER S, 1999, SURF SCI, V439, P191 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SMILAUER P, 1995, PHYS REV B, V52, P14263 SPOHN H, 1993, J PHYS I, V3, P69 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 TRUSHIN OS, 1997, PHYS REV B, V56, P12135 TSUI F, 1996, PHYS REV LETT, V76, P3164 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 1 BP 89 EP 97 PG 9 JI Surf. Sci. PY 2000 PD FEB 1 VL 446 IS 1-2 GA 282DF J9 SURFACE SCI UT ISI:000085200800016 ER PT J AU Bisio, F Moroni, R Canepa, M Mattera, L Bertacco, R Ciccacci, F TI Structural versus magnetic properties at the surface of Fe films during oxygen-assisted homoepitaxial growth SO PHYSICAL REVIEW LETTERS NR 28 AB The correlation between structural and magnetic properties at the surface of Fe films deposited on Fe(001)-p(1 X 1)O has been investigated in real time during growth by He reflectivity (R- He), spin polarized metastable deexcitation spectroscopy (SPMDS), and spin resolved adsorbed curve spectroscopy (ACS). Surface oxygen acts as a surfactant for Fe growth as demonstrated by the well-resolved oscillations of R-He. The asymmetries measured both by SPMDS and ACS, sensitive to the spin polarization of occupied and unoccupied density of states, respectively, oscillate in phase with R-He. This demonstrates a strict correlation between morphology and the intensity of magnetization at surface. CR BENZIGER JB, 1980, J ELECTRON SPECTROSC, V20, P281 BERTACCO R, 1998, APPL PHYS LETT, V72, P2050 BERTACCO R, 1998, J VAC SCI TECHNOL A, V16, P2277 BERTACCO R, 1999, PHYS REV B, V59, P4207 BRUCKER CF, 1976, SURF SCI, V57, P523 CHIAIA G, 1993, PHYS REV B, V48, P11298 CICCACCI F, 1995, REV SCI INSTRUM, V66, P4161 CLARKE A, 1990, PHYS REV B, V41, P9659 DODT T, 1988, EUROPHYS LETT, V6, P375 GRANITZA B, 1995, REV SCI INSTRUM, V66, P4170 HAGSTRUM H, 1965, PHYS REV A, V139, P526 HAGSTRUM HD, 1966, PHYS REV, V150, P495 HAGSTRUM HD, 1954, PHYS REV, V96, P336 HAMMOND MS, 1992, PHYS REV B, V45, P6131 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1 HUANG H, 1985, PHYS REV B, V32, P6312 KISKER E, 1985, J APPL PHYS, V57, P3021 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LEGG KO, 1977, PHYS REV B, V16, P5721 MORONI R, 1999, SURF SCI, V433, P676 ONELLION M, 1984, PHYS REV LETT, V52, P380 PENN DR, 1990, PHYS REV B, V41, P3303 SALVIETTI M, 1996, PHYS REV B, V54, P14758 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STROCOV VN, 1995, PHYS REV B, V52, P8759 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 WUTTIG M, 1995, SURF SCI, V331, P659 TC 3 BP 4868 EP 4871 PG 4 JI Phys. Rev. Lett. PY 1999 PD DEC 6 VL 83 IS 23 GA 261PU J9 PHYS REV LETT UT ISI:000084018200049 ER PT J AU Tataru, O Family, F Amar, JG TI Post-deposition island growth with long-range interactions SO PHYSICA A NR 35 AB The effects of long-range interactions on the scaling of the average island-size, island-size distribution, and saturation rime are investigated for a simple model of post-deposition island growth. While long-range interactions are found to have little effect on the scaled island-size distribution, the average island-size is strongly affected. Excellent agreement is found with the proposed scaling form S(theta, t) = theta(z)g(theta t(beta)) for the average island size S(theta, t) at time t and coverage theta. The exponents z and beta and the scaling function g(u) depend on the range and sign of the interaction. Long-range interactions are also found to strongly affect the saturation time as well as the exponent describing its dependence on coverage. This leads to a simple experimental method to detect the presence of long-range interactions. (C) 1999 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 BLACKMAN JA, 1996, PHYS REV B, V54, P11681 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 CHANG MC, IN PRESS ERNST HJ, 1992, PHYS REV B, V46, P1929 FAMILY F, 1997, DYNAMICS FLUCTUATING, P206 FAMILY F, 1989, PHYS REV A, V40, P3836 FAMILY F, 1988, PHYS REV LETT, V61, P428 FAMILY F, 1999, PHYSICA A, V266, P173 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LI J, 1997, PHYS REV LETT, V78, P1747 LI W, 1993, PHYS REV B, V48, P8336 MO YW, 1991, PHYS REV LETT, V66, P1998 OKADA Y, 1996, MATER RES SOC SYMP P, V399, P203 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SMILAUER P, 1993, PHYS REV B, V47, P4119 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 TATARU O, PREPRINT VICSEK T, 1984, PHYS REV LETT, V52, P1669 VILLAIN J, 1992, J PHYS I, V2, P2107 VOTER AF, 1986, PHYS REV B, V34, P6819 WENDELKEN J, IN PRESS YANG HN, 1994, PHYS REV LETT, V73, P2348 ZHANG ZY, 1997, SCIENCE, V276, P377 ZINKEALLMANG M, 1994, P SOC PHOTO-OPT INS, V2140, P36 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 0 BP 231 EP 240 PG 10 JI Physica A PY 1999 PD NOV 15 VL 273 IS 3-4 GA 263YB J9 PHYSICA A UT ISI:000084151900002 ER PT J AU Bauer, E TI Growth of thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 138 AB The results of epitaxial growth studies of ferromagnetic metals for a selected class of nonmagnetic substrates is reviewed. The reverse sequence is also discussed for some systems of importance in double layer and sandwich studies. The interrelation between film structure and magnetic properties is pointed out for several examples. CR 1999, J MAGN MAGN MAT, V193 ALBRECHT M, 1993, SURF SCI, V294, P1 ANDRIEU S, 1992, PHYS REV B, V46, P4909 BASSETT GA, 1958, PHILOS MAG, V3, P1042 BAUER E, 1982, APPL SURF SCI, V11-2, P479 BAUER E, 1984, CHEM PHYSICS SOLID B, V3, P1 BAUER E, 1997, HDB MICROSCOPY, P751 BAUER E, 1974, J APPL PHYS, V45, P5164 BAUER E, 1997, J SURF ANAL, V3, P222 BAUER E, 1989, MAT RES SOC S P, V10 BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1994, REP PROG PHYS, V57, P895 BERGHOLZ R, 1984, J MAGN MAGN MATER, V45, P55 BERLOWITZ PJ, 1990, SURF SCI, V231, P315 BERLOWITZ PJ, 1988, SURF SCI, V205, P1 BERLOWITZ PJ, 1987, SURF SCI, V187, P463 BETHGE H, 1995, SURF SCI, V331, P878 BODE M, 1997, J VAC SCI TECHNOL A, V15, P1285 BODE M, 1996, PHYS REV B, V54, PR8385 BRODDE A, 1993, PHYS REV B, V47, P6609 BRUCE LA, 1979, PHILOS MAG A, V40, P97 BRUCE LA, 1978, PHILOS MAG A, V38, P223 BRUCE LA, 1978, PHILOS MAG A, V37, P337 BUERGLER DE, 1997, PHYS REV B, V56, P4149 BULOU H, 1997, SURF SCI, V377, P90 CAMARERO J, 1994, PHYS REV LETT, V73, P2448 CAMARERO J, 1998, SURF SCI, V402, P346 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P933 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P1721 CHOPRA HD, 1997, PHYS REV B, V55, P8390 CULLEN WG, 1999, SURF SCI, V420, P53 DELAFIGUERA J, 1995, APPL PHYS LETT, V69, P1006 DONNER W, 1993, PHYS REV B, V48, P14475 DUDEN T, 1998, J ELECTRON MICROSC, V47, P379 DUDEN T, 1999, J MAGN MAGN MATER, V191, P301 DUDEN T, 1999, PHYS REV B, V59, P468 DUDEN T, 1999, PHYS REV B, V59, P474 DUDEN T, 1996, THESIS TU CLAUSTHAL EGAWA C, 1987, SURF SCI, V188, P563 EGAWA C, 1987, SURF SCI, V185, PL506 EGELHOFF WF, 1996, J APPL PHYS, V80, P5183 EGELHOFF WF, 1989, J VAC SCI TECHNOL A, V7, P2167 ELMERS HJ, 1994, SURF SCI, V320, P134 FRITZSCHE H, 1995, PHYS REV B, V51, P15933 GARDINER TM, 1983, THIN SOLID FILMS, V105, P213 GRADMANN U, 1966, ANN PHYS, V17, P91 GRADMANN U, 1974, APPL PHYS, V3, P161 GRADMANN U, 1989, APPL PHYS A-MATER, V49, P563 GRADMANN U, 1982, SURF SCI, V116, P539 GUAN J, 1995, SURF SCI, V341, P311 HAUSCHILD J, 1998, APPL PHYS LETT, V72, P3211 HAUSCHILD J, 1998, PHYS REV B, V57, PR677 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1, PCH5 HOECHE H, 1999, J MAGN MAGN MATER, V191, P313 HUANG JCA, 1994, J CRYST GROWTH, V139, P363 HUEGER E, 1999, SURF SCI, V438, P185 JENSEN C, 1996, APPL PHYS A-MATER, V62, P217 JOHNSON BG, 1989, SURF SCI, V217, P13 JOHNSON BG, 1989, SURF SCI, V217, P113 JONES TL, 1994, SURF SCI, V302, P126 JUNG T, 1995, APPL PHYS A-MATER, V61, P467 KAEMPER KP, 1988, PHYS REV B, V38, P9451 KAMADA Y, 1997, J PHYS SOC JPN, V66, P658 KAMIJO A, 1996, J MAGN MAGN MATER, V156, P137 KAMIJO A, 1993, J MAGN MAGN MATER, V126, P59 KELLOGG GL, 1987, SURF SCI, V192, PL879 KING DA, 1997, CHEM PHYSICS SOLID S, V8 KNOPPE H, 1993, PHYS REV B, V48, P1794 KNOPPE H, 1995, THESIS TU CLAUSTHAL KOLACZKIEWICZ J, 1999, SURF SCI, V423, P292 KOLACZKIEWICZ J, 1999, SURF SCI, V420, P157 KOLACZKIEWICZ J, 1984, SURF SCI, V144, P495 KOZIOL C, 1987, APPL PHYS LETT, V51, P901 KOZIOL C, 1990, PHYS REV B, V41, P3364 LI Y, 1990, PHYS REV B, V41, P9596 LILIENKAMP G, 1988, REFLECTION HIGH ENER, P489 LIU C, 1990, PHYS REV B, V41, P553 MADEY TE, 1996, SURF REV LETT, V3, P1315 MALZBENDER J, 1998, SURF SCI, V414, P187 MARSOT N, 1997, SURF SCI, V377, P225 MEYER JA, 1996, SURF SCI, V365, PL647 MINGDE X, 1991, J VAC SCI TECHNOL A, V9, P1828 MOSS ARL, 1969, SURF SCI, V17, P240 MUNDSCHAU M, 1988, SURF SCI, V203, P412 OCIEPA J, UNPUB OCIEPA JG, 1990, SURF SCI, V225, P281 OHRESSER P, 1996, SURF SCI, V364, P481 OHRESSER P, 1996, SURF SCI, V352, P567 OIKAWA S, 1996, J MAGN MAGN MATER, V156, P73 PADOVANI S, 1998, APPL PHYS A-MATER, V66, PS1199 PADOVANI S, 1999, EUROPHYS LETT, V45, P327 PEDERSEN MO, 1997, SURF SCI, V387, P86 PERSAT N, 1996, J MAGN MAGN MATER, V164, P37 PETROVYKH DY, 1998, SURF SCI, V407, P189 PIERCE DT, 1994, PHYS REV B, V49, P14564 PINKVOS H, 1993, MAGNETISM STRUCTURE, P25 PRIETO JE, 1998, SURF SCI, V401, P248 PRZYBYLSKI M, 1989, PHYS REV B, V40, P8631 RATH C, 1997, PHYS REV B, V55, P10791 SANDER D, 1998, J MAGN MAGN MATER, V177, P1299 SANDER D, 1998, J PHYS D APPL PHYS, V31, P663 SANDER D, 1998, PHYS REV B, V57, P1406 SANDER D, 1996, PHYS REV LETT, V77, P2566 SANDER D, 1998, SURF SCI, V402, P351 SCHMIDT T, 1998, SURF REV LETT, V5, P1287 SCHMIDTHALS C, 1998, SURF SCI, V417, P361 SCHMIDTHALS C, 1998, SURF SCI, V402, P636 SHEN J, 1998, EUROPHYS LETT, V43, P349 SHEN J, 1997, J APPL PHYS, V81, P3901 SHEN J, 1997, PHYS REV B, V56, P2340 SHEN J, 1997, PHYS REV B, V56, P11134 SHEN J, 1998, PHYS REV LETT, V80, P1980 SPECKMANN M, 1995, PHYS REV LETT, V75, P2035 SPELLER S, 1998, SURF SCI, V405, PL542 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STINDTMANN M, 1997, SURF SCI, V381, P12 STROSCIO JA, 1992, J VAC SCI TECHNOL A, V10, P1981 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TAYLOR NJ, 1966, SURF SCI, V4, P161 TIAN D, 1991, SOLID STATE COMMUN, V80, P783 TIKHOV M, 1990, SURF SCI, V232, P73 TOELKES C, 1997, PHYS REV B, V55, P13932 TOELKES C, 1997, SURF SCI, V394, P170 TYSON WR, 1977, SURF SCI, V62, P267 VANDERMERWE JH, 1994, PHYS REV B, V49, P2127 VANDERMERWE JH, 1994, PHYS REV B, V49, P2137 VANDERMERWE JH, 1989, PHYS REV B, V39, P3632 WANG CP, 1994, PHYS REV B, V49, P17391 WOLLSCHLAGER J, 1992, SURF SCI, V277, P1 WORMEESTER H, 1996, PHYS REV B, V54, P17108 WORMEESTER H, 1996, PHYS REV LETT, V77, P1540 WORMEESTER H, 1997, SURF SCI, V377, P988 WULFHEKEL W, 1998, SURF SCI, V395, P168 WURM K, 1994, THESIS TU CLAUSTHAL ZHOU XL, 1988, SURF SCI, V203, P53 TC 1 BP 9365 EP 9385 PG 21 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100009 ER PT J AU Koch, R TI Intrinsic stress of ultrathin epitaxial films SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING NR 67 AB The present article focuses on the stress developing during the deposition of ultrathin epitaxial films in the thickness range of a few atomic layers. The studied systems exhibit the three well-known modes of film growth: Stranski-Krastanow mode [Ge/Si(001), Ge/Si(lll), Ag/Si(lll)], Frank-Van der Merwe mode [Fe/MgO(001)] and Volmer-Weber mode [Ag/mica(001), Cu/mica(001)]. The experimental results demonstrate the important role of the misfit strain as well as the contribution of surface stress effects as mechanisms for the stress in single atomic layers. CR ABERMANN R, 1990, VACUUM, V41, P1279 ALLPRESS JG, 1967, SURF SCI, V7, P1 BARKER RA, 1978, SOLID STATE COMMUN, V25, P375 CAMMARATA RC, 1994, PROG SURF SCI, V46, P1 DOERNER MF, 1988, CRIT REV SOLID STATE, V14, P225 EAGLESHAM DJ, 1990, PHYS REV LETT, V64, P1943 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1993, PHYS REV LETT, V70, P41 FLORO JA, 1997, PHYS REV LETT, V79, P3946 HAMMAR M, 1996, SURF SCI, V349, P129 HELLWEGE AM, 1966, LANDOLTBURNSTEIN GRU, V1 HIROYAMA Y, 1998, J VAC SCI TECHNOL A, V16, P2956 HOFFMAN RW, 1966, PHYS THIN FILMS, V3, P211 HORNVONHOEGEN M, 1993, PHYS REV LETT, V71, P3170 HORNVONHOEGEN M, 1993, SURF SCI, V284, P53 HULPKE E, 1989, PHYS REV B, V40, P1338 IBACH H, 1997, SURF SCI REP, V29, P193 IWAWAKI F, 1991, SURF SCI, V253, PL411 JAEGER H, 1967, SURF SCI, V6, P309 KATAOKA Y, 1988, J APPL PHYS, V63, P749 KNALL J, 1992, SURF SCI, V265, P156 KOCH R, 1997, CHEM PHYS SOLID SURF, V8, P448 KOCH R, 1996, J MAGN MAGN MATER, V159, PL11 KOCH R, 1994, J PHYS-CONDENS MAT, V6, P9519 KOCH R, 1991, PHYS REV B, V44, P3369 KOCH R, 1990, REV SCI INSTRUM, V61, P3859 KOHLER U, 1991, SURF SCI, V248, P321 MADELUNG O, 1984, LANDOLTBORNSTEIN C, V17 MARCUS PM, 1997, J MAGN MAGN MATER, V168, P18 MARTINEZ RE, 1990, PHYS REV LETT, V64, P1035 MATTHEWS JW, 1979, DISLOCATIONS SOLIDS, V2, P461 MATTHEWS JW, 1962, PHILOS MAG, V7, P915 MATTHEWS JW, 1967, PHYS THIN FILMS, V4, P137 MEADE RD, 1991, SPRINGER SERIES SURF, V24, P4 MO YW, 1990, PHYS REV LETT, V65, P1020 MOLL N, 1996, PHYS REV B, V54, P8844 OHNISHI H, 1993, JPN J APPL PHYS 1, V32, P2920 OVER H, 1993, PHYS REV B, V48, P15353 RATSCH C, 1993, SURF SCI, V293, P123 SAKAI A, 1993, PHYS REV LETT, V71, P4007 SANDER D, 1999, EUROPHYS LETT, V45, P208 SANDER D, 1996, PHYS REV LETT, V77, P2566 SCHELLSOROKIN AJ, 1990, PHYS REV LETT, V64, P1030 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968 SNYDER CW, 1991, PHYS REV LETT, V66, P3032 STEINFORT AJ, 1996, PHYS REV LETT, V77, P2009 STIDDARD MHB, 1982, THIN SOLID FILMS, V97, P91 STIDDARD MHB, 1982, THIN SOLID FILMS, V94, P1 STONEY GG, 1909, P ROY SOC LOND A MAT, V32, P172 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANISHIRO Y, 1991, SURF SCI, V258, PL687 TERSOFF J, 1993, PHYS REV LETT, V70, P2782 THURMER K, 1995, PHYS REV LETT, V75, P1767 TOMITORI M, 1994, APPL SURF SCI, V76, P322 URANO T, 1988, J PHYS SOC JPN, V57, P3403 VENABLES JA, 1980, SURF SCI, V95, P411 VOIGTLANDER B, 1993, APPL PHYS LETT, V63, P3055 WALZ J, 1998, APPL PHYS LETT, V73, P2579 WEDLER G, 1998, PHYS REV LETT, V80 WEDLER G, UNPUB WILLIAMS AA, 1991, PHYS REV B, V43, P5001 WINAU D, 1991, J APPL PHYS, V70, P3081 WINAU D, UNPUB ZUO JK, 1991, J VAC SCI TECHNOL A, V9, P1539 TC 0 BP 529 EP 536 PG 8 JI Appl. Phys. A-Mater. Sci. Process. PY 1999 PD NOV VL 69 IS 5 GA 254BK J9 APPL PHYS A-MAT SCI PROCESS UT ISI:000083591500008 ER PT J AU Igel, T Pfandzelter, R Winter, H TI Surface magnetism of ultrathin Cr, Mn, and Fe films on Fe(100) studied via electron capture spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 27 AB The long-range magnetic ordering at the surface of ultrathin epitaxial films of Cr, Mn, and Fe on Fe(1 0 0) has been studied by electron capture spectroscopy. The observed spin polarization indicates different magnetic orderings comprising parallel and antiparallel coupling of moments. Based on simple assumptions for electron capture, the layer- and coverage- dependent magnetization profile is estimated. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 FUCHS P, 1996, PHYS REV B, V54, P9304 HANDSCHUH S, 1998, SOLID STATE COMMUN, V105, P633 HEINRICH B, 1993, ADV PHYS, V42, P523 IGEL T, 1999, APPL SURF SCI, V142, P532 IGEL T, 1998, PHYS REV B, V58, P2430 IGEL T, 1998, SURF SCI, V405, P182 KIM SK, 1996, PHYS REV B, V54, P5081 KISKER E, 1985, PHYS REV B, V31, P329 LEUKER J, 1997, SURF SCI, V388, P262 MANSKE J, 1997, J MAGN MAGN MATER, V168, P249 PFANDZELTER R, 1999, J MAGN MAGN MATER, V192, P43 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PFANDZELTER R, 1997, SURF SCI, V389, P317 PFANDZELTER R, 1997, SURF SCI, V375, P13 SCHLEBERGER M, 1997, APPL PHYS LETT, V71, P3156 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VEGA A, 1996, THIN SOLID FILMS, V275, P103 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WIJN HPJ, 1986, LANDOLTBORNSTEIN GRU, V19 WINTER H, 1997, PHYS LETT A, V234, P453 WINTER H, 1989, PHYS REV LETT, V62, P296 WINTER H, 1992, Z PHYS D ATOM MOL CL, V23, P41 WU RQ, 1995, PHYS REV B, V51, P17131 ZIMNY R, 1988, APPL PHYS A-MATER, V47, P77 TC 0 BP 286 EP 290 PG 5 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1999 PD AUG VL 157 IS 1-4 GA 235JM J9 NUCL INSTRUM METH PHYS RES B UT ISI:000082538600043 ER PT J AU Pfandzelter, R TI Submonolayer homoepitaxy on Fe(100) studied by grazing ion- surface scattering: experiments and computer simulations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B- BEAM INTERACTIONS WITH MATERIALS AND ATOMS NR 24 AB Grazing ion-surface scattering is used to study in real space and real time epitaxial growth processes. By example of 25 keV He+-ions scattered during submonolayer homoepitaxy on Fe(1 0 0), we show that an interpretation of experiments is straightforward by means of classical mechanics computer simulations. A fit of intensity and angular profile of the specular beam allow one to deduce basic quantities like the island density. (C) 1999 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 DURR H, 1995, SURF SCI, V328, PL527 ERNST HJ, 1993, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1992, PHYS REV B, V46, P1929 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 IGEL T, 1996, EUROPHYS LETT, V35, P67 JIANG Q, 1994, PHYS REV B, V50, P11116 JIANG Q, 1995, SURF SCI, V324, P357 LENT CS, 1984, SURF SCI, V139, P121 LI W, 1993, PHYS REV B, V48, P8336 LU TM, 1982, SURF SCI, V120, P47 PFANDZELTER R, 1999, APPL SURF SCI, V142, P470 PFANDZELTER R, 1998, EUROPHYS LETT, V44, P116 PFANDZELTER R, 1998, PHYS REV B, V57, P15496 PFANDZELTER R, 1999, SURF SCI, V421, P263 PFANDZELTER R, 1997, SURF SCI, V389, P317 PFANDZELTER R, 1997, SURF SCI, V375, P13 PUKITE PR, 1985, SURF SCI, V161, P39 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1984, REP PROG PHYS, V47, P399 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 1 BP 291 EP 296 PG 6 JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PY 1999 PD AUG VL 157 IS 1-4 GA 235JM J9 NUCL INSTRUM METH PHYS RES B UT ISI:000082538600044 ER PT J AU Schmidt, CM Burgler, DE Schaller, DM Meisinger, F Guntherodt, HJ TI Correlation of short-period oscillatory exchange coupling to nanometer-scale lateral interface structure in Fe/Cr/Fe(001) SO PHYSICAL REVIEW B NR 38 AB We investigate Fe/Cr/Fe(001) trilayers grown on AE(001)/Fe/GaAs(001) substrates at different temperatures. By changing the substrate temperature of the bottom Fe film during deposition, but otherwise keeping the preparation parameters constant, we are able to tailor the roughness of the Fe/Cr interfaces. The interfaces are characterized by means of scanning tunneling microscopy (STM). In these differently prepared systems, a clear change of the short-period oscillation amplitude is observed by magneto-optical Kerr effect measurements. A statistical analysis of the STM images allows us to extract the lateral length scale over which the Cr thickness is constant, and it turns out that areas of constant Cr thickness with a diameter larger than 3-4 nm are mandatory for the evolution of short-period oscillations. Two mechanisms are discussed which can explain the observed correlation between structure and magnetism, one linked to the propagation of the coupling through the spacer and the other to the response of the ferromagnetic layers to the transmitted exchange field. [S0163-1829(99)04430-6]. CR AMAR JG, 1995, PHYS REV B, V52, P13801 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, 1998, PHYS REV B, V57, P10035 BURGLER DE, 1997, PHYS REV B, V56, P4149 BURGLER DE, 1996, SURF SCI, V366, P295 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS, V81, P4350 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 LABRUNE M, 1993, IEEE T MAGN, V29, P2569 LAURENT DG, 1981, PHYS REV B, V23, P4977 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 PARKER DJ, 1990, BRIT HEART J, V64, P1 PIERCE DT, 1994, PHYS REV B, V49, P14564 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHAFER R, 1995, J MAGN MAGN MATER, V148, P226 SCHMIDT CM, 1998, THESIS U BASEL SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SLONCZEWSKI JC, 1988, IEEE T MAGN, V24, P2045 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG Y, 1990, PHYS REV LETT, V65, P2732 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1998, NATO ADV SCI I E-APP, V349, P239 TC 1 BP 4158 EP 4169 PG 12 JI Phys. Rev. B PY 1999 PD AUG 1 VL 60 IS 6 GA 226AA J9 PHYS REV B UT ISI:000081997100063 ER PT J AU Mehl, H Biham, O Furman, I Karimi, M TI Models for adatom diffusion on fcc (001) metal surfaces SO PHYSICAL REVIEW B NR 67 AB We present a class of models that describe self-diffusion on fee (001) metal substrates within a common framework. The models are tested far Cu(001), Ag(001), Au(001),Ni(001), and Pd(001), and found to apply well for all of them. For each of these metals the models can be used to estimate the activation energy of any diffusion process using a few basic parameters that may be obtained from experiments, ab initio or semiempirical calculations. To demonstrate the approach, the parameters of the models are optimized to describe self- diffusion on the (001) surface, by comparing the energy barriers to a full set of barriers obtained from semiempirical potentials via the embedded atom method (EAM). It is found that these models with at most four parameters, provide a good description of the full landscape of hopping energy barriers on fee (001) surfaces. The main features of the diffusion processes revealed by EAM calculations are quantitatively reproducible by the models. [S0163-1829(99)01227-8]. CR ADAMS JB, 1989, J MATER RES, V4, P102 ALLNAT AR, 1993, ATOMIC TRANSPORT SOL AMAR JG, 1994, MATER RES SOC SYMP P, V317, P167 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, 1994, PHYS REV B, V50, P6057 BALES GS, 1995, PHYS REV LETT, V74, P4879 BARKEMA GT, 1994, SURF SCI, V306, PL569 BARTELT MC, 1993, SURF SCI, V298, P421 BIEHL M, 1998, EUROPHYS LETT, V41, P443 BIHAM O, 1998, SURF SCI, V400, P29 BOISVERT G, 1997, PHYS REV B, V56, P7643 BOTT M, 1992, SURF SCI, V272, P161 BREEMAN M, 1994, SURF SCI, V303, P25 BREEMAN M, 1992, SURF SCI, V269, P224 BREEMAN M, 1996, THIN SOLID FILMS, V272, P195 BROMANN K, 1995, PHYS REV LETT, V75, P677 CHEN CL, 1990, PHYS REV LETT, V64, P3147 CLARKE S, 1988, J APPL PHYS, V63, P2272 DAW MS, 1983, PHYS REV LETT, V50, P1285 DURR H, 1995, SURF SCI, V328, PL527 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, SURF SCI, V275, PL682 ESCH S, 1994, PHYS REV LETT, V72, P518 FINNIS MW, 1984, PHILOS MAG A, V50, P45 FOILES SM, 1986, PHYS REV B, V33, P7983 FURMAN I, 1997, PHYS REV B, V55, P7917 GIRARD JC, 1994, SURF SCI, V302, P73 GUNTHER S, 1994, PHYS REV LETT, V73, P553 HANSEN L, 1991, PHYS REV B, V44, P6523 HANSEN LB, 1993, SURF SCI, V289, P68 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V75, P2295 JENSEN P, 1994, PHYS REV B, V50, P15316 KARIMI M, 1995, PHYS REV B, V52, P5364 KELLOGG GL, 1994, PHYS REV LETT, V73, P1833 KELLOGG GL, 1991, PHYS REV LETT, V67, P622 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KOPATZKI E, 1993, SURF SCI, V284, P154 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LI W, 1993, PHYS REV B, V48, P8336 LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 LIU CL, 1991, SURF SCI, V253, P334 MEYER JA, 1995, PHYS REV LETT, V74, P3864 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MO YW, 1991, PHYS REV LETT, V66, P1998 MORGENSTERN K, 1996, PHYS REV LETT, V76, P2113 MORGENSTERN K, 1995, PHYS REV LETT, V74, P2058 PAI WW, 1997, PHYS REV LETT, V79, P3210 PERKINS LS, 1993, SURF SCI, V294, P67 POTSCHKE G, 1991, SURF SCI, V251, P592 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWAN AK, 1997, SURF SCI, V391, PL1205 VOTER AF, 1986, PHYS REV B, V34, P6819 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WEN JM, 1994, PHYS REV LETT, V73, P2591 WOLF DE, 1994, NATO ADV STUDY I B, V344 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZHANG ZY, 1993, SURF SCI, V292, PL781 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 1 BP 2106 EP 2116 PG 11 JI Phys. Rev. B PY 1999 PD JUL 15 VL 60 IS 3 GA 218KJ J9 PHYS REV B UT ISI:000081551500104 ER PT J AU Canepa, M Cantini, P Ricciardi, O Terreni, S Mattera, L TI Temperature effects on morphology and composition of ultrathin heteroepitaxial films: Fe on Ag(100) SO SURFACE SCIENCE NR 66 AB We studied the effects of annealing on a 5 ML thick film of iron deposited at 140 K on Ag(100). Surface morphology and elemental composition have been investigated by He scattering and low energy ion scattering spectroscopy. Mild annealing (up to 300-350 K) does not trigger interlayer mixing and is not sufficient to promote a significant improvement of the film order. Annealing-induced segregation of silver at the surface is clearly observed, after slow heating (5 K/min), above 400 K. The surface order neatly improves in the 510-550 K temperature range, while the film is being coated by silver. A close comparison between He scattering and ion spectroscopy measurements after heating up to 550 K and re-cooling at 140 K provides evidence of an annealing stage in which the Fe film is completely wet by silver. Segregation does not represent the equilibrium condition of the system. The experimental results after annealing at high temperatures (T > 650 K) are consistent with a process of Fe precipitation into the bulk of the substrate and after annealing at 700 K the surface becomes structurally and morphologically comparable with the surface of Ag(100) before deposition. (C) 1999 Elsevier Science B.V. All rights reserved. CR ARAYAPOCHET J, 1988, PHYS REV B, V38, P7846 AUFRAY B, 1994, SURF SCI, V307, P531 BARDI U, 1994, REP PROG PHYS, V57, P939 BERGER A, 1996, PHYS REV LETT, V76, P519 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BRACCO G, 1992, SURF SCI, V269, P61 BRONGERSMA HH, 1978, SURF SCI, V71, P657 BURGLER DE, 1997, PHYS REV B, V56, P4149 CANEPA M, 1995, J ELECTRON SPECTROSC, V76, P471 CANEPA M, 1997, PHYS REV B, V56, P4233 CANEPA M, 1991, REV SCI INSTRUM, V62, P1431 CANEPA M, 1997, SURF REV LETT, V4, P1245 CANEPA M, 1996, SURF SCI, V352, P36 CANEPA M, UNPUB CHANG SL, 1996, PHYS REV B, V53, P13747 CICCACCI F, 1995, PHYS REV B, V51, P11538 COMSA G, 1992, ATOMIC MOL BEAM METH, V2, P463 COMSA G, 1979, SURF SCI, V81, P57 CVETKO D, 1995, PHYS REV B, V51, P17957 DASTOOR P, 1992, SURF SCI, V272, P154 DEMIGUEL JJ, 1987, SURF SCI, V189, P1062 DEROSSI S, 1994, SURF SCI, V307, P496 DETZEL T, 1994, PHYS REV B, V49, P5599 EGELHOFF WF, 1991, MATER RES SOC S P, V229, P27 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1990, PHYS REV B, V41, P5410 FALTA J, 1989, APPL SURF SCI, V41-2, P230 GIERGIEL J, 1994, SURF SCI, V310, P1 GOMEZ LJ, 1985, PHYS REV B, V31, P255 GROBLI JC, 1995, PHYS REV B, V51, P2945 HANF MC, 1989, PHYS REV B, V39, P1546 JIANG Q, 1993, SURF SCI, V295, P197 JONKER BT, 1986, SURF SCI, V172, PL568 KIEF MT, 1993, PHYS REV B, V47, P10785 KOON NC, 1987, PHYS REV LETT, V59, P2463 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LANGELAAR MH, 1998, SURF SCI, V395, P131 LENT CS, 1984, SURF SCI, V139, P121 LI CF, 1996, SURF REV LETT, V3, P1811 LI H, 1990, PHYS REV B, V42, P9195 MAGNANO E, UNPUB MIKHAILOV SN, 1994, NUCL INSTRUM METH B, V93, P149 NIEHUS H, 1993, SURF SCI REP, V17, P213 OCONNOR DJ, 1996, SURF REV LETT, V3, P1847 ORTEGA JE, 1993, PHYS REV B, V47, P16441 PUKITE PR, 1985, SURF SCI, V161, P39 QIN ZQ, 1993, PHYS REV LETT, V70, P1006 ROUSSEL JM, 1997, PHYS REV B, V55, P10931 ROUSSEL JM, 1996, SURF SCI, V352, P562 SALVIETTI M, 1997, J MAGN MAGN MATER, V165, P230 SALVIETTI M, 1996, PHYS REV B, V54, P14758 SCHIEFFER P, 1996, SOLID STATE COMMUN, V97, P757 SCHMITZ PJ, 1989, PHYS REV B, V40, P11477 SCHURER PJ, 1995, PHYS REV B, V51, P2506 SENHAJI A, 1992, SURF SCI, V274, P297 SHEN J, 1995, SURF SCI, V328, P32 STAMPANONI M, 1987, PHYS REV LETT, V59, P2483 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TERRENI S, 1997, PHYS REV B, V56, P6490 TREGLIA G, 1990, SURF SCI, V225, P319 WOLLSCHLAGER J, 1990, APPL PHYS A-MATER, V50, P57 WUTTIG M, 1993, SURF SCI, V282, P237 YAMAMURA Y, 1995, NIFSDATA23 ZENG H, 1995, PHYS REV LETT, V74, P582 TC 2 BP 34 EP 45 PG 12 JI Surf. Sci. PY 1999 PD JUN 10 VL 429 IS 1-3 GA 209FH J9 SURFACE SCI UT ISI:000081037200014 ER PT J AU Blum, V Rath, C Muller, S Hammer, L Heinz, K Garcia, JM Ortega, JE Prieto, JE Hernan, OS Gallego, JM de Parga, ALV Miranda, R TI Fe thin-film growth on Au(100): A self-surfactant effect and its limitations SO PHYSICAL REVIEW B NR 56 AB The combination of low-energy electron diffraction intensity analyses and scanning tunneling microscopy was used to investigate the morphology and atomic structure of thin Fe films grown on Au(100) at 400 K. Deposition of only about 0.2 monolayers (ML) Fe is sufficient to lift the reconstruction of the clean substrate. In the initial growth process (less than or equal to 1 ML) place exchanges between Fe and Au lead to almost two-dimensional subsurface Fe film growth with one layer of Au covering the entire film. This way, gold acts as a "self- surfactant." Yet, there are deviations from two-dimensional growth, with a second Fe layer beginning to grow before the first one is fully completed and some substitutional disorder developing in the film because of incomplete place exchange. The amount of gold floating on the surface only gradually decreases with further increasing film thickness. At about 2 ML the surface undergoes a complete restructuring during which short "wormlike" chains of atoms form and long-range order is destroyed. Nevertheless, the existence of large terraces of little roughness proves that some surface activity of gold remains. At coverages of several ML, long-range order is reestablished with the Fe film growing in an undistorted bcc arrangement. Although parts of the film are still covered by gold, the surface morphology is not very different from that known for homoepitaxial growth of Fe on Fe(100), i.e., gold has stopped to serve as a "self-surfactant." [S0163-1829(99)06223- 2]. CR BABERSCHKE K, 1996, APPL PHYS A-MATER, V62, P417 BADER SD, 1987, J APPL PHYS, V61, P3729 BEGLEY AM, 1993, PHYS REV B, V48, P1779 BINNIG GK, 1984, SURF SCI, V144, P321 BREDEL B, 1991, LANDOLTBORNSTEIN A, V5 DELAFIGUERA J, 1996, SURF SCI, V349, PL139 DEMIGUEL JJ, 1991, J MAGN MAGN MATER, V93, P1 DEROSSI S, 1995, PHYS REV B, V52, P3063 FEDAK DG, 1967, SURF SCI, V8, P77 FIORENTINI V, 1993, PHYS REV LETT, V71, P1051 GARCIA JM, 1995, APPL PHYS A-MATER, V61, P609 GAUTHIER Y, 1985, PHYS REV B, V31, P6216 GERMAR R, 1988, APPL PHYS A-MATER, V47, P393 HE YL, 1993, PHYS REV LETT, V71, P3834 HEADRICK RL, 1989, PHYS REV B, V39, P5713 HEINZ K, 1995, REP PROG PHYS, V58, P637 HEINZ K, 1995, SURF REV LETT, V2, P89 HEINZ K, 1983, SURF SCI, V125, P515 HERNAN OS, 1998, APPL PHYS A-MATER, V66, PS1117 HERNAN OS, 1998, SURF SCI, V415, P106 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 INOMATA K, 1996, J MAGN MAGN MATER, V156, P219 JENTZ D, 1995, SURF SCI, V329, P14 JIANG Q, 1993, SURF SCI, V295, P197 JIANG RL, 1994, CHINESE PHYS LETT, V11, P116 JONA F, 1987, SOLID STATE COMMUN, V64, P667 KATAYAMA T, 1996, J MAGN MAGN MATER, V156, P158 KAWAGOE T, 1995, J MAGN MAGN MATER, V148, P185 KELLAR SA, 1998, PHYS REV B, V57, P1890 KOTTCKE M, 1997, SURF SCI, V376, P352 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MITANI S, 1996, J MAGN MAGN MATER, V156, P7 MOCHRIE SGJ, 1990, PHYS REV LETT, V64, P2925 NAKAYAMA N, 1993, J PHYS-CONDENS MAT, V5, P1173 OKUNO SN, 1995, PHYS REV B, V51, P6139 OPITZ R, 1997, SURF SCI, V370, P293 PARKIN SSP, 1991, APPL PHYS LETT, V58, P2710 PASTOR CJ, 1996, SURF SCI, V364, PL505 PENDRY JB, 1980, J PHYS C SOLID STATE, V13, P937 PRIETO JE, 1998, SURF SCI, V401, P248 RATH C, 1997, PHYS REV B, V55, P10791 SATO K, 1996, J MAGN SOC JPN SS1, V20, P35 SCHIEFFER P, 1998, PHYS REV B, V57, P1141 SHI ZP, 1996, PHYS REV B, V54, P3030 SHINTAKU K, 1993, PHYS REV B, V47, P14584 SPORN M, 1998, SURF SCI, V396, P78 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUZUKI Y, 1992, PHYS REV LETT, V68, P3355 TAKANASHI K, 1995, APPL PHYS LETT, V67, P1016 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANHOVE MA, 1979, SURFACE CRYSTALLOGRA WANG JT, 1997, J PHYS-CONDENS MAT, V9, P4549 WANG ZQ, 1987, SOLID STATE COMMUN, V61, P623 WEDLER H, 1995, VAKUUM FORSCH PRAX, V7, P107 WU SC, 1994, PHYS REV B, V49, P8353 TC 5 BP 15966 EP 15974 PG 9 JI Phys. Rev. B PY 1999 PD JUN 15 VL 59 IS 24 GA 210ZD J9 PHYS REV B UT ISI:000081134700051 ER PT J AU Yang, H LaBella, VP Bullock, DW Ding, Z Smathers, JB Thibado, PM TI Activation energy for Ga diffusion on the GaAs(001)-(2x4) surface: an MBE-STM study SO JOURNAL OF CRYSTAL GROWTH NR 16 AB The purl migration of individual Ga atoms on the technologically important GaAs(0 0 1)-(2 x 4) reconstructed surface has been studied as a Function of substrate temperature using a combined molecular beam epitaxy and scanning tunneling microscopy (STM) ultra-high vacuum, multi-chamber facility. We have successfully deposited 1/10 of a plane of Ga atoms onto a pristine GaAs surface under a constant AS(4) beam equivalent pressure of 10(-6) Torr, at various substrate temperatures. After deposition the substrate was quenched to room temperature and transferred to the surface analysis chamber for STM imaging. A plot of the number density of islands formed as a function of deposition temperature follows an Arrhenius relationship. Assuming either a pure one-dimensional diffusion mode! or a pure isotropic two-dimensional diffusion model, the activation energy for diffusion is 2.3 or 1.7 eV, respectively. (C) 1999 Elsevier Science B.V. All rights reserved. CR 1998, COMPOUND SEMICONDUCT, V4 CURRENT MI, 1996, J VAC SCI TECHNOL A, V14, P1115 ITOH M, 1998, PHYS REV LETT, V81, P633 JOHNSON MD, 1993, SURF SCI, V298, P392 KARPOV SY, 1994, SURF SCI, V314, P79 KLEY A, 1997, PHYS REV LETT, V79, P5278 MO YW, 1991, PHYS REV LETT, V66, P1998 NAGATA S, 1977, J APPL PHYS, V48, P940 NEAVE JH, 1985, APPL PHYS LETT, V47, P100 NORENBERG H, 1997, J APPL PHYS, V81, P2611 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 ROTH JA, 1997, IND PHOSPH REL MAT C, P253 SMATHERS JB, 1998, J VAC SCI TECHNOL B, V16, P3112 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THIBADO PM, 1999, IN PRESS J VAC SCI B YANG H, IN PRESS TC 0 BP 88 EP 92 PG 5 JI J. Cryst. Growth PY 1999 PD MAY VL 202 GA 198DB J9 J CRYST GROWTH UT ISI:000080406000020 ER PT J AU Pfandzelter, R Igel, T Ostwald, M Winter, H TI Fe(100) homoepitaxy studied by grazing scattering of fast ions SO APPLIED SURFACE SCIENCE NR 21 AB Grazing scattering of 25 keV He+-ions during homoepitaxial growth of Fe on Fe(100) is reported. The angular distribution of scattered projectiles depends on the coverage in a characteristic way owing to the periodic change in surface morphology. An analysis based on a classical description for ion trajectories enables one to derive quantitative information on growth mode and growth kinetics. At 550 K pronounced oscillations show near perfect layer-by-layer growth persisting for many layers. (C) 1999 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARTELT MC, 1995, SURF SCI, V344, PL1193 BRUNE H, 1998, SURF SCI REP, V31, P121 CLARKE S, 1987, PHYS REV LETT, V58, P2235 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 FUJII Y, 1994, SURF SCI, V318, PL1225 HE YL, 1992, PHYS REV LETT, V69, P3770 IGEL T, 1996, EUROPHYS LETT, V35, P67 KORTE U, 1997, PHYS REV LETT, V78, P2381 LANGELAAR M, 1998, THESIS RIJKSUNIVERSI PFANDZELTER R, IN PRESS SURF SCI PFANDZELTER R, 1998, PHYS REV B, V57, P15496 PFANDZELTER R, 1997, PHYS REV B, V56, P14948 PFANDZELTER R, 1998, SURF SCI, V411, PL894 PFANDZELTER R, 1997, SURF SCI, V389, P317 PFANDZELTER R, 1997, SURF SCI, V375, P13 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TC 2 BP 470 EP 474 PG 5 JI Appl. Surf. Sci. PY 1999 PD APR VL 142 IS 1-4 GA 193XW J9 APPL SURF SCI UT ISI:000080163900092 ER PT S AU Savage, DE Liu, F Zielasek, V Lagally, MG TI Fundamental mechanisms of film growth SO GERMANIUM SILICON: PHYSICS AND MATERIALS NR 152 CR ALERHAND OL, 1988, PHYS REV LETT, V61, P1973 ASAI M, 1985, J APPL PHYS, V58, P2577 ASARO RJ, 1972, METALL TRANS, V3, P1789 AUMANN CE, 1988, J VAC SCI TECHNOL A, V6, P1963 BARBER MN, 1970, RANDOM RESTRICTED WA BARTELT NC, 1994, PHYS REV LETT, V73, P1656 BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BEAN JC, 1984, J VAC SCI TECHNOL A, V2, P436 BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648 BONZEL HP, 1975, SURFACE PHYSICS MAT BOTT M, 1996, PHYS REV LETT, V76, P1304 BROCKS G, 1996, PHYS REV LETT, V73, P850 BROCKS G, 1991, PHYS REV LETT, V66, P1279 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BUTZ R, 1992, APPL PHYS LETT, V61, P1307 CHADI DJ, 1987, PHYS REV LETT, V59, P1691 CHEN KM, 1995, PHYS REV LETT, V75, P1582 CHEN X, 1994, PHYS REV LETT, V73, P850 COPEL M, 1989, PHYS REV LETT, V63, P632 CROKE ET, 1991, J VAC SCI TECHNOL B, V9, P2301 DABROWSKI J, 1994, PHYS REV B, V49, P4790 DEMIGUEL JJ, 1992, PHYS REV B, V46, P10257 DEMIGUEL JJ, 1991, PHYS REV LETT, V67, P2830 DIJKKAMP D, 1992, ORDERING SURFACES IN, P854 DURR H, 1995, SURF SCI, V328, PL527 EAGLESHAM DJ, 1990, PHYS REV LETT, V64, P1943 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ESCH S, 1996, THESIS U BONN FUKUI T, 1987, APPL PHYS LETT, V50, P824 GARCIA A, 1993, PHYS REV B, V48, P17350 GRIFFITH JE, 1990, CRIT REV SOLID STATE, V16, P255 GRIFFITH JE, 1989, J VAC SCI TECHNOL A, V7, P1914 GRINFELD MA, 1986, SOV PHYS DOKL, V31, P831 HOEVEN AJ, 1990, J VAC SCI TECHNOL A, V8, P207 HOEVEN AJ, 1989, PHYS REV LETT, V63, P1830 IWAWAKI F, 1992, SURF SCI, V266, P285 IWAWAKI F, 1991, SURF SCI, V253, PL411 IWAWAKI F, 1992, ULTRAMICROSCOPY, V42, P895 IWAWAKI F, 1992, ULTRAMICROSCOPY, V42, P902 JESSON DE, 1995, SCIENCE, V268, P1161 KAPLAN R, 1980, SURF SCI, V93, P145 KEVAN SD, 1984, PHYS REV LETT, V53, P702 KITAMURA N, 1993, PHYS REV B, V48, P5704 KROEMER H, 1986, MATER RES SOC S P, V67, P3 LAGALLY MG, 1998, J CHEM EDUC, V75, P277 LAGALLY MG, 1993, JPN J APPL PHYS 1, V32, P1493 LAGALLY MG, 1990, KINETICS ORDERING GR LAGALLY MG, 1989, ULTRAMICROSCOPY, V31, P87 LARSEN PK, 1988, NATO ASI SERIES, V188 LATYSHEV AV, 1988, JETP LETT, V48, P527 LEGOUES FK, 1993, PHYS REV LETT, V71, P396 LEWIS B, 1967, J VAC SCI TECHNOL, V4, P209 LEWIS B, 1978, NUCL GROWTH THIN FIL LI AH, IN PRESS LIU F, 1997, CHEM PHYS SOLID SURF, V8, P258 LIU F, 1997, CHEM REV, V97, P1045 LIU F, 1996, PHYS REV LETT, V76, P3156 LIU F, 1997, SURF SCI, V386, P169 LU YT, 1991, SURF SCI, V257, P199 LUTZ MA, 1994, SURF SCI, V316, PL1075 MAK CH, 1987, SURF SCI, V191, P108 MARCHENKO VI, 1981, JETP LETT+, V33, P381 MATEEVA E, 1997, APPL PHYS LETT, V71, P3233 MATTHEWS JW, 1975, EPITAXIAL GROWTH MEADE RD, 1990, P 20 INT C PHYS SEM, P123 MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353 MEN FK, 1988, PHYS REV LETT, V61, P2469 METOIS JJ, 1993, SURF SCI, V298, P71 MILMAN V, 1994, PHYS REV B, V50, P2663 MO YW, 1991, J CRYST GROWTH, V111, P876 MO YW, 1992, PHYS REV LETT, V69, P986 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1989, PHYS REV LETT, V63, P2393 MO YW, 1992, SURF SCI, V268, P275 MO YW, 1991, THESIS U WISCONSIN M MONTROLL EW, 1964, P S APPL MATH, V16, P193 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 OLSHANETSKY BZ, 1979, SURF SCI, V82, P445 OSTWALD W, 1901, ANAL CHEM PANDEY KC, 1985, P 17 INT C PHYS SEM, P55 PATTHEY L, 1995, PHYS REV LETT, V75, P2538 PHANG YH, 1994, PHYS REV B, V50, P14435 PIDDUCK AJ, 1993, MICROSCOPY SEMICONDU, P609 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 POON TW, 1992, PHYS REV B, V45, P3521 POON TW, 1990, PHYS REV LETT, V65, P2161 PORTER DA, 1981, PHASE TRANSFORMATION, P46 QIN XR, IN PRESS QIN XR, 1998, PHYS REV LETT, V81, P2288 QIN XR, 1997, SCIENCE, V278, P1444 RAHMATI B, 1996, APPL PHYS A-MATER, V62, P575 RAMSTAD A, 1995, PHYS REV B, V51, P14504 ROBERTS N, 1990, SURF SCI, V236, P112 ROCKETT A, 1994, SURF SCI, V312, P201 ROLAND C, 1993, PHYS REV B, V47, P16286 ROLAND C, 1992, PHYS REV B, V46, P13428 ROLAND C, 1992, PHYS REV B, V46, P13437 ROLAND C, 1991, PHYS REV LETT, V67, P3188 SCHLIER RE, 1959, J CHEM PHYS, V30, P917 SCHLUTER M, 1988, CHEM PHYSICS SOLID S, V5, P37 SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968 SMITH AP, 1995, J CHEM PHYS, V102, P1044 SRIVASTAVA D, 1991, J CHEM PHYS, V95, P6885 SRIVASTAVA D, 1993, PHYS REV B, V47, P4464 SRIVASTAVA D, 1992, PHYS REV B, V46, P1472 STEINFORT AJ, 1996, PHYS REV LETT, V77, P2009 STILLINGER FH, 1985, PHYS REV B, V31, P5262 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1997, PHYS REV B, V55, P1322 SWARTZENTRUBER BS, 1993, PHYS REV B, V47, P13432 SWARTZENTRUBER BS, 1990, PHYS REV LETT, V65, P1913 SWIECH W, 1991, SURF SCI, V255, P219 TABATA T, 1987, SURF SCI, V179, PL63 TAKAYANAGI K, 1985, SURF SCI, V164, P367 TEICHERT C, 1996, PHYS REV B, V53, P16334 TERSOFF J, 1992, PHYS REV B, V45, P8833 TERSOFF J, 1991, PHYS REV B, V43, P9377 TERSOFF J, 1996, PHYS REV LETT, V76, P1675 TERSOFF J, 1995, PHYS REV LETT, V75, P2730 TERSOFF J, 1994, PHYS REV LETT, V72, P3570 TERSOFF J, 1993, PHYS REV LETT, V70, P2782 TERSOFF J, 1992, PHYS REV LETT, V68, P816 THEIS W, 1996, PHYS REV LETT, V76, P2770 THEIS W, 1995, PHYS REV LETT, V75, P3328 TOH CP, 1992, PHYS REV B, V45, P11120 TOMITORI M, 1994, SURF SCI, V301, P214 TONG X, 1991, PHYS REV LETT, V67, P101 TROMP RM, 1993, PHYS REV B, V47, P7125 TROMP RM, 1992, PHYS REV LETT, V68, P820 TROMP RM, 1985, PHYS REV LETT, V55, P1303 VANDERBILT D, 1989, J VAC SCI TECHNOL B, V7, P1013 VASEK JE, 1995, PHYS REV B, V51, P17207 VENABLES JA, 1973, PHILOS MAG, V27, P697 VOIGTLANDER B, 1993, SURF SCI LETT, V292, P775 WALTHER T, 1997, APPL PHYS LETT, V71, P809 WANG J, 1991, PHYS REV B, V43, P12571 WEBB MB, 1990, KINETICS ORDERING GR WEBB MB, 1991, SURF SCI, V242, P23 WIERENGA PE, 1987, PHYS REV LETT, V59, P2169 WOLKOW RA, 1995, PHYS REV LETT, V74, P4448 WOLKOW RA, 1992, PHYS REV LETT, V68, P2636 WU F, 1995, PHYS REV LETT, V74, P574 WU F, 1996, THESIS U WISCONSON M XIE QH, 1995, PHYS REV LETT, V75, P2542 YANG NH, 1993, DIFFRACTION ROUGH SU ZANDVLIET HJW, 1992, PHYS REV B, V45, P5965 ZHANG QM, 1995, PHYS REV LETT, V75, P101 ZHANG ZY, 1992, PHYS REV B, V46, P1917 ZHANG ZY, 1997, SCIENCE, V276, P377 ZHANG ZY, 1991, SURF SCI, V248, PL250 ZHANG ZY, 1991, SURF SCI, V245, P353 TC 0 BP 49 EP 100 PG 52 SE SEMICONDUCTORS AND SEMIMETALS PY 1999 VL 56 GA BM68J J9 SEMICOND SEMIMET UT ISI:000079453700002 ER PT J AU Bartelt, MC Evans, JW TI Temperature dependence of kinetic roughening during metal(100) homoepitaxy: transition between 'mounding' and smooth growth SO SURFACE SCIENCE NR 73 AB From simulations of a realistic lattice-gas model for metal(100) homoepitaxy, we analyze the temperature (T) dependence of the film roughness (or interface width), of the effective roughening exponent, of the local step-density, and of the persistence of the Bragg intensity oscillations. By also analyzing the dependence on T of the lateral mass currents of deposited atoms, we reveal a kinetic phase transition from a regime of 'mounding' at higher T, to a regime of 'reentrant' smooth growth at lower T. Application of these results for the cases of Ag, Fe, and Cu homoepitaxy is discussed. Finally, we also describe some features of the dynamics of deposited atoms that could lead to the recovery of rough growth at very low T. (C) 1999 Elsevier Science B.V. All rights reserved. CR ALVAREZ J, 1998, PHYS REV B, V57, P6325 AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1996, PHYS REV B, V54, P14742 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1996, PHYS REV LETT, V77, P4584 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARDOTTI L, 1998, PHYS REV B, V57, P12544 BARTELT MC, 1997, B AM PHYS SOC, V42, P575 BARTELT MC, 1996, B AM PHYS SOC, V41, P389 BARTELT MC, 1996, MATER RES SOC SYMP P, V399, P89 BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1993, SURF SCI, V298, P421 BOTT M, 1992, SURF SCI, V272, P161 BREEMAN M, 1996, THIN SOLID FILMS, V272, P195 DURR H, 1995, SURF SCI, V328, PL527 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V4, P949 ELLIOT WC, 1997, P NATO ASI SERIES B, V360, P209 ELLIOTT WC, 1996, PHYS REV B, V54, P17938 ELLIOTT WC, 1996, PHYSICA B, V221, P65 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1997, SURF SCI, V383, PL755 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1996, LANGMUIR, V12, P217 EVANS JW, 1998, MORPHOLOGICAL ORG EP EVANS JW, 1997, P NATO ASI B, V360, P197 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1993, REV MOD PHYS, V65, P1281 EVANS JW, 1990, VACUUM, V41, P479 FLYNN DK, 1989, J VAC SCI TECHNOL A, V7, P2162 FLYNNSANDERS DK, 1993, SURF SCI, V289, P77 HALSTEAD DM, 1993, SURF SCI, V286, P275 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JORRITSMA LC, 1997, PHYS REV LETT, V78, P911 KANG HC, 1992, SURF SCI, V271, P321 KELCHNER CL, 1996, J VAC SCI TECHNOL A, V14, P1633 KELCHNER CL, 1997, SURF SCI, V393, P72 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAGALLY MG, 1990, KINETICS ORDERING GR MEAKIN P, 1986, PHYS REV A, V34, P5091 MO YW, 1992, SURF SCI, V268, P275 NIELABA P, 1995, PHYS REV E, V51, P2022 NYBERG GL, 1993, PHYS REV B, V48, P14509 PAI WW, 1997, PHYS REV LETT, V79, P3210 PELLEGRINI YP, 1990, PHYS REV LETT, V64, P1745 POLITI P, 1996, PHYS REV B, V54, P5114 REIF F, 1965, FUNDAMENTALS STAT TH, P42 SCHIMSCHAK M, 1995, PHYS REV B, V52, P8550 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STOLDT CR, 1998, PHYS REV LETT, V81, P2950 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANDONI G, 1994, SURF SCI, V320, PL63 VENABLES JA, 1973, PHILOS MAG, V27, P697 VILLAIN J, 1991, J PHYS, V11, P19 VOTER AF, 1987, SPIE, V821, P214 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WEN JM, 1996, PHYS REV LETT, V76, P652 WULFHEKEL W, 1998, SURF SCI, V384, P227 ZHANG CM, 1997, J CRYST GROWTH, V174, P851 ZHANG CM, 1998, SURF SCI, V406, P178 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 6 BP 189 EP 207 PG 19 JI Surf. Sci. PY 1999 PD MAR 10 VL 423 IS 2-3 GA 181FV J9 SURFACE SCI UT ISI:000079431400013 ER PT J AU Heilmann, RK Suter, RM TI In situ specular and diffuse x-ray reflectivity study of growth dynamics in quench-condensed xenon films SO PHYSICAL REVIEW B-CONDENSED MATTER NR 50 AB Specular and diffuse reflectivity and diffraction of x rays are used to probe polycrystalline films of xenon quench condensed onto a SiO2/Si substrate. Measurements during deposition complement more extensive static measurements. Stable nonequilibrium structures are observed. We interpret our observations in terms of island growth and coalescence. Island separation and ultimate size are strongly temperature dependent. Coalescence has a pronounced effect at the lowest temperature studied (17 K) where islands are small and have large surface-to-volume ratios. We observe a concurrent increase in roughness and reduction in diffuse scattering, indicating a change in surface morphology. Continued deposition yields a highly disordered, porous structure on top of the dense coalesced layer. At 25 and 35 K bulk density films grow with a surface morphology that evolves only slowly from that determined before coalescence. Bulk diffusion allows intermixing and prevents a composite film structure like that observed at lower temperatures. [S0163-1829(99)06404-8]. CR ATWATER HA, 1992, MRS S P, V280 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BEVINGTON PR, 1969, DATA REDUCTION ERROR BILDERBACK DH, 1982, NUCL INSTRUM METHODS, V195, P85 BILDERBACK DH, 1982, NUCL INSTRUM METHODS, V195, P91 BIRCH WR, 1994, COLLOID SURFACE A, V89, P145 BORN M, 1959, PRINCIPLES OPTICS BOUZIDA D, 1992, PHYS REV A, V45, P8894 CHASON E, 1991, MATER RES SOC S P, V208, P351 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 CHOPRA KL, 1969, THIN FILM PHENOMENA DAI P, 1994, PHYS REV LETT, V72, P685 DEBOER DKG, 1996, PHYS REV B, V53, P6048 DIETRICH S, 1995, PHYS REP, V260, P1 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 FAMILY F, 1990, PHYSICA A, V168, P561 FRANK B, 1996, LANGMUIR, V12, P675 HEADRICK RL, 1996, PHYS REV B, V54, P14686 HEILMANN RK, 1996, THESIS CARNEGIEMELLO HOLY V, 1994, PHYS REV B, V49, P10668 HOLY V, 1993, PHYS REV B, V47, P15896 HORNIG L, 1992, Z PHYS B CON MAT, V86, P217 JACKSON JD, 1975, CLASSICAL ELECTRODYN KELLY DM, 1995, SCRIPTA METALL MATER, V33, P1603 KOVALENKO SI, 1972, PHYS STATUS SOLIDI A, V18, P235 KRIM J, 1995, INT J MOD PHYS B, V9, P599 LOISTL M, 1991, Z PHYS B CON MAT, V82, P199 MENGES H, 1991, J LOW TEMP PHYS, V84, P237 MULLER B, 1998, PHYS REV LETT, V80, P2642 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 NEVOT L, 1980, REV PHYS APPL, V15, P761 PALASANTZAS G, 1993, PHYS REV B, V48, P2873 PARRATT LG, 1954, PHYS REV, V95, P359 ROSS FM, 1998, PHYS REV LETT, V80, P984 SALDITT T, 1994, PHYS REV LETT, V73, P2228 SCHLOMKA JP, 1995, PHYS REV B, V51, P2311 SCHULZE W, 1974, J CHEM SOC F2, V70, P1098 SHINDLER JD, 1992, REV SCI INSTRUM, V63, P5343 SINHA SK, 1994, J PHYS III, V4, P1543 SINHA SK, 1988, PHYS REV B, V38, P2297 STANLEY HE, 1996, MRS S P, V409 STEINMETZ N, 1989, PHYS REV B, V39, P2838 STETTNER J, 1996, PHYS REV B, V53, P1398 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANNER BK, 1991, MATER RES SOC S P, V208, P345 WARREN BE, 1990, XRAY DIFFRACTION YOU H, 1993, PHYS REV LETT, V70, P2900 YUFEROV VB, 1970, SOV PHYS-TECH PHYS, V14, P1261 ZENG H, 1995, PHYS REV LETT, V74, P582 TC 3 BP 3075 EP 3085 PG 11 JI Phys. Rev. B-Condens Matter PY 1999 PD JAN 15 VL 59 IS 4 GA 164KL J9 PHYS REV B-CONDENSED MATTER UT ISI:000078463100080 ER PT J AU Pfandzelter, R TI Origin of intensity oscillations in grazing ion scattering during epitaxial growth: a computational approach SO SURFACE SCIENCE NR 44 AB Grazing ion-surface scattering is a real-space technique to obtain statistical information on the morphology of disordered surfaces, and is particularly suited for studying growth processes. Based on computer simulations of ion scattering from submonolayer films modeled by Markov chains, we address the question which morphological quantity causes oscillations in the intensity of reflected ions during layer-by-layer growth. We find that the relevant quantity is the pair correlation between atoms separated by a characteristic distance given by the experimental parameters: rather than surface roughness or step density, as assumed in simple models. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR APPLETON BR, 1967, PHYS REV, V161, P330 ARROTT AS, 1990, KINETICS ORDERING GR, P321 BARLOW R, 1989, STATISTICS BEYER O, 1988, STOCHASTISCHE PROZES CLARKE S, 1988, J APPL PHYS, V63, P2272 CLARKE S, 1988, PHYS REV LETT, V58, P2235 COWLEY JM, 1973, SURF SCI, V38, P53 ESCH S, 1995, APPL PHYS LETT, V67, P3209 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 FUJII Y, 1994, SURF SCI, V318, PL1225 GLAUBER RJ, 1955, PHYS REV, V98, P1692 GRASER W, 1985, SURF SCI, V157, P74 HARRIS JJ, 1981, SURF SCI, V103, PL90 HEERMANN DW, 1990, COMPUTER SIMULATION HENZLER M, 1978, SURF SCI, V73, P240 HOUSTON JE, 1970, SURF SCI, V21, P209 IGEL T, 1996, EUROPHYS LETT, V35, P67 JACKSON DP, 1974, SURF SCI, V43, P431 JAGODZINSKI H, 1978, SURF SCI, V77, P233 JIANG Q, 1995, SURF SCI, V324, P357 KORTE U, 1997, PHYS REV LETT, V78, P2381 LANGELAAR M, 1998, THESIS RIJKSUNIVERSI LARSEN PK, 1989, NATO ASI SERIES, V188 LEHMANN C, 1963, Z PHYS, V172, P465 LENT CS, 1984, SURF SCI, V139, P121 LU TM, 1982, SURF SCI, V120, P47 MATTOX DM, 1989, J VAC SCI TECHNOL A, V7, P1105 MOLIERE G, 1947, Z NATURFORSCH A, V2, P133 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 OCONNOR DJ, 1986, NUCL INSTRUM METH B, V15, P14 PFANDZELTER R, IN PRESS APPL SURF S PFANDZELTER R, IN PRESS EUROPHYS LE PFANDZELTER R, 1993, NUCL INSTRUM METH B, V83, P469 PFANDZELTER R, 1998, PHYS REV B, V57, P15496 PFANDZELTER R, 1997, SURF SCI, V375, P13 POELSEMA B, 1989, SCATTRING THERMAL EN PUKITE PR, 1985, SURF SCI, V161, P39 RAU C, 1973, PHYS LETT A, VA 43, P317 SHITARA T, 1992, PHYS REV B, V46, P6815 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 VANHOVE JM, 1983, J VAC SCI TECHNOL B, V1, P741 VARELAS C, 1975, RADIAT EFF DEFECT S, V25, P163 WINTER H, 1989, PHYS REV LETT, V62, P296 TC 1 BP 263 EP 272 PG 10 JI Surf. Sci. PY 1999 PD FEB 11 VL 421 IS 3 GA 168ZC J9 SURFACE SCI UT ISI:000078722200007 ER PT J AU Miyata, N Watanabe, H Ichikawa, M TI Atomic-scale structure of SiO2/Si interface formed by furnace oxidation SO PHYSICAL REVIEW B-CONDENSED MATTER NR 25 AB SiO2/Si interfaces formed by furnace oxidation are investigated by scanning reflection electron microscopy (SREM). SREM observations reveal that the initial atomic steps on the Si(111)-7 x 7 and Si(001)-2 x 1 surfaces are preserved at the SiO2/Si interfaces and the interfacial atomic steps do not move laterally during furnace oxidation. A profile analysis of reflection high-energy electron diffraction indicates that the atomic-scale roughness at the SiO2/Si interfaces is formed by furnace oxidation. The respective SiO2/Si(111) and SiO2/Si(001) interfaces are made up of about 5- and 3-nm-diam islands. Our results indicate that the layer-by-layer oxidation caused by two-dimensional island nucleation progresses during furnace oxidation. [S0163-1829(98)04543-3]. CR AKATSU H, 1991, PHYS REV B, V44, P1616 BORMAN VD, 1991, PHYS REV LETT, V67, P2387 CHEN XD, 1997, APPL PHYS LETT, V70, P1462 FUJITA S, 1997, APPL PHYS LETT, V71, P885 GIBSON JM, 1989, NATURE, V340, P128 HAHN PO, 1981, J APPL PHYS, V52, P4122 HOMMA Y, 1992, J VAC SCI TECHNOL A, V10, P2055 ICHIKAWA M, 1987, APPL PHYS LETT, V50, P1141 ICHIMIYA A, 1987, SURF SCI, V187, P194 ISHIZAKA A, 1979, SURF SCI, V84, P355 LENT CS, 1984, SURF SCI, V139, P121 LIU Q, 1994, J VAC SCI TECHNOL A, V12, P2625 MIYATA N, 1998, APPL PHYS LETT, V72, P1715 MOTT NF, 1989, PHILOS MAG B, V60, P189 NIWA M, 1996, APPL SURF SCI, V100, P425 OGURA A, 1991, J ELECTROCHEM SOC, V138, P807 OHASHI M, 1997, JPN J APPL PHYS 2, V36, PL397 PIETSCH GJ, 1992, APPL PHYS LETT, V60, P1321 ROSS FM, 1992, PHYS REV LETT, V68, P1782 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 WATANABE H, 1998, PHYS REV LETT, V80, P345 WATANABE H, 1996, REV SCI INSTRUM, V67, P4185 WATANABE H, 1997, SURF SCI, V385, PL952 WINGERDEN JV, 1995, SURF SCI, V331, P473 YAKOVLEV VA, 1992, J VAC SCI TECHNOL A, V10, P427 TC 9 BP 13670 EP 13676 PG 7 JI Phys. Rev. B-Condens Matter PY 1998 PD NOV 15 VL 58 IS 20 GA 143WF J9 PHYS REV B-CONDENSED MATTER UT ISI:000077279800064 ER PT J AU Ratsch, C Scheffler, M TI Density-functional theory calculations of hopping rates of surface diffusion SO PHYSICAL REVIEW B-CONDENSED MATTER NR 20 AB Using density-functional theory we compute the energy barriers and attempt frequencies for surface diffusion of Ag on Ag(lll) with different lattice constants, and on an Ag adsorbate monolayer on Pt(lll). We find that the attempt frequency is of the order of 1 THz for all the systems studied. This is in contrast to the so-called compensation effect, and to recent experimental studies. Our analysis suggests that the applicability of simple (commonly used) scaling laws for the determination of diffusion and growth parameters is often not valid. [S0163-1829(98)02444-8]. CR BALES GS, 1994, PHYS REV B, V50, P6057 BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187 BOISVERT G, 1995, PHYS REV LETT, V75, P469 BOTT M, 1996, PHYS REV LETT, V76, P1304 BRUNE H, 1995, PHYS REV B, V52, P14380 JACOBSEN J, 1997, PHYS REV LETT, V79, P2843 KUIPERS L, 1996, PHYS REV B, V53, PR7646 LINDEROTH TR, 1997, PHYS REV LETT, V78, P4978 MEYER W, 1937, Z TECHN PHYS, V12, P588 MO YW, 1991, PHYS REV LETT, V66, P1998 PAPANICOLAOU NA, COMMUNICATION RATSCH C, 1997, PHYS REV B, V55, P6750 RATSCH C, 1994, PHYS REV LETT, V72, P3194 SENFT DC, 1995, PHYS REV LETT, V74, P294 STOWELL MJ, 1971, THIN SOLID FILMS, V8, P41 STOYANO S, 1981, CURRENT TOPICS MAT S, V7, PCH2 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VILLAIN J, 1992, J PHYS I, V2, P2107 VINYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121 WEN JM, 1994, PHYS REV LETT, V73, P2591 TC 6 BP 13163 EP 13166 PG 4 JI Phys. Rev. B-Condens Matter PY 1998 PD NOV 15 VL 58 IS 19 GA 144CE J9 PHYS REV B-CONDENSED MATTER UT ISI:000077295500096 ER PT J AU Davidson, R Kozak, JJ TI Stochastic approach to the study of atomistic processes in the early stages of thin-film growth. 2. Island formation SO JOURNAL OF PHYSICAL CHEMISTRY B NR 19 AB We draw upon the theoretical methods developed in the preceding contribution to explore different mechanisms of island growth in the initial stages of the development of a thin film. In particular, we study the entropic consequences of assuming different sequences for generating a final nucleation pattern or island morphology on a finite, planar array. Our calculations lead to the conclusion that the most entropically favorable process for island growth is one in which the morphology is generated by a "row-filling" mechanism on a lattice with triangular geometry. CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS, PCH26 ANDERSOHN L, 1996, J VAC SCI TECHNOL A, V14, P312 BOTT M, 1996, PHYS REV LETT, V76, P1304 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1996, SURF SCI, V349, PL115 HOHAGE M, 1996, PHYS REV LETT, V76, P2366 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 MEAKIN P, 1983, PHYS REV A, V27, P1495 MICHELY T, 1993, PHYS REV LETT, V70, P3943 POLITOWICZ PA, 1990, J PHYS CHEM-US, V94, P7272 QUESENBERRY PE, 1996, PHYS REV B, V54, P8218 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VASEK JE, 1995, PHYS REV B, V51, P17207 WANNIER GH, 1966, STAT PHYSICS WITTEN TA, 1981, PHYS REV LETT, V47, P1400 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZHANG ZY, 1997, SCIENCE, V276, P377 TC 0 BP 7400 EP 7405 PG 6 JI J. Phys. Chem. B PY 1998 PD SEP 17 VL 102 IS 38 GA 125RV J9 J PHYS CHEM B UT ISI:000076251600016 ER PT J AU Chan, ACT Wang, GC TI Roughness evolution of Si(111) by low-energy ion bombardment SO SURFACE SCIENCE NR 49 AB We have examined the roughness evolution of the Si(lll) surface at T=610 K by 500 eV Ar ion bombardment near normal incidence using scanning tunneling microscopy from submonolayer to multilayer etching of up to 120 bilayers. The observed roughening was inconsistent with diffusion bias roughening, which is the mechanism thought to be dominant in roughening of crystalline surfaces by deposition and etching. The roughness evolution was interpreted in the framework of dynamic scaling, applicable when the step-edge barrier for surface diffusion is low. The roughness and growth exponents measured were in agreement with the numerical simulation of the Kuramoto- Sivashinsky equation with noise in the early time for 2+1 dimensions, which corresponds to the initial stage of dynamic scaling of ion bombardment. (C) 1998 Elsevier Science B.V. All rights reserved. CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR BEDROSSIAN P, 1991, PHYS REV LETT, V67, P124 BEDROSSIAN P, 1994, SURF SCI, V301, P223 BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390 CHAN ACT, 1996, THESIS RENSSELAER PO CHASON E, 1993, APPL PHYS LETT, V62, P363 CHASON E, 1994, PHYS REV LETT, V72, P3040 CHEY SJ, 1996, MATER RES SOC SYMP P, V399, P221 CHEY SJ, 1995, PHYS REV B, V52, P16696 CSAHOK Z, 1996, SURF SCI, V364, PL600 CUERNO R, 1995, PHYS REV LETT, V75, P4464 CUERNO R, 1995, PHYS REV LETT, V74, P4746 DOUKETIS C, 1995, PHYS REV B, V51, P11022 DROTAR JT, UNPUB EKLUND EA, 1991, PHYS REV LETT, V67, P1759 FAMILY F, 1991, DYNAMICS FRACTAL SUR JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KITAMURA N, 1993, PHYS REV LETT, V71, P2082 KODIYALAM S, 1996, PHYS REV B, V53, P9913 KODIYALAM S, 1995, PHYS REV B, V51, P5200 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRIM J, 1993, PHYS REV LETT, V70, P57 LAURITSEN KB, 1996, PHYS REV E, V54, P3577 MAYER TM, 1994, J APPL PHYS, V76, P1633 MICHELY T, 1993, NUCL INSTRUM METH B, V82, P207 MICHELY T, 1992, SURF SCI, V272, P204 PECHMAN RJ, 1995, PHYS REV B, V51, P10929 RUSS JC, 1994, FRACTAL SURFACES SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1996, PHYS REV E, V53, P307 SIGMUND P, 1973, J MATER SCI, V8, P1545 SIGMUND P, 1969, PHYS REV, V184, P383 SMILAUER P, 1993, SURF SCI, V291, PL733 SMILGIES DM, 1997, EUROPHYS LETT, V38, P447 SMILGIES DM, 1997, SURF SCI, V377, P1038 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1989, J VAC SCI TECHNOL A, V7, P2901 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VICSEK T, 1992, FRACTAL GROWTH PHENO WANG XS, 1994, APPL PHYS LETT, V65, P2818 WANG XS, 1995, J VAC SCI TECHNOL B, V13, P2031 WANG XS, 1996, SURF SCI, V364, PL511 WATANABE H, 1996, APPL PHYS LETT, V68, P2514 WATANABE H, 1996, PHYS REV B, V54, P5574 YANG HN, 1997, PHYS REV B, V56, P4224 YANG HN, 1995, PHYS REV B, V51, P2479 YANG HN, 1994, PHYS REV B, V50, P7635 ZHAO YP, 1997, PHYS REV B, V55, P13938 TC 3 BP 17 EP 25 PG 9 JI Surf. Sci. PY 1998 PD SEP 11 VL 414 IS 1-2 GA 124TM J9 SURFACE SCI UT ISI:000076198200007 ER PT J AU Lu, TM Wang, GC Zhao, YP TI Beyond intensity oscillations SO SURFACE REVIEW AND LETTERS NR 38 AB The decay in the oscillatory amplitude of diffraction intensity from an epitaxial growth front is due to the buildup of a multilevel step structure. This can occur as a result of kinetic limitations when the substrate temperature is sufficiently low or the deposition rate is very high so that thermal equilibrium cannot be achieved during growth. Another mechanism that can lead to a multilevel growth front is the existence of a step edge barrier at the steps so that deposited atoms cannot diffuse "downward" at the step edge which leads to a moundlike structure. In this paper we describe the characteristics of the diffraction intensity angular profile from the initial layer-by-layer structure to the final multilevel structure. A particular emphasis will be placed on the characteristics of the reciprocal space structure when the amplitude of the intensity oscillation decays to zero. CR AMAR JG, 1996, SURF SCI, V365, P177 BARBASI AL, 1995, FRACTAL CONCEPTS SUR BARTELT MC, 1995, PHYS REV LETT, V75, P4250 EVANS JW, 1996, LANGMUIR, V12, P217 FAMILY F, 1990, DYNAMICS FRACTAL SUR GRONWALD KD, 1982, SURF SCI, V117, P180 HAHN P, 1980, J APPL PHYS, V51, P1079 HARRIS JJ, 1981, SURF SCI, V103, PL90 HENZLER M, 1993, SURF SCI, V298, P369 JIANG Q, 1994, PHYS REV B, V50, P11116 JIANG Q, 1995, SURF SCI, V324, P357 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KAWAMURA T, 1993, SURF SCI, V298, P331 KORTE U, 1997, PHYS REV LETT, V78, P2381 LAGALLY MG, 1988, REFLECTION HIGH ENER LENT CS, 1986, PHYS REV B, V33, P8329 LENT CS, 1984, SURF SCI, V139, P121 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 NYBERG GL, 1993, PHYS REV B, V48, P14509 PIMBLEY JM, 1985, J APPL PHYS, V58, P2194 PIMBLEY JM, 1984, J VAC SCI TECHNOL A, V2, P457 PIMBLEY JM, 1984, SURF SCI, V139, P360 PUKITE PR, 1985, SURF SCI, V161, P39 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SINHA SK, 1988, PHYS REV B, V38, P2297 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VILLAIN J, 1991, J PHYS I, V1, P19 WANG C, 1994, MRS S P INTERFACE CO, V318, P13 YANG HN, 1993, DIFFRACTION ROUGH SU, P38 YANG HN, 1995, PHYS REV B, V51, P17932 YANG HN, 1993, PHYS REV B, V47, P3911 YANG HN, 1991, PHYS REV B, V44, P1306 YANG HN, 1991, PHYS REV B, V44, P11457 YANG HN, 1992, PHYS REV LETT, V68, P2612 ZHAO YP, 1998, PHYS REV B, V57, P1922 ZUO JK, 1997, PHYS REV LETT, V78, P2791 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 1 BP 899 EP 912 PG 14 JI Surf. Rev. Lett. PY 1998 PD JUN-AUG VL 5 IS 3-4 GA 112HT J9 SURF REV LETTERS UT ISI:000075488600026 ER PT J AU Popescu, MN Amar, JG Family, F TI Self-consistent rate-equation approach to transitions in critical island size in metal (100) and metal (111) homoepitaxy SO PHYSICAL REVIEW B-CONDENSED MATTER NR 25 AB A self-consistent rate-equation approach to the study of transitions in the critical island size i in submonolayer growth from i = 1 to i = 2 and from i = 1 to i = 3, corresponding to homoepitaxial growth on metal(111) and (100) surfaces, is presented. In contrast to previous standard rate- equation results, the average island density and monomer density are well predicted along with the transition temperature from i = 1 to a higher critical island size. It is shown that the method's implicit short-range correlations belween attachment/ detachment rates, together with a careful estimate bf the escape rates for small clusters, are important factors for a good agreement with the kinetic Monte Carlo simulation results. [S0163-1829(98)00227-6]. CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMAR JG, 1997, SURF SCI, V382, P170 AMAR JG, 1996, THIN SOLID FILMS, V272, P208 BALES GS, 1997, PHYS REV B, V55, PR1973 BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1995, SURF SCI, V344, PL1193 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 ERNST HJ, 1992, PHYS REV B, V46, P1929 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JIANG Q, 1995, SURF SCI, V324, P357 KOPATZKI E, 1993, SURF SCI, V284, P154 LI W, 1993, PHYS REV B, V48, P8336 MO YW, 1991, PHYS REV LETT, V66, P1998 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V328, PL599 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P557 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TSAO JY, 1993, MAT FUNDAMENTALS MOL TSUI F, 1996, PHYS REV LETT, V76, P3164 VENABLES JA, 1984, REP PROG PHYS, V47, P399 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 4 BP 1613 EP 1619 PG 7 JI Phys. Rev. B-Condens Matter PY 1998 PD JUL 15 VL 58 IS 3 GA 104WT J9 PHYS REV B-CONDENSED MATTER UT ISI:000075039600079 ER PT J AU Zhang, CM Bartelt, MC Wen, JM Jenks, CJ Evans, JW Thiel, PA TI Submonolayer island formation and the onset of multilayer growth during Ag/Ag(100) homoepitaxy SO SURFACE SCIENCE NR 88 AB Results from a scanning tunneling microscopy study are presented for the initial stags of Ag/Ag(100) homoepitaxy, and behavior is analyzed via Monte Carlo simulations of an appropriate lattice-gas model. Submonolayer nucleation and growth of two-dimensional islands is examined for substrate temperatures, T, between 295 and 370 K. The variation with Bur of the mean island density, N-av, reveals that island formation is effectively irreversible at 295 K, and leads to an estimate of 0.38 eV for the terrace diffusion barrier (using an attempt frequency of 10(13)/s). The variation of N-av with T reveals a transition to reversible island formation at around 320 K. This transition temperature (and the T-dependence of N-av) are used to extract an effective value of 0.3 eV for the bond energy of an adsorbed dimer, assuming nearest-neighbor pairwise-additive interactions between adsorbed atoms. We indicate how the actual dimer bond energy could differ, e.g. in the presence of biased diffusion of separated adatom pairs which enhances their recombination. and thus increases effective dimer stability. The onset of multilayer growth, and specifically the formation of second-layer islands, is examined at 295 K to assess the degree of interlayer transport. Comparison with simulations yields an estimate of 30 meV for the effective value of an additional step-edge barrier (using an attempt frequency of 10(13)/s). Using this result, subsequent multilayer kinetic roughening is predicted, consistent with experimental observations. (C) 1998 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMMER C, 1990, SOLID STATE PHENOM, V12, P73 BALES GS, 1997, PHYS REV B, V55, PR1973 BARDOTTI L, 1998, PHYS REV B, V57 BARTELT MC, 1998, IN PRESS SURF SCI BARTELT MC, 1996, MATER RES SOC SYMP P, V399, P89 BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1994, SURF SCI, V314, PL829 BARTELT MC, 1993, SURF SCI, V298, P421 BARTLET MC, UNPUB BEDROSSIAN P, 1995, SURF SCI, V334, P1 BOISVERT G, 1995, PHYS REV B, V52, P9078 BREEMAN M, 1995, SURF SCI, V323, P71 BREEMAN M, 1992, SURF SCI, V269, P224 BROMANN K, 1995, PHYS REV LETT, V75, P677 DURR H, 1995, SURF SCI, V328, PL527 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, 1996, PHYS REV B, V54, P17938 ELLIOTT WC, 1996, PHYSICA B, V221, P65 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1996, LANGMUIR, V12, P217 EVANS JW, 1998, MORPHOLOGICAL ORG EP EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1993, SURF SCI, V298, P378 EVANS JW, 1993, SURF SCI, V284, PL437 EVANS JW, 1997, SURFACE DIFFUSION AT FEIBELMAN PJ, 1997, APS SPR FEIBELMAN PJ, 1995, PHYS REV B, V52, P12444 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 HENZLER M, 1994, STRUCTURE SURFACES, V4, P619 HUGHS BD, 1995, RANDOM WALKS RANDOM JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 KOPATZKI E, 1993, SURF SCI, V284, P154 KUNKEL R, 1990, PHYS REV LETT, V65, P733 KYUONO K, 1997, SURF SCI, V383, PL766 LANGELAAR MH, 1996, SURF SCI, V352, P597 LIU CL, 1991, SURF SCI, V253, P344 LIU SD, 1995, PHYS REV B, V52, P2907 MEYER JA, 1995, PHYS REV B, V51, P14790 MUELLER B, 1996, PHYS REV B, V54, P17858 PAI WW, 1997, PHYS REV LETT, V79, P3210 PERKINS LS, 1995, SURF SCI, V325, P169 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 RATSCH C, 1994, SURF SCI, V314, PL937 ROSENFELD G, 1995, APPL PHYS A-MATER, V61, P455 ROTTMAN C, 1981, PHYS REV B, V24, P6274 SANDERS DE, 1991, STRUCTURE SURFACES, V3, P38 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHI ZP, 1996, PHYS REV LETT, V76, P4927 SMILAUER P, 1995, PHYS REV B, V51, P14798 STOLDT CR, 1998, B APS, V43 STOLDT CR, UNPUB PHYS REV LETT STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUZUKI Y, 1988, JPN J APPL PHYS 2, V27, PL1175 SWAN AK, 1997, SURF SCI, V391, PL1205 TEICHERT C, 1994, PHYS STATUS SOLIDI A, V146, P223 TEICHERT C, 1992, THESIS U HALLE GERMA TERSOFF J, 1994, PHYS REV LETT, V72, P266 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANDERVEGT HA, 1995, SURF SCI, V330, P101 VANSICLEN CD, 1995, PHYS REV LETT, V75, P1574 VENABLES JA, 1973, PHILOS MAG, V27, P697 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1993, PHYS REV LETT, V70, P41 WEN JM, 1996, PHYS REV LETT, V76, P652 WEN JM, 1994, PHYS REV LETT, V73, P2591 WULFHEKEL W, 1996, SURF SCI, V348, P227 YU BD, 1996, PHYS REV LETT, V77, P1095 ZHANG CM, 1997, J CRYST GROWTH, V174, P851 ZUO JK, 1997, PHYS REV LETT, V78, P2791 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 13 BP 178 EP 193 PG 16 JI Surf. Sci. PY 1998 PD MAY 31 VL 406 IS 1-3 GA ZX832 J9 SURFACE SCI UT ISI:000074559900024 ER PT J AU Ferrando, R Hontinfinde, F Levi, AC TI Cluster morphology transitions in the submonolayer epitaxial growth of Ag on Ag(110) SO SURFACE SCIENCE NR 14 AB A model for the growth of Ag on Ag(110) at submonolayer coverages is presented. The model includes deposition, diffusion and fully reversible aggregation with anisotropic diffusion barriers and nearest-neighbour bonds. The barriers for the elementary processes are calculated by many-body tight- binding potentials. Depending on growth parameters, different island morphologies are obtained. At low temperatures, small irregular clusters grow. In the intermediate regime, long monatomic strips in the in-channel direction are found. At high temperatures, large two-dimensional compact clusters are obtained. (C) 1998 Elsevier Science B.V. All rights reserved. CR BORTZ AB, 1975, J COMPUT PHYS, V17, P10 FERRANDO R, IN PRESS FERRANDO R, 1996, PHYS REV LETT, V76, P4195 HONTINFINDE F, 1996, SURF SCI, V366, P306 LANGELAAR MH, 1996, SURF SCI, V352, P597 MAKSANDO R, 1988, SEMICOND SCI TECH, V3, P594 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MO YW, 1991, PHYS REV LETT, V66, P1998 PERKINS LS, 1994, SURF SCI, V317, PL1152 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RODER H, 1993, NATURE, V366, P141 ROSATO V, 1989, PHILOS MAG A, V59, P321 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 YU BD, 1996, PHYS REV LETT, V77, P1095 TC 0 BP 286 EP 289 PG 4 JI Surf. Sci. PY 1998 PD MAY 15 VL 404 IS 1-3 GA ZY342 J9 SURFACE SCI UT ISI:000074610800059 ER PT J AU Himpsel, FJ Ortega, JE Mankey, GJ Willis, RF TI Magnetic nanostructures SO ADVANCES IN PHYSICS NR 428 AB Magnetic materials have become controllable on the nanometre scale. Such fine structures exhibit a wide range of fascinating phenomena, such as low-dimensional magnetism, induced magnetization in noble metals, electron interference patterns, oscillatory magnetic coupling and 'giant' magnetoresistance. Magnetic multilayers with nanometre spacings are among the first metallic quantum structures to become incorporated into electronic devices, such as reading heads for hard discs. This article is intended to familiarize the reader with the physics and technology of magnetic canostructures. It starts out with recent progress in nanofabrication, gives a tutorial on the connection between electronic states and magnetic properties, surveys the stale of the art in characterization techniques, explains unique phenomena in two-, one- and zero-dimensional structures, points out applications in magnetic storage technology and considers fundamental limits to storage density. Particular emphasis is placed on the connection between magnetism and the underlying electronic states, such as the spin-split energy bands, s: p versus d states, surface states, and quantum well states. CR ALDEN M, 1992, PHYS REV LETT, V69, P2296 ALIVISATOS AP, 1989, J CHEM PHYS, V90, P3463 ALLENSPACH R, 1994, J MAGN MAGN MATER, V129, P160 ALLENSPACH R, 1992, PHYS REV LETT, V69, P3385 ALVARADO SF, 1995, PHYS REV LETT, V75, P513 ALVARADO SF, 1992, PHYS REV LETT, V68, P1387 ANDERSON GW, 1996, J APPL PHYS, V79, P5641 ANDERSON GW, 1995, PHYS REV LETT, V74, P2764 AVOURIS P, 1994, J VAC SCI TECHNOL B, V12, P1447 AVOURIS P, 1994, SCIENCE, V264, P942 AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092 AWSCHALOM DD, 1995, PHYS TODAY, P43 BADER SD, 1987, J APPL PHYS, V61, P3729 BADER SD, 1990, P IEEE, V78, P909 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BALLENTINE CA, 1990, PHYS REV B, V41, P2631 BASS J, 1994, J APPL PHYS, V75, P6699 BASTARD G, 1988, WAVE MECH APPL SEMIC BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BEELI C, 1995, PHYS REV LETT, V75, P4630 BERGER A, 1992, PHYS REV LETT, V68, P839 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745 BERTRAM HN, 1992, SOLID STATE PHYS, V46, P271 BETZIG E, 1992, APPL PHYS LETT, V61, P142 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAKEMORE RP, 1981, SCI AM, V245, P58 BLOEMEN PJH, 1994, PHYS REV LETT, V72, P764 BLONDEL A, 1994, APPL PHYS LETT, V65, P3019 BLUGEL S, 1989, APPL PHYS A-MATER, V49, P547 BODKER F, 1994, PHYS REV LETT, V72, P282 BORCHERS JA, 1988, J PHYS-PARIS, V49, P1685 BORSTEL G, 1985, SOLID STATE COMMUN, V55, P469 BOS LW, 1970, PHYS REV B, V2, P4567 BOTT M, 1992, SURF SCI, V272, P161 BRAUN HB, 1994, PHYS REV B, V50, P16501 BRAUN J, 1997, IN PRESS SURF SCI LE BRAWELL ST, 1993, J PHYS-CONDENS MAT, V5, PL53 BROOKES NB, 1992, PHYS REV B, V46, P237 BROOKES NB, 1990, PHYS REV B, V41, P2643 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUG JA, 1996, J APPL PHYS, V79, P4491 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BRUNO P, 1991, PHYS REV LETT, V67, P2592 BUCKLEY ME, 1995, PHYS REV B, V52, P6596 BURKETT SL, 1996, J VAC SCI TECHNOL B, V14, P3131 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CABANEL R, 1990, J APPL PHYS, V67, P5409 CAMARERO J, 1996, PHYS REV LETT, V76, P4428 CAMBLONG HE, 1993, PHYS REV B, V47, P4735 CAMLEY RE, 1983, PHYS REV B, V27, P261 CARBONE C, 1993, PHYS REV LETT, V71, P2805 CARL A, 1995, PHYS REV LETT, V74, P190 CELOTTA RJ, 1996, J APPL PHYS, V79, P6079 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P1721 CHEN J, 1992, PHYS REV LETT, V68, P1212 CHOU SY, 1996, J APPL PHYS, V79, P6101 CHOU SY, 1994, J VAC SCI TECHNOL B, V12, P3695 CONDON NG, 1995, PHYS REV LETT, V75, P1961 COOK RF, 1986, J MATER RES, V1, P852 CRAMPIN S, 1993, J PHYS-CONDENS MAT, V5, P4647 CRAMPIN S, 1996, PHYS REV B, V53, P13817 CROMMIE MF, 1993, NATURE, V363, P524 CROMMIE MF, 1993, SCIENCE, V262, P218 DAALDEROP GHO, 1994, PHYS REV B, V50, P9989 DAUGHTON JM, 1992, THIN SOLID FILMS, V216, P162 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEGROOT FMF, 1994, J ELECTRON SPECTROSC, V67, P529 DELAFIGUERA J, 1995, APPL PHYS LETT, V66, P1006 DEPARGA ALV, 1994, PHYS REV LETT, V72, P3726 DEROSSI S, 1996, PHYS REV LETT, V77, P908 DOMB C, 1973, J PHYS A-MATH GEN, V6, P1296 DONATH M, 1989, APPL PHYS A-MATER, V49, P351 DONATH M, 1996, PHYS REV LETT, V77, P5138 DONATH M, 1993, PHYS REV LETT, V70, P2802 DOSE V, 1985, SURFACE SCI REPT, V5, P337 DUDEN T, 1996, PHYS REV LETT, V77, P2308 DURR W, 1989, PHYS REV LETT, V62, P206 EBERHARDT W, 1980, PHYS REV B, V21, P3245 ECHENIQUE PM, 1990, PROG SURF SCI, V32, P111 ECKARDT H, 1984, J PHYS F MET PHYS, V14, P97 ECKSTEIN JN, 1996, APPL PHYS LETT, V69, P1312 EDWARDS DM, 1994, PHYS REV B, V50, P16066 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 EGELHOFF WF, 1996, J APPL PHYS, V80, P5183 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRICHS EE, 1992, ULTRAMICROSCOPY, V42, P1438 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELMERS HJ, 1996, J APPL PHYS, V79, P4985 ELMERS HJ, 1995, PHYS REV LETT, V75, P2031 ELMERS HJ, 1994, PHYS REV LETT, V73, P898 ELMERS HJ, 1989, PHYS REV LETT, V63, P566 ENGEL BN, 1994, J APPL PHYS, V75, P6401 ENGEL BN, 1991, PHYS REV LETT, V67, P1910 ERICKSON RP, 1991, PHYS REV B, V44, P11825 ERIKSSON O, 1991, PHYS REV LETT, V66, P1350 ERSCHBAUMER H, 1991, SURF SCI, V243, P317 EVANS DA, 1993, PHYS REV LETT, V70, P3483 EVERITT BA, 1997, J APPL PHYS, V81, P4020 FALICOV LM, 1993, BRAZ J PHYS, V23, P233 FALICOV LM, 1990, J MATER RES, V5, P1299 FARLE M, 1993, PHYS REV B, V47, P11571 FARROW RFC, 1988, J APPL PHYS, V64, P5315 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEIBELMAN PJ, 1995, PHYS REV B, V52, P16845 FERREIRA MS, 1996, J MAGN MAGN MATER, V154, PL1 FERT A, 1994, J APPL PHYS, V75, P6693 FERT A, 1996, PHYS REV B, V53, P6554 FISCHER R, 1992, PHYS REV B, V46, P9691 FISHER ME, 1974, REV MOD PHYS, V46, P597 FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, 1995, PHYS REV B, V51, P6364 GALLAGHER WJ, 1997, J APPL PHYS, V81, P3741 GARRISON K, 1993, PHYS REV LETT, V71, P2801 GATTESCHI D, 1994, SCIENCE, V265, P1054 GIJS MAM, 1993, PHYS REV LETT, V70, P3343 GILMAN JJ, 1960, J APPL PHYS, V31, P2208 GLATZEL H, 1992, Z PHYS B CON MAT, V88, P53 GRADMANN U, 1991, J MAGN MAGN MATER, V100, P481 GRADMANN U, 1988, LANDOLTBORNSTEIN, V19, P1 GRADMANN U, 1987, NATO ADV STUDY I S B, V163, P261 GRADMANN U, 1994, PHYSICS SOLID SURF B, V24, P506 GREGG JF, 1996, PHYS REV LETT, V77, P1580 GROCHOWSKI E, 1994, IEEE T MAGN, V30, P3797 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1989, TOP APPL PHYS, V66, P303 GRZELAKOWSKI K, 1994, IEEE T MAGN, V30, P4500 GUILLOT C, 1977, PHYS REV LETT, V39, P1632 GUNNARSSON O, 1976, J PHYS F MET PHYS, V6, P587 GUNTHERODT G, 1994, PHILOS MAG B, V70, P767 GURNEY BA, 1997, J APPL PHYS, V81, P3998 GURNEY BA, 1993, PHYS REV LETT, V71, P4023 HAMAKAWA Y, 1996, IEEE T MAGN, V32, P149 HANSEN W, 1992, SEMICONDUCT SEMIMET, V35, P279 HARTMANN D, 1993, PHYS REV B, V48, P16837 HASEGAWA Y, 1993, PHYS REV LETT, V71, P1071 HAYASHI M, 1993, J MAGN MAGN MATER, V126, P547 HEHN M, 1966, SCIENCE, V272, P1782 HEIM DE, 1994, IEEE T MAGN, V30, P316 HEIMANN P, 1981, SOLID STATE COMMUN, V39, P219 HEINEN W, 1990, J ELECTRON SPECTROSC, V51, P701 HEINRICH B, 1993, ADV PHYS, V42, P523 HENDERSON MA, 1991, J VAC SCI TECHNOL A, V9, P1563 HENZLER M, 1993, LANDOLTBERNSTEIN A, V24, P225 HENZLER M, 1993, SURF SCI, V298, P369 HILLEBRANDS B, 1987, PHYS REV B, V36, P2450 HIMPSEL FJ, 1983, ADV PHYS, V32, P1 HIMPSEL FJ, 1995, APPL PHYS LETT, V67, P1151 HIMPSEL FJ, 1991, APPL PHYS LETT, V58, P1920 HIMPSEL FJ, 1986, COMMENTS COND MAT PH, V12, P199 HIMPSEL FJ, 1998, IN PRESS IBM J RES D, V42 HIMPSEL FJ, 1994, PHYS REV B, V50, P4992 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 HIMPSEL FJ, 1980, PHYS REV B, V21, P3207 HIMPSEL FJ, 1979, PHYS REV B, V19, P2919 HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363 HIMPSEL FJ, 1978, PHYS REV LETT, V41, P507 HIMPSEL FJ, 1994, SUPERLATTICE MICROST, V15, P237 HINCH BJ, 1989, EUROPHYS LETT, V10, P341 HONG KM, 1995, PHYS REV B, V51, P9855 HOOD RQ, 1992, PHYS REV B, V46, P8287 HOPSTER H, 1994, SURF REV LETT, V1, P89 HOUSTON JE, 1988, PHYS REV B, V38, P12164 HUANG F, 1994, PHYS REV B, V49, P3962 HUG HJ, 1996, J APPL PHYS, V79, P5609 HWANG C, 1995, PHYS REV B, V52, P15368 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390 HYLTON TL, 1993, SCIENCE, V261, P1021 IBACH H, 1993, SOLID STATE PHYSICS IWASAKI H, 1985, PHYS REV B, V32, P643 JACCODINE RJ, 1963, J ELECTROCHEM SOC, V11, P524 JAKLEVIC RC, 1975, PHYS REV B, V12, P4146 JALOCHOWSKI M, 1992, PHYS REV B, V46, P4693 JALOCHOWSKI M, 1992, PHYS REV B, V45, P13607 JALOCHOWSKI M, 1996, PHYS REV LETT, V76, P4227 JANAK JF, 1977, PHYS REV B, V16, P255 JOHNSON M, 1994, J APPL PHYS, V75, P6714 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 JONKER BT, 1987, J CRYST GROWTH, V81, P524 JULLIERE M, 1975, PHYS LETT A, V54, P225 JUNG T, 1995, APPL PHYS A-MATER, V61, P467 JUNG T, 1995, PHYS REV LETT, V74, P1641 JUNG TA, 1996, SCIENCE, V271, P181 KAPLAN R, 1983, J VAC SCI TECHNOL A, V1, P551 KASTNER M, 1993, PHYS TODAY 0124 KATAYAMA T, 1993, J MAGN MAGN MATER, V126, P527 KAWAKAMI RK, 1996, PHYS REV LETT, V77, P2570 KENT AD, 1993, SCIENCE, V262, P1249 KERN K, 1991, PHYS REV LETT, V67, P855 KETCHEN MB, 1995, IEEE T APPL SUPERCON, V5, P2133 KEVAN SD, 1992, ANGLE RESOLVED PHOTO KIM B, 1992, PHYS REV LETT, V68, P1931 KIRILYUK A, 1996, J APPL PHYS, V79, P5632 KIRSCHNER J, 1984, PHYS REV LETT, V53, P612 KISKER E, 1985, PHYS REV B, V31, P329 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KLOTS TD, 1991, J CHEM PHYS, V95, P8919 KODAMA RH, 1997, PHYS REV LETT, V79, P1393 KODAMA RH, 1996, PHYS REV LETT, V77, P394 KOELLING DD, 1994, PHYS REV B, V50, P273 KOHLHEPP J, 1992, PHYS REV B, V45, P12287 KOIDE T, 1996, PHYS REV B, V53, P8219 KORLING M, 1996, PHYS REV B, V54, PR8293 KRAMS P, 1994, PHYS REV B, V49, P3633 KRAMS P, 1992, PHYS REV LETT, V69, P3674 KRYDER MH, 1996, MAT RES SOC B, P17 KUENY A, 1984, PHYS REV B, V29, P2879 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAIRSON BM, 1992, APPL PHYS LETT, V61, P1390 LAMBETH DN, 1996, J APPL PHYS, V79, P4496 LANDSKRON H, 1991, SURF SCI, V256, P115 LEDERMAN M, 1994, J APPL PHYS, V75, P6217 LEE CH, 1989, PHYS REV LETT, V62, P653 LEGALLY M, 1993, PHYS TODAY 1124 LEVY J, 1996, PHYS REV LETT, V76, P1948 LI C, 1990, PHYS REV B, V42, P5433 LI DL, 1994, PHYS REV B, V49, P7734 LI DQ, 1995, PHYS REV B, V51, P7195 LI DQ, 1995, PHYS REV B, V51, P13895 LI DQ, 1997, PHYS REV LETT, V78, P1154 LI DQ, 1994, PHYS REV LETT, V72, P3112 LI JT, 1997, PHYS REV B, V56, P7656 LI Y, 1992, PHYS REV LETT, V68, P1208 LIEBSCH A, 1979, PHYS REV LETT, V43, P1431 LINDGREN SA, 1988, PHYS REV LETT, V61, P2894 LINDGREN SA, 1987, PHYS REV LETT, V59, P3003 LIOU SH, 1996, J APPL PHYS, V79, P5060 LIU K, 1995, PHYS REV B, V51, P381 MACKAY JF, 1996, PHYS REV LETT, V77, P3925 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MALLINSON JC, 1987, FDN MAGNETIC RECORDI MANKEY GJ, 1994, J VAC SCI TECHNOL A, V12, P2183 MANKEY GJ, 1993, PHYS REV B, V48, P10284 MANKEY GJ, 1993, PHYS REV B, V47, P190 MASSALSKI TB, 1992, BINARY ALLOY PHASE D MATHON J, 1995, PHYS REV LETT, V74, P3696 MATSUI S, 1986, J VAC SCI TECHNOL B, V4, P299 MCGUIRE TR, 1984, J APPL PHYS, V55, P2505 MCWHAN DB, 1994, J SYNCHROTRON RADIAT, V1, P83 MEE CD, 1988, MAGNETIC RECORDING, V1 MEE CD, 1994, PHYSICS MAGNETIC REC MERMIN ND, 1966, PHYS REV LETT, V17, P1133 MESERVEY R, 1994, PHYS REP, V238, P173 MESSMER C, 1981, J APPL PHYS, V52, P4623 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MIEDEMA AR, 1980, PHYSICA B & C, V100, P1 MIEDEMA AR, 1980, SURF SCI, V95, P447 MILLER T, 1988, PHYS REV LETT, V61, P1404 MILLS DL, 1991, J MAGN MAGN MATER, V100, P515 MIRBT S, 1993, SOLID STATE COMMUN, V88, P331 MIYAZAKI T, 1995, J MAGN MAGN MATER, V139, PL231 MIYAZAKI T, 1994, J MAGN MAGN MATER, V129, PL135 MO YW, 1994, PHYS REV B, V50, P7868 MOODERA JS, 1996, APPL PHYS LETT, V69, P708 MOODERA JS, 1996, J APPL PHYS, V79, P4724 MOOK HA, 1985, PHYS REV LETT, V54, P227 MORUZZI VL, 1978, CALCULATED ELECT PRO MORUZZI VL, 1992, HDB FERROMAGNETIC MA MORUZZI VL, 1989, PHYS REV B, V39, P6957 MORUZZI VL, 1986, PHYS REV B, V34, P1784 MOSDIEL A, 1996, PHYS REV LETT, V77, P3653 MUELLER MA, 1990, PHYS REV B, V41, P5214 MUKASA K, 1995, MAT SCI ENG B-SOLID, V31, P69 MULHOLLAN GA, 1992, PHYS REV LETT, V69, P3240 MULLER S, 1995, PHYS REV LETT, V74, P765 MURRAY CB, 1993, J AM CHEM SOC, V115, P8706 NAMBA H, 1993, PHYS REV LETT, V71, P4027 NEEL L, 1954, J PHYS RADIUM, V15, P225 NEW RMH, 1995, J VAC SCI TECHNOL B, V13, P1089 NEW RMH, 1995, J VAC SCI TECHNOL B, V12, P3916 NGUYENVANDAU F, 1997, J APPL PHYS, V81, P4482 NORDSTROM L, 1995, EUROPHYS LETT, V29, P395 NORDSTROM L, 1996, J VAC SCI TECHNOL B, V14, P3160 NOTZEL R, 1994, NATURE, V369, P131 OBARR R, 1997, J APPL PHYS, V81, P4730 OBRIEN WL, 1994, J APPL PHYS, V76, P6462 OBRIEN WL, 1996, PHYS REV B, V54, P9297 OBRIEN WL, 1995, PHYS REV B, V52, P15332 OEPEN HP, 1993, J MAGN MAGN MATER, V121, P490 OEPTS W, 1996, PHYS REV B, V53, P14024 ONO T, 1995, J PHYS SOC JPN, V64, P363 ONSAGER L, 1944, PHYS REV, V65, P117 ORR BG, 1984, PHYS REV LETT, V53, P2046 ORTEGA JE, 1994, APPL PHYS LETT, V64, P121 ORTEGA JE, 1993, J APPL PHYS, V73, P5771 ORTEGA JE, 1993, MATER RES SOC S P, V313, P143 ORTEGA JE, 1993, PHYS REV B, V47, P1540 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 ORTEGA JE, 1994, SOLID STATE COMMUN, V91, P807 PAPACONSTANTOPO DA, 1986, HDB BAND STRUCTURE E PAPPAS DP, 1996, J VAC SCI TECHNOL B, V14, P3203 PARKIN SSP, 1996, APPL PHYS LETT, V68, P1162 PARKIN SSP, 1992, APPL PHYS LETT, V61, P1358 PARKIN SSP, 1993, EUROPHYS LETT, V24, P71 PARKIN SSP, 1994, PHYS REV LETT, V73, P1190 PARKIN SSP, 1994, PHYS REV LETT, V72, P3718 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PETROVYKH DY, 1997, UNPUB SURF SCI PETTIFOR DG, 1980, J MAGN MAGN MATER, V15-8, P847 PFANDZELTER R, 1995, PHYS REV LETT, V74, P3467 PIERCE DT, 1989, MATER RES SOC S P, V151, P49 PIPPARD AB, 1989, MAGNETORESISTANCE ME PIRAUX L, 1994, APPL PHYS LETT, V65, P2482 PIZZAGALLI L, 1997, J APPL PHYS, V81, P4347 PIZZINI S, 1995, PHYS REV LETT, V74, P1470 PLUMMER EW, 1982, ADV CHEM PHYS, V49, P533 PRATT WP, 1993, J APPL PHYS, V73, P54326 PRATT WP, 1991, PHYS REV LETT, V66, P3060 PRINZ GA, 1991, J MAGN MAGN MATER, V100, P469 PRINZ GA, 1995, PHYS TODAY APR, P58 PRINZ GA, 1995, PHYS TODAY 0424 PROBER DE, 1980, APPL PHYS LETT, V37, P94 PROKSCH RB, 1994, IEEE T MAGN, V30, P4467 QIU ZQ, 1992, PHYS REV B, V46, P8659 QIU ZQ, 1992, PHYS REV LETT, V68, P1398 QIU ZQ, 1991, PHYS REV LETT, V67, P1646 RADER O, 1997, PHYS REV B, V55, P5404 RADER O, 1994, PHYS REV LETT, V72, P2247 RASING T, 1996, J APPL PHYS, V79, P6181 RAUE R, 1983, PHYS REV LETT, V50, P1623 REMPFER GF, 1992, OPTIK, V92, P3 RICHTER R, PHYS REV LETT, V54, P2704 RODER H, 1993, NATURE, V366, P141 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 RUCKMAN MW, 1986, PHYS REV B, V33, P7029 RUDOLF P, 1992, J MAGN MAGN MATER, V109, P109 RUNGE K, 1996, J APPL PHYS, V79, P5075 SAMANT MG, 1994, PHYS REV LETT, V72, P1112 SANCHEZ O, 1995, PHYS REV B, V52, P7894 SANDS T, 1990, MATER SCI REP, V5, P99 SANO K, 1991, JPN J APPL PHYS 1, V30, P1434 SANTONI A, 1991, PHYS REV B, V43, P1305 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 SCHEINFEIN MR, 1996, PHYS REV LETT, V76, P1541 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHINDLER W, 1997, J APPL PHYS, V81, P3915 SCHMAILZL P, 1994, SURF SCI, V312, P73 SCHMIDT A, 1992, Z PHYS B CON MAT, V87, P265 SCHMIDT F, 1985, IEEE T MAGN, V21, P1596 SCHMITZHUBSCH T, 1995, PHYS REV LETT, V74, P2595 SCHONHENSE G, 1993, ANN PHYS-LEIPZIG, V2, P465 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHULZ B, 1994, PHYS REV B, V50, P13467 SCHUTZ G, 1992, MATER RES SOC S P, V231, P77 SCHUTZ G, 1997, SYNCH RAD NEWS, V10, P13 SEGOVIA P, 1996, PHYS REV LETT, V77, P3455 SELLMYER DJ, 1998, IN PRESS P 10 INT C SHINJO T, 1991, SURF SCI REP, V12, P49 SHVETS IV, 1992, J APPL PHYS, V71, P5489 SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395 SIMONDS JL, 1995, PHYS TODAY 0426 SLATER JC, 1954, PHYS REV, V94, P1498 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SMITH AR, 1996, SCIENCE, V273, P226 SMITH NV, 1994, PHYS REV B, V49, P332 SMITH NV, 1988, PHYS REV B, V37, P2874 SMITH NV, 1982, PHYS REV B, V25, P793 SMITH NV, 1974, PHYS REV B, V9, P1341 SMITH NV, 1988, REP PROG PHYS, V51, P1227 SPECKMANN M, 1995, PHYS REV LETT, V75, P2035 STAUF GT, 1987, THIN SOLID FILMS, V153, P421 STEARNS MB, 1977, J MAGN MAGN MATER, V5, P167 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STEINER MM, 1992, PHYS REV B, V45, P13272 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1993, PHYS REV B, V48, P7238 STOHR J, 1995, J ELECTRON SPECTROSC, V75, P253 STOHR J, 1993, SCIENCE, V259, P658 STRAUB M, 1996, PHYS REV LETT, V77, P743 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1994, PHYS REV LETT, V72, P254 SUN JZ, 1997, J APPL PHYS, V81, P5343 TANG DD, 1995, IEEE T MAGN, V31, P3206 TANG H, 1993, PHYS REV LETT, V71, P444 TANG ZX, 1991, PHYS REV LETT, V67, P3602 TERSOFF J, 1996, PHYS REV LETT, V76, P1675 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THOMAS RE, 1970, J APPL PHYS, V41, P5330 THOMPSON DA, 1975, IEEE T MAGN, V11, P1039 TOBER ED, 1996, PHYS REV B, V53, P5444 TOMAZ MA, 1997, IN PRESS J VAC SCI T TOMAZ MA, 1997, PHYS REV B, V56, P5474 TROUILLOUD PL, 1994, IEEE T MAGN, V30, P4494 TSANG C, 1994, IEEE T MAGN, V30, P3801 TUREK I, 1992, J PHYS-CONDENS MAT, V4, P7257 TURNER AM, 1984, PHYS REV B, V29, P2986 TURTUR C, 1994, PHYS REV LETT, V72, P1557 TYSON WR, 1977, SURF SCI, V62, P267 UHL M, 1996, PHYS REV LETT, V77, P334 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VALET T, 1993, PHYS REV B, V48, P7099 VANDERVEEN JF, 1981, SOLID STATE COMMUN, V39, P1301 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANLEEUWEN DA, 1994, PHYS REV LETT, V73, P1432 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 VIERNOW J, 1998, UNPUB APPL PHYS LETT WEBER W, 1992, PHYS REV B, V46, P6199 WEINERT M, 1985, PHYS REV LETT, V55, P2055 WEISBUCH C, 1991, QUANTUM SEMICONDUCTO WELIPITIYA D, 1996, J APPL PHYS, V80, P1867 WELLER D, 1995, PHYS REV LETT, V54, P1555 WERNSDORFER W, 1996, PHYS REV LETT, V77, P1873 WHITE RM, 1984, INTRO MAGNETIC RECOR WIESENDANGER R, 1997, J VAC SCI TECHNOL B, V15, P1330 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 WU R, 1966, J APPL PHYS, V79, P6500 WU RQ, 1994, J APPL PHYS, V75, P5802 WU SC, 1994, PHYS REV B, V49, P14081 WU SZ, 1996, J VAC SCI TECHNOL B, V14, P3189 WULFHEKEL W, 1994, PHYS REV B, V50, P16074 WURSCH G, 1997, IN PRESS WUTTIG M, 1993, PHYS REV LETT, V70, P3619 WUTTIG M, 1993, SURF SCI, V291, P14 XIAO JQ, 1992, PHYS REV LETT, V68, P3749 YANG CY, 1981, PHYS REV B, V24, P5673 YEH JJ, 1985, ATOM DATA NUCL DATA, V32, P1 ZAERA F, 1991, SURF SCI, V255, P280 ZHANG Z, 1996, APPL PHYS LETT, V68, P2005 ZHU MJ, 1991, PHYS REV B, V43, P4007 ZHU QG, 1987, PHYS REV LETT, V59, P835 TC 54 BP 511 EP 597 PG 87 JI Adv. Phys. PY 1998 PD JUL-AUG VL 47 IS 4 GA ZV365 J9 ADVAN PHYS UT ISI:000074297300001 ER PT J AU Tang, LH Smilauer, P Vvedensky, DD TI Noise-assisted mound coarsening in epitaxial growth SO EUROPEAN PHYSICAL JOURNAL B NR 18 AB Two types of mechanisms are proposed for mound coarsening during unstable epitaxial growth: stochastic, due to deposition noise, and deterministic, due to mass currents driven by surface energy differences. Both yield the relation H = (RWL)(2) between the typical mound height W, mound size L, and the film thickness H. hn analysis of simulations and experimental data shows that the parameter R saturates to a value which discriminates sharply between stochastic (R similar or equal to 1) and deterministic (R much less than 1) coarsening. We derive a scaling relation between the coarsening exponent 1/z and the mound-height exponent beta which, for a saturated mound slope, yields beta = 1/z = 1/4. CR AMAR JG, 1996, PHYS REV B, V54, P14742 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P262 KOCH R, COMMUNICATION KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1997, NONEQUILIBRIUM STAT, P305 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1997, PHYS REV E, V55, P3952 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SEIGERT M, 1996, PHYS REV E, V53, P307 SEIGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYS REV LETT, V78, P3705 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P1 TC 12 BP 409 EP 412 PG 4 JI Eur. Phys. J. B PY 1998 PD APR VL 2 IS 3 GA ZV579 J9 EUR PHYS J B UT ISI:000074319200014 ER PT J AU Wollschlager, J Luo, EZ Henzler, M TI Diffraction characterization of rough films formed under stable and unstable growth conditions SO PHYSICAL REVIEW B-CONDENSED MATTER NR 42 AB Characterizing the roughness of epitaxial films by diffraction techniques with respect to the step density and the rms roughness is well established. For self-affine surfaces the morphology of growing films, however, is often characterized by the correlation length xi of the height-height correlation and the roughness exponent a governing the behavior at small lateral distances. Recently, it has been emphasized that for unstable growth conditions, characteristic lengths (average pyramid sizes) appear that produce an oscillating character of the height-height correlation. Here we investigate the influence of both kinds of correlations on the diffraction spots. The oscillating correlation causes a splitting of the diffuse shoulder into satellites. The satellite position and half-width show characteristic oscillations depending on the scattering condition. From the latter one can determine the roughness exponent a. The correlation length 5 and the characteristic length can be evaluated from the satellite half- width and position at the out-of-phase scattering condition taking into account the rms height w. This model has been applied to the statistical growth of Ag adlayers on Ag(lll) at low temperatures where the satellites of the diffuse shoulder point to the formation of pyramids. From the phase dependence we obtain the roughness exponent alpha=1/2. The step density and the correlation length 5 increase with increasing coverage while no coarsening of the pyramid sizes is observed. CR ALTSINGER R, 1988, SURF SCI, V200, P235 AMAR JG, 1996, SURF SCI, V365, P177 AMMER C, 1994, SURF SCI, V307, P570 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BAUER E, 1958, Z KRISTALLOGR, V110, P372 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1996, LANGMUIR, V12, P217 FOLSCH S, 1996, PHYS REV B, V54, P10855 HE YL, 1992, PHYS REV LETT, V69, P3770 HENZLER M, 1985, DYNAMICAL PHENOMENA, V3, P14 HENZLER M, 1994, P 4 INT C STRUCT SUR, P619 HENZLER M, 1993, PROG SURF SCI, V42, P297 HENZLER M, 1988, SPRINGER SERIES SURF, V11, P431 HENZLER M, 1996, SURF SCI, V357, P809 HENZLER M, 1993, SURF SCI, V298, P369 LAGALLY MG, 1988, REFLECTION HIGH ENER, P139 LENT CS, 1984, SURF SCI, V139, P121 LU TM, 1982, SURF SCI, V120, P47 LUO EZ, 1995, APPL PHYS A, V60, P60 MEYER G, 1990, SURF SCI, V231, P64 PIMBLEY JM, 1984, J APPL PHYS, V57, P1121 PIMBLEY JM, 1984, J APPL PHYS, V55, P182 PIMBLEY JM, 1984, J VAC SCI TECHNOL A, V2, P457 PIMBLEY JM, 1985, SURF SCI, V159, P169 PUKITE PR, 1985, SURF SCI, V167, P39 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SINHA SK, 1988, PHYS REV B, V38, P2297 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VANNOSTRAND JE, 1996, PHYS REV B, V53, P7876 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1985, J PHYS F MET PHYS, V15, P809 VILLAIN J, 1991, J PHYS I, V1, P19 WOLLSCHLAGER J, 1990, APPL PHYS A-MATER, V50, P57 WOLLSCHLAGER J, 1997, SURF SCI, V383, P103 WOLLSCHLAGER J, UNPUB YANG HN, 1993, DIFFRACTION ROUGH SU YANG HN, 1993, PHYS REV B, V47, P3911 YANG HN, 1992, PHYS REV LETT, V68, P2612 TC 2 BP 15541 EP 15552 PG 12 JI Phys. Rev. B-Condens Matter PY 1998 PD JUN 15 VL 57 IS 24 GA ZY631 J9 PHYS REV B-CONDENSED MATTER UT ISI:000074643000070 ER PT J AU Brune, H TI Microscopic view of epitaxial metal growth: nucleation and aggregation SO SURFACE SCIENCE REPORTS NR 347 AB Thin films are often grown away from thermodynamic equilibrium and their morphology becomes determined by kinetics. The final structure of the epitaxial film is decided in the very early stage of submonolayer nucleation and island growth. Recent experiments with scanning tunneling microscopy opened up an unprecedented view of this early stage of epitaxial growth. Variable sample temperatures enabled quantification of the rates of the most important atomic diffusion events and tracing back their interplay yielding the final submonolayer morphology. The present understanding of nucleation and aggregation in light of these new experimental results is reviewed for the case of metals. Examples are given how the growth kinetics can be employed to create well-defined island morphologies and island arrays in a self-organization process. (C) 1998 Elsevier Science B.V. CR ALBERNATHY DL, 1992, PHYS REV B, V45, P9272 ALMOND DP, 1987, SOLID STATE IONICS, V23, P27 ALTMAN EI, 1994, SURF SCI, V304, PL400 AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 ARTACHO E, 1995, PHYS REV B, V51, P9952 AYRAULT G, 1974, J CHEM PHYS, V60, P281 BALES GS, 1994, PHYS REV B, V50, P6057 BALES GS, 1995, PHYS REV LETT, V74, P4879 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARDOTTI L, 1995, PHYS REV LETT, V74, P4694 BARTELT MC, 1993, EUROPHYS LETT, V21, P99 BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1966, PHYS REV B, V53, P4099 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1994, SURF SCI, V314, PL829 BARTH JV, 1990, PHYS REV B, V42, P9307 BARTH JV, 1995, SURF SCI, V341, P62 BARTH JV, 1992, THESIS FREIE U BERLI BASSETT DW, 1978, SURF SCI, V70, P520 BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BENJACOB E, 1994, NATURE, V368, P46 BENJACOB E, 1985, PHYS REV LETT, V55, P1315 BENTLEY WA, 1931, SNOW CRYSTALS BESENBACHER F, 1997, GROWTH PROPERTIES UL, V8, P207 BILLAS IML, 1994, SCIENCE, V265, P1682 BINNIG G, 1982, HELV PHYS ACTA, V55, P726 BINNIG G, 1986, SURF SCI, V169, PL295 BINNIG GK, 1984, SURF SCI, V144, P321 BINNING G, 1982, PHYS REV LETT, V49, P57 BOGICEVIC A, COMMUNICATION BOHRINGER M, 1995, PHYS REV B, V51, P9965 BOHRINGER M, 1996, SURF SCI, V367, P245 BOISVERT G, 1996, PHYS REV B, V54, P2880 BOISVERT G, 1995, PHYS REV B, V52, P9078 BOISVERT G, 1995, PHYS REV LETT, V75, P469 BORAGNO C, IN PRESS BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1993, PHYS REV LETT, V70, P1489 BOTT M, 1992, SURF SCI, V272, P161 BREEMAN M, 1992, SURF SCI, V269, P224 BRODDE A, 1991, J VAC SCI TECHNOL B, V9, P920 BROMANN K, 1995, PHYS REV LETT, V75, P677 BROMANN K, 1996, SCIENCE, V274, P956 BROMANN K, 1997, SURF SCI, V388, PL1107 BROMANN K, 1996, UNPUB BRUNE H, 1995, APPL PHYS A-MATER, V60, P167 BRUNE H, 1997, GROWTH PROPERTIES UL, V8, P149 BRUNE H, IN PRESS BRUNE H, IN PRESS NATURE BRUNE H, IN PRESS PHYS REV B BRUNE H, 1996, MATER RES SOC SYMP P, V407, P379 BRUNE H, 1996, MATER RES SOC SYMP P, V399, P213 BRUNE H, 1997, NATO ASI, P135 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1995, PHYS REV B, V52, P14380 BRUNE H, 1994, PHYS REV B, V49, P2997 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1992, PHYS REV LETT, V68, P624 BRUNE H, 1996, SURF SCI, V349, PL115 BRUNE H, 1995, THIN SOLID FILMS, V264, P230 BUCHER JP, 1994, EUROPHYS LETT, V27, P473 BUKA A, 1986, NATURE, V323, P424 CHAMBLISS DD, 1993, J MAGN MAGN MATER, V121, P1 CHAMBLISS DD, 1993, J VAC SCI TECHNOL B, V9, P933 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P171 CHEN C, 1991, PHYS REV LETT, V66, P1610 CHEN CL, 1992, PHYS REV B, V46, P7803 CHEN CL, 1990, PHYS REV LETT, V64, P3147 COX DM, 1992, NANOSTRUCT MATER, V1, P161 CROMMIE MF, 1993, SCIENCE, V262, P218 DALTON J, 1808, NEW SYSTEM CHEM PHIL DAVIES P, 1989, NEW PHYSICS DEJONG AM, 1990, SURF SCI, V233, P355 DESCARTES R, 1937, DICOURS METHODE BIEN DIETLER G, 1992, PHYSICA A, V191, P213 DOVEK MM, 1989, PHYS REV B, V40, P11973 DURR H, 1995, SURF SCI, V328, PL527 EBERL K, 1997, PHYS WORLD SEP, P47 ECKMANN JP, 1989, PHYS REV A, V39, P3185 ECKMANN JP, 1990, PHYS REV LETT, V65, P52 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1992, APPL PHYS A-MATER, V55, P403 EHRLICH G, 1964, BRIT J APPL PHYS, V15, P349 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1966, J CHEM PHYS, V44, P1050 EHRLICH G, 1991, LANGMUIR, V7, P2555 EHRLICH G, 1991, SURF SCI, V246, P1 EIGLER DM, 1990, NATURE, V344, P524 ELLIS J, 1993, PHYS REV LETT, V70, P2118 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANGELAKIS GA, 1996, SURF SCI, V347, P376 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1997, NATO ASI, P197 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1993, SURF SCI, V284, PL437 FAFARD S, 1995, PHYS REV B, V52, P5752 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FEIBELMAN PJ, 1987, PHYS REV LETT, V58, P2766 FEIBELMAN PJ, 1994, SURF SCI, V313, PL801 FISCHER B, IN PRESS FISCHER B, 1997, SURF SCI, V389, P366 FOILES SM, 1993, SURF SCI, V292, P5 FRANK FC, 1974, J GLACI, V13, P535 FRENKEL J, 1924, Z PHYS, V26, P117 FURUKAWA Y, 1997, CHEM UNSERER ZEIT, V2, P58 GESTERMANN S, IN PRESS SURF REV LE GHAISAS SV, 1989, SURF SCI, V223, P441 GIBBS D, 1990, PHYS REV B, V42, P7330 GLASSTONE S, 1941, THEORY RATE PROCESSE GLEICH B, IN PRESS GOMER R, 1990, REP PROG PHYS, V53, P917 GOMER R, 1981, SURFACE MOBILITIES S, V86, P15 GOTSCHY W, 1996, APPL PHYS B-LASERS O, V63, P381 GOTSCHY W, 1996, OPT LETT, V21, P1099 GRIER D, 1986, PHYS REV LETT, V56, P1264 GUNTHER C, 1993, BER BUNSEN PHYS CHEM, V97, P522 GUNTHER C, 1995, PHYS REV LETT, V74, P754 GUNTHER S, 1994, PHYS REV LETT, V73, P553 GURNEY T, 1965, J CHEM PHYS, V42, P3939 HAHN E, 1995, PHYS REV LETT, V74, P1803 HAMMER B, 1995, NATURE, V376, P238 HANSEN L, 1991, PHYS REV B, V44, P6523 HARRIS J, 1981, SURF SCI, V105, PL281 HARRIS S, 1994, PHYS REV B, V50, P7952 HARTEL T, 1993, THIN SOLID FILMS, V229, P163 HARTEN U, 1985, PHYS REV LETT, V54, P2619 HARUTA M, 1997, CATAL TODAY, V36, P153 HEIM KR, 1996, J APPL PHYS, V80, P1161 HEIZ U, 1995, J PHYS CHEM-US, V99, P8730 HELESHAW HS, 1898, NATURE, V58, P34 HOHAGE M, 1996, PHYS REV LETT, V76, P2366 HORNVONHOEGEN M, 1993, SURF SCI, V298, P29 HORVATH V, 1987, PHYS REV A, V35, P2353 HUGENSCHMIDT MB, 1996, PHYS REV LETT, V76, P2535 HWANG RQ, 1992, J VAC SCI TECHNOL A, V10, P1970 HWANG RQ, 1995, PHYS REV LETT, V75, P4242 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V75, P489 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JACOBSEN J, 1996, SURF SCI, V359, P37 JACOBSEN J, 1994, SURF SCI, V317, P8 JACOBSEN J, 1996, THESIS TU DENMARK LY JACOBSEN KW, 1987, PHYS REV B, V35, P7423 JENA P, 1992, PHYSICS CHEM FINITE JIANG Q, 1994, PHYS REV B, V50, P11116 JIANG Q, 1995, SURF SCI, V324, P357 JONES GW, 1990, PHYS REV LETT, V65, P3317 KELLOGG GL, 1994, PHYS REV LETT, V73, P1833 KELLOGG GL, 1991, PHYS REV LETT, V67, P216 KELLOGG GL, 1991, PHYS REV LETT, V67, P622 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KENT AD, 1994, J APPL PHYS, V76, P6656 KEPLER J, 1611, NIVE SEXANGULA KERTESZ J, 1986, J PHYS A-MATH GEN, V19, PL257 KOPATZKI E, 1993, SURF SCI, V284, P154 KOSSEL W, 1927, NACH GES WISS GOTTIN, P135 KRZYZOWSKI MA, 1995, THESIS U BONN KUIPERS L, 1996, PHYS REV B, V53, PR7646 KUNKEL R, 1990, PHYS REV LETT, V65, P733 KUPRICK U, 1997, PHYS REV LETT, V78, P1086 KYONO K, 1998, SURF SCI, V397, P191 LAGALLY MG, 1990, KINETICS ORDERING GR, P145 LAGALLY MG, 1993, PHYS TODAY NOV, P24 LAND TA, 1992, SURF SCI, V264, P261 LANG CA, 1989, SURF SCI, V224, PL947 LANGELAAR MH, 1996, SURF SCI, V352, P597 LANGER JS, 1980, REV MOD PHYS, V52, P1 LEE CH, 1990, APPL PHYS A-MATER, V51, P191 LEON R, 1995, SCIENCE, V267, P1966 LEONARD D, 1993, APPL PHYS LETT, V63, P3203 LEWIS B, 1978, NUCLEATION GROWTH TH LEWIS B, 1970, SURF SCI, V21, P289 LI JT, 1996, PHYS REV LETT, V76, P1888 LI YG, 1997, PHYS REV B, V56, P12539 LIANG KS, 1990, PHYS REV LETT, V65, P3025 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 LINDEROTH TR, 1997, PHYS REV LETT, V78, P4978 LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 LIU CL, 1994, SURF SCI, V316, P294 LIU CL, 1991, SURF SCI, V253, P334 LIU F, 1997, GROWTH PROPERTIES UL, V8, P149 LIU SD, 1995, PHYS REV B, V52, P2907 LIU SD, 1995, PHYS REV LETT, V74, P4495 LIU SD, 1993, PHYS REV LETT, V71, P2967 LIU SD, 1997, SURF SCI, V392, PL56 LIU SD, 1994, SURF SCI, V321, P161 LOZANO ML, 1995, EUROPHYS LETT, V30, P537 LUO EZ, 1995, APPL PHYS A-MATER, V60, P19 MADDOX J, 1994, NATURE, V372, P403 MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT MANDELBROT BB, 1975, OBJETS FRACTALS FORM MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335 MEAKIN P, 1987, PHYS REV A, V36, P332 MEAKIN P, 1983, PHYS REV A, V27, P1495 MELLE H, 1978, Z NATURFORSCH A, V33, P282 METIU H, 1992, SCIENCE, V255, P1088 MEYER JA, 1995, PHYS REV LETT, V74, P3864 MEYER JA, 1996, SURF SCI, V365, PL647 MEYER W, 1937, Z TECHN PHYS, V12, P588 MICHELY T, COMMUNICATION MICHELY T, 1997, NATO ASI, P125 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MICHELY T, 1996, SURF SCI, V349, PL89 MICHELY T, 1991, SURF SCI, V256, P217 MIGUEL JJ, 1987, SURF SCI, V189, P1062 MO YW, 1993, PHYS REV LETT, V71, P2923 MO YW, 1992, PHYS REV LETT, V69, P986 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1989, PHYS REV LETT, V63, P2393 MO YW, 1992, SURF SCI, V268, P275 MOCHRIE SGJ, 1990, PHYS REV LETT, V64, P2925 MORGENSTERN K, 1996, PHYS REV LETT, V76, P2113 MORTENSEN JJ, 1996, ELEMENTARY PROCESSES, V121, P173 MOTTET C, 1992, PHYS REV B, V46, P16018 MULHERAN PA, 1995, PHIL MAG LETT, V72, P55 MULHERAN PA, 1996, PHYS REV B, V53, P10261 MULLER B, 1998, IN PRESS SURF REV LE, V5 MULLER B, 1997, NATO ASI, P151 MULLER B, 1996, PHYS REV B, V54, P17858 MULLER B, 1998, PHYS REV LETT, V80 MULLINS WW, 1963, J APPL PHYS, V34, P323 NAGL C, 1995, PHYS REV B, V52, P16796 NAGL C, 1996, SURF SCI, V369, P159 NAKAYA U, 1954, SNOW CRYSTALS NATURA NARASIMHAN S, 1992, PHYS REV LETT, V69, P1564 NEDELMANN L, 1996, THESIS ECOLE POLYTEC NIELSEN LP, IN PRESS NIELSEN LP, 1993, PHYS REV LETT, V71, P754 NIEMANTSVERDRIET J, 1988, J VAC SCI TECHNOL A, V6, P757 NIEMEYER L, 1984, PHYS REV LETT, V52, P1033 NITTMANN J, 1997, J PHYS A, V20, PL981 NITTMANN J, 1986, NATURE, V321, P663 NITTMANN J, 1985, NATURE, V314, P141 NOTZEL R, 1994, NATURE, V369, P131 OCKO BM, 1991, PHYS REV B, V44, P6429 OLESEN L, 1994, PHYS REV LETT, V72, P2251 OSTWALD W, 1900, Z PHYS CHEM, V34, P495 PEARSON C, 1996, PHYS REV LETT, V76, P2306 PERDEREAU J, 1974, J PHYS F MET PHYS, V4, P798 PERKINS LS, 1994, SURF SCI, V319, P225 PERKINS LS, 1993, SURF SCI, V294, P67 PIMPINELLI A, 1993, J PHYS I, V3, P447 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 POTSCHKE GO, 1991, PHYS REV B, V44, P1442 RANGELOV G, 1995, SURF SCI, V331, P948 RATSCH C, 1993, APPL PHYS LETT, V63, P2348 RATSCH C, 1997, NATO ASI, P83 RATSCH C, 1997, PHYS REV B, V55, P6750 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1994, SURF SCI, V314, PL937 RIEDER KH, 1983, SURF SCI, V127, P223 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 RODER H, 1997, SURF SCI, V376, P13 RODER H, 1993, SURF SCI, V298, P121 ROLAND C, 1992, PHYS REV B, V46, P13428 ROSENFELD G, 1995, APPL PHYS A-MATER, V61, P455 ROUSSET S, 1992, PHYS REV LETT, V69, P3200 RUFF M, IN PRESS RUGGERONE P, 1997, GROWTH PROPERTIES UL, V8, P490 RUSS JC, 1994, FRACTAL SURFACES SANDERS DE, 1992, SURF SCI, V264, PL169 SANDERS DE, 1992, SURF SCI, V260, P116 SAWADA Y, 1986, PHYS REV LETT, V56, P1260 SCHIOTZ J, 1996, PHIL MAG LETT, V74, P339 SCHROEDER M, 1997, SURF SCI, V375, P129 SENFT DC, 1995, PHYS REV LETT, V74, P294 SHI ZP, 1996, PHYS REV LETT, V76, P4927 SORENSEN MR, 1996, PHYS REV LETT, V77, P5076 SPJUT H, 1994, SURF SCI, V306, P233 STANLEY HE, 1986, NATO ASI SER STOLT K, 1976, J CHEM PHYS, V65, P3206 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STOWELL MJ, 1972, PHILOS MAG, V26, P349 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STRANSKI IN, 1938, SITZUNGSBER AKA MN B, V2, P797 STROSCIO JA, 1992, J VAC SCI TECHNOL A, V10, P1981 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1996, PHYS REV B, V53, P4958 STUMPF R, 1994, PHYS REV LETT, V72, P254 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459 SYKES MF, 1976, J PHYS A-MATH GEN, V9, P87 SYKES MF, 1976, J PHYS A-MATH GEN, V9, P97 TAKAYASU H, 1990, FRACTALS PHYSICAL SC TANG LH, 1993, J PHYS-PARIS, V13, P935 TANISHIRO Y, 1981, SURF SCI, V111, P395 TEICHERT C, 1996, PHYS REV B, V53, P16334 TERSOFF J, 1996, PHYS REV LETT, V76, P1675 THEIS W, 1995, PHYS REV LETT, V75, P3328 TSONG TT, 1990, ATOM PROBE FIELD ION TSONG TT, 1991, PHYS REV B, V43, P2007 TUNG RT, 1980, SURF SCI, V97, P73 VANDONI G, 1994, SURF SCI, V320, PL63 VANHOVE MA, 1981, SURF SCI, V103, P189 VEGARD L, 1921, Z PHYS, V5, P17 VENABLES J, 1973, PHILOS MAG, V17, P697 VENABLES JA, 1987, PHYS REV B, V36, P4153 VENABLES JA, 1997, PHYSICA A, V239, P35 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VICSEK T, 1989, FRACTAL GROWTH PHENO VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLARBA M, 1994, SURF SCI, V317, P15 VOIGTLANDER B, 1991, PHYS REV B, V44, P10354 VOIGTLANDER B, 1991, SURF SCI, V255, PL529 VOLMER M, 1926, Z PHYS CHEM, V119, P277 VOTER AF, 1984, J CHEM PHYS, V80, P5832 VOTER AF, 1986, PHYS REV B, V34, P6819 VRIJMOETH J, 1993, MAGNETISM STRUCTURE, P55 WAELCHLI N, IN PRESS WAELCHLI N, 1997, THESIS ECOLE POLYTEC WAGNER C, 1961, Z ELEKTROCHEM, V65, P581 WANG SC, 1991, J CHEM PHYS, V94, P4071 WANG SC, 1993, PHYS REV LETT, V71, P4174 WANG SC, 1993, PHYS REV LETT, V70, P41 WANG SC, 1991, PHYS REV LETT, V67, P2509 WANG SC, 1990, SURF SCI, V239, P301 WATANABE F, 1992, J CHEM PHYS, V96, P3191 WATANABE F, 1991, J CHEM PHYS, V95, P6075 WEN JM, 1996, PHYS REV LETT, V76, P652 WENDELKEN JF, 1978, SURF SCI, V71, P178 WIEDERHOLT T, 1994, SURF SCI, V324, P91 WILDBERGER K, 1995, PHYS REV LETT, V75, P509 WINTTERLIN J, 1996, PHYS REV LETT, V77, P123 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLF DE, 1994, SCALE INVARIANCE INT, P1 WOLLSCHLAGER J, IN PRESS WRIGLEY JD, 1980, PHYS REV LETT, V44, P661 WULFHEKEL W, 1996, SURF SCI, V348, P227 YAMAZAKI K, 1988, SURF SCI, V199, P595 YOUNG RD, 1965, J CHEM PHYS, V42, P3943 ZAMBELLI T, 1996, PHYS REV LETT, V76, P795 ZANGWILL A, 1995, SURF SCI, V326, PL483 ZHANG CM, 1997, J CRYST GROWTH, V174, P851 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZINSMEISTER G, 1971, THIN SOLID FILMS, V7, P51 ZINSMEISTER G, 1966, VACUUM, V16, P529 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 0 BP 125 EP 229 PG 105 JI Surf. Sci. Rep. PY 1998 VL 31 IS 4-6 GA ZR975 J9 SURF SCI REP UT ISI:000074035100001 ER PT J AU Bardotti, L Stoldt, CR Jenks, CJ Bartelt, MC Evans, JW Thiel, PA TI High-resolution LEED profile analysis and diffusion barrier estimation for submonolayer homoepitaxy of Ag/Ag(100) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 35 AB We present a high-resolution low-energy electron diffraction study of two-dimensional island distributions formed by depositing 0.3 ML of Ag on Ag(100). The substrate temperature ranged between 170 and 295 K. From the ring structure or "splitting" of the diffraction profiles, we determine the behavior of the spatial correlation length characterizing the island distribution. The precise relationship between this correlation length and the mean island separation is also determined via an analysis of kinematic diffraction from island distributions in a realistic model of nucleation and growth. Resulting estimates of this separation are consistent with those based on results from a previous scanning tunneling microscopy study at 295 K. From the Arrhenius behavior of the correlation length, we estimate a terrace diffusion barrier for Ag on AE(100) of 0.40 +/- 0.04 eV, with a vibrational prefactor of about 3 X 10(13) s(-1). CR BARDOTTI L, 1998, LANGMUIR, V14, P1487 BARTELT MC, IN PRESS SURF SCI BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1993, SURF SCI, V298, P421 BEDROSSIAN P, 1995, SURF SCI, V334, P1 BOISVERT G, 1995, PHYS REV B, V52, P9078 BREEMAN M, UNPUB DURR H, 1995, SURF SCI, V328, PL527 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1998, MORPHOLOGICAL ORG EP EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1997, SURFACE DIFFUSION AT FLYNNSANDERS DK, 1993, SURF SCI, V298, P378 FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 HAHN P, 1980, J APPL PHYS, V51, P2079 HENZLER M, 1986, SURF SCI, V168, P744 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KOPATZKI E, 1993, SURF SCI, V284, P154 LAGALLY MG, 1979, CHEM PHYSICS SOLID S LANGELAAR MH, 1996, SURF SCI, V352, P597 NYBERG GL, 1993, PHYS REV B, V48, P14509 PIMBLEY JM, 1984, J VAC SCI TECHNOL A, V2, P457 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWAN AK, COMMUNICATION VANDERVEGT HA, 1995, SURF SCI, V330, P101 VANHOVE MA, 1986, LOW ENERGY ELECT DIF VENABLES JA, 1973, PHILOS MAG, V27, P697 WOODRUFF DP, 1994, MODERN TECHNIQUES SU YU BD, 1996, PHYS REV LETT, V77, P1095 ZHANG CM, IN PRESS SURF SCI ZHANG CM, 1997, J CRYST GROWTH, V174, P851 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 8 BP 12544 EP 12549 PG 6 JI Phys. Rev. B-Condens Matter PY 1998 PD MAY 15 VL 57 IS 19 GA ZP518 J9 PHYS REV B-CONDENSED MATTER UT ISI:000073761500108 ER PT J AU Persaud, R Noro, H Venables, JA TI Structure and intermixing in Fe/Fe(110) and Fe/Ag/Fe(110) multilayers SO SURFACE SCIENCE NR 40 AB We have previously shown, in UHV-SEM studies of Ag/Fe(110), that Ag(lll) islands grow on top of two intermediate monolayers of AE in the Stranski-Krastanov (SK) mode, In the present work, Fe was deposited on samples consisting of (1-5 ML) annealed Ag layers on Fe(110). Growth, structure and intermixing were monitored by biased secondary electron imaging (b-SEI), reflection electron diffraction (RHEED) and Auer electron spectroscopy (AES). Ar room temperature (RT), Fe islands grow in a (110) orientation on (1-2 ML) Ag(111)/Fe(110). Due to kinetic limitations, these islands form facets similar to those obtained in the Fe/Fe(110) system. These limitations are overcome in the Fe/Fe(110) system by depositing at 250 degrees C. All three orientations in the Nishiyama-Wassermann relationship are observed for Fe islands grown on thicker, bit not on thinner. Ag layers. Quantitative AES indicates that there is intermixing at the monolayer level between the deposited Fr atoms and underlying Ag layers even at RT, During annealing, or for deposition at 250 degrees C, Ag atoms undergo long range diffusion towards the top of the deposit, but kinetic limitations are not completely overcome for 5 ML Ag layers: for thinner layers, the Fe islands flatten Forming additional substrate layers at the Ag/Fe(110) interface, (C) 1998 Elsevier Science B.V. All rights reserved. CR ALBRECHT M, 1993, SURF SCI, V294, P1 ALLENSPACH R, 1997, SURF SCI, V381, PL573 BAUER E, 1986, PHYS REV B, V33, P3657 BAYREUTHER G, 1983, J MAGN MAGN MATER, V35, P50 BEGLEY AM, 1993, SURF SCI, V280, P289 BOTT M, 1992, SURF SCI, V272, P161 CHAMBLISS DD, 1993, MATER RES SOC S P, V313, P713 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 COYLE ST, 1997, J VAC SCI TECHNOL A, V15, P1785 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 FALICOV LM, 1990, J MATER RES, V5, P1299 FUTAMOTO M, 1985, SURF SCI, V150, P430 GRADMANN U, 1993, HANDB MAG M, V7, P1 GUTIERREZ CJ, 1989, J MAGN MAGN MATER, V80, P299 HARLAND CJ, 1987, P 5 PFEFF M SCAN MIC, V1, P803 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1 JONES GW, 1990, PHYS REV LETT, V65, P3317 KLAUA M, 1997, SURF SCI, V381, P106 KREBS JJ, 1986, J MAGN MAGN MATER, V54-7, P811 LEE KS, 1997, SURF SCI, V377, P918 LEVY PM, 1996, J MAGN MAGN MATER, V164, P284 LEVY PM, 1995, J MAGN MAGN MATER, V151, P315 LUGERT G, 1988, PHYS REV B, V38, P1106 MEYER JA, 1995, SURF SCI, V322, PL275 MORGENSTERN K, 1998, PHYS REV LETT, V80, P556 NORO H, 1996, SURF SCI, V357, P879 NORO H, 1995, VACUUM, V46, P1173 OLSEN GH, 1973, ACTA METALL MATER, V21, P769 PERSAUD R, 1996, MATER RES SOC SYMP P, V399, P207 PERSAUD R, 1994, SCANNING MICROSCOPY, V8, P803 QUI ZQ, 1992, PHYS REV B, V45, P7211 QUI ZQ, 1991, PHYS REV LETT, V67, P1646 ROUSSEL JM, 1997, PHYS REV B, V55, P10931 SANDERS DE, 1992, SURF SCI, V260, P116 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHEN J, 1995, SURF SCI, V328, P32 SNYMAN HC, 1973, J APPL PHYS, V44, P889 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1997, J PHYS D APPL PHYS, V30, P3163 VENABLES JA, 1996, J PHYS D APPL PHYS, V29, P240 TC 0 BP 12 EP 21 PG 10 JI Surf. Sci. PY 1998 PD MAR 20 VL 401 IS 1 GA ZL382 J9 SURFACE SCI UT ISI:000073427300008 ER PT J AU Mortensen, JJ Linderoth, TR Jacobsen, KW Laegsgaard, E Stensgaard, I Besenbacher, F TI Effects of anisotropic diffusion and finite island sizes in homoepitaxial growth Pt on Pt(100)-hex SO SURFACE SCIENCE NR 52 AB The diffusion, nucleation, and growth of Pt on the hexagonally reconstructed Pt(100)-hex surface are investigated. By means of Scanning Tunneling Microscopy (STM), the positions, sizes, and number densities of monoatomically high, rectangular. reconstructed Pt islands, formed in the submonolayer coverage regime. have been determined for substrate temperatures in the range T = 318-497 K and adatom deposition rates from R=4 x 10(- 5) to 7 x 10(-3) site(-1) s(-1). The measurements are compared to the results of kinetic Monte Carlo (KMC) simulations and rate equation theory. The Pt(100)-hex surface exhibits a height modulation caused by the misfit between the topmost quasi- hexagonal layer and the quadratic substrate. resulting in a highly anisotropic large scale surface morphology with six-atom wide channels running along the [1(1) over bar0$] direction. From an autocorrelation analysis of the determined island positions, it is revealed that the islands are distributed with long/short correlation lengths along, perpendicular to the reconstruction channels. The autocorrelation analysis allows us to quantify the degree of anisotropy in adatom diffusion. Island size distributions obtained at different temperatures are Found ro collapse onto a single scaling curve also in the present case of strongly anisotropic diffusion. By comparison to similar curves derived from KMC simulations in a model incorporating anisotropic diffusion and finite island sizes, it is concluded that the critical island size is i=1 and that the mobility of dimers is negligible. Furthermore, an early onset of island coalescence is revealed. From the scaling of the measured saturation island density, N-x similar to(R/h)(chi), where h = v exp(-E-d/k(B)T) is the adatom hopping rate, an effective barrier for diffusion of E-d=0.43 eV and a scaling exponent of chi=0.27 are obtained. From KMC simulations the scaling of N-x is found to be influenced by the finite extent of the islands when diffusion is anisotropic. This is due to the increased ability of the islands to capture adatoms as they grow to cover more diffusion channels. Rate equations incorporating this effect are solved, and a scaling exponent of chi=1/3 is derived in contrast to the chi=1/4 obtained for a 1- D point-island model. (C) 1998 Elsevier Science B.V. CR ABERNATHY DL, 1992, PHYS REV B, V45, P9272 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1993, SURF SCI, V298, P412 BARTETL MC, 1996, PHYS REV B, V54 BONIG L, 1996, SURF SCI, V365, P87 BORG A, 1994, SURF SCI, V306, P10 BOTT M, 1996, PHYS REV LETT, V76, P1304 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BUCHER JP, 1994, EUROPHYS LETT, V27, P473 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 DURR H, 1995, SURF SCI, V328, PL527 EIERDAL L, 1994, SURF SCI, V312, P31 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1993, SURF SCI, V284, PL437 FEIBELMAN PJ, 1995, PHYS REV B, V52, P12444 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FIORENTINI V, 1993, PHYS REV LETT, V71, P1051 GUNTHER S, 1994, PHYS REV LETT, V73, P553 HAGSTRUM S, 1965, PHYS REV LETT, V15, P491 HAHN E, 1994, SURF SCI, V319, P277 HEILMANN P, 1979, SURF SCI, V83, P487 HEINZ K, 1976, ZEIT NAT A, V32, P28 HOPKINSON A, 1993, PHYS REV LETT, V71, P1597 KELLOGG GL, 1991, PHYS REV LETT, V67, P622 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KUHNKE K, 1992, PHYS REV B, V45, P14388 KUIPERS L, 1996, PHYS REV B, V53, PR7646 KUNKEL R, 1990, PHYS REV LETT, V65, P733 KYUNO K, UNPUB LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 LIU SD, 1995, PHYS REV B, V52, P2907 MARTIN R, 1995, SURF SCI, V342, P69 MO YW, 1992, PHYS REV LETT, V69, P986 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1992, SURF SCI, V268, P275 MONTROLL EW, 1976, FLUCTUATION PHENOMEN, P137 MULHERAN PA, 1995, PHIL MAG LETT, V72, P55 MULHERAN PA, 1996, PHYS REV B, V53, P10261 MULLER B, 1996, PHYS REV B, V54, P17858 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 RATSCH C, 1995, SURF SCI, V329, PL599 STOLT K, 1976, J CHEM PHYS, V65, P3206 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VANHOVE MA, 1981, SURF SCI, V109, P189 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VENABLES JA, 1994, SURF SCI, V299, P798 VOTER AF, 1986, PHYS REV B, V34, P6819 ZANGWILL A, 1995, SURF SCI, V326, PL483 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 5 BP 290 EP 313 PG 24 JI Surf. Sci. PY 1998 PD MAR 12 VL 400 IS 1-3 GA ZJ688 J9 SURFACE SCI UT ISI:000073242500030 ER PT J AU Kyuno, K Golzhauser, A Ehrlich, G TI Growth and the diffusion of platinum atoms and dimers on Pt(111) SO SURFACE SCIENCE NR 53 AB The diffusion of platinum adatoms and dimers on Pt(111) has been measured at different temperatures by direct observation in a low-temperature Field ion microscope. The activation energy for single atom motion is found to be 0.260 +/- 0.003 eV, while for dimers ir is 0.37 +/- 0.02 eV. Comparison with previous results obtained in STM studies of the density of islands after deposition From the vapor as well as with theoretical estimates are now possible. The former are in excellent agreement, the latter less so, but empirical extrapolation from the neighboring iridium proves useful. Contributions from dimer diffusion to growth at low temperatures can also be assessed, and are found to be minor. (C) 1998 Elsevier Science B.V. CR BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1994, SURF SCI, V314, PL829 BASSETT DW, 1978, SURF SCI, V70, P520 BOISVERT G, IN PRESS PHYS REV B BOISVERT G, 1996, PHYS REV B, V54, P2880 BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1992, SURF SCI, V272, P161 BRUNE H, 1995, PHYS REV B, V52, P14380 BRUNE H, 1994, PHYS REV LETT, V73, P1955 CHEN CL, 1990, PHYS REV B, V41, P12403 DELORENZI G, 1982, SURF SCI, V116, P391 DESAI PD, 1984, J PHYS CHEM REF DATA, V13, P1069 ESCH S, 1994, PHYS REV LETT, V72, P518 ESCH S, 1996, SURF SCI, V365, P187 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FERRANDO R, 1995, SURF SCI, V331, P920 GOLZHAUSER A, 1996, PHYS REV LETT, V77, P1334 GOLZHAUSER A, 1997, Z PHYS CHEM, V202, P59 GUNTHER S, 1994, PHYS REV LETT, V73, P553 HENZLER M, 1994, STRUCTURE SURFACES, V4, P619 HOHAGE M, 1996, PHYS REV LETT, V76, P2366 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 KALLINTERIS GC, 1996, SURF SCI, V369, P185 KURPICK U, 1997, PHYS REV LETT, V78, P1086 LI YG, 1996, SURF SCI, V351, P189 LIDE DR, 1996, HDB CHEM PHYSICS, P5 LIU CL, 1991, SURF SCI, V253, P334 LIU SD, 1995, PHYS REV B, V52, P2907 LIU SD, 1996, SURF SCI, V359, P245 LIU SD, 1994, SURF SCI, V321, P161 LOVISA MF, 1991, SURF SCI, V246, P43 MICHELY T, 1996, SURF SCI, V349, PL89 MO YW, 1991, PHYS REV LETT, V66, P1998 MORTENSEN JJ, 1996, SPRINGER SERIES SOLI, V121, P173 REED DA, 1985, SURF SCI, V151, P143 REED DA, 1982, SURF SCI, V120, P179 SANDERS DE, 1992, SURF SCI, V264, PL169 SOMORJAI G, 1994, INTRO SURFACE CHEM C STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TWOMEY T, 1988, Z PHYS CHEM NEUE FOL, V160, P1 VENABLES JA, 1997, PHYSICA A, V239, P35 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VENABLES JA, 1994, SURF SCI, V299, P798 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLARBA M, 1994, PHYS REV B, V49, P2208 VILLARBA M, 1994, SURF SCI, V317, P15 WANG RP, 1994, SURF SCI, V301, P253 WANG SC, 1992, PHYS REV LETT, V68, P1160 WANG SC, 1989, PHYS REV LETT, V62, P2297 WANG SC, 1990, SURF SCI, V239, P301 WANG SC, 1988, SURF SCI, V206, P451 TC 19 BP 191 EP 196 PG 6 JI Surf. Sci. PY 1998 PD FEB 1 VL 397 IS 1-3 GA ZD031 J9 SURFACE SCI UT ISI:000072643900025 ER PT J AU Theis-Brohl, K Zoller, I Bodeker, P Schmitte, T Zabel, H Brendel, L Belzer, M Wolf, DE TI Temperature- and rate-dependent RHEED oscillation studies of epitaxial Fe(001) on Cr(001) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 64 AB Reflection high-energy electron diffraction (RHEED) intensity studies were performed during the growth of thin Fe layers on vicinal Cr(001)/Nb(001)/Al2O3(1 (1) over bar 02) substrates. The results are compared with those of recent molecular-beam epitaxy (MBE) growth models. General agreement is found as concerns the linear relationship between the logarithm of the number of RHEED oscillations and the inverse growth temperature. In agreement with theory the RHEED oscillation damping time is found to depend algebraically on the growth rate. However, contrary to expectations, the RHEED oscillations vanish faster at higher growth temperatures and lower growth rates. This behavior can be explained by a change in the growth mode from layer-by-layer to step flow. Numerical simulations in which step bunch melting during the Fe growth on the Cr buffer is assumed reproduce well the present experimental results. [S0163-1829(98)02708-8]. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINASCH G, 1989, PHYS REV B, V39, P4828 BRENDEL L, UNPUB BROHL K, 1993, J CRYST GROWTH, V127, P682 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BURGLER DE, 1997, PHYS REV B, V56, P4149 BURGLER DE, 1996, SURF SCI, V366, P295 DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DINUNZIO S, 1996, THIN SOLID FILMS, V279, P180 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 FULLERTON EE, 1995, MATER RES SOC SYMP P, V384, P145 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUNTHER S, 1994, PHYS REV LETT, V73, P553 GUTEKUNST G, 1997, PHILOS MAG A, V75, P1329 GUTEKUNST G, 1997, PHILOS MAG A, V75, P1357 HARRIS JJ, 1981, SURF SCI, V108, PL444 HARRIS JJ, 1981, SURF SCI, V103, PL190 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1997, J APPL PHYS, V81, P4350 KALLABIS H, 1997, INT J MOD PHYS B, P77 KANEKO T, 1986, J PHYS SOC JPN, V55, P2903 KNOWLES KM, 1987, I PHYS C SER, V90, P245 KOZIOL C, 1987, APPL PHYS LETT, V51, P901 KRUG J, 1990, SOLIDS FAR EQUILIBRI LARSON PK, 1988, NATO ADV STUDIES I B, V188 MAYER J, 1990, ULTRAMICROSCOPY, V33, P51 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PARRATT LG, 1954, PHYS REV, V95, P359 PENG LM, 1990, SURF SCI, V238, PL446 PRESS WH, 1992, NUMERICAL RECIPES C PURCELL ST, 1987, PHYS REV B, V35, P6458 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHATZ A, 1994, SURF SCI, V310, PL595 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHWOEBEL RL, 1968, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHITARA T, 1992, J APPL PHYS, V71, P4299 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 STIERLE A, 1997, EUROPHYS LETT, V37, P365 STIERLE A, 1995, SURF SCI, V327, P9 STOEFFLER D, 1993, MAGNETISM STRUCTURE, P411 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 THEISBROHL K, 1996, PHYS REV B, V53, P11613 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, EUROPHYS LETT, V31, P561 VENABLES JA, 1984, REP PROG PHYS, V47, P399 WANG S, 1992, PHYS REV LETT, V70, P41 WOLF DE, 1994, SCALE INVARIANCE INT WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 WOOD CEC, 1981, SURF SCI, V108, PL441 ZANDVLIET HJW, 1991, J APPL PHYS, V70, P2614 TC 4 BP 4747 EP 4755 PG 9 JI Phys. Rev. B-Condens Matter PY 1998 PD FEB 15 VL 57 IS 8 GA YZ177 J9 PHYS REV B-CONDENSED MATTER UT ISI:000072228000079 ER PT J AU Liu, SD Bonig, L Metiu, H TI The effect of island coalescence on island density during epitaxial growth SO SURFACE SCIENCE NR 45 AB The effect of island coalescence on island density during epitaxial growth is studied by kinetic Monte Carlo simulations. We find that the ratio N/N-c between the island density N at time t and the number N-c of islands per unit area that have coalesced up to the time t is a function of the coverage, but is independent of the specific material or the growth conditions. We analyze the results of our simulations by using several mean-field kinetic models of increasing complexity. They show that the simulation results are reproduced accurately only by a kinetic model which includes the spatial correlation between the location of the islands. The existence of a denuded zone around each island is particularly important, as it pushes the onset of coalescence towards higher coverages and increases the coalescence rate when the process starts. (C) 1997 Elsevier Science B.V. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 BIHAM O, 1995, SURF SCI, V324, P47 BINDER K, 1980, J STAT PHYS, V22, P363 BINDER K, 1975, PHYS REV B, V12, P5261 BINDER K, 1974, PHYS REV LETT, V33, P1006 BOGICEVIC A, PREPRINT BOTT M, 1996, PHYS REV LETT, V76, P1304 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1997, PREPRINT GUNTHER S, 1994, PHYS REV LETT, V73, P553 HAMILTON JC, 1995, PHYS REV LETT, V74, P2760 KANG HC, 1990, J CHEM PHYS, V93, P9018 KASHCHIEV SSD, 1981, CURRENT TOPICS MAT S, V7 KELLOGG GL, 1994, PHYS REV LETT, V73, P1883 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KHARE SV, 1996, PHYS REV B, V54, P11752 KHARE SV, 1995, PHYS REV LETT, V75, P2148 LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 LIU SD, 1995, PHYS REV B, V52, P2907 LIU SD, 1994, SURF SCI, V321, P161 MO YW, 1990, J VAC SCI TECHNOL A, V8, P201 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1991, SURF SCI, V248, P313 PAI WW, PREPRINT RATSCH C, 1994, PHYS REV LETT, V72, P3194 SHI ZP, 1996, PHYS REV LETT, V76, P4927 SHOLL DS, 1995, PHYS REV LETT, V75, P3158 SHOLL DS, 1996, PHYSICA A, V231, P631 SOLER JM, 1994, PHYS REV B, V50, P5578 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VOTER AF, 1986, PHYS REV B, V34, P6819 WANG SC, 1993, PHYS REV LETT, V70, P41 WANG SC, 1990, SURF SCI, V239, P301 WEN JM, 1996, PHYS REV LETT, V76, P562 WEN JM, 1994, PHYS REV LETT, V73, P2591 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 8 BP L56 EP L62 PG 7 JI Surf. Sci. PY 1997 PD DEC 1 VL 392 IS 1-3 GA YL162 J9 SURFACE SCI UT ISI:A1997YL16200011 ER PT J AU Markov, I TI Surface energetics from the transition from step-flow growth to two-dimensional nucleation in metal homoepitaxy SO PHYSICAL REVIEW B-CONDENSED MATTER NR 100 AB Expressions for the critical temperature for transition from step-flow growth to growth by two-dimensional nucleation are derived for the cases of low and high barriers for step-down diffusion. The comparison of the equations with experimental data from diffraction studies of metal homoepitaxy makes possible the evaluation of either the energy to break first- neighbor bonds or the activation energy for step-down diffusion. The expressions are used to evaluate the bend energies and the Ehrlich-Schwoebel barrier for step-down diffusion in the systems Ag/Ag(001), Cu/Cu(001), Pd/Pd(001), Fe/Fe(001), Ag/Ag(111), Cu/Cu(111), and Pt/Pt(111). CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 ANDERSOHN L, 1996, J VAC SCI TECHNOL A, V14, P312 AVRAMI M, 1941, J CHEM PHYS, V9, P177 AVRAMI M, 1940, J CHEM PHYS, V8, P212 AVRAMI M, 1939, J CHEM PHYS, V7, P1103 BALES GS, 1994, PHYS REV B, V50, P6057 BASSETT DW, 1975, PHYSICAL BASIS HETER, P231 BEDROSSIAN P, 1995, SURF SCI, V334, P1 BENNEMA P, 1973, CRYSTAL GROWTH INTRO, P263 BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1993, PHYS REV LETT, V70, P1489 BREEMAN M, 1995, SURF SCI, V323, P71 BROMANN K, 1995, PHYS REV LETT, V75, P677 BRUNE H, 1995, PHYS REV B, V52, PR1430 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHERNOV AA, 1973, ANNU REV MATER SCI, V3, P397 CHERNOV AA, 1977, J CRYST GROWTH, V42, P55 CHERNOV AA, 1977, KRISTALLOGRAFIYA+, V22, P248 CHERNOV AA, 1961, SOV PHYS USP, V4, P116 CHERNOV AA, 1984, SPRINGER SERIES SOLI, V36 COHEN PI, 1989, SURF SCI, V216, P222 DASTOOR PC, 1994, SURF REV LETT, V1, P509 DEMIGUEL JJ, 1988, J CRYST GROWTH, V91, P481 DEMIGUEL JJ, 1987, SURF SCI, V189, P1062 DURR H, 1995, SURF SCI, V328, PL527 EHRLICH G, 1980, ANNU REV PHYS CHEM, V31, P603 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1966, J CHEM PHYS, V44, P1050 EHRLICH G, 1995, SURF SCI, V331, P865 ELLIOTT WC, 1996, PHYS REV B, V54, P17938 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1993, SURF SCI, V298, P378 FEIBELMAN PJ, 1993, COMMENTS CONDENS MAT, V16, P191 FEIBELMAN PJ, 1995, PHYS REV B, V52, P12444 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 FUENZALIDA V, 1991, PHYS REV B, V44, P10835 HARRIS JJ, 1981, SURF SCI, V108, PL144 HARRIS JJ, 1981, SURF SCI, V103, PL90 HATA M, 1991, J CRYST GROWTH, V114, P203 HENZLER M, 1993, PROG SURF SCI, V42, P297 HENZLER M, 1993, SURF SCI, V298, P369 HONIG RE, 1969, RCA REV, V30, P285 IRISAWA T, 1990, J CRYST GROWTH, V99, P491 IWANARI S, 1992, J CRYST GROWTH, V119, P241 JONES GW, 1990, PHYS REV LETT, V65, P3317 KANDEL D, 1997, PHYS REV LETT, V78, P499 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KODIYALAM S, 1996, PHYS REV B, V53, P9913 KOLMOGOROFF AN, 1937, B ACAD SCI URSS SCI, V3, P355 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LEWIS B, 1978, NUCLEATION GROWTH TH LI YG, 1994, SURF SCI, V319, P141 LIU CL, 1994, SURF SCI, V316, P294 MARKOV I, 1995, CRYSTAL GROWTH BEGIN MARKOV I, 1996, PHYS REV B, V54, P17930 MICHELY T, 1996, SURF SCI, V349, PL89 MULLER B, 1996, PHYS REV B, V54, P17858 NAKAHARA H, 1993, SURF SCI, V298, P440 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 NISHINAGA T, 1990, J CRYST GROWTH, V99, P482 PERKINS LS, 1995, SURF SCI, V325, P169 POELSEMA B, 1991, APPL PHYS A-MATER, V53, P369 POELSEMA B, 1993, SPRINGER P PHYSICS, V73, P95 POELSEMA B, 1992, SURF SCI, V272, P269 RATSCH C, 1994, PHYS REV LETT, V72, P3194 ROSENFELD G, 1995, APPL PHYS A-MATER, V61, P455 ROSENFELD G, COMMUNICATION SAKAMOTO T, 1985, APPL PHYS LETT, V47, P617 SAKAMOTO T, 1986, SURF SCI, V174, P651 SATO M, 1995, PHYS REV B, V51, P11172 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SPILLER GDT, 1983, SURF SCI, V131, P517 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STOYANOV S, 1979, CURRENT TOPICS MAT S, V3 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STOYANOV S, 1989, J CRYST GROWTH, V94, P751 STOYANOV S, 1988, SURF SCI, V199, P226 STOYANOV S, 1982, SURF SCI, V116, P313 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUZUKI Y, 1988, JPN J APPL PHYS 2, V27, PL1175 TERSOFF J, 1994, PHYS REV LETT, V72, P266 TSONG TT, 1990, ATOM PROBE FIELD ION TSONG TT, 1980, PHYS REV B, V21, P4564 VANDERVEGT HA, 1995, PHYS REV B, V52, P17443 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANHOVE JM, 1983, J VAC SCI TECHNOL B, V1, P741 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VENABLES JA, 1994, SURF SCI, V299, P798 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VOIGTLANDER B, 1995, PHYS REV B, V51, P7583 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WALTON D, 1962, J CHEM PHYS, V37, P2182 WOOD CEC, 1981, SURF SCI, V108, PL441 WULFHEKEL W, 1996, SURF SCI, V348, P227 YU BD, 1996, PHYS REV LETT, V77, P1095 TC 7 BP 12544 EP 12552 PG 9 JI Phys. Rev. B-Condens Matter PY 1997 PD NOV 15 VL 56 IS 19 GA YH165 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YH16500083 ER PT J AU Lee, SB Amar, JG Family, F TI Thin film growth of incompatible materials SO PHYSICA A NR 42 AB We study both submonolayer and multilayer growth in a model of thin-film growth appropriate for the case in which the deposited material is ''incompatible'' with the substrate in the sense that the deposited atoms do not wet the substrate. We find that the scaling behavior of the monomer and island densities, when considered as functions of the first layer coverage theta(1) and the ratio D/F of monomer diffusion rate D to the deposition flux F is similar to that for ordinary submonolayer growth. However, the surface morphology is very different. In particular, the substrate remains incompletely covered, with large grooves between the three-dimensional islands up to fairly large coverage. On the other hand, the nonwetting (hopping-up) process and the step barrier yield dimer and trimer mobilities which lead to a three-dimensional island-size-distribution scaling function which is dependent on the values of D/F. For D/F = 10(7) and low coverage, the scaling function was found to be similar to that for submonolayer growth with critical island size i=2, while for D/F = 10(8), it appears to be similar to that for i=3. CR AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1996, PHYS REV B, V54, P14742 AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1996, PHYS REV LETT, V77, P4584 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARDOTTI L, 1995, PHYS REV LETT, V74, P4694 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1992, PHYS REV B, V46, P12675 BERRYMAN JG, 1983, PHYS REV A, V27, P1053 BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 CHOPRA KL, 1969, THIN FILM PHENOMENA EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1992, PHYS REV B, V46, P1929 FAMILY F, 1995, MAT SCI ENG B-SOLID, V30, P149 FAMILY F, 1989, PHYS REV A, V40, P3836 FAMILY F, 1988, PHYS REV LETT, V61, P428 FAMILY F, 1986, PHYS REV LETT, V57, P727 GRABOW MH, 1988, SURF SCI, V194, P333 HOSHEN J, 1976, PHYS REV B, V14, P3438 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JENSEN P, 1994, PHYS REV E, V50, P618 KOPATZKI E, 1993, SURF SCI, V284, P154 LEWIS B, 1978, NUCLEATION GROWTH TH LI W, 1993, PHYS REV B, V48, P8336 MATTHEW JW, 1975, EPITAXIAL GROWTH PASHLEY DW, 1965, ADV PHYS, V14, P569 PASHLEY DW, 1964, PHILOS MAG, V10, P127 REYNOLDS PJ, 1980, PHYS REV B, V21, P1223 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 STAUFFER D, 1992, INTRO PERCOLATION TH STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TOKUMOTO H, 1993, JPN J APPL PHYS 1, V32, P1368 TSAO JY, 1993, MAT FUNDAMENTALS MOL VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1987, PHYS REV B, V36, P4153 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VICSEK T, 1984, PHYS REV LETT, V52, P1669 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZINKEALLMANG M, 1992, SURF SCI REP, V16, P377 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 0 BP 337 EP 354 PG 18 JI Physica A PY 1997 PD NOV 1 VL 245 IS 3-4 GA YH906 J9 PHYSICA A UT ISI:A1997YH90600009 ER PT J AU Durr, HA vanderLaan, G Spanke, D Hillebrecht, FU Brookes, NB TI Electron-correlation-induced magnetic order of ultrathin Mn films SO PHYSICAL REVIEW B-CONDENSED MATTER NR 33 AB We studied the electronic and magnetic properties of ultrathin Mn films deposited onto Cu, Ni, and Fe surfaces with x-ray- absorption and resonant-photoemission spectroscopies. The observed strong changes in the Mn 2p branching ratio as a function of coverage and substrate type indicate a change from localized to itinerant behavior. The 2p3p3p resonant photoemission triplet state shows two features which can be assigned to a well-screened and a poorly screened final state. The intensity ratio between these two states allows corroboration of the electron localization. Magnetic circular x-ray dichroism gives the spin magnetic moment of the Mn ground state and information about the Mn-substrate magnetic coupling. Combining these results we propose a simple explanation for the magnetic behavior of the Mn layers. CR BLUGEL S, UNPUB BROOKES NB, 1991, PHYS REV LETT, V67, P354 BUCKLEY ME, 1996, J MAGN MAGN MATER, V156, P211 CARRA P, 1993, PHYS REV LETT, V69, P2307 CHAKARIAN V, 1996, PHYS REV B, V53, P11313 DUNN JH, 1995, J PHYS C SOLID STATE, V7, P1111 DURR HA, 1996, J PHYS-CONDENS MAT, V8, PL111 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HAHN P, 1980, J APPL PHYS, V51, P2079 HENRY Y, 1996, PHYS REV LETT, V76, P1944 JO T, 1991, PHYS REV B, V43, P8771 KIEF MT, 1993, PHYS REV B, V47, P10785 MORRISON TI, 1997, PHYS REV B, V36, P3739 MORRISON TI, 1985, PHYS REV B, V32, P3107 OBRIEN WL, 1995, PHYS REV B, V51, P617 OBRIEN WL, 1994, PHYS REV B, V50, P12672 PEASE DM, 1986, PHYS LETT A, V114, P491 SCHULZ B, 1994, PHYS REV B, V50, P13467 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THOLE BT, 1994, PHYS REV B, V50, P11466 THOLE BT, 1988, PHYS REV B, V38, P3158 THOLE BT, 1995, PHYS REV LETT, V74, P2371 THOLE BT, 1992, PHYS REV LETT, V68, P1943 VANDERLAAN G, 1992, J PHYS-CONDENS MAT, V4, P4181 VANDERLAAN G, 1991, PHYS REV B, V43, P13401 VOGEL J, 1994, PHYS REV B, V50, P7157 WEBER W, 1995, PHYS REV B, V52, P14400 WEBER W, 1996, PHYS REV LETT, V76, P1940 WU RQ, 1995, PHYS REV B, V51, P17131 WUTTIG M, 1996, PHYS REV B, V53, P7551 WUTTIG M, 1993, PHYS REV LETT, V70, P3629 WUTTIG M, 1993, SURF SCI, V292, P189 TC 5 BP 8156 EP 8162 PG 7 JI Phys. Rev. B-Condens Matter PY 1997 PD OCT 1 VL 56 IS 13 GA YD866 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997YD86600071 ER PT J AU Pfandzelter, R Igel, T Winter, H TI Growth and structure of ultrathin Mn films on Fe(001) SO SURFACE SCIENCE NR 52 AB Growth of ultra-thin films of Mn on Fe(001) has been studied by grazing ion-surface Scattering and Auger electron spectroscopy. We find that growth is epitaxial and pseudomorph and starts in a layer-by-layer node. Favorable growth temperature is about 570 K; lower temperatures lead to kinetic roughening. After four layers, the growth mode changes from layer (two- dimensional) to island (three-dimensional) growth for temperatures above about 420 K. Below this temperature, a (metastable) layer-by-layer growth is observed. A quantitative analysis of the data yields the nucleation length in two- dimensional growth and the three-dimensional island density for the different growth temperatures. (C) 1997 Elsevier Science B.V. CR AMAR JG, 1994, PHYS REV B, V50, P8781 ANDERSEN HH, 1977, HYDROGEN STOPPING PO ARGILE C, 1989, SURF SCI REP, V10, P277 ARROTT AS, 1987, J APPL PHYS, V61, P3721 ARROTT AS, 1990, KINETICS ORDERING GR, P321 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BOUARAB S, 1995, PHYS REV B, V52, P10127 COGHLAN WA, 1973, ATOM DATA, V5, P317 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DAVIS LE, 1976, HDB AUGER ELECT SPEC EGELHOFF WF, 1990, J VAC SCI TECHNOL A, V8, P1582 EGELHOFF WF, 1994, ULTRATHIN MAGNETIC S, V1, P220 ENDOH Y, 1971, J PHYS SOC JPN, V30, P1614 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 HASEGAWA M, 1988, NUCL INSTRUM METH B, V33, P334 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1987, J VAC SCI TECHNOL A, V5, P1935 IGEL T, 1996, EUROPHYS LETT, V35, P67 JONKER BT, 1989, PHYS REV B, V39, P1399 KIM SK, 1996, PHYS REV B, V54, P5081 KORTE U, 1997, PHYS REV LETT, V78, P2381 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MIEDEMA AR, 1978, Z METALLKD, V69, P287 MIEDEMA AR, 1978, Z METALLKD, V69, P455 OBRIEN WL, 1994, PHYS REV B, V50, P2963 OUNADJELA K, 1994, PHYS REV B, V49, P8561 PFANDZELTER R, IN PRESS PFANDZELTER R, 1990, NUCL INSTRUM METH B, V48, P351 PFANDZELTER R, 1988, NUCL INSTRUM METH B, V33, P898 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PFANDZELTER R, 1997, SURF SCI, V377, P963 PFANDZELTER R, 1997, SURF SCI, V375, P13 PFANDZELTER R, UNPUB PIERCE DT, 1994, PHYS REV B, V49, P14654 PURCELL ST, 1992, PHYS REV B, V45, P13064 ROTH C, 1995, PHYS REV B, V52, P15691 SCHOU J, 1988, SCANNING MICROSCOPY, V2, P607 SIZMANN R, 1977, FESTKORPERPROBLEME, V17, P261 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TIAN D, 1989, SOLID STATE COMMUN, V70, P199 TSAO JY, 1993, MAT FUNDAMENTALS MOL, P151 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VEGA A, 1996, THIN SOLID FILMS, V275, P103 VENUS D, 1996, PHYS REV B, V53, PR1733 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 WALKER TG, 1993, PHYS REV B, V48, P3563 WINTER H, 1993, IONIZATION SOLIDS HE, P253 WINTER H, 1986, THESIS U MUNCHEN GER WU RQ, 1995, PHYS REV B, V51, P17131 ZIEGLER JF, 1977, HELIUM STOPPING POWE TC 15 BP 317 EP 328 PG 12 JI Surf. Sci. PY 1997 PD NOV 6 VL 389 IS 1-3 GA YF370 J9 SURFACE SCI UT ISI:A1997YF37000033 ER PT J AU Roos, KR Bhutani, R Tringides, MC TI Inter-layer mass transport in a low-coverage, low island- density regime SO SURFACE SCIENCE NR 18 AB We use Monte Carlo simulations to study inter-layer mass transport during submonolayer epitaxial growth in systems where the ratio of the diffusion coefficient for intra-layer mobility to the deposition flux D/F is very high, such that the average diffusion length is comparable to the average terrace length. Under such growth conditions, there exists a low island-density regime where the scaling relation between the island density N and the ratio D/F breaks down. We employ realistic terrace boundaries in our simulations (i.e. atom capture at ascending steps and a step edge barrier E-s between adjacent substrate terraces at descending steps) to investigate how inter-layer diffusion depends on the D/F ratio in this low island-density regime. Information about the magnitude of E-s call be extracted by analyzing the distribution of deposited atoms among the three possible capture sites: ascending steps, descending steps and nucleated islands. We apply the results of these simulations to the growth of Ag/Ag(111). (C) 1997 Elsevier Science B.V. CR AMAR JG, 1994, PHYS REV B, V50, P8781 BALES GS, 1994, PHYS REV B, V50, P6057 BARKEMA GT, 1994, SURF SCI, V306, PL569 BROMANN K, 1995, PHYS REV LETT, V75, P677 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LUO EZ, 1995, APPL PHYS A-MATER, V60, P19 MEYER JA, 1995, PHYS REV B, V51, P14790 MO YW, 1991, PHYS REV LETT, V66, P1998 ROOS KR, 1996, SURF SCI, V355, PL259 ROOS KR, UNPUB ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 STANLEY M, 1996, SURF SCI, V355, PL264 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 ZANGWILL A, 1993, MATER RES SOC S P, V121, P121 TC 2 BP 62 EP 69 PG 8 JI Surf. Sci. PY 1997 PD JUL 20 VL 384 IS 1-3 GA XZ015 J9 SURFACE SCI UT ISI:A1997XZ01500025 ER PT J AU Unguris, J Celotta, RJ Pierce, DT TI Determination of the exchange coupling strengths for Fe/Au/Fe SO PHYSICAL REVIEW LETTERS NR 25 AB We measure, as a function of interlayer thickness, the magnitude of the bilinear exchange coupling in an Fe/Au/Fe trilayer, to investigate the existing order of magnitude discrepancy between theory and experiment. We use Fe whisker substrates, scanning electron microscopy polarization analysis, and reflection high-energy electron diffraction to monitor the sample's magnetic and physical structure, and confocal magneto- optical Kerr effect to determine the coupling. We determine the exchange coupling strengths of the individual oscillating terms. The total bilinear coupling strength is -1.9 +/- 0.2 mJ/m(2), for a Au interlayer thickness of 4 monolayers, in substantial agreement with current theory. CR BRUNO P, 1993, EUROPHYS LETT, V23, P615 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306 EDWARDS DM, 1995, MAT SCI ENG B-SOLID, V31, P25 FERT A, 1994, ULTRATHIN MAGNETIC S, V2 FERT A, 1994, ULTRATHIN MAGNETIC S, V1 FOLKERTS W, 1992, J MAGN MAGN MATER, V111, P306 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1 LENG Q, 1993, J MAGN MAGN MATER, V126, P367 OKUNO SN, 1995, PHYS REV B, V51, P6139 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 PURCELL ST, 1991, PHYS REV LETT, V67, P903 STILES MD, 1996, J APPL PHYS, V79, P5805 STILES MD, 1993, PHYS REV B, V48, P7238 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 UNGURIS J, 1994, J APPL PHYS, V75, P6437 TC 20 BP 2734 EP 2737 PG 4 JI Phys. Rev. Lett. PY 1997 PD OCT 6 VL 79 IS 14 GA XZ544 J9 PHYS REV LETT UT ISI:A1997XZ54400034 ER PT J AU Ferrando, R Hontinfinde, F Levi, AC TI Morphologies in anisotropic cluster growth: A Monte Carlo study on Ag(110) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 31 AB A model with deposition, diffusion, and reversible aggregation on a two-dimensional rectangular lattice with both anisotropic diffusion barriers and anisotropic nearest-neighbor bonds is studied by kinetic Monte Carlo simulations. The model is applied to the case of Ag growth on Ag(110). The barriers for the elementary processes are calculated by many-body tight- binding potentials. At fixed T decreasing the Bur (or at fixed Bur and increasing T), the model displays morphology changes from small isotropic aggregates to one-dimensional strips and then to two-dimensional islands. CR AMAR JG, 1994, PHYS REV B, V50, P8781 BALES GS, 1994, PHYS REV B, V50, P6057 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARKEMA GT, 1994, SURF SCI, V306, PL569 BARTELT MC, 1993, EUROPHYS LETT, V21, P99 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1994, SURF SCI, V314, PL829 BORTZ AB, 1975, J COMPUT PHYS, V17, P10 BUCHER JP, 1994, EUROPHYS LETT, V27, P473 FERRANDO R, 1996, PHYS REV LETT, V76, P4195 FERRANDO R, 1996, SURF SCI, V366, P306 JENSEN P, 1994, PHYS REV B, V50, P15316 JENSEN P, 1994, PHYS REV E, V50, P618 KERN K, 1994, SURF SCI, V319, P277 KUIPERS L, 1996, PHYS REV B, V53, PR7646 LANGELAAR MH, 1996, SURF SCI, V352, P597 LEVI AC, 1997, J PHYS-CONDENS MAT, V9, P299 LIU SD, 1993, PHYS REV LETT, V71, P2967 LU YT, 1990, APPL PHYS LETT, V57, P2683 LU YT, 1991, SURF SCI, V245, P150 MAKSYM PA, 1988, SEMICOND SCI TECH, V3, P594 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MO YW, 1991, PHYS REV LETT, V66, P1998 PERKINS LS, 1994, SURF SCI, V317, PL1152 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RODER H, 1993, NATURE, V366, P141 ROOS KR, 1996, SURF SCI, V355, PL259 ROSATO V, 1989, PHILOS MAG A, V59, P321 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VOTER AF, 1986, PHYS REV B, V34, P6819 YU BD, 1996, PHYS REV LETT, V77, P1095 TC 6 BP R4406 EP R4409 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD AUG 15 VL 56 IS 8 GA XV007 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XV00700029 ER PT J AU Wollschlager, J TI Simple analysis of spot splitting due to diffraction at surfaces with atomic steps SO SURFACE SCIENCE NR 41 AB Probing surface morphology by diffraction techniques is well established, especially for atomic steps on bare surfaces or on adlayer covered surfaces. The diffuse scattering contains information about the terrace size distribution. The sharpness of this distribution determines the shape of the spot profiles. While one observes a single broad shoulder for broad distributions, the shoulder splits into satellites for sharp distributions. For sharp distributions the average terrace size determines mainly the satellite position while the half-width of the satellites is governed by the standard deviation of the distribution. For broad distributions the situation is vice versa. Generally the shoulder can be fitted very well by two satellites with Lorentzian shape so that one can easily obtain the two prominent parameters of the terrace size distribution (average terrace size and standard deviation) from the splitting of the shoulder and the half-widths of the satellites. Additionally, this model is extended to two- dimensional surfaces with step trains. For a single step train with fluctuating steps the diffraction pattern shows a weak diffuse shoulder besides the strong satellites due to the average step-step distance. This effect is also predicted for crossing step trains which mimic mounds on the surface. Therefore equivalent to the one-dimensional case, the average terrace size and the local slope of the surface can be analysed from the satellite position and their half-width. (C) 1997 Elsevier Science B.V. CR AMAR JG, 1996, SURF SCI, V365, P177 AMMER C, 1994, SURF SCI, V307, P570 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1994, SURF SCI, V314, PL835 BARTELT MC, 1993, SURF SCI, V298, P421 BUSCH H, 1986, SURF SCI, V167, P534 DURR H, 1995, SURF SCI, V328, PL527 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, PREPRINT EVANS JW, 1993, SURF SCI, V298, P378 FOLSCH S, 1996, PHYS REV B, V54, P10855 HE YL, 1992, PHYS REV LETT, V69, P3770 HENZLER M, 1988, REFLECTION HIGH ENER, P193 HENZLER M, 1985, SPRINGER SERIES SURF, V3, P14 HENZLER M, 1993, SURF SCI, V298, P369 HENZLER M, 1982, SURF SCI, V152, P963 HORNVONHOEGEN M, 1989, SURF SCI, V167, P39 KRUG J, 1993, PHYS REV LETT, V70, P3271 LAGALLY MG, 1988, REFLECTION HIGH ENER, P139 LU TM, 1982, SURF SCI, V120, P47 LUO EZ, 1995, APPL PHYS A, V60, P60 NYBERG GL, 1993, PHYS REV B, V48, P14509 PFLANZ S, 1992, ACTA CRYSTALLOGR A, V48, P716 PIMBLEY JM, 1984, J APPL PHYS, V55, P182 PRESICCI M, 1984, SURF SCI, V141, P233 PUKITE PR, 1985, SURF SCI, V161, P39 RAO GH, 1991, SURF SCI, V250, P207 ROBINSON IK, 1986, PHYS REV B, V33, P3830 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SPADACINI R, 1983, SURF SCI, V133, P216 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VILLAIN J, 1991, J PHYS I, V1, P19 WOLLSCHLAGER J, 1990, APPL PHYS A-MATER, V50, P57 WOLLSCHLAGER J, 1996, APPL SURF SCI, V104, P392 WOLLSCHLAGER J, 1991, PHYS REV B, V44, P13031 WOLLSCHLAGER J, 1995, SURF SCI, V328, P325 WOLLSCHLAGER J, UNPUB YANG HN, 1993, PHYS REV B, V47, P3911 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 7 BP 103 EP 122 PG 20 JI Surf. Sci. PY 1997 PD JUL 1 VL 383 IS 1 GA XQ634 J9 SURFACE SCI UT ISI:A1997XQ63400014 ER PT J AU Burgler, DE Schmidt, CM Schaller, DM Meisinger, F Hofer, R Guntherodt, HJ TI Optimized epitaxial growth of Fe on Ag(001) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 32 AB We report on a comprehensive study of the growth of 5-nm-thick epitaxial Fe(001) films on Ag(001) substrates which are deposited on Fe-precovered GaAs(001) wafers. We characterize the films in situ by scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and depth profiling to obtain information about the geometrical and chemical surface structure. We find that the surface morphology is improved by either growing or postannealing the films at elevated temperatures. During deposition at and above room temperature, however, an atomic exchange process is activated that results in a thin Ag film (up to 1 ML) ''floating'' on top of the growing Fe film. We propose and confirm a growth procedure that yields clean, Ag-free surfaces with a morphology superior to the other films. This optimized recipe consists of two steps: (i) low-temperature growth of the first 2 nm in order to form a diffusion barrier for the Ag substrate atoms, and (ii) high-temperature deposition of the final 3 nm to take advantage of the improved homoepitaxial growth quality of Fe at elevated temperatures. The relevance of these results with respect to magnetic properties of multilayers is discussed. CR BADER SD, 1987, J APPL PHYS, V61, P3729 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BURGLER DE, 1996, SURF SCI, V366, P295 BURGLER DE, UNPUB DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EGELHOFF WF, 1991, MATER RES SOC S P, V229, P27 FARROW RFC, 1993, NATO ADV STUDY I B, V309 GRUNBERG PA, 1993, NATO ADV SCI INST SE, V309, P87 GURNEY BA, 1990, IEEE T MAGN, V26, P2747 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 MASSALSKI TB, 1986, BINARY ALLOY PHASE D, P24 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 NAGL C, 1995, PHYS REV LETT, V75, P2976 PIERCE DT, 1994, PHYS REV B, V49, P14564 ROTH C, 1993, PHYS REV LETT, V70, P3479 SCHMITZ PJ, 1989, PHYS REV B, V40, P11477 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCOFIELD JH, 1976, J ELECTRON SPECTROSC, V8, P129 SEAH MP, 1990, PRACTICAL SURFACE AN, V1, P201 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SMITH JR, 1987, PHYS REV LETT, V59, P2451 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TYSON WR, 1977, SURF SCI, V62, P267 VEGA A, 1994, PHYS REV B, V49, P12797 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZAHN P, 1995, PHYS REV LETT, V75, P2996 TC 10 BP 4149 EP 4158 PG 10 JI Phys. Rev. B-Condens Matter PY 1997 PD AUG 15 VL 56 IS 7 GA XR964 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XR96400095 ER PT J AU Zhang, ZY Wu, F Lagally, MG TI An atomistic view of Si(001) homoepitaxy SO ANNUAL REVIEW OF MATERIALS SCIENCE NR 122 AB Growth of thin firms from atoms deposited from the gas phase is intrinsically a non-equilibrium phenomenon dictated by a competition between kinetics and thermodynamics. Precise control of the growth becomes possible only after achieving an understanding of this competition. In this review, we present an atomistic view of the various kinetic aspects in a model system, the epitaxy of Si on Si(001), as revealed by scanning tunneling microscopy and total-energy calculations. Fundamentally important issues investigated include adsorption dynamics and energetics, adatom diffusion, nucleation, sticking, and detachment. We also briefly discuss the inverse process of growth, removal by sputtering or etching. We aim our discussions to an understanding at a quantitative level whenever possible. CR ALERHAND OL, 1988, PHYS REV LETT, V61, P1973 AMAR JG, 1995, PHYS REV LETT, V74, P2066 ANDERSOHN L, 1996, J VAC SCI TECHNOL A, V14, P312 BALES GS, 1994, PHYS REV B, V50, P6057 BARNETT SA, 1988, SURF SCI, V198, P133 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1993, PHYS REV B, V47, P13891 BAUER E, 1972, THIN SOLID FILMS, V12, P167 BAUER E, 1958, Z KRISTALLOGR, V110, P3720 BEDROSSIAN P, 1992, PHYS REV LETT, V68, P646 BEDROSSIAN P, 1991, PHYS REV LETT, V67, P124 BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648 BINNING G, 1982, PHYS REV LETT, V49, P57 BOROVSKY B, 1996, DIFFUSION SILICON DI BOTT M, 1996, PHYS REV LETT, V76, P1304 BROCKS G, 1996, PHYS REV LETT, V76, P2362 BROCKS G, 1991, PHYS REV LETT, V66, P1729 BROCKS G, 1992, SURF SCI, V269, P860 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHADI DJ, 1987, PHYS REV LETT, V59, P1691 CHANDER M, 1993, PHYS REV LETT, V71, P4154 DABROWSKI J, 1994, PHYS REV B, V49, P4790 DEJONG T, 1983, J VAC SCI TECHNOL B, V1, P888 DEMIGUEL JJ, 1991, PHYS REV LETT, V67, P2830 DIJKKAMP D, 1992, ORDERING SURFACES IN, P85 DODSON BW, 1986, PHYS REV B, V33, P7361 DURR H, 1995, SURF SCI, V328, PL527 EBERT P, 1993, PHYS REV LETT, V70, P1437 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EINSTEIN TL, 1973, PHYS REV B, V7, P3629 FEHRENBACHER M, 1996, J VAC SCI TECHNOL A, V14, P1499 FEIL H, 1992, PHYS REV LETT, V69, P3076 GARCIA A, 1993, PHYS REV B, V48, P17350 GARRISON BJ, 1987, CHEM PHYS LETT, V146, P553 GOSSMANN HJ, 1985, PHYS REV B, V32, P6 HAMERS RJ, 1989, ULTRAMICROSCOPY, V31, P10 HOEVEN AJ, 1989, PHYS REV LETT, V63, P1830 HUANG ZH, 1991, J VAC SCI TECHNOL A, V9, P876 JONA F, 1967, P 13 SAG ARM MAT RES, P399 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KHOR KE, 1989, PHYS REV B, V39, P1188 KHOR KE, 1988, PHYS REV B, V38, P3318 KHOR KE, 1987, PHYS REV B, V36, P7733 KITAMURA N, 1993, PHYS REV LETT, V71, P2082 LAU KH, 1977, SURF SCI, V65, P607 LEWIS B, 1967, J VAC SCI TECHNOL, V4, P209 LEWIS B, 1978, NUCLEATION GROWTH TH LIU SD, 1995, PHYS REV B, V52, P2907 LU YT, 1991, SURF SCI, V257, P199 MARCHENKO VI, 1980, Z PHYS EKSP TEOR FIZ, V79, P2576 MARCHENKO VI, 1980, ZH EKSP TEOR FIZ, V52, P129 MEN FK, 1988, PHYS REV LETT, V61, P2469 METIU H, 1992, SCIENCE, V255, P1088 MIYAZAKI T, 1990, JPN J APPL PHYS 2, V29, PL1165 MO YW, 1990, J VAC SCI TECHNOL A, V8, P201 MO YW, 1993, PHYS REV LETT, V71, P2923 MO YW, 1992, PHYS REV LETT, V69, P986 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1989, PHYS REV LETT, V63, P2393 MO YW, 1992, SURF SCI, V268, P275 MO YW, 1991, SURF SCI, V248, P313 OSTWALD W, 1900, Z PHYS CHEM, V34, P495 PEARSON C, 1996, PHYS REV LETT, V76, P2306 PEARSON C, 1995, PHYS REV LETT, V74, P2710 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 POON TW, 1990, PHYS REV LETT, V65, P2161 QUESENBERRY PE, 1996, PHYS REV B, V54, P8218 RAMSTAD A, 1995, PHYS REV B, V51, P14504 RATSCH C, 1994, PHYS REV LETT, V72, P3194 ROCKETT A, 1994, SURF SCI, V312, P201 ROLAND C, 1992, PHYS REV B, V46, P13428 ROLAND C, 1991, PHYS REV LETT, V67, P3188 ROSENBERGER F, 1982, INTERFACIAL ASPECTS, P315 SAKAMOTO T, 1985, APPL PHYS LETT, V47, P617 SCHLIER RE, 1959, J CHEM PHYS, V30, P917 SMITH AP, 1995, J CHEM PHYS, V102, P1044 SMITH AP, 1996, PHYS REV LETT, V77, P1326 SRIVASTAVA D, 1991, J CHEM PHYS, V95, P6885 SRIVASTAVA D, 1989, PHYS REV LETT, V63, P302 STILLINGER FH, 1985, PHYS REV B, V31, P5262 STOYANOV S, 1989, J CRYST GROWTH, V94, P751 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1997, PHYS REV B, V55, P1322 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V77, P2518 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459 SWARTZENTRUBER BS, 1990, PHYS REV LETT, V65, P1913 TERSOFF J, 1988, PHYS REV B, V38, P9902 TERSOFF J, 1988, PHYS REV B, V37, P6991 THEIS W, 1996, PHYS REV LETT, V76, P2773 TOH CP, 1993, J PHYS-CONDENS MAT, V5, P551 TOH CP, 1992, PHYS REV B, V45, P11120 TONG X, 1991, PHYS REV LETT, V67, P101 TROMP RM, 1986, PHYS REV B, V24, P5343 TROMP RM, 1985, PHYS REV LETT, V55, P1303 TSAO JY, 1989, PHYS REV B, V40, P11951 TSONG TT, 1973, PHYS REV LETT, V31, P1207 TSONG TT, 1993, PHYS TODAY, V46, P24 VANDEREERDEN JP, 1990, J CRYST GROWTH, V99, P106 VASEK JE, 1995, PHYS REV B, V51, P17207 VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 WANG J, 1991, PHYS REV B, V43, P12571 WANG YJ, 1994, SURF SCI, V311, P64 WHITMAN LJ, 1991, SCIENCE, V251, P1206 WOLKOW RA, 1995, PHYS REV LETT, V74, P4448 WU F, 1993, PHYS REV LETT, V71, P4190 WU F, 1996, THESIS U WISCONSIN M YAMASAKI T, 1996, PHYS REV LETT, V76, P2949 ZANDVLIET HJW, 1992, PHYS REV B, V45, P5965 ZHANG QM, 1995, PHYS REV LETT, V75, P101 ZHANG ZY, 1997, IN PRESS SCIENCE ZHANG ZY, 1992, PHYS REV B, V46, P1917 ZHANG ZY, 1995, PHYS REV LETT, V74, P3644 ZHANG ZY, 1993, PHYS REV LETT, V71, P3677 ZHANG ZY, 1996, SURF REV LETT, V3, P1449 ZHANG ZY, 1993, SURF SCI, V292, PL781 ZHANG ZY, 1991, SURF SCI, V255, PL543 ZHANG ZY, 1991, SURF SCI, V248, PL250 ZHANG ZY, 1991, SURF SCI, V245, P353 TC 4 BP 525 EP 553 PG 29 JI Annu. Rev. Mater. Sci. PY 1997 VL 27 GA XP626 J9 ANNU REV MATER SCI UT ISI:A1997XP62600018 ER PT J AU Amar, JG Family, F TI Transitions in critical size in metal (100) and metal (111) homoepitaxy SO SURFACE SCIENCE NR 39 AB Transitions in the critical island size i in submonolayer growth from i = 1 to i = 2 and From i = 1 to i = 3, corresponding to homoepitaxial growth on metal (111) and (100) surfaces. are studied using kinetic Monte Carlo simulations of a restricted pair-bond model, both with and without island relaxation. and are compared with rate-equation predictions. In both cases, the rate equations significantly underestimate the transition temperature from i = 1 behavior to a higher critical island size. The difference is due to the neglect of spatial correlations in the standard rate-equation approach. A partial solution involving the use of effective detachment rates is proposed. (C) 1997 Elsevier Science B.V. CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMAR JG, 1996, THIN SOLID FILMS, V272, P208 BALES GS, 1994, PHYS REV B, V50, P6057 BARKEMA GT, 1994, SURF SCI, V306, PL569 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1993, SURF SCI, V298, P421 BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 ERNST HJ, 1992, PHYS REV B, V46, P1929 FAMILY F, 1995, MAT SCI ENG B-SOLID, V30, P149 HWANG RQ, 1992, J VAC SCI TECHNOL B, V10, P256 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JIANG Q, 1995, SURF SCI, V324, P357 KOPATZKI E, 1993, SURF SCI, V284, P154 LI W, 1993, PHYS REV B, V48, P8336 MO YW, 1991, PHYS REV LETT, V66, P1998 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 SHI ZP, 1996, PHYS REV LETT, V76, P4927 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 TSUI F, 1996, PHYS REV LETT, V76, P3164 VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1987, PHYS REV B, V36, P4153 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 WALTON D, 1963, J CHEM PHYS, V38, P2698 WALTON D, 1962, J CHEM PHYS, V37, P2182 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 4 BP 170 EP 177 PG 8 JI Surf. Sci. PY 1997 PD JUN 20 VL 382 IS 1-3 GA XQ141 J9 SURFACE SCI UT ISI:A1997XQ14100029 ER PT J AU Stindtmann, M Farle, M Rahman, TS Benabid, L Baberschke, K TI Growth and morphology of Ni(111)/Re(0001) ultrathin films: An in-situ study using scanning tunneling microscopy SO SURFACE SCIENCE NR 21 AB A scanning tunneling microscopy (STM) study is presented for the growth of Ni films on Re (0001) at 300 K. A Ni(111) wedge with a slope of 5 ML cm(-1) was prepared under identical conditions. STM images were recorded in ultrahigh vacuum at 300 K on areas of the wedge with constant coverage. Nearly ideal two-dimensional growth is observed for the first three layers. The second layer grows only after the first layer is 90% complete. For films with thicknesses 2 < d less than or equal to 9 ML, a perfect hexagonal dislocation network which matches the known 9/10 misfit of Ni(111) with respect to Re(0001) is observed across 600 x 600 nm(2) images. The corrugation of similar to 0.3 Angstrom, observed at 3 ML, decreases with an increasing number of layers and vanishes completely around 10 ML. The dislocation pattern does not seem to be disturbed by the presence of monoatomic steps. A characteristic change in the pattern of the dislocation network is observed from 1 to 3 ML. (C) 1997 Elsevier Science B.V. CR AMMER C, 1996, P ISCOS 5 TU 049 P4 ASPELMEIER A, 1994, J MAGN MAGN MATER, V132, P22 BABERSCHKE K, 1996, APPL PHYS A-MATER, V62, P417 BERGHOLZ R, 1984, J MAGN MAGN MATER, V45, P389 DONGQI L, 1994, PHYS REV LETT, V72, P3112 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELMERS HJ, 1994, PHYS REV LETT, V73, P898 ERNST HJ, 1992, SURF SCI, V275, PL682 GARREAU G, 1997, PHYS REV B, V55, P330 GUNTHER C, 1995, PHYS REV LETT, V74, P754 HAMILTON JC, 1995, PHYS REV LETT, V75, P882 LI Y, 1992, PHYS REV LETT, V69, P1209 MEINEL K, 1988, J CRYST GROWTH, V89, P447 MICHELY T, 1996, SURF SCI, V349, PL89 NICKEL R, 1995, THESIS FREIE U BERLI POTSCHKE GO, 1991, PHYS REV B, V44, P1442 RUEBUSCH SD, 1996, P ICSOS 5 FR 041 P4 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TISCHER M, 1994, J MAGN MAGN MATER, V135, PL1 VLIEG E, 1994, PHYS REV LETT, V72, P3843 TC 9 BP 12 EP 17 PG 6 JI Surf. Sci. PY 1997 PD JUN 1 VL 381 IS 1 GA XH339 J9 SURFACE SCI UT ISI:A1997XH33900011 ER PT J AU Zhang, CM Bartelt, MC Wen, JM Jenks, CJ Evans, JW Thiel, PA TI The initial stages of Ag/Ag(100) homoepitaxy: Scanning tunneling microscopy experiments and Monte Carlo simulations SO JOURNAL OF CRYSTAL GROWTH NR 31 AB Results are presented of a scanning tunneling microscopy study of Ag/Ag(100) homoepitaxy. We examine both submonolayer nucleation and growth of two-dimensional islands, for temperatures between 295 and 370 K, and the initial stages of multilayer kinetic roughening at 295 K. Comparison with results of Monte Carlo simulations for an appropriate model for metal(100) homoepitaxy produces estimates of 330 +/- 5 meV for the terrace diffusion barrier, and an effective value of 30 +/- 5 meV for the additional step-edge barrier (assuming a common prefactor of 10(12)/s). We also assess adatom-adatom bonding by analyzing the transition from irreversible to reversible island formation. CR AMAR JG, 1995, PHYS REV B, V52, P13801 AMMER C, 1990, SOLID STATE PHENOM, V12, P73 BARTELT MC, 1996, MATER RES SOC SYMP P, V399, P89 BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1993, SURF SCI, V298, P421 BEDROSSIAN P, 1995, SURF SCI, V334, P1 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, 1996, PHYS REV B, V54 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1996, LANGMUIR, V12, P217 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 FEIBELMAN PJ, 1995, PHYS REV B, V52, P12444 FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 FLYNNSANDERS JW, 1993, SURF SCI, V298, P378 KOPATZKI E, 1993, SURF SCI, V284, P154 MEYER JA, 1995, PHYS REV B, V51, P14790 SANDERS DE, 1991, STRUCTURE SURFACES, V3, P38 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SMILAUER P, 1995, PHYS REV B, V51, P14798 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUZUKI Y, 1988, JPN J APPL PHYS 2, V27, PL1175 VANDERVEGT HA, 1995, SURF SCI, V330, P101 VENABLES JA, 1973, PHILOS MAG, V27, P697 WEN JM, 1996, PHYS REV LETT, V76, P652 ZHANG CM, IN PRESS SURF SCI ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1995, SURF SCI, V328, PL527 TC 10 BP 851 EP 857 PG 7 JI J. Cryst. Growth PY 1997 PD APR VL 174 IS 1-4 GA XJ186 J9 J CRYST GROWTH UT ISI:A1997XJ18600130 ER PT J AU Hwang, RQ Bartelt, MC TI Scanning tunneling microscopy studies of metal on metal epitaxy SO CHEMICAL REVIEWS NR 105 CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMARJ G, 1996, PHYS REV B, V54, P14748 BALES GS, 1997, PHYS REV B, V55, PR1973 BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1996, MATER RES SOC SYMP P, V399, P89 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1993, SURF SCI, V298, P421 BARTH JV, 1993, SURF SCI, V292, PL769 BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1992, SURF SCI, V272, P161 BREEMAN M, 1995, SURF SCI, V323, P71 BREEMAN M, 1996, THIN SOLID FILMS, V272, P195 BROMANN K, 1995, PHYS REV LETT, V75, P677 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1994, PHYS REV B, V49, P2997 BRUNE H, 1996, SURF SCI, V349, PL115 CARTER CB, 1995, PHYS REV B, V51, P4730 CHAMBLISS DD, 1995, IBM J RES DEV, V39, P639 CHAMBLISS DD, 1993, J MAGN MAGN MATER, V121, P1 CHAMBLISS DD, 1992, J VAC SCI TECHNOL A, V10, P1993 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P1721 CHAMBLISS DD, 1992, SURF SCI, V264, PL187 CHANG SL, 1996, PHYS REV B, V53, P13747 CHIANG S, 1994, J VAC SCI TECHNOL B, V12, P1747 COHEN PI, 1989, SURF SCI, V216, P222 ELKINANI I, 1994, J PHYS I, V4, P949 ELLIOTT WC, 1996, PHYSICA B, V221, P65 ESCH S, 1994, PHYS REV LETT, V72, P518 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1997, SURFACE DIFFUSION AT FEIBELMAN PJ, 1995, PHYS REV B, V52, P12444 FIGUERA JD, 1996, SURF SCI, V349, PL139 FLORES T, 1997, SURF SCI, V371, P1 FOILES SM, 1993, SURF SCI, V292, P5 FOILES SM, 1987, SURF SCI, V191, P329 FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P205 GUNTHER C, 1995, PHYS REV LETT, V74, P754 HAMILTON JC, 1995, PHYS REV LETT, V75, P882 HANSMA PK, 1987, J APPL PHYS, V61, PR1 HIRTH JP, 1992, THEORY DISLOCATIONS HOHAGE M, 1996, PHYS REV LETT, V76, P2366 HWANG RQ, 1992, J VAC SCI TECHNOL A, V10, P1970 HWANG RQ, 1996, PHYS REV LETT, V76, P4757 HWANG RQ, 1995, PHYS REV LETT, V75, P4242 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V75, P489 JOHNSON KE, 1993, J VAC SCI TECHNOL A, V11, P1654 JOHNSON KE, 1994, SURF SCI, V313, PL811 KARIOTIS R, 1989, SURF SCI, V216, P557 KEATING PN, 1966, PHYS REV, V145, P637 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KOPATZKI E, 1993, SURF SCI, V284, P154 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 MEYER JA, 1995, PHYS REV B, V51, P14790 MEYER JA, 1995, SURF SCI, V322, PL275 MOTTET C, 1992, PHYS REV B, V46, P16018 MULLER B, 1996, PHYS REV B, V54, P17858 MULLER B, 1996, PHYS REV LETT, V76, P2358 MURRAY PW, 1997, PHYS REV B, V55, P1380 MURRAY PW, 1995, PHYS REV B, V52, PR1444 NAGL C, 1995, PHYS REV LETT, V75, P2976 NAGL C, 1996, SURF SCI, V369, P159 NEDELMANN L, 1996, J VAC SCI TECHNOL A, V14, P1878 NIELSEN LP, 1995, PHYS REV LETT, V74, P1159 OPPO S, 1993, PHYS REV LETT, V71, P2437 PETRICH GS, 1989, J CRYST GROWTH, V95, P23 POTSCHKE GO, 1991, PHYS REV B, V44, P1442 RATSCH C, 1994, PHYS REV LETT, V72, P3994 RATSCH C, 1995, SURF SCI, V329, PL599 RESH J, 1991, J VAC SCI TECHNOL A, V9, P1551 RODER H, 1993, PHYS REV LETT, V71, P2086 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 ROUSSET S, 1992, PHYS REV LETT, V69, P3200 ROUSSET S, 1993, SURF SCI, V287, P941 SCHMID AK, 1993, PHYS REV B, V48, P2855 SCHMID AK, 1997, PHYS REV LETT, V78, P3507 SCHMID AK, 1996, PHYS REV LETT, V77, P2977 SCHRODER J, 1992, ULTRAMICROSCOPY, V42, P475 SHEN J, 1995, SURF SCI, V328, P32 SMILAUER P, 1995, PHYS REV B, V51, P14798 SPECKMANN M, 1995, PHYS REV LETT, V75, P2035 STEVENS JL, 1995, PHYS REV LETT, V74, P2078 STOYANOV S, 1982, SURF SCI, V116, P313 STROSCIO JA, 1992, J VAC SCI TECHNOL A, V10, P1981 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459 TERSOFF J, 1995, PHYS REV LETT, V74, P434 TERSOFF J, 1994, PHYS REV LETT, V72, P266 TSUI F, 1996, PHYS REV LETT, V76, P3164 VANDERMERWE JH, 1996, INTERFACE SCI, V3, P303 VANDERMERWE JH, 1974, TREATISE MAT SCI TK, V2, P1 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VENABLES JA, 1973, PHILOS MAG, V27, P697 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WANG ZQ, 1987, SOLID STATE COMMUN, V62, P181 WULFHEKEL W, 1996, SURF SCI, V348, P227 ZHANG CM, 1997, IN PRESS SURF SCI TC 14 BP 1063 EP 1082 PG 20 JI Chem. Rev. PY 1997 PD JUN VL 97 IS 4 GA XF530 J9 CHEM REV UT ISI:A1997XF53000004 ER PT J AU Zhang, ZY Lagally, MG TI Atomistic processes in the early stages of thin-film growth SO SCIENCE NR 111 AB Growth of thin films from atoms deposited from the gas phase is intrinsically a non-equilibrium phenomenon governed by a competition between kinetics and thermodynamics. Precise control of the growth and thus of the properties of deposited films becomes possible only after an understanding of this competition is achieved. Here, the atomic nature of the most important kinetic mechanisms of film growth is explored. These mechanisms include adatom diffusion on terraces, along steps, and around island corners; nucleation and dynamics of the stable nucleus; atom attachment to and detachment from terraces and islands; and interlayer mass transport. Ways to manipulate the growth kinetics in order to select a desired growth mode are briefly addressed. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 ANDERSOHN L, 1996, J VAC SCI TECHNOL A, V14, P312 BALES GS, 1994, PHYS REV B, V50, P6057 BALES GS, 1995, PHYS REV LETT, V74, P4879 BARTELT MC, 1993, PHYS REV B, V47, P13891 BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648 BINNING G, 1982, PHYS REV LETT, V49, P57 BOTT M, 1996, PHYS REV LETT, V76, P1304 BROCKS G, 1996, PHYS REV LETT, V76, P2362 BROCKS G, 1992, SURF SCI, V269, P860 BROMANN K, 1995, PHYS REV LETT, V75, P677 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1996, SURF SCI, V349, PL115 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHEN CL, 1990, PHYS REV LETT, V64, P3147 COPEL M, 1989, PHYS REV LETT, V63, P632 DIJKKAMP D, 1992, ORDERING SURFACES IN, P85 DURR H, 1995, SURF SCI, V328, PL527 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ESCH S, 1994, PHYS REV LETT, V72, P518 FAHRENBACHER M, 1996, J VAC SCI TECHNOL A, V14, P1499 FEIBELMAN PJ, 1990, PHYS REV LETT, V65, P729 FU TY, 1996, PHYS REV B, V54, P5932 HAMERS RJ, 1989, ULTRAMICROSCOPY, V31, P10 HAMILTON JC, 1995, PHYS REV LETT, V74, P2760 HARRIS S, 1995, PHYS REV B, V52, P16793 HELLER EJ, 1992, APPL PHYS LETT, V60, P2675 HOHAGE M, 1996, PHYS REV LETT, V76, P2366 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JACOBSEN J, 1996, SURF SCI, V359, P37 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANDEL D, 1995, PHYS REV LETT, V75, P2742 KELLOGG GL, 1994, PHYS REV LETT, V73, P1833 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KHARE SV, 1995, PHYS REV LETT, V75, P2148 KITAMURA N, 1993, PHYS REV LETT, V71, P2082 KITAMURA N, 1993, PHYS REV LETT, V71, P2923 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LEWIS B, 1967, J VAC SCI TECHNOL, V4, P209 LIU F, 1996, PHYS REV LETT, V76, P3156 LIU SD, 1995, PHYS REV B, V52, P2907 LIU SD, 1993, PHYS REV LETT, V71, P2967 MARKOV I, 1994, PHYS REV B, V50, P11271 MARKOV VA, 1991, SURF SCI, V250, P229 MEAKIN P, 1983, PHYS REV A, V27, P1495 METIU H, 1992, SCIENCE, V255, P1088 MEYER JA, 1995, PHYS REV B, V51, P14790 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MO YW, 1990, J VAC SCI TECHNOL A, V8, P201 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1989, PHYS REV LETT, V63, P2393 MO YW, 1992, SURF SCI, V268, P275 MORGENSTERN K, 1995, PHYS REV LETT, V74, P2058 OPPO S, 1993, PHYS REV LETT, V71, P2437 OSTWALD W, 1900, Z PHYS CHEM, V34, P495 PEARSON C, 1996, PHYS REV LETT, V76, P2306 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 POHL DW, 1988, REV SCI INSTRUM, V59, P840 QUESENBERRY PE, 1996, PHYS REV B, V54, P8218 RATSCH C, 1996, IN PRESS P NATO ASI RATSCH C, 1994, PHYS REV LETT, V72, P3194 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 ROUSSET S, 1992, PHYS REV LETT, V69, P3200 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHI ZP, 1996, PHYS REV LETT, V76, P4927 SMMITH AP, 1996, PHHYS REV LETT, V77, P1326 STEIGERWALD DA, 1988, SURF SCI, V202, P472 STRANSKI IN, 1938, SITZUNGSBER AK 2B MN, V146, P797 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUTTER P, 1994, APPL PHYS LETT, V65, P2220 SUTTER P, 1995, J CRYST GROWTH, V157, P172 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V77, P2518 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459 SWARTZENTRUBER BS, 1990, PHYS REV LETT, V65, P1913 TERSOFF J, 1996, PHYS REV LETT, V76, P1675 TERSOFF J, 1995, PHYS REV LETT, V75, P2730 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THEIS W, 1996, PHYS REV LETT, V76, P2773 TROMP RM, 1985, PHYS REV LETT, V55, P1303 TSONG TT, 1993, PHYS TODAY, V46, P24 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VASEK JE, 1995, PHYS REV B, V51, P17207 VENABLES JA, 1973, PHILOS MAG, V27, P697 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 VOLMER M, 1926, Z PHYS CHEM, V119, P277 VOTER AF, 1986, PHYS REV B, V34, P6819 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WANG SC, 1990, SURF SCI, V239, P301 WANG XS, 1990, PHYS REV LETT, V65, P2430 WEN JM, 1994, PHYS REV LETT, V73, P2591 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLKOW RA, 1995, PHYS REV LETT, V74, P4448 WU F, 1995, THESIS U WISCONSINMA YAMASAKI T, 1996, PHYS REV LETT, V76, P2949 ZHANG ZY, 1993, PHYS REV B, V48, P4952 ZHANG ZY, 1995, PHYS REV LETT, V74, P3644 ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZHANG ZY, 1994, PHYS REV LETT, V72, P693 ZHANG ZY, 1996, SURF REV LETT, V3, P1449 ZHANG ZY, 1991, SURF SCI, V255, PL543 ZHANG ZY, 1991, SURF SCI, V248, PL250 ZHANG ZY, UNPUB ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 87 BP 377 EP 383 PG 7 JI Science PY 1997 PD APR 18 VL 276 IS 5311 GA WU477 J9 SCIENCE UT ISI:A1997WU47700029 ER PT J AU Hicken, RJ Gray, SJ Ercole, A Daboo, C Freeland, DJ Gu, E Ahmad, E Bland, JAC TI Magnetic anistropy in ultrathin epitaxial Fe/Ag(100) films with overlayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 82 AB In situ Brillouin light-scattering and magneto-optical Kerr effect measurements have been used to determine the values of the magnetic anisotropy constants in ultrathin epitaxial Fe/Ag(100) films both during the deposition of the Fe layer and also during the deposition of overlayers of Ag and Cr. The structural properties of the films have been investigated by means of reflection high-energy electron diffraction and low- energy electron diffraction. We show that the values of the cubic magnetocrystalline anisotropy constant K-l and the magnetic surface anisotropy constant K-s are strongly dependent upon the value of the Fe layer thickness d, and that they differ in sensitivity to the surface structure of the substrate. We find that the thickness of a Ag or Cr overlayer must be at least 3 ML thick before the value of K-s is saturated. Cr and Ag capping layers are found to have a qualitatively different effect upon the magnetic anisotropy which we attribute to the presence of magnetic order in the Cr. CR ABANOV A, 1995, PHYS REV B, V51, P1023 ARAYAPOCHET J, 1988, PHYS REV B, V38, P7846 BADER SD, 1994, J APPL PHYS, V76, P6419 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BEAUVILLAIN P, 1994, J APPL PHYS, V76, P6078 BERGER A, 1996, J APPL PHYS, V79, P5619 BERGER A, 1996, PHYS REV LETT, V76, P519 BLAND JAC, 1992, J MAGN MAGN MATER, V104, P1909 BLAND JAC, 1995, PHYS REV B, V51, P258 BURGLER D, UNPUB CABANEL R, 1990, J APPL PHYS, V67, P5409 CARL A, 1995, PHYS REV LETT, V74, P190 CELINSKI Z, 1991, J MAGN MAGN MATER, V99, PL25 CHEN J, 1992, PHYS REV B, V45, P3636 CHUI ST, 1995, PHYS REV LETT, V74, P3896 CICCACCI F, 1993, SOLID STATE COMMUN, V88, P827 COCHRAN JF, 1990, PHYS REV B, V42, P508 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEROSSI S, 1994, SURF SCI, V307, P496 DRAAISMA HJG, 1988, J APPL PHYS, V64, P3610 DUTCHER JR, 1989, PHYS REV B, V39, P10430 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EGELHOFF WFJ, 1994, ULTRATHIN MAGNETIC 1 ENGEL BN, 1994, J APPL PHYS, V75, P6401 ERCOLE A, UNPUB ERICKSON RP, 1992, PHYS REV B, V46, P861 ERICKSON RP, 1991, PHYS REV B, V44, P11825 ERICKSON RP, 1991, PHYS REV B, V43, P11527 ETIENNE P, 1993, J PHYS III, V3, P1581 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 GAY JG, 1986, PHYS REV LETT, V56, P2728 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1991, J APPL PHYS, V70, P5769 HEINRICH B, 1988, J APPL PHYS, V63, P3863 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1987, PHYS REV LETT, V59, P1756 HICKEN RJ, 1996, J APPL PHYS, V79, P4987 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 HICKEN RJ, 1992, PHYS REV B, V46, P11688 HILLEBRANDS B, 1996, PHYS REV B, V53, P10548 HILLEBRANDS B, 1987, PHYS REV B, V36, P2450 HILLEBRANDS B, TFPDAS3 JENSEN PJ, 1990, PHYS REV B, V42, P849 JONKER BT, 1986, PHYS REV LETT, V57, P142 KASHUBA A, 1993, PHYS REV LETT, V78, P3155 KASHUBA AB, 1993, PHYS REV B, V48, P10335 KCON NC, 1987, PHYS REV LETT, V59, P2463 KOHLHEPP J, 1995, J MAGN MAGN MATER, V139, P347 KOWALEWSKI M, COMMUNICATION LI H, 1990, PHYS REV B, V42, P9195 LI H, 1989, PHYS REV B, V40, P10241 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MOSCHEL A, 1994, PHYS REV B, V49, P12868 NEEL L, 1954, J PHYS RADIUM, V15, P225 OHNISHI S, 1984, PHYS REV B, V30, P36 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PESCIA D, 1990, PHYS REV LETT, V65, P2599 PURCELL ST, 1988, J VAC SCI TECHNOL B, V6, P794 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 QUI ZQ, 1994, PHYS REV B, V49, P8797 RICHTER R, 1985, PHYS REV LETT, V54, P2704 SCHURER PJ, 1995, PHYS REV B, V51, P2506 SMITH GC, 1982, SURF SCI, V119, PL287 STAMPANONI M, 1987, PHYS REV LETT, V59, P2483 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P26 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG H, 1992, J MAGN MAGN MATER, V104, P1705 THURMER K, 1995, PHYS REV LETT, V75, P1767 TURTUR C, 1994, PHYS REV LETT, V72, P1557 TYSON WR, 1977, SURF SCI, V62, P267 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VENUS D, 1996, PHYS REV B, V53, PR1733 WIEDMANN MH, 1995, J MAGN MAGN MATER, V148, P125 WOOTEN CL, 1994, PHYS REV B, V49, P10023 YAFET Y, 1988, PHYS REV B, V38, P9145 TC 7 BP 5898 EP 5907 PG 10 JI Phys. Rev. B-Condens Matter PY 1997 PD MAR 1 VL 55 IS 9 GA WN218 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WN21800070 ER PT J AU Li, J Rojo, AG Sander, LM TI Anomalous dimension and spatial correlations in a point-island model SO PHYSICAL REVIEW LETTERS NR 21 AB We examine the island size distribution function and spatial correlation function of a model for island growth in the submonolayer regime in both one and two dimensions. The islands do not grow in shape and there is no flux of adatoms during the growth. We study the cases of various critical island sizes i for nucleation as a function of initial coverage. We found anomalous dimension of the island size distribution for large i. A many body random walk theory is presented to explain the anomaly. Using a version of mean-field theory we also obtain a closed form for the spatial correlation function. Our analytic results are verified by Monte Carlo simulations. CR BARRY D, 1995, RANDOM WALKS RANDOM, V1 BARTELT MC, 1996, PHYS REV B, V54, P17359 BARTELT MC, 1993, PHYS REV B, V47, P13891 BARTELT MC, 1992, PHYS REV B, V46, P12675 BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1996, LANGMUIR, V12, P217 FAMILY F, 1988, PHYS REV LETT, V61, P428 GOLDENFELD N, 1992, LECT PHASE TRANSITIO JACQUES G, 1994, PHYS REV B, V50, P8781 JACQUES G, 1995, PHYS REV LETT, V74, P2066 JOHNSON MD, THESIS U MICHIGAN LI J, 1991, J PHYS A, V24, P4697 LI W, 1993, PHYS REV B, V48, P8336 MICHAEL E, 1984, J STAT PHYS, V34, P665 MO YW, 1991, PHYS REV LETT, V66, P1998 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P951 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 4 BP 1747 EP 1750 PG 4 JI Phys. Rev. Lett. PY 1997 PD MAR 3 VL 78 IS 9 GA WL506 J9 PHYS REV LETT UT ISI:A1997WL50600036 ER PT J AU Krug, J TI Origins of scale invariance in growth processes SO ADVANCES IN PHYSICS NR 421 AB This review describes recent progress in the understanding of the emergence of scale invariance in far-from-equilibrium growth. The first section is devoted to 'solvable' needle models which illustrate the relationship between long-range competition mediated, for example, through shadowing or a Laplacian field, and scale invariance. The following three sections, which comprise the hulk of the article, develop the theory of kinetic surface roughening in a comprehensive manner. The two large classes of kinetic roughening processes, characterized by non-conserved (Kardar-Parisi-Zhang) and conserved (ideal molecular beam epitaxy (MBE)) surface relaxation, respectively, are treated separately. For the former case, which has been extensively reviewed elsewhere, the focus is on recent developments. For the case of ideal MBE we give a systematic derivation of the various universality classes in terms of microscopic processes, and compare the predictions of continuum theory to computer simulations and experiments. CR ADAMS DP, 1993, APPL PHYS LETT, V63, P3571 ALANISSILA T, 1994, J STAT PHYS, V76, P1083 ALANISSILA T, 1993, J STAT PHYS, V72, P207 ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, 1992, PHYS REV A, V45, P5378 AMAR JG, 1993, PHYS REV E, V47, P3242 AMARAL LAN, 1995, PHYS REV E, V52, P4087 AMARAL LAN, 1995, PHYS REV E, V51, P4655 AMMER C, 1994, SURF SCI, V307, P570 ARSENIN I, 1994, PHYS REV E, V49, PR3561 BAHR HA, 1992, EUROPHYS LETT, V19, P485 BAHR HA, 1995, FRACTURE MECH CERAMI, V11 BAK P, 1987, PHYS REV LETT, V59, P381 BALENTS L, 1994, PHYS REV B, V49, P13030 BALES GS, 1991, J VAC SCI TECHNOL A, V9, P145 BALES GS, 1990, PHYS REV B, V41, P5500 BALES GS, 1990, SCIENCE, V249, P264 BALL RC, 1991, PHYS REV A, V44, PR828 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARABASI AL, 1992, PHYS REV LETT, V68, P3729 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT NC, 1993, PHYS REV B, V48, P15453 BECCARIA M, 1994, PHYS REV E, V50, P4560 BECKER V, 1992, EUROPHYS LETT, V19, P13 BENA I, 1993, PHYS REV B, V47, P7408 BHATTACHARJEE JK, 1996, PHYS REV E, V53, PR1313 BIHAM O, MODEL DIFFUSION ISLA BLUM T, 1995, PHYS REV E, V52, P4741 BOHR T, 1992, PHYS REV A, V46, P4791 BOHR T, 1993, PHYS REV LETT, V70, P2892 BOHR T, 1992, PHYSICA D, V59, P177 BONZEL HP, 1976, CRC CRIT R SOLID ST, V6, P171 BOTT M, 1992, SURF SCI, V272, P161 BOUCHAUD JP, 1993, PHYS REV E, V48, P635 BOUCHAUD JP, 1993, PHYS REV E, V47, PR1455 BRAY AJ, 1994, ADV PHYS, V43, P357 BRENDEL L, 1994, THESIS U DUISBURG BURGERS JM, 1974, NONLINEAR DIFFUSION BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 BUTTIKER M, 1987, Z PHYS B CON MAT, V68, P161 CABRERA N, 1958, GROWTH PERFECTION CR, P393 CAROLI B, 1991, SOLIDS FAR EQUILIBRI, P155 CATES ME, 1988, J PHYS-PARIS, V49, P2009 CATES ME, 1986, PHYS REV A, V34, P5007 CAVAILLE JY, 1978, SURF SCI, V75, P342 CHAKRABARTI A, 1990, J PHYS A-MATH GEN, V23, PL919 CHEVRIER J, 1994, J PHYS I, V4, P1309 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 CHOW CC, 1995, PHYSICA D, V84, P494 CLARKE S, 1987, PHYS REV LETT, V58, P2235 CLARKE S, 1991, SURF SCI, V255, P91 COHEN PI, 1989, SURF SCI, V216, P222 CORNELL SJ, 1991, PHYS REV B, V44, P12263 COTTA MA, 1994, J APPL PHYS, V75, P630 COTTA MA, 1993, PHYS REV LETT, V70, P4106 COUDER Y, 1990, PHYS REV A, V42, P3499 CSAHOK Z, 1993, J PHYS A-MATH GEN, V26, PL171 CUERNO R, 1995, PHYS REV E, V52, P4853 CUERNO R, 1995, PHYS REV LETT, V74, P4746 DASSARMA S, 1990, J VAC SCI TECHNOL A, V8, P2714 DASSARMA S, 1994, PHYS REV B, V49, P10693 DASSARMA S, 1996, PHYS REV E, V53, P359 DASSARMA S, 1994, PHYS REV E, V50, PR4275 DASSARMA S, 1994, PHYS REV E, V49, P122 DASSARMA S, 1993, PHYS REV LETT, V71, P2510 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 DASSARMA S, 1991, PHYS REV LETT, V66, P325 DERRIDA B, 1993, J PHYS A-MATH GEN, V26, P1493 DERRIDA B, 1993, J PHYS A-MATH GEN, V26, P4911 DERRIDA B, 1991, J PHYS A-MATH GEN, V24, P4805 DERRIDA B, 1993, J PHYS I, V3, P311 DERRIDA B, 1995, J STAT PHYS, V79, P833 DEVILLARD P, 1992, J STAT PHYS, V66, P1089 DEVILLARD P, 1991, J STAT PHYS, V62, P443 DIEHL HW, 1980, Z PHYS B CON MAT, V36, P329 DOBBS HT, COMMUNICATION DOERING CR, 1994, PHYS REV LETT, V72, P2984 DOHERTY JP, 1994, PHYS REV LETT, V72, P2041 DURAND E, 1966, ELECTROSTATIQUE PARI EAGLESHAM DJ, 1995, J APPL PHYS, V77, P3597 EAGLESHAM DJ, 1990, PHYS REV LETT, V65, P1227 EAGLESHAM DJ, 1992, SURFACE DISORDERING, P69 EBELING W, 1984, J STAT PHYS, V37, P369 EDEN M, 1958, S INFORMATION THEORY, P359 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EKLUND EA, 1993, SURF SCI, V285, P157 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS MR, 1992, J STAT PHYS, V69, P427 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1993, FRACTALS, V1, P753 FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 FANG K, 1994, PHYS REV B, V49, P8331 FELLER W, 1957, INTRO PROBABILITY TH, V1 FISHER DS, 1991, PHYS REV B, V43, P10728 FISHER ME, 1986, J CHEM SOC FARAD T 2, V82, P1569 FISHER MPA, 1992, PHYS REV LETT, V69, P2322 FOGEDBY HC, 1995, PHYS REV LETT, V75, P1883 FOLTIN G, 1994, PHYS REV E, V50, PR639 FORGACS G, 1991, PHASE TRANSITIONS CR, V14 FORREST BM, 1990, PHYS REV LETT, V64, P1405 FORSTER D, 1977, PHYS REV A, V16, P732 FREY E, 1994, PHYS REV E, V50, P1024 FRIEDBERG R, 1994, PHYS REV E, V49, P4157 FUENZALIDA V, 1991, PHYS REV B, V44, P10835 FUJISAKA H, 1977, PROG THEOR PHYS, V57, P734 GHEZ R, 1988, IBM J RES DEV, V32, P804 GHEZ R, 1993, J APPL PHYS, V73, P3685 GIESENSEIBERT M, 1993, PHYS REV LETT, V71, P3521 GILMER GH, 1978, FARADAY S, V12, P59 GILMER GH, 1972, J APPL PHYS, V43, P1347 GILMER GH, 1980, J CRYST GROWTH, V49, P465 GOLUBOVIC L, 1991, PHYS REV LETT, V67, P2747 GOLUBOVIC L, 1991, PHYS REV LETT, V66, P321 GOLUBOVIC L, 1991, PHYS REV LETT, V66, P3156 GRAFF DS, 1993, PHYS REV E, V47, PR2273 GRANT M, 1988, PHYS REV B, V37, P5705 GRINSTEIN G, 1993, PHYS REV LETT, V70, P3607 GRINSTEIN G, 1990, PHYS REV LETT, V64, P1927 GRINSTEIN G, 1995, SCALE INVARIANCE INT, P261 GUMBEL EJ, 1958, STATISTICS EXTREMES GWA LH, 1992, PHYS REV A, V46, P844 HALPINHEALY T, 1995, PHYS REP, V254, P215 HALPINHEALY T, 1990, PHYS REV A, V42, P711 HALSEY TC, 1992, PHYS REV A, V46, P7793 HALSEY TC, 1994, PHYS REV LETT, V72, P1228 HANSEN A, 1993, J PHYS I, V3, P1569 HARA T, 1984, J THEOR BIOL, V109, P173 HE SJ, 1992, PHYS REV LETT, V69, P3731 HE YL, 1992, PHYS REV LETT, V69, P3770 HENZLER M, 1993, SURF SCI, V298, P369 HEY R, 1995, J CRYST GROWTH, V154, P1 HUNT AW, 1994, EUROPHYS LETT, V27, P611 HUSE DA, 1985, PHYS REV LETT, V55, P2924 HWA T, 1992, PHYS REV A, V45, P7002 HWA T, 1991, PHYS REV A, V44, PR7873 HWA T, 1995, PHYS REV B, V51, P455 HWA T, 1994, PHYS REV B, V49, P3136 HWA T, 1992, PHYS REV LETT, V69, P1552 JANOWSKY SA, 1992, PHYS REV A, V45, P618 JANSSEN HK, 1986, Z PHYS B CON MAT, V63, P517 JAYAPRAKASH C, 1994, PHYS REV LETT, V72, P308 JAYAPRAKASH C, 1993, PHYS REV LETT, V71, P12 JOHNSON MD, 1994, APPL PHYS LETT, V64, P484 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JOHNSON MD, 1993, SURF SCI, V298, P392 JULLIEN R, 1985, J PHYS A-MATH GEN, V18, P2279 KADANOFF LP, 1986, PHYS TODAY FEB, P6 KANDEL D, 1992, EUROPHYS LETT, V20, P325 KANDEL D, 1994, PHYS REV B, V49, P5554 KANDEL D, 1993, PHYS SCRIPTA, VT49B, P622 KANG HC, 1992, SURF SCI, V271, P321 KANG HC, 1992, SURF SCI, V269, P784 KARDAR M, 1986, PHYS REV LETT, V56, P889 KARDAR M, 1985, PHYS REV LETT, V55, P2235 KARMA A, 1993, PHYS REV LETT, V71, P3810 KARUNASIRI RPU, 1989, PHYS REV LETT, V62, P788 KASSNER K, 1990, PHYS REV A, V42, P3637 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P11 KELLER JB, 1993, J APPL PHYS, V73, P3694 KESSLER DA, 1992, FALL M MAT RES SOC, P150 KESSLER DA, 1992, PHYS REV LETT, V69, P100 KIM D, 1995, PHYS REV E, V52, P3512 KIM JM, 1991, PHYS REV A, V44, P2345 KIM JM, 1995, PHYS REV E, V51, P1889 KIM JM, 1994, PHYS REV LETT, V72, P2903 KIM JM, 1989, PHYS REV LETT, V62, P2289 KIM Y, 1994, J PHYS A-MATH GEN, V27, PL533 KINZELBACH H, 1995, J PHYS A, V28, P6536 KLEMRADT U, 1996, IN PRESS GROWTH INDU KOLOMEISKY EB, 1995, PHYS REV B, V51, P8030 KONIG F, 1995, 3092 KFA KOPLIK J, 1985, PHYS REV B, V32, P280 KOTRLA M, 1992, EUROPHYS LETT, V20, P25 KOTRLA M, 1996, PHYS REV B, V53, P13777 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRUG J, 1993, EUROPHYS LETT, V27, P527 KRUG J, 1996, IN PRESS NONEQUILIBR KRUG J, 1990, J PHYS A-MATH GEN, V23, PL987 KRUG J, 1989, J PHYS A-MATH GEN, V22, PL769 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, J PHYS I, V3, P2179 KRUG J, 1991, J PHYS I, V1, P9 KRUG J, 1995, MATERIALWISS WERKST, V26, P22 KRUG J, 1995, MODERN QUANTUM FIELD, V2, P141 KRUG J, 1992, PHYS REV A, V46, PR4479 KRUG J, 1992, PHYS REV A, V45, P638 KRUG J, 1991, PHYS REV A, V44, PR801 KRUG J, 1991, PHYS REV A, V43, P900 KRUG J, 1989, PHYS REV A, V40, P2064 KRUG J, 1988, PHYS REV A, V38, P4271 KRUG J, 1987, PHYS REV A, V36, P5465 KRUG J, 1994, PHYS REV E, V50, P104 KRUG J, 1993, PHYS REV E, V47, PR17 KRUG J, 1995, PHYS REV LETT, V75, P1795 KRUG J, 1994, PHYS REV LETT, V73, P1947 KRUG J, 1994, PHYS REV LETT, V72, P2907 KRUG J, 1993, PHYS REV LETT, V70, P3271 KRUG J, 1992, PHYS REV LETT, V68, P722 KRUG J, 1991, PHYS REV LETT, V67, P1882 KRUG J, 1991, PHYS REV LETT, V66, P703 KRUG J, 1990, PHYS REV LETT, V64, P2232 KRUG J, 1995, SCALE INVARIANCE INT, P1 KRUG J, 1991, SOLIDS FAR EQUILIBRI, P479 KRUG J, 1992, SURFACE DISORDERING, P177 KRUG J, 1995, Z PHYS B CON MAT, V97, P281 KURAMOTO Y, 1984, CHEM OSCILLATIONS WA LAI ZW, 1991, PHYS REV LETT, V66, P2348 LAM CH, 1993, PHYS REV E, V48, P979 LAM PM, 1991, PHYS REV A, V44, P4854 LANCZYCKI CJ, 1994, PHYS REV E, V50, P213 LANDAUER R, 1988, J STAT PHYS, V53, P233 LANGER JS, 1971, ANN PHYS-NEW YORK, V65, P53 LANGER JS, 1991, SOLIDS FAR EQUILIBRI, P297 LAQUEY RE, 1975, PHYS REV LETT, V34, P391 LARSEN PK, 1988, REFLECTION HIGH ENER LASSIG M, 1995, NUCL PHYS B, V448, P559 LEAMY HJ, 1980, CURRENT TOPICS MATER, V6, P309 LEBELLAC D, 1995, EUROPHYS LETT, V32, P155 LEE NE, 1996, PHYS REV B, V53, P7876 LIAU ZL, 1990, J APPL PHYS, V67, P2434 LIPOWSKY R, 1985, J PHYS A-MATH GEN, V18, PL585 LIPOWSKY R, 1991, NATURE, V349, P475 LIU D, 1988, PHYS REV B, V386, P4781 LIU F, 1993, PHYS REV B, V48, P5808 LUSE CN, 1992, SURF SCI, V274, PL535 LVOV V, 1994, PHYS REV LETT, V72, P307 LVOV VS, 1993, EUROPHYS LETT, V22, P419 LVOV VS, 1993, NONLINEARITY, V6, P25 LVOV VS, 1992, PHYS REV LETT, V69, P3543 MAJANIEMI S, 1996, PHYS REV B, V53, P8071 MAJUMDAR SN, 1994, PHYS REV LETT, V73, P182 MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT MARKOV I, 1994, PHYS REV B, V50, P11271 MARMORKOS IK, 1992, PHYS REV B, V45, P11262 MARMORKOS IK, 1990, SURF SCI, V237, PL411 MATSUSHITA M, 1988, PHYS REV A, V37, P3645 MEAKIN P, 1990, EUROPHYS LETT, V11, P7 MEAKIN P, 1986, J CHEM PHYS, V85, P2320 MEAKIN P, 1987, J PHYS-PARIS, V48, P1651 MEAKIN P, 1988, PHASE TRANSITIONS CR, V12 MEAKIN P, 1993, PHYS REP, V235, P189 MEAKIN P, 1992, PHYS REV A, V46, P3390 MEAKIN P, 1992, PHYS REV A, V46, P4654 MEAKIN P, 1986, PHYS REV A, V34, P5091 MEAKIN P, 1986, PHYS REV A, V33, P1984 MEDINA E, 1989, PHYS REV A, V39, P3053 MERIKOSKI J, 1995, PHYS REV B, V52, PR8715 MEYER G, 1990, SURF SCI, V231, P64 MEYER JA, 1995, PHYS REV B, V51, P14790 MILLER DJ, 1992, EUROPHYS LETT, V19, P27 MISBAH C, 1991, J PHYS I, V1, P585 MOORE MA, 1995, PHYS REV LETT, V74, P4257 MOSER K, 1993, THESIS U COLOGNE MULLINS WW, 1963, METAL SURFACES STRUC MYERSBEAGHTON AK, 1991, PHYS REV A, V44, P2457 MYERSBEAGHTON AK, 1990, PHYS REV B, V42, P5544 NAGATANI T, 1991, J PHYS A-MATH GEN, V24, PL449 NATTERMANN T, 1991, EUROPHYS LETT, V14, P603 NATTERMANN T, 1988, PHASE TRANSIT, V11, P5 NATTERMANN T, 1989, PHYS REV A, V40, P4675 NATTERMANN T, 1988, PHYS REV LETT, V61, P2508 NEAVE JH, 1985, APPL PHYS LETT, V47, P400 NEEGAARD J, 1995, PHYS REV LETT, V74, P730 NELKIN M, 1974, PHYS REV A, V9, P388 NEWMAN TJ, 1996, J PHYS, V6, P385 OLAMI Z, 1995, PHYS REV E, V52, P3402 ORME C, 1994, APPL PHYS LETT, V64, P860 ORME C, 1995, J CRYST GROWTH, V150, P128 PACZUSKI M, 1992, PHYS REV LETT, V69, P2735 PAL S, 1994, PHYS REV B, V49, P10597 PALASANTZAS G, 1994, PHYS REV B, V49, P10544 PALASANTZAS G, 1993, PHYS REV B, V48, P2873 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 PARK H, 1991, J PHYS A-MATH GEN, V24, PL1391 PARK K, 1994, PHYSICA A, V210, P146 PELLEGRINI YP, 1991, PHYS REV A, V43, P920 PETERS HP, 1979, Z PHYS B CON MAT, V34, P399 PHILLIPS R, 1991, PHYS REV LETT, V67, P220 PLISCHKE M, COMMUNICATION PLISCHKE M, 1994, PHYS REV E, V50, P3589 PLISCHKE M, 1993, PHYS REV LETT, V71, P2509 PLISCHKE M, 1992, PHYS REV LETT, V68, P2854 PLISCHKE M, 1984, PHYS REV LETT, V53, P415 PROCACCIA I, 1992, PHYS REV A, V46, P3220 PROVATAS N, 1995, PHYS REV E, V51, P4232 PUTKARADZE V, 1995, 9504 NBI RACZ Z, 1991, PHYS REV A, V43, P5275 RACZ Z, 1994, PHYS REV E, V50, P3530 ROLAND C, 1991, PHYS REV LETT, V66, P2106 ROSSI G, 1987, PHYS REV A, V35, P2246 ROSSI G, 1986, PHYS REV A, V34, P3543 ROST M, COMMUNICATION ROST M, 1995, PHYS REV LETT, V75, P3894 ROST M, 1995, PHYSICA D, V88, P1 ROUX S, 1991, J PHYS A-MATH GEN, V24, PL295 RUBIO MA, 1989, PHYS REV LETT, V63, P1685 RUDNICK J, 1994, WILEY SER ION CHEM P, P535 RYU CS, 1995, PHYS REV E, V52, P2424 RYU CS, 1995, PHYS REV E, V51, P3069 SALDITT T, 1995, EUROPHYS LETT, V32, P331 SALDITT T, 1995, PHYS REV B, V51, P5617 SALDITT T, 1994, PHYS REV LETT, V73, P2228 SANDER LM, 1991, PHYS REV A, V44, P4885 SARGENT RB, 1990, P SOC PHOTOOPT INSTR, V1324, P13 SCHIMSCHAK M, 1995, PHYS REV B, V52, P8550 SCHROEDER M, 1993, EUROPHYS LETT, V24, P563 SCHROEDER M, 1993, THESIS U DUISBURG SCHULMAN LS, 1981, TECHNIQUES APPLICATI SCHULZ U, 1988, J STAT PHYS, V51, P1 SCHUTZ G, 1993, J STAT PHYS, V72, P277 SCHWARTZ M, 1992, EUROPHYS LETT, V20, P301 SCHWARZER S, 1990, PHYS REV LETT, V65, P603 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHORE JD, COMMUNICATION SIEGERT M, 1993, J PHYS I, V3, P1371 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1996, PHYS REV E, V53, P3209 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SIEGERT M, 1995, SCALE INVARIANCE INT, P165 SINHA SK, 1994, J PHYS III, V4, P1543 SINHA SK, 1988, PHYS REV B, V38, P2297 SIVASHINSKY GI, 1983, ANNU REV FLUID MECH, V15, P179 SMILAUER P, COMMUNICATION SMILAUER P, 1994, EUROPHYS LETT, V27, P261 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1994, PHYS REV B, V49, P5769 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMILAUER P, 1993, SURF SCI, V291, PL733 SMITH GW, 1993, J CRYST GROWTH, V127, P966 SNEPPEN K, 1992, PHYS REV A, V46, PR7351 SPOHN H, 1993, J STAT PHYS, V71, P1081 STEPANOW S, 1995, J PHYS-CONDENS MAT, V7, PL605 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STRICKLAND B, 1995, PHYS REV B, V51, P5061 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 SUN T, 1989, PHYS REV A, V40, P6763 SUN T, 1995, PHYS REV E, V51, P6316 SUN T, 1994, PHYS REV E, V50, P3370 SUN T, 1994, PHYS REV E, V49, P5046 SUN T, 1992, SURFACE DISORDERING, P45 SZNITMAN AS, 1996, PROBAB THEORY REL, V105, P1 TAMBORENEA PI, 1993, PHYS REV E, V48, P2575 TANG C, 1994, PHYS REV LETT, V71, P2769 TANG C, 1990, PHYS REV LETT, V64, P772 TANG LH, 1995, ANN REV COMPUTATIONA, V2, P137 TANG LH, COMMUNICATION TANG LH, 1992, GROWTH PATTERNS PHYS TANG LH, 1991, J PHYS A, V25, PL1193 TANG LH, 1992, J STAT PHYS, V67, P819 TANG LH, 1992, PHYS REV A, V45, P7156 TANG LH, 1995, PHYS REV LETT, V74, P920 TANG LH, 1993, PHYS REV LETT, V71, P2745 TANG LH, 1991, PHYS REV LETT, V66, P2899 TAUBER UC, 1995, PHYS REV E, V51, P6319 THOMPSON C, 1994, PHYS REV B, V49, P4902 THURMER K, 1995, PHYS REV LETT, V75, P1767 TONG WM, 1994, ANNU REV PHYS CHEM, V45, P401 TU YH, 1992, PHYS REV A, V46, PR729 TU YH, 1994, PHYS REV LETT, V73, P3109 VANBEIJEREN H, 1985, PHYS REV LETT, V54, P2026 VANDEREERDEN JP, 1986, PHYS REV LETT, V57, P2431 VANHOVE JM, 1983, J VAC SCI TECHNOL B, V1, P741 VANNOSTRAND JE, 1995, J VAC SCI TECHNOL B, V13, P1816 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VICSEK T, 1989, FRACTAL GROWTH PHENO VICSEK T, 1990, PHYSICA A, V167, P315 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 VLIEG E, 1988, PHYS REV LETT, V61, P2241 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 VVEDENSKY DD, 1994, PHYS WORLD MAR, P30 VVEDENSKY DD, 1990, SURF SCI, V225, P373 WANG SC, 1993, PHYS REV LETT, V70, P41 WANG SC, 1982, SURF SCI, V121, P85 WANG XR, 1989, PHYS REV A, V40, P6767 WEBER W, 1992, PHYS REV B, V46, P7953 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WEEKS JD, 1980, ORDERING STRONGLY FL, P293 WESTOBY M, 1984, ADV ECOL RES, V14, P167 WHITE J, 1981, J THEOR BIOL, V89, P475 WILBY MR, 1993, PHYS REV B, V47, P16068 WILBY MR, 1992, PHYS REV B, V46, P12896 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WITTMER JP, 1996, EUROPHYS LETT, V33, P397 WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLF DE, 1991, PHYS REV LETT, V67, P1783 WOLF DE, 1990, PHYS REV LETT, V65, P1591 WOLF DE, 1995, SCALE INVARIANCE INT, P215 WU F, 1993, PHYS REV LETT, V71, P4190 WUTTKE J, 1991, PHYS REV B, V44, P13042 YAKHOT V, 1981, PHYS REV A, V24, P642 YAN H, 1992, PHYS REV LETT, V68, P3048 YANG HN, 1995, PHYS REV B, V51, P2479 YANG HN, 1995, PHYS REV B, V51, P14293 YANG HN, 1994, PHYS REV B, V50, P7635 YANG HN, 1994, PHYS REV LETT, V73, P2348 YAO JH, 1992, PHYS REV A, V45, P3903 YAO JH, 1993, PHYS REV E, V47, P1007 ZALESKI S, 1989, PHYSICA D, V34, P427 ZANGWILL A, COMMUNICATION ZANGWILL A, 1995, MICROSTRUCTURAL EVOL ZAPOTOCKY M, 1991, PHYS REV LETT, V67, P3463 ZENG H, 1995, PHYS REV LETT, V74, P582 ZHANG J, 1992, PHYSICA A, V189, P383 ZHANG YC, 1990, J PHYS-PARIS, V51, P2129 TC 118 BP 139 EP 282 PG 144 JI Adv. Phys. PY 1997 PD MAR-APR VL 46 IS 2 GA WM268 J9 ADVAN PHYS UT ISI:A1997WM26800001 ER PT J AU Davies, A Stroscio, JA Pierce, DT Unguris, J Celotta, RJ TI Observations of alloying in the growth of Cr on Fe(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 20 AB Using scanning tunneling microscopy, we observe the alloying of Cr with an Fe(001) substrate for various coverages at two temperatures. At low Cr coverage, the alloy consists of individual Ct impurities surrounded by Fe. Elemental identification is possible using surface states observed via tunneling spectroscopy. The alloy may be the cause of several magnetic anomalies observed in Cr/Fe structures. CR ARROTT AS, 1990, KINETICS ORDERING GR, P321 BAKER H, 1992, ASM HDB, V3 DAVIES A, 1996, PHYS REV LETT, V76, P4175 GITTSOVICH VN, 1995, J MAGN MAGN MATER, V146, P165 HEINRICH B, 1993, MAGNETISM STRUCTURE, P101 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 NIELSEN LP, 1993, PHYS REV LETT, V71, P754 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 RODER H, 1993, PHYS REV LETT, V71, P2086 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, MAGNETISM STRUCTURE, P101 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 6 BP 82 EP 86 PG 5 JI J. Magn. Magn. Mater. PY 1997 PD JAN VL 165 IS 1-3 GA WF862 J9 J MAGN MAGN MATER UT ISI:A1997WF86200019 ER PT J AU Bartelt, MC Evans, JW TI Exact island-size distributions for submonolayer deposition: Influence of correlations between island size and separation SO PHYSICAL REVIEW B-CONDENSED MATTER NR 24 AB We determine the exact scaling form of the size distribution of islands created via homogeneous nucleation and growth during submonolayer deposition. This scaling form is shown to be controlled by the dependence on size of the propensity for islands to capture diffusing adatoms. This size dependence is determined directly from simulations. It is distinct from mean- field predictions, reflecting strong correlations between island size and separation. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, COMMUNICATION BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1994, J VAC SCI TECHNOL A, V12, P1800 BARTELT MC, 1996, PHYS REV B, V53, P4099 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1993, SURF SCI, V298, P421 EVANS JW, 1996, LANGMUIR, V12, P217 FAMILY F, 1984, KINETICS AGGREGATION MULHERAN PA, 1995, PHIL MAG LETT, V72, P55 MULHERAN PA, 1996, PHYS REV B, V53, P10261 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P557 SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P585 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STOYANOV S, 1979, CURRENT TOPICS MATER, V3, P421 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1971, P ROY SOC LOND A MAT, V322, P331 VENABLES JA, 1973, PHILOS MAG, V27, P693 ZHANG CM, IN PRESS SURF SCI TC 26 BP 17359 EP 17362 PG 4 JI Phys. Rev. B-Condens Matter PY 1996 PD DEC 15 VL 54 IS 24 GA WD553 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996WD55300025 ER PT J AU Muller, B Nedelmann, L Fischer, B Brune, H Kern, K TI Initial stages of Cu epitaxy on Ni(100): Postnucleation and a well-defined transition in critical island size SO PHYSICAL REVIEW B-CONDENSED MATTER NR 50 AB We present a comprehensive study of the nucleation kinetic of Cu on Ni(100) using variable-temperature scanning tunnelling microscopy. The analysis of the saturation island density as a function of substrate temperature and deposition rate reveals that the smallest stable island abruptly changes from a dimer to a tetramer. From the Arrhenius plot, the migration barrier E(m)=(0.35+/-0.02) eV, as well as the dimer bond energy E(b)=(0.46+/-0.19) eV, has been deduced. For low ratios between the migration constant D and flux R (D/R<10(4)), nucleation and island growth take place not only during, but also after deposition. In this postnucleation regime, the final island density and island size distribution are no more determined by the competition between flux and monomer migration, but solely by the monomer concentration present immediately after deposition. Therefore, the island density becomes independent of substrate temperature and Aux, and the scaled island size distribution closely resembles that of statistic growth (adatom smallest stable island). The experimental results are compared with simulations using rate equations. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1993, EUROPHYS LETT, V21, P99 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, SURF SCI, V344, PL1193 BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1992, SURF SCI, V272, P161 BREEMAN M, 1992, SURF SCI, V269, P224 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1995, THIN SOLID FILMS, V264, P230 BUCHER JP, 1994, EUROPHYS LETT, V27, P473 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 CHAMBLISS DD, 1992, SURF SCI, V264, PL187 DURR H, 1995, SURF SCI, V328, PL527 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, IN PRESS NATO ADV B EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 GUNTHER S, 1994, PHYS REV LETT, V73, P553 HARRIS S, 1994, PHYS REV B, V50, P7952 JACOBSEN KW, 1988, COMMENTS CONDENS MAT, V14, P129 KELLOGG GL, 1994, SURF SCI REP, V21, P1 LINDEROTH TR, 1996, PHYS REV LETT, V77, P87 LIU CL, 1994, SURF SCI, V316, P294 MARKOV I, IN PRESS NATO ADV B MEYER JA, 1995, SURF SCI, V322, PL275 MULLER B, IN PRESS NATO ADV B MULLER B, IN PRESS SURF REV LE MULLER B, 1996, J VAC SCI TECHNOL A, V14, P1 MULLER B, 1996, PHYS REV LETT, V76, P2358 MULLER B, UNPUB NEDELMANN L, UNPUB PERKINS LS, 1994, SURF SCI, V319, P225 RODER H, 1993, NATURE, V366, P141 RODER H, 1993, PHYS REV LETT, V71, P2086 RODER H, 1993, SURF SCI, V298, P121 SCHMID M, 1993, PHYS REV LETT, V70, P1441 SHI ZP, 1996, PHYS REV LETT, V76, P4927 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STOWELL MJ, 1972, PHILOS MAG, V26, P349 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SYKES MF, 1976, J PHYS A-MATH GEN, V9, P87 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VENABLES JA, 1973, REP PROG PHYS, V17, P697 WOLESCHLAGER J, UNPUB ZHANG CM, IN PRESS J CRYST GRO ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZINSMEISTER G, 1971, THIN SOLID FILMS, V7, P51 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 18 BP 17858 EP 17865 PG 8 JI Phys. Rev. B-Condens Matter PY 1996 PD DEC 15 VL 54 IS 24 GA WD553 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996WD55300085 ER PT J AU Holmes, DM Sudijono, JL McConville, CF Jones, TS Joyce, BA TI Direct evidence for the step density model in the initial stages of the layer-by-layer homoepitaxial growth of GaAs(111)A SO SURFACE SCIENCE NR 22 AB Scanning tunnelling microscopy (STM) has been used to investigate the morphological basis of the specular beam intensity oscillations observed in reflection high-energy electron diffraction (RHEED) studies during the initial stages of GaAs(111)A homoepitaxy. Analysis of STM images after the deposition of controlled amounts of GaAs up to a coverage of 2 monolayers show a strong relationship between the step density and the RHEED specular beam intensity. It is shown that the RHEED oscillations observed during the initial stages of growth reflect the temporal variation in surface step density. CR BIEGELSEN DK, 1990, PHYS REV LETT, V65, P452 CHADI DJ, 1984, PHYS REV LETT, V52, P1911 CHAMBLISS DD, 1995, J VAC SCI TECHNOL A, V13, P1522 CLARKE S, 1987, PHYS REV LETT, V58, P2235 DABIRAN AM, 1993, THIN SOLID FILMS, V231, P1 FAHY MR, 1994, APPL PHYS LETT, V64, P190 GHAISAS SV, 1986, PHYS REV LETT, V56, P1066 HABERERN KW, 1990, PHYS REV B, V41, P3226 HOLMES DM, 1996, J VAC SCI TECHNOL A, V14, P849 HOLMES DM, 1995, SURF SCI, V341, P133 JOHNSON MD, 1994, APPL PHYS LETT, V64, P484 JOYCE BA, 1994, HDB SEMICONDUCTORS, V3 NEAVE JH, 1983, APPL PHYS A-MATER, V31, P1 PUKITE PR, 1985, SURF SCI, V161, P39 SHITARA T, 1992, APPL PHYS LETT, V60, P1504 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 SUDIJONO J, 1993, SURF SCI, V280, P247 THORNTON JMC, 1984, SURF SCI, V52, P1911 VANHOVE JM, 1983, J VAC SCI TECHNOL B, V1, P741 WOOLF DA, 1993, SEMICOND SCI TECH, V8, P1075 ZHANG J, 1987, APPL PHYS A-MATER, V42, P317 TC 16 BP L173 EP L178 PG 6 JI Surf. Sci. PY 1997 PD JAN 1 VL 370 IS 1 GA WD567 J9 SURFACE SCI UT ISI:A1997WD56700007 ER PT J AU Besenbacher, F TI Scanning tunnelling microscopy studies of metal surfaces SO REPORTS ON PROGRESS IN PHYSICS NR 241 AB Scanning tunnelling microscopy (STM) has proved to be a fascinating and powerful technique in the field of surface science. The fact that sets the STM apart from most other surface sensitive techniques is its ability to resolve the structure of surfaces on an atomic scale, that is atom-by-atom, and furthermore its ability to study the dynamics of surface processes. This article presents a survey of recent STM studies of well characterized single crystal metal surfaces under ultra-high vacuum conditions. It particularly addresses STM investigations of clean metal surfaces, adsorbates on metal surfaces, adsorbate-induced restructuring of metal surfaces, chemical reactions on metal surfaces, metal-on-metal growth and finally studies of electron confinement and quantum size effects on metal surfaces. CR AFSIN B, 1993, SURF SCI, V284, P109 AGRAIT N, 1993, PHYS REV B, V48, P8499 AGRAIT N, 1995, PHYS REV LETT, V74, P3995 AVOURIS P, 1994, J VAC SCI TECHNOL B, V12, P1447 AVOURIS P, 1993, NATO ASI SERIES E, V239 AVOURIS P, 1995, SOLID STATE COMMUN, V92, P11 BAO X, 1993, SURF SCI, V284, P14 BARDEEN J, 1961, PHYS REV LETT, V6, P57 BARTH JV, 1990, PHYS REV B, V42, P9307 BAUER E, 1982, APPL SURF SCI, V11-2, P479 BAUER E, 1984, CHEM PHYSICS SOLID B, V3, P1 BEDROSSIAN P, 1989, PHYS REV LETT, V63, P1257 BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1 BEHM RJ, 1986, BER BUNSEN PHYS CHEM, V90, P294 BEHM RJ, 1990, NATO ASI SERIES E, V184, P173 BERNDT R, 1992, ULTRAMICROSCOPY, V42, P528 BESENBACHER F, 1991, J VAC SCI TECHNOL B, V9, P874 BESENBACHER F, 1994, PHASE TRANSITIONS AD, V7, P573 BESENBACHER F, 1993, PROG SURF SCI, V44, P5 BESENBACHER F, 1992, SURF SCI, V272, P334 BINNIG G, 1986, IBM J RES DEV, V30, P355 BINNING G, 1982, PHYS REV LETT, V49, P57 BOTT M, 1996, PHYS REV LETT, V76, P1304 BOTT M, 1993, PHYS REV LETT, V70, P1489 BOWKER M, 1980, SURF SCI, V92, P528 BRANDBYGE M, 1995, PHYS REV B, V52, P8499 BRUNE H, 1995, APPL PHYS A-MATER, V60, P167 BRUNE H, 1990, EUROPHYS LETT, V13, P123 BRUNE H, 1996, IN PRESS SURF SCI LE BRUNE H, 1993, J CHEM PHYS, V99, P2128 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1994, PHYS REV B, V49, P2997 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRUNE H, 1992, PHYS REV LETT, V68, P624 BU H, 1992, J CHEM PHYS, V97, P1465 BU H, 1992, SURF SCI, V271, P68 BUTTIKER M, 1985, PHYS REV B, V31, P6207 CAMPBELL CT, 1984, SURF SCI, V143, P517 CARLEY AF, 1994, TOP CATAL, V1, P35 CHAMBLISS DD, 1992, J VAC SCI TECHNOL A, V10, P1993 CHAMBLISS DD, 1992, SURF SCI, V264, PL187 CHANG SL, 1988, J CHEM PHYS, V88, P2071 CHEN CJ, 1993, INTRO SCANNING TUNNE CHEN CJ, 1990, PHYS REV LETT, V65, P448 CHIANG S, 1994, SPRINGER SERIES SURF, V20, P181 CHRISTMANN K, 1988, SURF SCI REP, V9, P1 CIRACI S, 1990, PHYS REV B, V42, P7618 CIRACI S, 1990, PHYS REV B, V41, P2763 CLARKE ARH, 1996, PHYS REV LETT, V76, P1276 COULMAN D, 1990, SURF SCI, V240, P151 COULMAN DJ, 1990, PHYS REV LETT, V64, P1761 CREW WW, 1994, SURF SCI, V319, PL34 CROMMIE MF, 1993, NATURE, V363, P524 CROMMIE MF, 1993, SCIENCE, V262, P218 CROMMIE MF, 1995, SURF REV LETT, V2, P127 DASTOOR HE, 1993, SURF SCI, V289, P279 DEMUTH JE, 1988, J MICROSC-OXFORD, V152, P299 DIDIO RA, 1984, J VAC SCI TECHNOL A, V2, P852 DORENBOS G, 1992, NUCL INSTRUM METH B, V64, P88 DORENBOS G, 1993, PHYS REV B, V47, P1580 DOYEN G, 1993, PHYS REV B, V48, P1738 DOYEN G, 1993, PHYS REV B, V47, P9778 DOYEN G, 1993, SPRINGER SERIES SURF, V29, P23 EIERDAL L, 1994, SURF SCI, V312, P31 EIGLER DM, 1991, PHYS REV LETT, V66, P1189 ERTL G, 1985, LOW ENERGY ELECTRONS ERTL G, 1990, SPRINGER SERIES SURF, V22, P1 ERTL G, 1967, SURF SCI, V6, P208 ESCH S, 1994, PHYS REV LETT, V72, P518 FEENSTRA RM, 1990, NATO ASI SERIES E, V184, P211 FEENSTRA RM, 1987, SURF SCI, V181, P295 FEIBELMAN PJ, 1989, PHYS REV LETT, V63, P2488 FEIDENHANS R, 1991, PHYS REV B, V44, P1875 FEIDENHANSL R, 1990, PHYS REV LETT, V65, P2027 FIORENTINI V, 1993, PHYS REV LETT, V71, P1051 FOSS M, 1993, SURF SCI, V296, P283 FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P205 FRIEDEL J, 1954, ADV PHYS, V3, P446 GAUTHIER Y, 1991, SURF SCI, V251, P493 GERMER LH, 1962, J CHEM PHYS, V37, P1382 GIESENSEIBERT M, 1993, PHYS REV LETT, V71, P3521 GIESENSEIBERT M, 1994, SURF SCI, V316, P205 GIMZEWSKI JK, 1992, PHYS REV B, V45, P6844 GIMZEWSKI JK, 1987, PHYS REV B, V36, P1284 GOERGE J, 1993, SURF SCI, V289, P201 GUNTHER C, 1993, BER BUNSEN PHYS CHEM, V97, P522 GUNTHER C, 1995, PHYS REV LETT, V74, P754 HAASE J, 1988, SURF SCI, V206, PL695 HAMERS RJ, 1992, SPRINGER SERIES SURF, V20, P83 HAQ S, 1992, SURF SCI, V275, P170 HARTEN U, 1985, PHYS REV LETT, V54, P2619 HASEGAWA Y, 1993, PHYS REV LETT, V71, P1071 HELLER EJ, 1994, NATURE, V369, P464 HELLER EJ, 1996, PREPRINT HO KM, 1987, PHYS REV LETT, V59, P1833 HOHAGE M, 1996, PHYS REV LETT, V76, P2366 HUANG ZQ, 1993, PHYS REV B, V48, P1696 HUNTLEY DR, 1990, SURF SCI, V240, P24 HWANG RQ, 1992, J VAC SCI TECHNOL A, V10, P1970 JACKMAN TE, 1987, SURF SCI, V179, P297 JACOBSEN J, 1995, PHYS REV LETT, V75, P489 JACOBSEN J, 1994, SURF SCI, V317, P8 JACOBSEN KW, 1988, COMMENTS CONDENS MAT, V14, P129 JACOBSEN KW, 1990, PHYS REV LETT, V65, P1788 JACOBSEN KW, 1988, PHYS REV LETT, V60, P2496 JACOBSEN KW, 1988, SPRINGER SERIES SURF, V1, P118 JACOBSEN KW, 1996, SURF REV LETT JENSEN F, 1990, PHYS REV B, V41, P10233 JENSEN F, 1991, SURF SCI, V259, PL774 JOHNSON KE, 1993, J VAC SCI TECHNOL A, V11, P1654 JUNG T, 1995, APPL PHYS A-MATER, V61, P467 JUNG T, 1995, PHYS REV LETT, V74, P1641 KAMPSCHOFF E, 1996, IN PRESS SURF SCI KELLOGG GL, 1994, SURF SCI REP, V204, P1 KERN K, 1991, PHYS REV LETT, V67, P855 KEVAN SD, 1987, PHYS REV B, V36, P5809 KLAUBER C, 1985, SURF SCI, V154, P139 KLEINLE G, 1987, SURF SCI, V189, P177 KLINK C, 1993, PHYS REV LETT, V71, P4350 KLINK C, 1995, SURF SCI, V342, P250 KOCH R, 1992, APPL PHYS A-MATER, V55, P417 KOCH R, 1991, PHYS REV LETT, V67, P3416 KOPATZKI E, 1995, PHYS REV LETT, V74, P1399 KUIPERS L, 1993, PHYS REV LETT, V71, P3517 KUK Y, 1990, J VAC SCI TECHNOL A, V8, P289 KUK Y, 1993, METHODS EXPT PHYSICS, V27, P207 KUK Y, 1990, PHYS REV B, V41, P12393 KUK Y, 1989, REV SCI INSTRUM, V60, P165 KUK Y, 1992, SPRINGER SERIES SURF, V20, P17 LAEGSGAARD E, 1989, J MICROSC, V152, P663 LANDAUER R, 1957, IBM J RES DEV, V1, P223 LANG ND, 1989, COMMENTS CONDENS MAT, V14, P253 LANG ND, COMMUNICATION LANG ND, 1988, PHYS REV B, V37, P10395 LANG ND, 1987, PHYS REV B, V36, P8173 LANG ND, 1986, PHYS REV B, V34, P5947 LANG ND, 1978, PHYS REV B, V18, P616 LANG ND, 1987, PHYS REV LETT, V58, P45 LANG ND, 1986, PHYS REV LETT, V56, P1164 LANG ND, 1985, PHYS REV LETT, V55, P230 LANG ND, 1993, SPRINGER SERIES SURF, V29, P7 LANGMUIR I, 1916, J AM CHEM SOC, V38, P2221 LANGMUIR I, 1922, T FARADAY SOC, V22, P607 LEIBSLE FM, 1993, NATURE, V363, P706 LEIBSLE FM, 1994, PHYS REV LETT, V72, P2569 LEIBSLE FM, 1994, SURF SCI, V311, P45 LI JT, 1996, PHYS REV LETT, V76, P1888 LIU W, 1995, SURF SCI, V339, P151 LYO IW, 1989, PHYS REV LETT, V63, P1261 MADEY TE, 1985, SURF SCI, V152, P587 MCINTYRE BJ, 1994, SCIENCE, V265, P1415 MO YW, 1994, PHYS REV B, V50, P7868 MULLER B, 1996, PREPRINT MUNDENAR JM, 1987, SURF SCI, V188, P15 MURRAY PW, 1995, PHYS REV B, V52, PR1444 MURRAY PW, 1993, PHYS REV B, V47, P12976 NAGL C, 1994, SURF SCI, V321, P237 NEEDS RJ, 1991, SURF SCI, V242, P215 NIELSEN LP, 1996, IN PRESS NIELSEN LP, 1991, PHYS REV B, V44, P13156 NIELSEN LP, 1995, PHYS REV LETT, V74, P1159 NIELSEN LP, 1993, PHYS REV LETT, V71, P754 NORSKOV JK, 1990, REP PROG PHYS, V53, P1253 NORSKOV JK, 1993, SURF SCI, V283, P277 OED W, 1990, SURF SCI, V234, P72 OED W, 1989, SURF SCI, V224, P179 OHTANI H, 1988, PHYS REV LETT, V60, P2398 OKAWA Y, 1995, SURF SCI, V344, PL1207 OLESEN L, 1996, PHYS REV LETT, V76, P1485 OLESEN L, 1995, PHYS REV LETT, V74, P2147 OLESEN L, 1994, PHYS REV LETT, V72, P2251 OLESEN L, 1996, UNPUB PANGHER N, 1993, SURF SCI, V293, PL908 PARKIN SR, 1990, PHYS REV B, V41, P5432 PARTRIDGE A, 1993, PHYS REV B, V48, P8267 PASCUAL JI, 1993, PHYS REV LETT, V71, P1852 PASCUAL JI, 1995, SCIENCE, V267, P1793 POENSGEN M, 1992, SURF SCI, V274, P430 POHL DW, 1986, IBM J RES DEV, V30, P417 RODER H, 1993, NATURE, V366, P141 RODER H, 1995, PHYS REV LETT, V74, P3217 RODER H, 1993, PHYS REV LETT, V71, P2086 ROELOFS LD, 1990, SURF SCI, V234, P63 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 RUAN L, 1993, PHYS REV LETT, V70, P4079 RUAN L, 1992, PHYS REV LETT, V69, P3523 RUAN L, 1993, SURF SCI, V296, P275 RUAN L, 1992, ULTRAMICROSCOPY, V42, P498 RUANL, 1994, SURF SCI LETT, V314, PL873 SANDY AR, 1992, PHYS REV LETT, V68, P2192 SAUTET P, 1989, CHEM PHYS, V135, P99 SAUTET P, 1996, PHYS REV B, V53, P4910 SAUTET P, 1994, SURF SCI, V315, P127 SAUTET P, 1994, SURF SCI, V304, PL445 SAUTET P, 1993, SURF SCI, V295, P347 SCHIMIZU T, 1994, J VAC SCI TECHNOL B, V12, P2200 SCHMID M, 1993, PHYS REV LETT, V70, P1441 SCHUSTER R, 1994, PHYS REV B, V50, P17456 SCHUSTER R, 1991, PHYS REV B, V44, P13689 SCHUSTER R, 1991, SURF SCI, V247, PL229 SIMMONS GW, 1967, SURF SCI, V8, P130 SOMORJAI GA, 1989, PROG SURF SCI, V30, P201 SPRUNGER P, 1995, SURF SCI, V324, PL321 SPRUNGER PT, 1995, SURF SCI, V344, P98 SPRUNGER PT, 1996, UNPUB STENSGAARD I, 1995, J CHEM PHYS, V103, P9825 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STROSCIO JA, 1991, SCIENCE, V254, P1319 TANIGUCHI M, 1992, SURF SCI, V262, PL123 TERSOFF J, 1985, PHYS REV B, V31, P805 TERSOFF J, 1995, PHYS REV LETT, V74, P434 TERSOFF J, 1983, PHYS REV LETT, V50, P1998 TROMP RM, 1989, J PHYS-CONDENS MAT, V1, P10211 TROMP RM, 1988, PHYS REV B, V37, P9042 TSONG TT, 1990, ATOM PROBE FIELD ION TSUKADA M, 1993, JPN J APPL PHYS 1, V32, P1352 TSUKADA M, 1991, SURF SCI REP, V13, P265 VANDELEEMPUT LEC, 1992, REP PROG PHYS, V55, P1165 VANDERBILT D, 1992, SURF SCI, V268, PL300 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANWEES BJ, 1988, PHYS REV LETT, V60, P848 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLARRUBIA JS, SURF SCI, V144, P370 VOIGTLANDER B, 1990, SURF SCI, V225, P151 VOIGTLANDER B, 1990, SURF SCI, V225, P162 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WEISS PS, 1993, PHYS REV LETT, V71, P3139 WIEGEL M, 1991, SURF SCI, V254, PL428 WIESENDANGER R, 1994, SCANNING PROBE MICRO WIESENDANGER R, 1993, SPRINGER SERIES SURF, V29 WIESENDANGER R, 1993, SPRINGER SERIES SURF, V28 WIESENDANGER R, 1993, SPRINGER SERIES SURF, V20 WINTTERLIN J, 1991, J VAC SCI TECHNOL B, V9, P902 WINTTERLIN J, 1989, PHYS REV LETT, V62, P59 WINTTERLIN J, 1994, SPRINGER SERIES SURF, V20, P39 WOODRUFF DP, 1994, J PHYS-CONDENS MAT, V6, P6067 WOODRUFF DP, 1986, MODERN TECHNIQUES SU YOSHINOBU J, 1995, PHYS REV B, V51, P4529 ZHAO C, 1994, SURF SCI, V320, P1 TC 41 BP 1737 EP 1802 PG 66 JI Rep. Prog. Phys. PY 1996 PD DEC VL 59 IS 12 GA WA267 J9 REP PROGR PHYS UT ISI:A1996WA26700004 ER PT J AU Amar, JG Family, F TI Critical temperature for mound formation in molecular-beam epitaxy SO PHYSICAL REVIEW B-CONDENSED MATTER NR 32 AB The results of an analytic calculation of the surface current and selected mound angle as a function of the Ehrlich-Schwoebel step barrier E(B) and substrate temperature T are presented for a model of epitaxial growth on bcc(100) and fcc(100) surfaces. Depending on the sign of E(B) and the magnitude of the prefactor for diffusion over a step, various scenarios are possible, including the existence of a critical temperature T-c for mound formation above which (for a positive step barrier) or below which (for a negative step barrier) quasi-layer-by- layer growth will be observed. For the case of Fe/Fe(100) deposition our calculation implies an upper bound for T-c which is consistent with experiment. The weak parameter dependence of our estimates for the mound angle confirms and explains the good agreement found in previous estimates assuming different values of the step barrier. We also clarify the transition to layer-by-layer growth at low and high temperature including the effect of a finite diffusion length on reentrant behavior at low temperature. CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, IN PRESS PHYS REV B AMAR JG, 1996, SURF SCI, V65, P177 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BROMANN K, 1995, PHYS REV LETT, V75, P677 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, UNPUB ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1996, MATER RES SOC SYMP P, V399, P67 FANG K, 1994, PHYS REV B, V49, P8331 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 ORME C, 1994, APPL PHYS LETT, V64, P860 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THURMER K, 1995, PHYS REV LETT, V75, P1767 TUCKWELL H, 1988, ELEMENTARY APPL PROB VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 TC 12 BP 14071 EP 14076 PG 6 JI Phys. Rev. B-Condens Matter PY 1996 PD NOV 15 VL 54 IS 19 GA VV264 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VV26400099 ER PT J AU Amar, JG Family, F TI Effects of crystalline microstructure on epitaxial growth SO PHYSICAL REVIEW B-CONDENSED MATTER NR 52 AB The results of kinetic Monte Carlo simulations of epitaxial growth on fcc(100) and bcc(100) surfaces in which the correct crystal geometry is taken into account are reported. The existence of downward funneling to fourfold hollow sites leads to a downward current for large angles and to angle selection as observed in a variety of experiments. We have used our model to simulate Fe/Fe(100) deposition at room temperature and have compared our results with recent experiments. Excellent agreement is found for the selected angle, mound coarsening exponent n, and kinetic roughening exponent beta as well as for the mound morphology. A theoretical analysis also leads to an accurate prediction of the observed mound angle for Fe/Fe(100) deposition at room temperature. The general dependence of the surface skewness, mound angle, and coarsening kinetics on temperature, deposition rate, and strength of the step barrier to interlayer diffusion is also studied and compared with recent experiments. While for a moderate step barrier we find an effective coarsening, exponent n similar or equal to 0.16- 0.25, for the case of a very large step barrier we find n similar or equal to 1/3, which is significantly larger than found in previous models but in agreement with recent experiments on Rh/Rh(111). CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, 1996, MATER RES SOC SYMP P, V399, P95 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1993, PHYS REV E, V47, P3242 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMAR JG, 1996, SURF SCI, V365, P177 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 DAS S, 1991, PHYS REV LETT, V66, P325 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1969, J APPL PHYS, V40, P614 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1995, SURF SCI, V331, P868 ELKINANI I, 1994, J PHYS I, V4, P949 ELLIOTT WC, UNPUB ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1992, DYNAMICS FRACTAL SUR GOLUBOVIC L, 1996, MATER RES SOC S P, V399, P251 GOLUBOVIC L, UNPUB HE YL, 1992, PHYS REV LETT, V69, P3770 HUNT AW, 1994, EUROPHYS LETT, V27, P611 HUSE DA, 1986, PHYS REV B, V34, P7845 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LANCZYCKI CJ, 1996, PHYS REV LETT, V76, P780 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 MEYER JA, 1995, PHYS REV B, V51, P14790 SCHROEDER M, 1993, EUROPHYS LETT, V24, P563 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMITH GW, 1993, J CRYST GROWTH, V127, P966 SOMFAI E, UNPUB STROSCIO JA, COMMUNICATION STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1994, PHYS REV LETT, V72, P254 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSAO JY, 1993, MAT FUNDAMENTALS MOL TSUI F, 1996, PHYS REV LETT, V76, P3164 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1995, PHYS REV LETT, V75, P2964 WOLF DE, 1990, EUROPHYS LETT, V13, P389 ZHANG ZY, 1993, PHYS REV B, V48, P4972 TC 36 BP 14742 EP 14753 PG 12 JI Phys. Rev. B-Condens Matter PY 1996 PD NOV 15 VL 54 IS 20 GA VX717 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VX71700075 ER PT J AU Klinkhammer, F Sauer, C Tsymbal, EY Handschuh, S Leng, Q Zinn, W TI Interface roughness in Fe(100)/Cr film structures studied by CEMS SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 29 AB Various epitaxial Fe(100)/Cr film structures were MBE-grown on MgO(100) and GaAs(100) substrates with the aim to modify the roughness of the Fe/Cr interfaces. By introducing a 2 monolayer thick Fe-57 probe layer at the interface the distribution of the magnetic hyperfine (hf) fields could be measured locally by means of Fe-57 conversion electron Mossbauer spectroscopy (GEMS). A simple model is applied which allows the determination of a pattern of the average interface roughness from this hf field distribution. It was observed that even samples of high epitaxial quality according to LEED and RHEED reveal a micro-roughness on a lateral scale of 1-2 nm due to intermixing of Fe and Cr within 1-2 monolayers. CR AFANASEV AM, 1990, HYPERFINE INTERACT, V62, P325 BAIBICH MN, 1988, PHYS REV LETT, V61, P2471 BINASCH G, 1989, PHYS REV B, V39, P4828 COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DUBIEL SM, 1981, J MAGN MAGN MATER, V23, P214 ETIENNE P, 1991, J CRYST GROWTH, V111, P1003 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 GEWINNER G, 1979, PHYS REV LETT, V43, P935 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HOSOITO N, 1992, J PHYS SOC JPN, V61, P300 KAMIJO A, 1992, J APPL PHYS, V71, P2455 LANDES J, 1990, HYPERFINE INTERACT, V57, P1941 LANDES J, 1992, J MAGN MAGN MATER, V113, P137 LANDES J, 1990, J MAGN MAGN MATER, V86, P71 MAJKRZAK CF, 1994, MAGNETIC MULTILAYERS, P299 PIERCE DT, 1994, PHYS REV B, V49, P14564 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHURER PJ, 1994, J APPL PHYS, V75, P5583 SCHURER PJ, 1995, PHYS REV B, V51, P2506 SCHURER PJ, 1993, PHYS REV B, V48, P2577 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THOMSON T, 1994, PHYS REV B, V50, P10319 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 YANG ZJ, 1995, PHYS REV B, V52, P4263 TC 14 BP 49 EP 56 PG 8 JI J. Magn. Magn. Mater. PY 1996 PD AUG VL 161 GA VR562 J9 J MAGN MAGN MATER UT ISI:A1996VR56200009 ER PT J AU Schneider, CM Meinel, K Kirschner, J Neuber, M Wilde, C Grunze, M Holldack, K Celinski, Z Baudelet, F TI Element specific imaging of magnetic domains in multicomponent thin film systems SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 73 AB We employ a new form of photoemission microscopy to image magnetic domains with both element specificity and surface sensitivity. Its contrast mechanisms are based on magneto- dichroic effects in photo-induced Auger electron emission. The method is especially beneficial to the investigation of magnetic domains in multicomponent thin film structures. We demonstrate the capabilities of this technique for the case of epitaxial Cr/Fe(100) thin film systems. The magnetic domain structures of a monatomic Cr layer on Fe, a Cr wedge on Fe, and a wedge shaped Fe/Cr/Fe sandwich structure are investigated for both elements. An antiferromagnetic alignment of the Cr monolayer to the Fe substrate is directly revealed in the images. Exploiting the angular dependence of the magnetic dichroism, regions of bilinear and biquadratic exchange coupling in the Fe/Cr/Fe sandwich are unequivocally identified. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BARNAS J, 1992, J MAGN MAGN MATER, V111, PL215 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAND JAC, 1994, ULTRATHIN MAGNETIC S BOBO JF, 1993, MATER RES SOC S P, V313, P467 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CARBONE C, 1987, PHYS REV B, V36, P2433 CHAPMAN JN, 1984, J PHYS D APPL PHYS, V17, P623 CHEN CT, 1993, PHYS REV B, V48, P642 CHEN CT, 1990, PHYS REV B, V42, P7262 COXON P, 1990, J ELECTRON SPECTROSC, V52, P821 CULLEN JR, 1991, J APPL PHYS, V70, P5879 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941 EDWARDS DM, 1993, MAGNETISM STRUCTURE, P401 ERICKSON RP, 1993, PHYS REV B, V47, P2626 ERTL G, 1985, LOW ENERGY ELECTRONS FARROW RFC, 1993, MAGNETISM STRUCTURE FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS E, 1960, NATURWISSENSCHAFTEN, V47, P392 FUCHS P, 1994, 14 INT C MAGN FILMS GOLDINER MG, 1991, J PHYS-CONDENS MAT, V3, P5479 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HASEGAWA H, 1991, PHYS REV B, V43, P10803 HASEGAWA H, 1990, PHYS REV B, V42, P2368 HATHAWAY KB, 1992, J MAGN MAGN MATER, V104, P1840 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1993, MATER RES SOC S P, V313, P119 HERMAN F, 1991, J APPL PHYS, V69, P4783 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HILLEBRECHT FU, 1994, Z PHYS B CON MAT, V93, P299 IDZERDA YU, 1993, SURF SCI, V287, P741 INOUE J, 1994, J MAGN MAGN MATER, V136, P233 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 KACHEL T, 1994, APPL PHYS LETT, V64, P655 KRANZ J, 1963, Z ANGEW PHYS, V15, P220 LEVY PM, 1990, J APPL PHYS, V67, P5914 MATHON J, 1993, J MAGN MAGN MATER, V127, PL261 MATHON J, 1993, MATER RES SOC S P, V313, P171 MERTIG I, COMMUNICATION OEPEN HP, 1991, SCANNING MICROSCOPY, V5, P1 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PENISSARD G, 1995, J MAGN MAGN MATER, V146, P55 PETERSEN H, 1993, NUCL INSTRUM METH A, V333, P594 PIERCE DT, 1994, PHYS REV B, V49, P14564 ROTH C, 1993, PHYS REV LETT, V70, P3479 ROTH C, 1993, SOLID STATE COMMUN, V86, P647 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHMIDT F, 1985, IEEE T MAGN, V21, P1596 SCHNEIDER CM, 1993, APPL PHYS LETT, V63, P2432 SCHNEIDER CM, 1994, J PHYS-CONDENS MAT, V6, P1177 SCHNEIDER CM, 1993, MATER RES SOC S P, V313, P631 SCHNEIDER CM, 1992, VACUUM ULTRAVIOLET R, P421 SCHUTZ G, 1987, PHYS REV LETT, V58, P737 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STOHR J, 1993, SCIENCE, V259, P658 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, MAGNETISM STRUCTURE UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1994, PHYS REV B, V49, P12797 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WANG Y, 1990, PHYS REV LETT, V65, P2732 TC 7 BP 7 EP 20 PG 14 JI J. Magn. Magn. Mater. PY 1996 PD SEP VL 162 IS 1 GA VR940 J9 J MAGN MAGN MATER UT ISI:A1996VR94000002 ER PT J AU Fischer, R Fauster, T VonderLinden, W Dose, V TI Island-size distributions of Ag on Pd(111) SO SURFACE REVIEW AND LETTERS NR 42 AB Island-size distributions of submonolayer Ag films on Pd(111) adsorbed at 90 K and after annealing of the film are recovered from two-photon photoemission spectra of the first image state. The inversion of the ill-conditioned problem with the maximum- entropy method reveals magic numbers in the island-size distributions. Hypothesis testing within the framework of Bayesian probability theory indicates a critical nucleus size i = 1. After annealing of the film large islands coexist with small clusters in a two-phase state. CR BARTELT MC, 1993, PHYS REV B, V47, P13891 BARTELT MC, 1992, PHYS REV B, V46, P12675 BECKER AF, 1993, PHYS REV LETT, V70, P477 BLANDIN P, 1994, PHYS REV LETT, V72, P3072 BRUNE H, 1995, APPL PHYS A-MATER, V60, P167 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BRYAN RK, 1990, EUR BIOPHYS J, V18, P165 BUCK B, 1991, MAXIMUM ENTROPY ACTI ECHENIQUE PM, 1978, J PHYS C SOLID STATE, V11, P2065 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1993, SURF SCI, V298, P378 EVNAS JW, 1993, SURF SCI, V284, PL437 FAUSTER T, 1995, ELECTROMAGNETIC WAVE, V2 FISCHER R, IN PRESS FISCHER R, 1995, MAXIMUM ENTROPY BAYE FISCHER R, 1993, PHYS REV B, V48, P15496 FISCHER R, 1993, PHYS REV LETT, V70, P654 FISCHER R, 1995, PHYSICS CHEM ALLOY S FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 GARRETT AJM, 1992, ANALYT PROC, V29, P426 GULL SF, 1984, IEE PROC-F, V131, P646 GULL SF, 1989, MAXIMUM ENTROPY BAYE, P53 JAYNES ET, 1983, ET JAYNES PAPERS PRO, P114 KOPATZKI E, 1993, SURF SCI, V284, P154 LI W, 1993, PHYS REV B, V48, P8336 MO YW, 1991, PHYS REV LETT, V66, P1998 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RODER H, 1993, PHYS REV LETT, V71, P2086 RODER H, 1993, SURF SCI, V298, P121 SCHUPPLER S, 1993, PHYS REV B, V47, P10058 SCHUPPLER S, 1992, PHYS REV B, V46, P13539 SKILLING J, 1990, MAXIMUM ENTROPY BAYE, P341 SKILLING J, 1989, MAXIMUM ENTROPY BAYE, P45 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STRAUSS C, 1995, IN PRESS MAXIMUM ENT STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VONDERLINDEN W, 1995, APPL PHYS A-MATER, V60, P155 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 3 BP 1393 EP 1402 PG 10 JI Surf. Rev. Lett. PY 1996 PD JUN VL 3 IS 3 GA VK335 J9 SURF REV LETTERS UT ISI:A1996VK33500008 ER PT J AU Zhang, ZY Wu, F Lagally, MG TI Kinetics, dynamics and mutual interactions of defects on Si(001) SO SURFACE REVIEW AND LETTERS NR 73 AB This article gives a critical review of the recent progress in the understanding of the physical properties of defects on Si(001). Mainly two classes of defects will be considered: point defects, including adatoms, ad-dimers, atom vacancies and dimer vacancies; and line defects, including steps, dimer strings, antiphase boundaries and vacancy lines. The focus will be on the kinetic and dynamic properties of the defects. Also discussed are their mutual interactions. A combination of extensive theoretical and experimental studies has provided clear answers to several fundamental questions about defect energetics and dynamics, and in some other cases has resulted in plausible solutions. In surveying some open or controversial issues, likely future directions will be discussed as well. CR ABRAHAM FF, 1985, SURF SCI, V163, PL752 ALERHAND OL, 1990, PHYS REV LETT, V64, P2406 BEDROSSIAN P, 1993, PHYS REV LETT, V70, P2589 BEDROSSIAN P, 1992, PHYS REV LETT, V68, P646 BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648 BOTT M, 1996, PHYS REV LETT, V76, P1304 BROCKS G, 1991, PHYS REV LETT, V66, P1729 BROCKS G, 1992, SURF SCI, V269, P860 BRONIKOWSKI MJ, 1993, PHYS REV B, V48, P12361 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHADI DJ, 1987, PHYS REV LETT, V59, P1691 CHEN X, 1994, PHYS REV LETT, V73, P850 DEMIGUEL JJ, 1991, PHYS REV LETT, V67, P2830 DIJKKAMP D, 1992, SPRINGER SERIES MAT FEIL H, 1992, PHYS REV LETT, V69, P3076 HAMERS RJ, 1989, ULTRAMICROSCOPY, V31, P10 HOEVEN AJ, 1989, PHYS REV LETT, V63, P1830 HUANG ZH, 1991, J VAC SCI TECHNOL A, V9, P876 JEONG MS, 1995, PHYS REV B, V51, P17151 JOHNSON KE, 1993, SURF SCI, V290, P213 KITAMURA N, 1993, PHYS REV B, V48, P5704 KITAMURA N, 1993, PHYS REV LETT, V71, P2082 LOW KC, 1994, J PHYS-CONDENS MAT, V6, P9551 LU YT, 1991, SURF SCI, V257, P199 MARTIN JA, 1986, PHYS REV LETT, V56, P1936 MEN FK, 1995, PHYS REV B, V52, PR8650 METIU H, 1992, SCIENCE, V255, P1088 MIYAZAKI T, 1990, JPN J APPL PHYS 2, V29, PL1165 MO YW, 1990, J VAC SCI TECHNOL A, V8, P201 MO YW, 1993, PHYS REV LETT, V71, P2923 MO YW, 1991, PHYS REV LETT, V66, P1998 MO YW, 1989, PHYS REV LETT, V63, P2393 MO YW, 1993, SCIENCE, V261, P886 MO YW, 1992, SURF SCI, V268, P275 MO YW, 1991, SURF SCI, V248, P313 MULLER K, 1984, DETERMINATION SURFAC, P483 NIEHUS H, 1988, J MICROSC-OXFORD, V152, P735 PEARSON C, 1995, PHYS REV LETT, V74, P2710 ROLAND C, 1992, PHYS REV B, V46, P13428 ROLAND C, 1991, PHYS REV LETT, V67, P3188 SALLING C, IN PRESS SHIH CK, COMMUNICATION SMITH AP, 1995, J CHEM PHYS, V102, P1044 SRIVASTAVA D, 1991, J CHEM PHYS, V95, P6885 STILLINGER FH, 1985, PHYS REV B, V31, P5262 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459 SWARTZENTRUBER BS, 1990, PHYS REV LETT, V65, P1913 TERSOFF J, 1988, PHYS REV B, V38, P9902 TERSOFF J, 1988, PHYS REV B, V37, P6991 TOH CP, 1993, J PHYS-CONDENS MAT, V5, P551 TOH CP, 1992, PHYS REV B, V45, P11120 TONG X, 1991, PHYS REV LETT, V67, P101 TSONG TT, 1988, REP PROG PHYS, V51, P759 VANDEREERDEN JP, 1990, J CRYST GROWTH, V99, P106 VASEK JE, 1995, PHYS REV B, V51, P17207 VENABLES JA, 1984, REP PROG PHYS, V47, P399 WANG J, 1993, PHYS REV B, V47, P10497 WANG J, 1991, PHYS REV B, V43, P12571 WEAKLIEM PC, 1995, SURF SCI, V336, P303 WOLKOW RA, 1995, PHYS REV LETT, V74, P4448 WU F, UNPUB SURF SCI LETT ZANDVLIET HJW, 1992, SURF SCI, V272, P264 ZHANG QM, 1995, PHYS REV LETT, V75, P101 ZHANG ZY, 1992, P CCAST WORLD LAB S, V9, P175 ZHANG ZY, 1993, PHYS REV B, V48, P8166 ZHANG ZY, 1992, PHYS REV B, V46, P1917 ZHANG ZY, 1995, PHYS REV LETT, V74, P3644 ZHANG ZY, 1993, PHYS REV LETT, V71, P3677 ZHANG ZY, 1991, SURF SCI, V255, PL543 ZHANG ZY, 1991, SURF SCI, V248, PL250 ZHANG ZY, 1991, SURF SCI, V245, P353 TC 6 BP 1449 EP 1462 PG 14 JI Surf. Rev. Lett. PY 1996 PD JUN VL 3 IS 3 GA VK335 J9 SURF REV LETTERS UT ISI:A1996VK33500014 ER PT J AU Rodriguez, JA TI Physical and chemical properties of bimetallic surfaces SO SURFACE SCIENCE REPORTS NR 418 AB Recent studies dealing with the structural, electronic, chemical and catalytic properties of well-defined bimetallic surfaces are reviewed. LEED and STM show that two metals interacting on a surface can form compounds with structures not seen in bulk alloys. Many novel phenomena related to the kinetics of growth of metals on metals have been discovered. The knowledge gathered in this area provides a solid basis for the synthesis of new materials with applications in areas of catalysis, electro-chemistry and microelectronics. In many cases, the formation of a surface bimetallic bond induces large changes in the band structure of the metals. For surfaces that contain transition or s,p metals, the strongest metal-metal interactions occur in systems that combine a metal with a valence band almost fully occupied and a metal in which the valence band is almost empty. A very good correlation is found between the electronic perturbations in a bimetallic system and its cohesive energy. Bimetallic bonds that display a large stability usually involve a significant redistribution of charge around the metal centers. The electronic perturbations affect the reactivity of the bonded metals toward small molecules (GO, NO, H-2, O-2, S-2, C2H4, CH3OH, etc.), For supported monolayers of Ni, Pd, Pt and Cu a correlation is observed between the shifts in surface core-level binding energies and changes in the desorption temperature of CO from the metal adlayers. Examples are provided which demonstrate the utility of single-crystal studies for understanding the role of ''ensemble'' and ''ligand'' effects in bimetallic catalysts. CR 1985, LANGES HDB CHEM ALNOT M, 1982, APPL SURF SCI, V10, P85 AMAR JG, 1995, PHYS REV LETT, V74, P2066 ATLI A, 1994, J PHYS CHEM-US, V98, P4895 ATLI A, 1992, SURF SCI, V269, P365 ATREI A, 1992, PHYS REV B, V46, P1649 ATREI A, 1995, SURF SCI, V339, P323 ATREI A, 1992, SURF SCI, V261, P64 BADDELEY CJ, 1995, J PHYS CHEM-US, V99, P5146 BADDELEY CJ, 1994, SURF SCI, V314, P1 BADER SD, 1987, J APPL PHYS, V61, P3729 BAER DR, 1992, J VAC SCI TECHNOL A, V10, P2391 BAER Y, 1970, SOLID STATE COMMUN, V8, P517 BARDI U, 1992, SURF SCI, V268, P87 BARDI U, 1990, SURF SCI, V239, PL511 BARDI U, 1989, SURF SCI, V211, P441 BARDI U, 1990, VACUUM, V41, P437 BARTHOLOMEW CH, 1982, ADV CATAL, V31, P135 BASSETT DW, 1970, SURF SCI, V21, P181 BAUDOING R, 1986, J PHYS C SOLID STATE, V19, P2825 BAUER E, 1991, BER BUNSEN PHYS CHEM, V95, P1315 BAUER E, 1984, CHEM PHYSICS SOLID S, V3 BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BAUER E, 1958, Z KRISTALLOGR, V110, P395 BECCAT P, 1990, SURF SCI, V238, P105 BEITEL G, 1993, ADSORPTION ORDERED S, P71 BERLOWITZ PJ, 1988, J PHYS CHEM-US, V92, P5213 BERLOWITZ PJ, 1988, LANGMUIR, V4, P1091 BERLOWITZ PJ, 1988, SURF SCI, V205, P1 BERLOWITZ PJ, 1987, SURF SCI, V187, P463 BERTOLINI JC, 1991, CATAL LETT, V9, P183 BERTOLINI JC, 1993, SURF SCI, V287, P346 BERTOLINI JC, 1993, SURF SCI, V281, P102 BLACK JE, 1992, PHYS REV B, V46, P4292 BLANDIN P, 1994, PHYS REV LETT, V73, P2144 BLANDIN P, 1994, PHYS REV LETT, V72, P3072 BLUDAU H, 1990, VACUUM, V41, P1106 BLYHOLDER G, 1975, J PHYS CHEM-US, V79, P756 BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772 BONZEL HP, 1980, SURF SCI, V91, P499 BOTT M, 1992, SURF SCI, V272, P256 BRODDE A, 1991, J VAC SCI TECHNOL B, V9, P920 BROMANN K, 1995, PHYS REV LETT, V75, P67 BROOKES NB, 1991, PHYS REV LETT, V67, P354 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1994, PHYS REV B, V49, P2997 BU PH, 1993, SURF SCI, V286, PL542 BUCK TM, 1983, PHYS REV LETT, V51, P43 BUSSELL ME, 1992, J PHYS CHEM-US, V96, P5978 BZOWSKI A, 1993, J VAC SCI TECHNOL A, V11, P2153 CAMARERO J, 1994, PHYS REV LETT, V73, P2448 CAMPBELL CT, 1989, ADV CATAL, V36, P1 CAMPBELL CT, 1990, ANNU REV PHYS CHEM, V41, P775 CAMPBELL CT, 1988, J CHEM PHYS, V88, P6585 CAMPBELL CT, 1989, J PHYS CHEM-US, V93, P806 CAMPBELL CT, 1984, SURF SCI, V139, P396 CAMPBELL JM, 1989, J PHYS CHEM-US, V93, P815 CAMPBELL RA, 1994, CATAL LETT, V27, P273 CAMPBELL RA, 1992, PHYS REV B, V46, P7077 CAMPBELL RA, 1991, SURF SCI, V256, P272 CAMPBELL RA, 1990, SURF SCI, V240, P71 CASTELLANI NJ, 1994, J PHYS CHEM-US, V98, P9606 CASTELLANI NJ, 1994, SURF SCI, V320, P39 CASTRO GR, 1992, SURF SCI, V269, P321 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P933 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P1721 CHEN J, 1992, PHYS REV B, V45, P3636 CHEN JDA, 1996, LNAGMUIR, V12, P1528 CHEN SP, 1992, SURF SCI, V274, PL619 CHEN WH, 1994, PHYS REV B, V50, P5620 CHIAIA G, 1993, PHYS REV B, V48, P11298 CHIANELLI RR, 1994, ADV CATAL, V40, P177 CLARKE JKA, 1975, CHEM REV, V75, P291 COLES SJT, 1977, SURF SCI, V68, P312 CONRAD EH, 1992, PROG SURF SCI, V39, P65 COUPER A, 1950, DISCUSS FARADAY SOC, V8, P172 DATYE AK, 1989, FARADAY DISCUSS CHEM, V87, P18 DAVIDSON ER, 1993, ACCOUNTS CHEM RES, V26, P628 DAVIS HL, 1991, B AM PHYS SOC, V36, P705 DAVIS HL, 1985, J VAC SCI TECHNOL A, V3, P1507 DAVIS HL, 1988, STRUCTURE SURFACES, V2, P152 DEMMIN RA, 1988, LANGMUIR, V4, P1104 DEROSSI S, 1994, SURF SCI, V307, P496 DOL R, 1994, SURF SCI, V307, P434 DOMAGALA ME, 1993, J VAC SCI TECHNOL A, V11, P2128 DONG CZ, 1993, J CHEM PHYS, V99, P9172 DOWDEN DA, 1950, DISCUSS FARADAY SOC, V8, P184 DUNPHY JC, 1994, J VAC SCI TECHNOL B, V12, P1742 EGAWA C, 1994, SURF SCI, V304, PL488 EGELHOFF WF, 1982, APPL SURF SCI, V11-2, P761 EGELHOFF WF, 1982, J VAC SCI TECHNOL, V20, P668 EHRLICH G, 1984, CHEM PHYSICS SOLID S, V5 EHRLICH G, 1991, SURF SCI, V246, P1 ELBATANOUNY M, 1985, PHYS REV B, V31, P4798 ELBATANOUNY M, 1981, PHYS REV LETT, V46, P269 EMSLEY J, 1990, ELEMENTS, P125 ENGSTROM JR, 1988, J AM CHEM SOC, V110, P8305 ENGSTROM JR, 1990, J PHYS CHEM-US, V94, P396 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERTL G, 1985, LOW ENERGY ELECTRONS FALLAVIER M, 1994, SURF SCI, V311, P24 FARGUES D, 1988, SURF SCI, V194, P149 FASANA A, 1982, SURF SCI, V120, P239 FEIBELMAN PJ, 1991, PHYS REV B, V43, P9452 FEIBELMAN PJ, 1994, SURF SCI, V313, PL801 FEIBELMAN PJ, 1985, SURF SCI, V149, P48 FERULLO RM, 1996, LANGMUIR, V12, P70 FOILES SM, 1986, J VAC SCI TECHNOL A, V4, P762 FREUND HJ, 1993, J MOL CATAL, V82, P143 FRICK B, 1988, PHYS REV B, V37, P4408 FU CL, 1985, PHYS REV LETT, V54, P2700 FUGGLE JC, 1983, PHYS REV B, V27, P2145 GAUTHIER Y, 1989, PHYS REV B, V40, P1500 GAUTHIER Y, 1987, PHYS REV B, V35, P7867 GAUTHIER Y, 1985, PHYS REV B, V31, P6216 GAUTHIER Y, 1992, SURF SCI, V276, P1 GAUTHIER Y, 1990, SURF SCI, V233, P239 GAY JG, 1986, PHYS REV LETT, V56, P2728 GLATZEL H, 1992, Z PHYS B CON MAT, V88, P53 GODBEY DJ, 1989, J CATAL, V117, P144 GOODMAN DW, 1985, J CATAL, V95, P321 GOODMAN DW, 1980, J CATAL, V63, P226 GOODMAN DW, 1984, P IUCCP C HET CAT GOODMAN DW, 1982, SURF SCI, V123, PL679 GRAHAM GW, 1986, J VAC SCI TECHNOL A, V4, P760 GRAHAM GW, 1990, PHYS REV B, V41, P3353 GRAHAM GW, 1987, SURF SCI, V184, P137 GRAHAM GW, 1986, SURF SCI, V171, PL432 GRAUPNER H, 1995, SURF SCI, V322, P103 GREENLIEF CM, 1987, J PHYS CHEM-US, V91, P6669 GUAN J, 1995, J VAC SCI TECHNOL A, V13, P1484 GUAN J, 1995, SURF SCI, V341, P311 GUNTHER C, 1993, BER BUNSEN PHYS CHEM, V97, P522 HAMMER B, 1996, PHYS REV LETT, V76, P2141 HARRIS S, 1986, J CATAL, V98, P17 HE JW, 1991, J AM CHEM SOC, V113, P6416 HE JW, 1990, J CHEM PHYS, V93, P7463 HE JW, 1990, J VAC SCI TECHNOL A, V8, P2435 HEINEN W, 1990, J ELECTRON SPECTROSC, V51, P701 HEITZINGER JM, 1992, CHEM PHYS LETT, V200, P65 HEITZINGER JM, 1993, SURF SCI, V294, P251 HEITZINGER JM, 1992, SURF SCI, V275, P209 HENN FC, 1989, J PHYS CHEM-US, V93, P836 HERMANN K, 1987, PHYS REV B, V35, P9467 HIETZINGER JM, 1993, J PHYS CHEM-US, V97, P5327 HILLEBRECHT FU, 1983, PHYS REV B, V27, P2179 HIMPSEL FJ, 1991, PHYS REV B, V44, P5966 HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363 HIRANO H, 1989, SURF SCI, V222, PL804 HOFFMANN FM, 1987, J CHEM PHYS, V87, P1857 HOFFMANN FM, 1987, J CHEM PHYS, V86, P2990 HOUSTON JE, 1988, PHYS REV B, V38, P12164 HOUSTON JE, 1987, SURF SCI, V192, P457 HRBEK J, UNPUB HUGENSCHMIDT MB, 1992, J PHYS CHEM-US, V96, P5974 HWANG RQ, 1992, J VAC SCI TECHNOL A, V10, P1970 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V75, P489 JAEGER RM, 1991, SURF SCI, V259, P235 JEON Y, 1994, PHYS REV B, V50, P6555 JIANG LQ, 1989, PHYS REV B, V39, P1564 JIANG XD, 1991, SURF SCI, V255, P1 JOHNSON BG, 1991, J CATAL, V128, P231 JUDD RW, 1988, SURF SCI, V198, P26 JUDD RW, 1987, SURF SCI, V185, P515 KAHN DR, 1974, J CATAL, V34, P294 KAMPSHOFF E, 1994, PHYS REV LETT, V73, P704 KELLOGG GL, 1987, SURF SCI, V187, P153 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KIM SK, 1995, PHYS REV B, V51, P5412 KNIGHT CC, 1990, SURF SCI, V240, P101 KOEL BE, 1992, PHYS REV B, V46, P7846 KOEL BE, 1990, SURF SCI, V231, P325 KOLACZKIEWICZ J, 1991, PHYS REV B, V44, P5779 KOLACZKIEWICZ J, 1985, SURF SCI, V160, P1 KOLACZKIEWICZ J, 1984, SURF SCI, V144, P495 KOZIOL C, 1990, PHYS REV B, V41, P3364 KU YS, 1992, SURF SCI, V273, P353 KUDRNOVSKY J, 1992, PHYS REV LETT, V69, P308 KUHN M, 1995, CATAL LETT, V32, P345 KUHN M, 1994, CHEM PHYS LETT, V231, P199 KUHN M, 1996, IN PRESS SURF SCI KUHN M, 1995, J CATAL, V154, P355 KUHN M, 1994, J PHYS CHEM-US, V98, P12059 KUHN M, 1994, PHYS REV B, V49, P1647 KUHN M, 1996, SURF SCI, V355, P85 KUHN M, 1995, SURF SCI, V341, PL1011 KUHN M, 1995, SURF SCI, V336, P1 KUHN M, 1994, SURF SCI, V314, PL897 KUHN M, UNPUB KUHN WK, 1993, J PHYS CHEM-US, V97, P446 KUHN WK, 1992, J VAC SCI TECHNOL A, V10, P2477 KUHN WK, 1994, SURF SCI, V303, P377 KUMAR V, 1983, PHYS REV B, V28, P3138 LEDANG K, 1993, APPL PHYS LETT, V63, P108 LEE JI, 1987, PHYS REV B, V36, P9318 LEGRAND B, 1990, PHYS REV B, V41, P4423 LENZ P, 1993, J CATAL, V139, P611 LI YD, 1994, PHYS REV B, V49, P2813 LI YS, 1990, PHYS REV LETT, V42, P9195 LIBUDA J, 1994, J VAC SCI TECHNOL A, V12, P2259 LILIENKAMP G, 1990, SURF SCI, V226, P358 LIN JC, 1988, SURF SCI, V206, P61 LIN JC, 1988, SURF SCI, V206, P86 LINDHOLM E, 1988, J PHYS CHEM-US, V92, P1731 LINKE R, 1994, SURF SCI, V307, P407 LINSEBIGLER A, 1993, SURF SCI, V294, P284 LIU SC, 1990, PHYS REV B, V42, P1582 LOGAN AD, 1992, J CATAL, V133, P179 LU SH, 1988, PHYS REV B, V37, P4296 LUNDBERG M, 1987, PHYS REV B, V36, P4692 MACIEJEWSKI P, 1995, SURF SCI, V330, P156 MADEY TE, 1993, SURF SCI, V287, P826 MADEY TE, 1991, SURF SCI, V247, P175 MADEY TE, UNPUB SURF REV LETT MALIK IJ, 1991, J PHYS CHEM-US, V95, P2466 MAMY R, 1995, SURF SCI, V322, P337 MASSARDIER J, 1984, J CATAL, V90, P358 MASSOBRIO C, 1995, J CHEM PHYS, V102, P605 MCDAVID JM, 1975, SURF SCI, V52, P161 MEAKIN P, 1994, HETEROGEN CHEM REV, V1, P99 MEYER JA, 1995, PHYS REV LETT, V74, P3864 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MIEDEMA AR, 1980, SURF SCI, V95, P447 MIEDEMA AR, 1978, Z METALLKD, V69, P287 MIEDEMA AR, 1978, Z METALLKD, V69, P455 MIEGGE P, 1994, J CATAL, V149, P404 MIKRUSIK P, 1990, PHYS SCR, V41, P130 MORGENSTERN K, 1995, PHYS REV LETT, V74, P2058 MULLINS DR, 1992, SURF SCI, V277, P64 NAUMOVIC D, 1992, SURF SCI, V269, P719 NIELSEN LP, 1993, PHYS REV LETT, V71, P754 NIEMANTSVERDRIET J, 1987, J VAC SCI TECHNOL A, V5, P875 NOORDERMEER A, 1986, SURF SCI, V165, P375 ONISHI H, 1993, SURF SCI, V283, P213 ORMEROD RM, 1991, SURF SCI, V259, PL709 ORTEGA JE, 1993, PHYS REV B, V47, P16441 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 OUDAR J, 1985, DEACTIVATION POISONI OVERBURY SH, 1993, PHYS REV B, V48, P1718 OVERBURY SH, 1992, PHYS REV B, V46, P7868 OVERBURY SH, 1991, SURF SCI, V254, P45 OVERBURY SH, 1990, SURF SCI, V236, P122 PACCHIONI G, 1994, SURF SCI, V304, P208 PAFFETT MT, 1990, J PHYS CHEM-US, V94, P6831 PAFFETT MT, 1985, LANGMUIR, V1, P741 PAFFETT MT, 1989, SURF SCI, V223, P449 PAFFETT MT, 1989, SURF SCI, V208, P34 PAFFETT MT, 1989, SURF SCI, V207, P274 PAFFETT MT, 1985, SURF SCI, V154, P284 PALMBERG PW, 1968, J CHEM PHYS, V49, P134 PAN XH, 1987, PHYS REV B, V35, P3734 PAPPAS DP, 1992, PHYS REV B, V45, P8169 PARK C, 1988, SURF SCI, V203, P395 PARK C, 1985, SURF SCI, V154, P371 PARKIN SSP, 1993, PHYS REV LETT, V71, P1641 PATTERSON CH, 1988, J PHYS CHEM-US, V92, P1266 PAVLOVSKA A, 1986, SURF SCI, V175, P369 PAVLOVSKA A, 1985, THIN SOLID FILMS, V126, P129 PEDEN CHF, 1986, IND ENG CHEM FUND, V25, P58 PEDEN CHF, 1987, J CATAL, V104, P347 PERKINS LS, 1994, SURF SCI, V319, P225 PERKINS LS, 1994, SURF SCI, V317, PL1152 PESCIA D, 1989, APPL PHYS A, V49 PICK S, 1995, CHEM PHYS LETT, V239, P84 PICK S, 1994, CHEM PHYS LETT, V225, P62 PICK S, 1993, CHEM PHYS LETT, V215, P319 PICK S, 1993, CHEM PHYS LETT, V208, P97 PICK S, 1995, J PHYS-CONDENS MAT, V7, P2673 PONEC V, 1983, ADV CATAL, V32, P149 POPE TD, 1991, PHYS REV B, V44, P11518 POPE TD, 1994, SURF SCI, V306, P294 POTSCHKE G, 1991, SURF SCI, V251, P592 POTTER HC, 1975, J VAC SCI TECHNOL, V12, P635 PRINS R, 1989, CATAL REV, V31, P1 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 RAEKER TJ, 1992, J VAC SCI TECHNOL A, V10, P2396 RAEKER TJ, 1994, SURF SCI, V317, P283 RIBEIRO FH, 1994, J CATAL, V150, P186 ROCHEFORT A, 1993, SURF SCI, V294, P43 RODER H, 1994, PHYS REV LETT, V73, P2143 RODER H, 1993, PHYS REV LETT, V71, P2086 RODER H, 1993, SURF SCI, V298, P121 RODRIGUEZ JA, 1995, ACCOUNTS CHEM RES, V28, P477 RODRIGUEZ JA, 1996, CHEM PHYS LETT, V251, P13 RODRIGUEZ JA, 1995, CHEM PHYS LETT, V240, P435 RODRIGUEZ JA, 1994, CHEM PHYS LETT, V220, P486 RODRIGUEZ JA, 1991, CHEM PHYS LETT, V180, P139 RODRIGUEZ JA, 1996, HETEROGEN CHEM REV, V3, P17 RODRIGUEZ JA, 1996, IN PRESS SURF SCI RODRIGUEZ JA, 1989, J CATAL, V115, P500 RODRIGUEZ JA, 1995, J CHEM PHYS, V102, P4279 RODRIGUEZ JA, 1992, J CHEM PHYS, V97, P9427 RODRIGUEZ JA, 1992, J CHEM PHYS, V96, P7814 RODRIGUEZ JA, 1996, J PHYS CHEM-US, V100, P381 RODRIGUEZ JA, 1996, J PHYS CHEM-US, V100, P3799 RODRIGUEZ JA, 1995, J PHYS CHEM-US, V99, P9567 RODRIGUEZ JA, 1994, J PHYS CHEM-US, V98, P5758 RODRIGUEZ JA, 1994, J PHYS CHEM-US, V98, P11251 RODRIGUEZ JA, 1993, J PHYS CHEM-US, V97, P6509 RODRIGUEZ JA, 1991, J PHYS CHEM-US, V95, P2477 RODRIGUEZ JA, 1991, J PHYS CHEM-US, V95, P4196 RODRIGUEZ JA, 1991, J PHYS CHEM-US, V95, P5716 RODRIGUEZ JA, 1990, J PHYS CHEM-US, V94, P5342 RODRIGUEZ JA, 1989, J PHYS CHEM-US, V93, P826 RODRIGUEZ JA, 1992, J VAC SCI TECHNOL A, V10, P2540 RODRIGUEZ JA, 1992, SCIENCE, V257, P897 RODRIGUEZ JA, 1996, SURF SCI, V345, P347 RODRIGUEZ JA, 1995, SURF SCI, V330, PL657 RODRIGUEZ JA, 1994, SURF SCI, V318, P253 RODRIGUEZ JA, 1994, SURF SCI, V312, P345 RODRIGUEZ JA, 1994, SURF SCI, V307, P377 RODRIGUEZ JA, 1994, SURF SCI, V303, P366 RODRIGUEZ JA, 1993, SURF SCI, V296, P149 RODRIGUEZ JA, 1991, SURF SCI, V244, P211 RODRIGUEZ JA, 1991, SURF SCI REP, V14, P1 RODRIGUEZ JA, UNPUB ROEDER H, 1993, NATURE, V366, P141 ROMEO M, 1990, SURF SCI, V238, P163 ROSS PN, 1992, J VAC SCI TECHNOL A, V10, P2546 RUCKMAN MW, 1994, ACCOUNTS CHEM RES, V27, P250 RUCKMAN MW, 1993, J VAC SCI TECHNOL A, V11, P466 RUCKMAN MW, 1992, J VAC SCI TECHNOL A, V10, P2551 RUCKMAN MW, 1988, PHYS REV B, V38, P2959 RUCKMAN MW, 1987, PHYS REV B, V35, P487 RUCKMAN MW, 1986, PHYS REV B, V34, P6759 RUCKMAN MW, 1985, PHYS REV B, V31, P3405 RUCKMAN MW, 1984, PHYS REV B, V29, P7105 SACHTLER JWA, 1984, J CATAL, V89, P35 SACHTLER JWA, 1983, J CATAL, V81, P77 SACHTLER WMH, 1977, ADV CATAL, V26, P69 SACHTLER WMH, 1984, APPL SURF SCI, V19, P167 SACHTLER WMH, 1981, FARADAY DISCUSS CHEM, V72, P7 SAKAKINI B, 1987, J CHEM SOC FARAD T 1, V83, P1975 SALMERON M, 1983, PHYS REV B, V28, P1158 SAMMYNAIKEN R, 1995, PHYSICA B, V208, P371 SANTRA AK, 1994, J PHYS CHEM-US, V98, P5962 SCHLENK W, 1980, SURF SCI, V93, P9 SCHMITZ PJ, 1989, PHYS REV B, V40, P11477 SCHMITZ PJ, 1991, SURF SCI, V248, P287 SCHNEIDER U, 1993, SURF SCI, V287, P146 SCHNEIDER U, 1992, SURF SCI, V269, P316 SCHWAB GM, 1950, DISCUSS FARADAY SOC, V8, P166 SCHWOEBEL PR, 1988, PHYS REV B, V38, P5326 SELLIDJ A, 1994, PHYS REV B, V49, P8367 SEXTON BA, 1977, J CATAL, V46, P167 SHAM TK, 1990, PHYS REV B, V41, P1188 SHAM TK, 1985, PHYS REV B, V31, P1903 SHAM TK, 1979, PHYS REV B, V19, P539 SHEK ML, 1983, PHYS REV B, V27, P7277 SHEK ML, 1983, PHYS REV B, V27, P7301 SHEN YG, 1995, SURF SCI, V328, P21 SHIVAPRASAD SM, 1988, THIN SOLID FILMS, V163, P393 SHUSTOROVICH E, 1984, J PHYS CHEM-US, V81, P1966 SHUSTOROVICH E, 1985, SCIENCE, V227, P876 SIEBEN B, 1993, SURF SCI, V282, P246 SINFELT JH, 1977, ACCOUNTS CHEM RES, V10, P15 SMITH GC, 1982, J PHYS C SOLID STATE, V15, P6481 SOMORJAI GA, 1994, INTRO SURFACE CHEM C SOMORJAI GA, 1994, INTRO SURFACE CHEM C, P310 SOMORJAI GA, 1989, PROG SURF SCI, V30, P201 SONDERICKER D, 1986, PHYS REV B, V33, P900 SONDERICKER D, 1986, PHYS REV B, V33, P6770 SONDERICKER D, 1985, SOLID STATE COMMUN, V53, P175 SONG KJ, 1995, SURF SCI, V327, P17 STRONGIN M, COMMUNICATION STRONGIN M, 1993, METALLIC ALLOYS EXPT STROSCIO JA, 1992, J VAC SCI TECHNOL A, V10, P1981 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUNDARAM VS, 1974, SURF SCI, V46, P653 SZANYI J, 1994, CATAL LETT, V29, P133 SZANYI J, 1992, CATAL LETT, V14, P27 SZANYI J, 1995, J AM CHEM SOC, V117, P1034 SZANYI J, 1994, J CATAL, V149, P438 SZANYI J, 1994, J CATAL, V145, P508 TERSOFF J, 1994, PHYS REV LETT, V72, P266 TREGLIA G, 1987, PHYS REV B, V35, P4338 TRONC M, 1980, J PHYS B ATOM MOL PH, V13, P2327 TSONG TT, 1988, SURF SCI REP, V8, P127 VANCAMPEN DG, 1995, J PHYS CHEM-US, V99, P16389 VANDELFT FCMJM, 1987, SURF SCI, V189, P1129 VANLANGEVELD AD, 1986, SURF SCI, V178, P880 VOIGTLANDER B, 1991, PHYS REV B, V44, P10354 VOIGTLANDER B, 1991, SURF SCI, V255, PL529 WANG CP, 1993, SURF SCI, V298, P114 WATSON RE, 1987, PHYS REV B, V35, P508 WEINERT M, 1995, PHYS REV B, V51, P17168 WEISSMANWENOCUR DL, 1983, PHYS REV B, V27, P3308 WENG SL, 1980, PHYS REV LETT, V44, P612 WERTHEIM GK, 1989, PHYS REV B, V40, P5319 WHITTEN JE, 1994, SURF SCI, V316, P1 WHITTEN JE, 1994, SURF SCI, V316, P23 WILLIAMS ED, 1989, ULTRAMICROSCOPY, V31, P36 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOODRUFF DP, 1986, MODERN TECHNIQUES SU WU RQ, 1995, CHEM PHYS LETT, V238, P99 WU RQ, 1995, PHYS REV B, V52, P12419 WU SC, 1988, PHYS REV B, V38, P5363 WUTTIG M, 1993, SURF SCI, V292, P189 WYTENBURG WJ, 1993, SURF SCI, V282, P205 XU C, 1993, J AM CHEM SOC, V115, P751 XU C, 1994, J CHEM PHYS, V100, P664 XU C, 1994, J PHYS CHEM-US, V98, P585 XU C, 1994, LANGMUIR, V10, P166 XU C, 1995, SURF SCI, V327, P38 XU C, 1994, SURF SCI, V310, P198 XU C, 1994, SURF SCI, V304, P249 YANG LQ, 1994, J CATAL, V148, P575 YANG YW, 1993, SURF SCI, V289, P267 YAO J, 1995, J VAC SCI TECHNOL A, V13, P1443 YATES JT, 1985, J CATAL, V94, P576 YEATES RC, 1987, J CATAL, V103, P208 ZANGWILL A, 1988, PHYSICS SURFACES ZHANG ZY, 1994, PHYS REV LETT, V73, P1829 ZHAO YB, 1990, SURF SCI, V239, P189 TC 1 BP 225 EP 287 PG 63 JI Surf. Sci. Rep. PY 1996 VL 24 IS 7-8 GA VE363 J9 SURF SCI REP UT ISI:A1996VE36300001 ER PT J AU Amar, JG Family, F TI Characterization of surface morphology in epitaxial growth SO SURFACE SCIENCE NR 29 AB Simulated kinematic antiphase RHEED and HRLEED profiles are calculated along with the surface structure factor for a model of Fe/Fe(100) deposition in order to clarify the interpretation of diffraction profiles in recent experiments on Fe/Fe(100) growth. Similar calculations are also presented for a self- affine surface. While self-affine surfaces do not exhibit a characteristic RHEED peak, in the case of surfaces with a typical length scale the simulated RHEED profile exhibits a peak corresponding to the typical feature size, in agreement with recent experiments. The existence of this peak appears to be due to the large amount of shadowing present in low-angle RHEED, which limits the amount of destructive interference between layers. In contrast, simulated antiphase HRLEED patterns appear to approach an invariant profile for both self- affine and mound-like surface morphologies. For the case of small mounds, our results predict a HRLEED profile with a weak peak corresponding to the average terrace size which moves outward with increasing coverage, and eventually reaches an invariant form due to angle selection. The disappearance of the HRLEED peak for surfaces which have large mound structures is explained in terms of the antiphase condition and the range of variation of terrace sizes and provides an alternative explanation for the HRLEED results observed in Ref. [10]. CR AMAR JG, IN PRESS AMAR JG, 1990, PHYS REV A, V41, P3399 AMAR JG, 1995, PHYS REV B, V52, P13801 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1995, SURF SCI, V331, P868 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1992, DYNAMICS FRACTAL SUR HE YL, 1992, PHYS REV LETT, V69, P3770 HENZLER M, 1993, SURF SCI, V298, P369 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KIM JM, 1989, PHYS REV LETT, V62, P2289 KRUG J, 1993, PHYS REV LETT, V70, P3271 MEYER G, 1990, SURF SCI, V231, P64 MULLER B, 1995, REV SCI INSTRUM, V66, P5232 PUKITE PR, 1985, SURF SCI, V161, P39 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 VONHOEGEN MH, 1993, SURF SCI, V284, P53 WANG SC, 1995, PHYS REV LETT, V75, P2964 YANG HN, 1993, DIFFRACTION ROUGH SU TC 13 BP 177 EP 185 PG 9 JI Surf. Sci. PY 1996 PD SEP 10 VL 365 IS 1 GA VF384 J9 SURFACE SCI UT ISI:A1996VF38400020 ER PT J AU Smith, AR Chao, KJ Niu, Q Shih, CK TI Formation of atomically flat silver films on GaAs with a ''silver mean'' quasi periodicity SO SCIENCE NR 22 AB A flat epitaxial silver film on a gallium arsenide [GaAs(110)] surface was synthesized in a two-step process. Deposition of a critical thickness of silver at low temperature led to the formation of a dense nanocluster film. Upon annealing, all atoms rearranged themselves into an atomically flat film. This silver film has a close-packed (111) structure modulated by a ''silver mean'' quasi-periodic sequence. The ability to grow such epitaxial overlayers of metals on semiconductors enables the testing of theoretical models and provides a connection between metal and semiconductor technologies. CR EVANS DA, 1993, PHYS REV LETT, V70, P3483 FEENSTRA RM, 1989, PHYS REV LETT, V63, P112 FIRST PN, 1989, PHYS REV LETT, V63, P1416 FRITZ IJ, 1987, APPL PHYS LETT, V51, P1004 GUMBS G, 1988, PHYS REV LETT, V60, P1081 HAMERS RJ, 1990, J VAC SCI TECHNOL A, V8, P195 HOLZER M, 1988, PHYS REV B, V38, P1709 JONKER BT, 1991, J VAC SCI TECHNOL B, V9, P2437 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAGALLY MG, 1993, PHYS TODAY, V46, P24 MO YW, 1989, SURF SCI, V219, PL551 PRINZ GA, 1981, APPL PHYS LETT, V39 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SHIH CK, 1990, J VAC SCI TECHNOL A, V8, P3379 SMITH AR, 1995, REV SCI INSTRUM, V66, P2499 SPICER WE, 1980, PHYS REV LETT, V44, P420 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TERSOFF J, 1984, PHYS REV LETT, V52, P465 TRAFAS BM, 1991, PHYS REV B, V43, P14107 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 WALDROP JR, 1979, APPL PHYS LETT, V34, P630 WILLIAMS ED, 1991, SCIENCE, V251, P393 TC 25 BP 226 EP 228 PG 3 JI Science PY 1996 PD JUL 12 VL 273 IS 5272 GA UW787 J9 SCIENCE UT ISI:A1996UW78700037 ER PT J AU Igel, T Pfandzelter, R Winter, H TI Intensity oscillations in grazing scattering of fast He+ ions during heteroepitaxial growth of Cr on Fe(100) SO EUROPHYSICS LETTERS NR 26 AB We report on grazing scattering of 25 keV He+ ions during epitaxial growth of Cr on Fe(100). The angular distribution and intensity of the scattered particles depend on the coverage in an oscillatory way, which is due to the periodical change of the surface morphology in two-dimensional growth. At high growth temperatures (600 K), pronounced oscillations which persist with little decay in the amplitude indicate (almost) ideal layer-by-layer growth; at low temperatures (350 K), strongly damped oscillations and low intensities of scattered projectiles are due to transient layer-by-layer growth. The angular distributions are well described by Monte Carlo simulations using a classical description for the trajectories. This enables one to derive detailed information on the morphology of the growth front, like, e.g., the mean island distance. CR AMAR JG, 1994, PHYS REV B, V50, P8781 ARROTT AS, 1994, ULTRATHIN MAGNETIC S, V1, P177 BUSCH H, 1986, SURF SCI, V167, P534 FUJII Y, 1993, APPL PHYS LETT, V63, P2070 FUJII Y, 1994, SURF SCI, V318, PL1225 FUOSS PH, 1992, PHYS REV LETT, V69, P2791 GOMEZ LJ, 1985, PHYS REV B, V31, P2251 HARRIS JJ, 1981, SURF SCI, V103, PL90 HE YL, 1992, PHYS REV LETT, V69, P3770 JACKSON DP, 1974, SURF SCI, V43, P431 KATO M, 1994, NUCL INSTRUM METH B, V90, P80 KAWAMURA T, 1989, PHYS REV B, V39, P12723 KUNKEL R, 1990, PHYS REV LETT, V65, P733 MARKOV VA, 1991, SURF SCI, V250, P229 OCONNOR DJ, 1986, NUCL INSTRUM METH B, V15, P14 PFANDZELTER R, IN PRESS PFANDZELTER R, 1990, NUCL INSTRUM METH B, V48, P351 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1987, PHYS REV B, V35, P6458 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SCHUSTER M, 1983, SURF SCI, V134, P195 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VLIEG E, 1988, PHYS REV LETT, V61, P2241 WINTER H, 1993, IONIZATION SOLIDS HE, P253 WINTER H, 1992, PHYS REV A, V46, PR13 YANG HN, 1995, PHYS REV B, V51, P17932 TC 13 BP 67 EP 72 PG 6 JI Europhys. Lett. PY 1996 PD JUL 1 VL 35 IS 1 GA UW193 J9 EUROPHYS LETT UT ISI:A1996UW19300012 ER PT J AU Elliott, WC Miceli, PF Tse, T Stephens, PW TI Orientation dependence of homoepitaxy: An in situ X-ray scattering study of Ag SO PHYSICA B NR 27 AB We have investigated the homoepitaxial growth of Ag(111) and Ag(100) using X-ray specular reflectivity measured near the Bragg positions. At a growth temperature of 200 K, we observe that the root-mean-square roughness, a, evolves as a power law in the deposited thickness for both crystal orientations. However, the growth kinetics of these surfaces are vastly different, leading to exponents of beta = 0.5 +/- 0.05 for Ag(111) and beta = 0.28 +/- 0.03 for Ag(100). The differences in growth are attributed to the diffusion barrier at step ledges. CR CHEVRIER J, 1991, EUROPHYS LETT, V16, P737 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ELLIOTT WC, IN PRESS ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1990, PHYSICA A, V168, P561 HE YL, 1992, PHYS REV LETT, V69, P3770 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRIM J, 1993, PHYS REV LETT, V70, P57 KRUG J, 1992, SOLIDS EQUILIBRIUM MEAKIN P, 1993, PHYS REP, V235, P189 MICELI PF, 1993, SEMICONDUCTOR INTERF, P87 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 ROBINSON IK, 1986, PHYS REV B, V33, P3830 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SINHA SK, 1988, PHYS REV B, V38, P2297 STEPHENS PW, 1993, REV SCI INSTRUM, V64, P374 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THOMPSON C, 1994, PHYS REV B, V49, P4902 TONG WM, 1994, PHYS REV LETT, V72, P3374 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VILLAIN J, 1991, J PHYS I, V1, P19 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 YANG HN, 1994, PHYS REV LETT, V73, P2348 YOU H, 1993, PHYS REV LETT, V70, P2900 ZHANG ZY, 1993, PHYS REV B, V48, P4972 TC 10 BP 65 EP 69 PG 5 JI Physica B PY 1996 PD APR VL 221 IS 1-4 GA UR277 J9 PHYSICA B UT ISI:A1996UR27700011 ER PT J AU Davies, A Stroscio, JA Pierce, DT Celotta, RJ TI Atomic-scale observations of alloying at the Cr-Fe(001) interface SO PHYSICAL REVIEW LETTERS NR 22 AB While much progress has been made using epitaxial growth of Fe/Cr/Fe structures to study magnetic exchange coupling, a number of anomalies have arisen in studies of this model system. Using scanning tunneling microscopy and spectroscopy to investigate Cr growth on Fe(001), we have identified a potential structural cause of these anomalies. We show that Cr growth under layer-by-layer conditions on Fe(001) leads to the formation of a Cr-Fe alloy. We exploit a Cr and Fe surface state to identify single Cr impurities in Fe and evaluate the alloy concentrations with increasing Cr coverage. CR ARROTT AS, 1990, KINETICS ORDERING GR, P321 DONATH M, 1991, PHYS REV B, V43, P13164 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, 1995, P 14 INT C MAGN FILM GITTSOVICH VN, 1995, J MAGN MAGN MATER, V146, P165 HEINRICH B, 1993, MAGNETISM STRUCTURE, V309, P101 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 NIELSEN LP, 1993, PHYS REV LETT, V71, P754 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 RODER H, 1993, PHYS REV LETT, V71, P2086 STEVENS JL, 1995, PHYS REV LETT, V74, P2078 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, MAGNETISM STRUCTURE, P101 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VENUS D, 1996, PHYS REV B, V53, PR1733 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 80 BP 4175 EP 4178 PG 4 JI Phys. Rev. Lett. PY 1996 PD MAY 27 VL 76 IS 22 GA UM245 J9 PHYS REV LETT UT ISI:A1996UM24500019 ER PT J AU Amar, JG Family, F TI Kinetics of submonolayer and multilayer epitaxial growth SO THIN SOLID FILMS NR 68 AB An introductory review of the central ideas in the kinetics of submonolayer and multilayer expitaxial growth is followed by a more detailed discussion of some recent developments in the field. The concepts of a critical island size, dynamical scaling of the island-size distribution, and the barrier to interlayer diffusion (Ehrlich-Schwoebel barrier) are introduced. The results of kinetic Monte Carlo simulations of a realistic model of submonolayer epitaxial growth are presented and compared with rate-equation analyses and recent experiments. We also present an analytical expression for the scaled island-size distribution as a function of the critical island size which agrees well with our simulations as well as with experiments. Our results provide a quantitative explanation for the variation of the submonolayer island density, critical island size, island-size distribution and morphology as a function of temperature and deposition rate found in recent experiments. We also present the results of a realistic model for multilayer growth which includes a finite barrier to interlayer diffusion. A method for determining the Ehrlich-Schwoebel barrier based on a comparison of simulations with experimental results for the reflection high-energy electron diffraction intensity, surface width, layer densities, and surface morphology is discussed. In particular, we find that for Fe/Fe(100) the interlayer diffusion barrier is significantly less than the activation energy for diffusion on a flat terrace. CR AMAR JG, IN PRESS PHYS REV B AMAR JG, 1995, MAT RES SOC P, V367 AMAR JG, 1994, MATER RES SOC SYMP P, V317, P167 AMAR JG, 1995, PHYS REV B, V52, P1380 AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 ANDERSON SR, 1988, PHYS REV A, V38, P4198 BALES GS, 1994, PHYS REV B, V50, P6057 BARKEMA GT, 1994, SURF SCI, V306, PL569 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 BOTET R, 1984, J PHYS A-MATH GEN, V17, P2517 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 FAMILY F, 1995, MAT SCI ENG B-SOLID, V30, P149 FAMILY F, 1989, PHYS REV A, V40, P3836 FAMILY F, 1988, PHYS REV LETT, V61, P428 FAMILY F, 1986, PHYS REV LETT, V57, P727 GAWLINSKI ET, 1981, J PHYS A-MATH GEN, V14, PL291 HWANG RQ, 1992, J VAC SCI TECHNOL B, V10, P256 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KOPATZKI E, 1993, SURF SCI, V284, P154 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LEWIS B, 1978, NUCL GROWTH THIN FIL LI W, 1993, PHYS REV B, V48, P8336 MATTHEWS JW, 1975, EPITAXIAL GROWTH MEAKIN P, 1988, PHASE TRANSITIONS CR, V12 MEAKIN P, 1985, PHYS REV B, V31, P564 MO YW, 1991, PHYS REV LETT, V66, P1998 RATSCH C, 1994, PHYS REV LETT, V72, P3194 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SANDERS DE, 1988, PHYS REV A, V38, P4186 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 STAUFFER D, 1992, INTRO PERCOLATION TH STOLTZE P, 1993, PHYS REV B, V48, P5607 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1994, PHYS REV LETT, V72, P254 TANG LH, 1993, J PHYS I, V3, P935 TERSOFF J, 1994, PHYS REV LETT, V72, P266 TSAO JY, 1993, MAT FUNDAMENTALS MOL VENABLES JA, 1984, REP PROG PHYS, V47, P399 VICSEK T, 1984, PHYS REV LETT, V52, P1669 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 VONSMOLUCHOWSKI M, 1916, PHYS Z, V17, P557 VONSMOLUCHOWSKI M, 1917, Z PHYS CHEM-LEIPZIG, V92, P129 WALTON D, 1963, J CHEM PHYS, V38, P2698 WALTON D, 1962, J CHEM PHYS, V37, P2182 WOLF DE, 1994, SCALE INVARIANCE INT YU X, 1991, PHYS REV B, V44, P13163 ZANGWILL A, 1992, MRS P, V280 ZHANG ZY, 1993, PHYS REV B, V48, P4972 ZUO JK, 1994, PHYS REV LETT, V72, P3064 ZUO JK, 1991, PHYS REV LETT, V66, P2227 TC 21 BP 208 EP 222 PG 15 JI Thin Solid Films PY 1996 PD JAN 15 VL 272 IS 2 GA UF491 J9 THIN SOLID FILMS UT ISI:A1996UF49100005 ER PT J AU Noh, HP Choi, YJ Park, JY Jeong, IC Suh, YD Kuk, Y TI Growth structure of Fe on the Cu(001) surface SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B NR 14 AB Initial stage of Fe growth on Cu(001) surface has been studied using scanning tunneling microscopy. Growth can be characterized predominantly by a layer-by-layer scheme up to 5 ML, The island size distributions are scaled to different curves at the submonolayer regime, suggesting atomic mixing at the first layer. Interdiffusion may occur through the atomic defects or impurities on the Cu surface, Annealing the grown Fe film results in change of the surface morphology. (C) 1996 American Vacuum Society. CR BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 BRODDE A, 1993, SURF SCI, V287, P988 DETZEL T, 1994, PHYS REV B, V49, P5599 GLATZEL H, 1991, SURF SCI, V254, P58 JOHNSON KE, 1994, SURF SCI, V313, PL811 LI DQ, 1994, PHYS REV LETT, V72, P3112 MULLER S, 1995, PHYS REV LETT, V74, P765 RATSCH C, 1994, SURF SCI, V314, PL937 SCHATZ A, 1994, SURF SCI, V310, PL595 SHEN J, 1995, SURF SCI, V328, P32 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 WUTTIG M, 1993, SURF SCI, V291, P14 TC 1 BP 1188 EP 1190 PG 3 JI J. Vac. Sci. Technol. B PY 1996 PD MAR-APR VL 14 IS 2 GA UH890 J9 J VAC SCI TECHNOL B UT ISI:A1996UH89000123 ER PT J AU Tsui, F Wellman, J Uher, C Clarke, R TI Morphology transition and layer-by-layer growth of Rh(111) SO PHYSICAL REVIEW LETTERS NR 28 AB We have observed a morphological transition in the nucleation and growth of epitaxial Rh(111). The transition occurs near 600 K and is signaled by a change in the shape of the surface features from fingered to compact. The transition appears to be related to a change in the critical nucleation size. On both sides of the transition, there lies a regime of persistent layer-by-layer growth. The general surface features exhibit well-defined length scales and as growth proceeds they increase in size following a power-law dependence on film thickness with a morphology-independent exponent of 0.33 +/- 0.03. The results suggest a general pathway to the layer-by-layer growth of close-packed metals. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 AYRAULT G, 1974, J CHEM PHYS, V60, P281 BALES GS, 1994, PHYS REV B, V50, P6057 BARLETT D, 1991, REV SCI INSTRUM, V62, P1263 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 ERNST HJ, 1994, J VAC SCI TECHNOL, V12, P1 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KUNKEL R, 1990, PHYS REV LETT, V65, P733 MCKANE AJ, 1994, SCALE INVARIANCE INT ORME C, 1994, APPL PHYS LETT, V64, P860 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RODER H, 1995, PHYS REV LETT, V74, P3217 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1994, SCALE INVARIANCE INT STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TERSOFF J, 1994, PHYS REV LETT, V72, P266 TSUI F, 1993, PHYS REV B, V47, P13648 TSUI F, UNPUB VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1973, PHILOS MAG, V27, P697 VILLAIN J, 1991, J PHYS I, V1, P19 TC 35 BP 3164 EP 3167 PG 4 JI Phys. Rev. Lett. PY 1996 PD APR 22 VL 76 IS 17 GA UF744 J9 PHYS REV LETT UT ISI:A1996UF74400030 ER PT J AU Michely, T Hohage, M Esch, S Comsa, G TI The effect of surface reconstruction on the growth mode in homoepitaxy SO SURFACE SCIENCE NR 35 AB The homoepitaxial growth on Pt(111) has been investigated by scanning tunneling microscopy. The nearly perfect layer-by- layer growth of this system at 650 K previously inferred from almost undamped He-scattering oscillations is demonstrated to be induced by the network reconstruction periodically sweeping over the surface. CR BOTT M, 1993, PHYS REV LETT, V70, P1489 BOTT M, 1995, REV SCI INSTRUM, V66, P4135 BOTT M, 1992, SURF SCI, V272, P161 CLARKE S, 1991, SURF SCI, V255, P91 DABIRAN AM, 1995, J CRYST GROWTH, V150, P23 DABIRAN AM, 1993, SURF SCI, V298, P348 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1992, SURF SCI, V275, PL682 ESCH S, 1994, PHYS REV LETT, V72, P518 HOHAGE M, 1995, SURF SCI, V337, P249 HORNVONHOEGEN M, 1994, SURF SCI, V321, PL129 JACOBSEN J, 1994, SURF SCI, V317, P8 KANEKO T, 1995, PHYS REV LETT, V74, P3289 KOHLER U, 1989, J VAC SCI TECHNOL A, V7, P2860 KUNKEL R, 1991, 2526 FORSCH JUL, V2526, P94 KUNKEL R, 1990, PHYS REV LETT, V65, P733 MARKOV VA, 1991, SURF SCI, V250, P229 MEINEL K, 1988, J CRYST GROWTH, V89, P447 MO YW, 1989, PHYS REV LETT, V63, P2393 ROSENFELD G, 1995, J CRYST GROWTH, V151, P230 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 ROSENFELD G, 1992, PHYS REV LETT, V69, P917 SAKAMOTO T, 1985, APPL PHYS LETT, V47, P617 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TEICHERT C, 1994, PHYS REV LETT, V72, P1682 TERSOFF J, 1994, PHYS REV LETT, V72, P266 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VILLAIN J, 1991, J PHYS I, V1, P19 VOIGTLANDER B, 1991, PHYS REV B, V44, P10354 VOIGTLANDER B, 1993, SURF SCI, V292, PL775 VRIEMOETH J, 1994, PHYS REV LETT, V72, P3843 WOLF DE, 1994, NATO ASI SER, P76 TC 18 BP L89 EP L94 PG 6 JI Surf. Sci. PY 1996 PD MAR 20 VL 349 IS 1 GA UB581 J9 SURFACE SCI UT ISI:A1996UB58100001 ER PT J AU Tober, ED Ynzunza, RX Westphal, C Fadley, CS TI Relationship between morphology and magnetic behavior for Gd thin films on W(110) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 22 AB We have used scanning-tunneling microscopy to study the structure of Gd thin films grown on W(110) and its relationship to the magnetic properties. The film morphology is examined for different coverages and for two different post-deposition annealing temperatures (530 and 710 K), permitting predictions of the in-plane demagnetization factor and the Curie temperature that are in excellent agreement with prior ac magnetic-susceptibility measurements. The first monolayer of Gd is also found to grow in a (7 x 14) lateral superstructure, giving rise to in-plane lattice distortions of similar to 1% as compared to the values of bulk Gd. CR ASPELMEIER A, 1994, J MAGN MAGN MATER, V132, P22 BERGER A, 1994, J MAGN MAGN MATER, V137, PL1 FARLE M, 1993, APPL PHYS LETT, V62, P2728 FARLE M, 1994, J APPL PHYS, V75, P5604 FARLE M, 1993, PHYS REV B, V47, P11571 GALLOWAY HC, 1993, SURF SCI, V298, P127 GUNTHER C, 1995, PHYS REV LETT, V74, P754 HIGASHIYAMA K, 1993, SURF SCI, V291, P47 KIM B, 1992, PHYS REV LETT, V68, P1931 KIM YJ, 1995, THESIS U HAWAII KOLACZKIEWICZ J, 1986, SURF SCI, V175, P487 LI DQ, 1991, J APPL PHYS, V70, P6565 LI DQ, 1992, PHYS REV B, V45, P7272 LI H, 1992, PHYS REV B, V45, P3853 MADEY TE, 1991, SURF SCI, V247, P175 PANG AW, 1994, PHYS REV B, V50, P6457 RAU C, 1989, PHYS LETT A, V138, P334 SAMSAVAR A, 1989, PHYS REV LETT, V63, P2830 STETTER U, 1992, PHYS REV B, V45, P503 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG H, 1993, PHYS REV LETT, V71, P444 WELLER D, 1985, PHYS REV LETT, V54, P1555 TC 38 BP 5444 EP 5448 PG 5 JI Phys. Rev. B-Condens Matter PY 1996 PD MAR 1 VL 53 IS 9 GA UA011 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UA01100068 ER PT J AU Chambliss, DD Wilson, RJ Chiang, S TI The use of STM to study metal film epitaxy SO IBM JOURNAL OF RESEARCH AND DEVELOPMENT NR 44 AB In this paper we review work we have done at the IBM Almaden Research Center using the scanning tunneling microscope to understand the epitaxial growth of metal films. In particular, we explore the important role of deposit-substrate interactions in controlling growth and film structure, both by strain of the substrate and by place-exchange intermixing. These are illustrated first by the growth traits of Au, Ag, Ri, and Fe on Au(lll) and their relationship to the herringbone reconstruction. Au on Ag(110) is presented as a clear example of spontaneous penetration of the substrate by deposited material at room temperature. Fe on Cu(100) is a more subtle example of the effect of place-exchange and of ways to observe it. The martensitic transformation of thicker Fe films on Cu(100) demonstrates the importance of bulklike structural changes in metastable epitaxial films. CR BARTH J, 1995, PHYS REV B, V152, P1528 BARTH JV, 1990, PHYS REV B, V42, P9307 BARTH JV, 1992, THESIS FREIEN U BERL BOTT M, 1993, PHYS REV LETT, V70, P1489 CHAMBERS SA, 1987, PHYS REV B, V36, P8992 CHAMBLISS DD, 1992, J VAC SCI TECHNOL A, V10, P1993 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 CHAMBLISS DD, 1993, MAGNETIC ULTRATHIN F, P713 CHAMBLISS DD, 1994, PHYS REV B, V50, P5012 CHAMBLISS DD, 1991, PHYS REV LETT, V66, P1721 CHAMBLISS DD, 1991, STRUCTURE PROPERTY R, P15 CHAMBLISS DD, 1994, SURF SCI, V313, P215 CHAMBLISS DD, 1992, SURF SCI, V264, PL187 CHAN CT, 1992, PHYS REV LETT, V69, P1672 CHIANG S, 1988, J VAC SCI TECHNOL A, V6, P386 DAUM W, 1988, PHYS REV LETT, V60, P2741 EGELHOFF WF, 1985, J VAC SCI TECHNOL A, V3, P1511 FEIBELMAN PJ, 1990, PHYS REV LETT, V65, P729 FENTER P, 1990, PHYS REV LETT, V64, P1142 GALLOWAY HC, 1993, SURF SCI, V298, P127 HAFTEL MI, 1994, PHYS REV LETT, V72, P1858 HARTEN U, 1985, PHYS REV LETT, V54, P2619 HUANG KG, 1990, PHYS REV LETT, V65, P3313 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JOHNSON KE, 1993, J VAC SCI TECHNOL A, V11, P1654 JOHNSON KE, 1994, SURF SCI, V313, PL811 KADANOFF LP, 1985, J STAT PHYS, V39, P267 KALKI K, 1993, PHYS REV B, V48, P18344 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KOIKE J, P MATERIALS RES SOC, V202, P13 NARASIMHAN S, 1992, PHYS REV LETT, V69, P1564 PAPPAS DP, 1990, PHYS REV LETT, V64, P3179 ROUSSET S, 1992, PHYS REV LETT, V69, P3200 SCHMID AK, 1991, J VAC SCI TECHNOL B, V9, P649 SHEN J, 1995, SURF SCI, V328, P32 STEIGERWALD DA, 1988, PHYS REV LETT, V60, P2558 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 THOMASSEN J, 1992, SURF SCI, V264, P406 VENABLES JA, 1984, REP PROG PHYS, V47, P399 WAYMAN CM, 1983, PHYSICAL METALLURGY, P1031 WHITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLL C, 1989, PHYS REV B, V39, P7988 WUTTIG M, 1993, SURF SCI, V291, P14 TC 3 BP 639 EP 654 PG 16 JI IBM J. Res. Dev. PY 1995 PD NOV VL 39 IS 6 GA TW145 J9 IBM J RES DEVELOP UT ISI:A1995TW14500005 ER PT J AU Evans, JW Bartelt, MC TI Nucleation, growth, and kinetic roughening of metal(100) homoepitaxial thin films SO LANGMUIR NR 92 AB A unified analysis is presented of submonolayer nucleation and growth of two-dimensional islands and the subsequent transition to multilayer growth during metal-on-unreconstructed metal(100) homoepitaxy. First, we review and augment recent developments in submonolayer nucleation theory for general critical size i (above which islands are effectively stable against dissociation). We discuss choices of ''capture numbers'' for aggregation of adatoms with islands, and ramifications for island density scaling with deposition flux and substrate temperature. We also characterize a ''direct'' transition from critical size i = 1 to a well-defined regime of i = 3 scaling, with increasing temperature, for sufficiently strong adatom- adatom bonding. Pie note that there exists no well-defined regime of integer i >3. The submonolayer island distribution provides a template for subsequent unstable multilayer growth or ''mounding'' (which we contrast with ''self-affine'' growth). This mounding is induced by the presence of a step- edge barrier for downward diffusive transport in these systems. We characterize resulting oscillatory height correlation functions and non-Gaussian height and height-difference distributions. We also develop an appropriate kinematic diffraction theory to elucidate the oscillatory decay of Bragg intensities and the evolution from split to nonsplit diffraction profiles. Finally, we analyze experimental data for Fe(100) and Cu(100) homoepitaxy and extract key activation barriers for these systems. CR AMAR JG, COMMUNICATION AMAR JG, 1995, MRS P MATERIALS RES, V367 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BALES GS, 1994, PHYS REV B, V50, P6057 BARKEMA GT, 1994, SURF SCI, V306, PL569 BARTELT MC, 1993, EUROPHYS LETT, V21, P99 BARTELT MC, IN PRESS B AM PHYS S BARTELT MC, IN PRESS PHYS REV B BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1993, PHYS REV B, V47, P13891 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1995, SURF SCI, V344, PL1193 BARTELT MC, 1994, SURF SCI, V314, PL835 BARTELT MC, 1993, SURF SCI, V298, P421 BARTELT MC, UNPUB SURF SCI COMME BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 BREEMAN M, 1995, COMMUNICATION CLARKE S, 1988, J APPL PHYS, V63, P2272 COURANT R, 1953, METHODS MATH PHYSICS, V1 DASSARMA S, 1991, PHYS REV LETT, V66, P325 DAW MS, 1984, PHYS REV B, V29, P6443 DAW MS, 1983, PHYS REV LETT, V50, P1285 DURR H, 1995, SURF SCI, V328, PL527 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1992, PHYS REV B, V46, P1929 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, PHYS REV LETT, V69, P458 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 EVANS JW, 1989, PHYS REV B, V39, P5655 EVANS JW, 1993, SURF SCI, V284, PL437 EVANS JW, UNPUB SURF SCI REP FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1995, MAT SCI ENG B-SOLID, V30, P149 FAMILY F, 1989, PHYS REV A, V40, P3836 FAMILY F, 1988, PHYS REV LETT, V61, P428 FEIBELMAN P, 1995, PHYS REV B, V552, P12447 FEIBELMAN PJ, 1990, PHYS REV LETT, V65, P729 FEIBELMAN PJ, 1994, SURF SCI, V299, P426 FLYNN DK, 1989, J VAC SCI TECHNOL A, V7, P2162 HAHN P, 1980, J APPL PHYS, V51, P2079 HALSTEAD DM, 1993, SURF SCI, V286, P275 HE YL, 1992, PHYS REV LETT, V69, P3770 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KANG HC, 1992, SURF SCI, V269, P784 KANG HC, 1991, SURF SCI, V256, P205 KRUG J, 1992, PHYS REV A, V45, P638 LAGALLY MG, 1990, KINETICS ORDERING GR LAI ZW, 1991, PHYS REV LETT, V66, P2348 LIU SD, 1995, PHYS REV B, V52, P2907 LIU SD, 1995, PHYS REV LETT, V74, P4495 NORSKOV JK, 1980, PHYS REV B, V21, P2131 NYBERG GL, 1993, PHYS REV B, V48, P14509 PERKINS LS, 1995, SURF SCI, V325, P169 RAEKER TJ, 1991, INT REV PHYS CHEM, V10, P1 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 SANDERS DE, 1991, STRUCTURE SURFACES 3, V24 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 VANKAMPEN NG, 1981, STOCHASTIC PROCESSES VENABLES JA, 1973, PHILOS MAG, V27, P697 VENABLES JA, 1987, PHYS REV B, V36, P4153 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VOTER AF, 1987, SPIE, V821, P214 WALTON D, 1962, J CHEM PHYS, V37, P2182 WEEKS JD, 1976, J CHEM PHYS, V65, P712 WEN JM, IN PRESS PHYS REV LE WEN JM, 1995, MATER RES SOC S P, V355, P15 WEN JM, 1994, PHYS REV LETT, V73, P2591 WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLLSCHLAGER J, 1990, APPL PHYS A-MATER, V50, P57 YANG HN, 1995, PHYS REV B, V51, P17932 YANG HN, 1992, PHYS REV LETT, V68, P2612 ZANGWILL A, 1993, MATER RES SOC S P, V280, P121 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 18 BP 217 EP 229 PG 13 JI Langmuir PY 1996 PD JAN 10 VL 12 IS 1 GA TR102 J9 LANGMUIR UT ISI:A1996TR10200033 ER PT J AU Schreyer, A Ankner, JF Zeidler, T Zabel, H Schafer, M Wolf, JA Grunberg, P Majkrzak, CF TI Noncollinear and collinear magnetic structures in exchange coupled Fe/Cr(001) superlattices SO PHYSICAL REVIEW B-CONDENSED MATTER NR 85 AB The magnetic and structural properties of molecular beam epitaxy grown Fe/Cr(001) superlattices were studied as a function of the growth temperature T-g using polarized neutron reflectometry (PNR) with polarization analysis, magneto-optic Kerr effect (h?OKE), and x-ray-scattering techniques. From MOKE and PNR as a function of external field we fmd strong noncollinear coupling between the Fe layers and a so far unexpected coupling angle of 50 degrees near remanence for a sample grown at T-g=250 degrees C. A detailed discussion of the domain structure of the sample near remanence confirms the modeling. On the other hand, an otherwise equivalent sample grown at room temperature exhibits completely ferromagnetic or uncoupled behavior. Using diffuse x-ray-scattering methods these distinct differences in the magnetic structure are found to be correlated with a growth temperature dependent length scale of constant Cr interlayer thickness l(Cr). We find that l(Cr) increases significantly with T-g. These results are discussed in the framework of current theories of noncollinear exchange. It is demonstrated that the bilinear-biquadratic formalism used so far is inconsistent with the data. The Cr specific proximity magnetism model is discussed which explains the occurrence of noncollinear coupling for systems with Cr interlayer thickness fluctuations on the length scale observed here for T-g=250 degrees C. The model yields an exchange energy different from the bilinear-biquadratic formalism used so far, explaining the asymptotic approach to saturation observed by MOKE. CR ANKNER JF, 1993, MATER RES SOC S P, V313, P761 ANKNER JF, 1992, SPIE C P, V1738, P260 ANKNER JF, 1992, SPRINGER P PHYSICS, V61, P105 BADER SD, 1991, J MAGN MAGN MATER, V100, P440 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARNAS J, 1993, J MAGN MAGN MATER, V123, PL21 BARNAS J, 1993, J MAGN MAGN MATER, V121, P326 BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BINASCH G, 1989, PHYS REV B, V39, P4828 BLAND JAC, 1993, J MAGN MAGN MATER, V123, P320 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BODEKER P, 1993, PHYS REV B, V47, P2353 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1992, PHYS REV B, V46, P261 BRUNO P, 1991, PHYS REV LETT, V67, P1602 BURGLER DE, UNPUB CELINSKI Z, 1993, J APPL PHYS, V73, P5966 COEHOORN R, 1991, PHYS REV B, V44, P9331 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 ERICKSON RP, 1993, PHYS REV B, V47, P2626 FELCHER GP, 1993, PHYSICA B, V192, P137 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FILIPKOWSKI ME, 1993, J APPL PHYS, V73, P5963 FUSS A, 1992, J MAGN MAGN MATER, V103, PL221 FUSS A, 1992, PHYS SCRIPTA, VT45, P95 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1995, J MAGN MAGN MATER, V140, P545 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1991, PHYS REV B, V44, P9348 HOLY V, 1994, PHYS REV B, V49, P10668 HOSOITO N, 1993, J MAGN MAGN MATER, V126, P255 HOSOITO N, 1992, J PHYS SOC JPN, V61, P300 HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 JOHNSON MT, 1992, PHYS REV LETT, V69, P969 JOHNSON MT, 1992, PHYS REV LETT, V68, P2688 KUROWSKI D, COMMUNICATION LOEWENHAUPT M, 1993, J MAGN MAGN MATER, V121, P173 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, HDB NEUTRON SCATTERI MAJKRZAK CF, 1995, IN PRESS PHYSICA B MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 MAJKRZAK CF, 1989, PHYSICA B, V156, P619 METOKI N, 1993, J MAGN MAGN MATER, V118, P57 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PAYNE AP, 1993, PHYS REV B, V47, P2289 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RAUCH H, 1979, NEUTRON INTERFEROMET, P174 RIBAS R, 1993, J MAGN MAGN MATER, V121, P313 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SCHAFER M, 1995, J APPL PHYS, V77, P6432 SCHLOMKA JP, 1995, PHYS REV B, V51, P2311 SCHREYER A, 1993, J APPL PHYS, V73, P7616 SCHREYER A, 1995, J MAGN MAGN MATER, V148, P189 SCHREYER A, 1993, PHYS REV B, V47, P15334 SCHREYER A, 1994, PHYSICA B, V198, P173 SCHREYER A, 1994, THESIS RUHR U BOCHUM SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1993, PHYS REV B, V48, P7238 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TAKANASHI K, 1992, J PHYS SOC JPN, V61, P4148 TAKEDA M, 1993, J MAGN MAGN MATER, V126, P355 UNGURIS J, 1993, J APPL PHYS, V73, P5984 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870 WANG Y, 1990, PHYS REV LETT, V65, P2732 WOLF JA, 1993, 2743 FORSCH JUL BER WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1994, PHYSICA B, V198, P156 ZABEL H, 1992, SPRINGER P PHYSICS, V61 TC 60 BP 16066 EP 16085 PG 20 JI Phys. Rev. B-Condens Matter PY 1995 PD DEC 1 VL 52 IS 22 GA TL813 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TL81300060 ER PT J AU SCHREYER, A ANKNER, JF ZEIDLER, T ZABEL, H MAJKRZAK, CF SCHAFER, M GRUNBERG, P TI DIRECT OBSERVATION OF NONCOLLINEAR SPIN STRUCTURES IN FE/CR(001) SUPERLATTICES SO EUROPHYSICS LETTERS NR 19 AB We have studied the non-collinear interlayer exchange coupling in Fe/Cr(001) superlattices as a function of growth temperature using polarized neutron reflectometry with exit beam polarization analysis. We confirm that the occurrence of non- collinear spin structures is correlated with long-range lateral Cr thickness fluctuations, which, in turn, depend on the growth temperature. We find surprisingly strong coupling between the Fe layers. We explain our data using the recently proposed proximity magnetism model instead of the currently used theory of bilinear and biquadratic exchange coupling. CR DEMOKRITOV S, 1994, PHYS REV B, V49, P720 ERICKSON RP, 1993, PHYS REV B, V47, P2626 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1991, PHYS REV B, V44, P9348 KUROWSKI D, COMMUNICATION MAJKRZAK CF, 1991, PHYSICA B, V173, P75 PIERCE DT, 1994, PHYS REV B, V49, P14564 RIBAS R, 1993, J MAGN MAGN MATER, V121, P313 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SCHREYER A, 1995, IN PRESS PHYS REV B, V52 SCHREYER A, 1993, J APPL PHYS, V73, P7617 SCHREYER A, 1994, PHYSICA B, V198, P173 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 ZABEL H, 1994, PHYSICA B, V198, P156 TC 37 BP 595 EP 600 PG 6 JI Europhys. Lett. PY 1995 PD DEC 1 VL 32 IS 7 GA TJ302 J9 EUROPHYS LETT UT ISI:A1995TJ30200010 ER PT J AU STROSCIO, JA PIERCE, DT STILES, MD ZANGWILL, A SANDER, LM TI COARSENING OF UNSTABLE SURFACE-FEATURES DURING FE(001) HOMOEPITAXY SO PHYSICAL REVIEW LETTERS NR 32 AB The evolution of the surface potential during homoepitaxial growth of Fe(001) is studied by scanning tunneling microscopy and reflection high energy electron diffraction. The observed morphology exhibits a non-self-affine collection of moundlike features that maintain their shape but coarsen as growth proceeds. The characteristic feature separation L is set in the submonolayer regime and increases with thickness t as L(t) approximate to t(0.16+/-0.04). During the coarsening phase, the mounds are characterized by a magic slope and a lack of reflection symmetry. These observations are shown to be described by a continuum growth equation without capillarity. CR ARMAR JG, IN PRESS BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BOTT M, 1992, SURF SCI, V272, P161 DASSARMA S, 1994, FRACTALS, V4, P410 DUDAREV SL, 1994, PHYS REV B, V50, P14525 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, J VAC SCI TECHNOL, V12, P1 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1991, DYNAMICS FRACTAL SUR HE YL, 1992, PHYS REV LETT, V69, P3770 HELLER EJ, 1992, APPL PHYS LETT, V60, P2675 HUNT AW, 1994, EUROPHYS LETT, V27, P611 HUNT AW, 1994, SCALE INVARIANCE INT JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAI ZW, 1991, PHYS REV LETT, V66, P2348 LIU F, 1993, PHYS REV B, V48, P5808 MULLINS WW, 1957, J APPL PHYS, V28, P333 ORME C, 1994, APPL PHYS LETT, V64, P860 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1994, SCALE INVARIANCE INT SMITH GW, 1991, APPL PHYS LETT, V59, P3282 STEWART J, 1992, PHYS REV A, V46, P6505 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THORMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 VOLMER M, 1939, KINETIK PHASENBILDUN VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WOLF DE, 1994, SCALE INVARIANCE INT TC 104 BP 4246 EP 4249 PG 4 JI Phys. Rev. Lett. PY 1995 PD DEC 4 VL 75 IS 23 GA TH521 J9 PHYS REV LETT UT ISI:A1995TH52100023 ER PT J AU BARTELT, MC EVANS, JW TI TRANSITION TO MULTILAYER KINETIC ROUGHENING FOR METAL (100) HOMOEPITAXY SO PHYSICAL REVIEW LETTERS NR 21 AB A model for metal (100) homoepitaxy is developed which describes irreversible submonolayer nucleation and growth of 2D square islands, and the subsequent transition to multilayer growth. Roughness is sensitive to the additional barrier to descend a step, which is estimated for Fe/Fe(100). We find oscillatory height-height correlations and non-Gaussian height and height-difference distributions, necessitating refinement of existing diffraction theory. We predict the disappearance of a diffraction ring during growth, and a nonmonotonic variation of roughness with temperature. CR AMAR JG, 1995, PHYS REV B, V52, P13801 BARTELT MC, IN PRESS BARTELT MC, 1993, MRS P, V312, P255 BARTELT MC, 1993, SURF SCI, V298, P421 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1991, DYNAMICS FRACTAL SUR FLYNN DK, 1989, J VAC SCI TECHNOL A, V7, P2162 FLYNNSANDERS DK, 1993, SURF SCI, V289, P75 HE YL, 1992, PHYS REV LETT, V69, P3770 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STROSCIO JA, IN PRESS PHYS REV LE STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TEICHERT C, 1994, PHYS STATUS SOLIDI A, V146, P223 VENABLES JA, 1973, PHILOS MAG, V27, P697 YANG HN, 1993, DIFFRACTION ROUGH SU YANG HN, 1992, PHYS REV LETT, V68, P2612 TC 53 BP 4250 EP 4253 PG 4 JI Phys. Rev. Lett. PY 1995 PD DEC 4 VL 75 IS 23 GA TH521 J9 PHYS REV LETT UT ISI:A1995TH52100024 ER PT J AU AMAR, JG TI STEP BARRIER FOR INTERLAYER-DIFFUSION IN FE/FE(100) EPITAXIAL- GROWTH SO PHYSICAL REVIEW B-CONDENSED MATTER NR 25 AB The interlayer diffusion barrier for Fe/Fe(100) deposition is estimated by comparing the results of kinetic Monte Carlo simulations with experimental results in the first few monolayers of growth. We find that, in contrast to previous theoretical estimates for other systems, the step barrier for Fe/Fe(100) is small in comparison with the activation energy for diffusion on a hat terrace (0.454 eV). Our results resolve a long-standing controversy and provide quantitative support for the conjecture that the existence of mounds in this system is due to a finite positive step barrier. CR AMAR JG, 1994, PHYS REV B, V50, P8781 AMAR JG, 1995, PHYS REV LETT, V74, P2066 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1995, MAT SCI ENG B-SOLID, V30, P149 HE YL, 1992, PHYS REV LETT, V69, P3770 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KOPATZKI E, 1993, SURF SCI, V284, P154 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STOLTZE P, 1993, PHYS REV B, V48, P5607 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STROSCIO JA, UNPUB STUMPF R, 1994, PHYS REV LETT, V72, P254 TERSOFF J, 1994, PHYS REV LETT, V72, P266 VILLAIN J, 1991, J PHYS I, V1, P19 VOTER AF, 1987, SPIE, V821, P214 ZHANG ZY, 1993, PHYS REV B, V48, P4972 TC 17 BP 13801 EP 13804 PG 4 JI Phys. Rev. B-Condens Matter PY 1995 PD NOV 15 VL 52 IS 19 GA TG780 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TG78000027 ER PT J AU CELOTTA, RJ PIERCE, DT UNGURIS, J TI SEMPA STUDIES OF EXCHANGE COUPLING IN MAGNETIC MULTILAYERS SO MRS BULLETIN NR 15 CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1991, PHYS REV LETT, V67, P1602 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 STILES MD, 1993, PHYS REV B, V48, P7238 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 UNGURIS J, 1994, J APPL PHYS, V75, P6437 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 2 BP 30 EP 33 PG 4 JI MRS Bull. PY 1995 PD OCT VL 20 IS 10 GA TA140 J9 MRS BULL UT ISI:A1995TA14000007 ER PT J AU FEIBELMAN, PJ TI SCANNING-TUNNELING-MICROSCOPY - ENERGETICS FROM STATISTICAL- ANALYSIS SO PHYSICAL REVIEW B-CONDENSED MATTER NR 24 AB The attraction between two Fe atoms adsorbed on Fe(100) should be much too weak to produce the 0.5-0.7-eV bond that has been deduced by analyzing scanning tunneling micrographs. The assumption that adatom diffusion proceeds by the same mechanism at high and low temperatures may be the source of the discrepancy. CR AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARTELT MC, 1994, J VAC SCI TECHNOL A, V12, P1800 BARTELT MC, 1993, SURF SCI, V298, P421 BASSETT DW, 1975, PHYSICAL BASIS HETER, P231 BASSETT DW, 1980, SURFACE MOBILITIES S BENNETT PA, 1993, J VAC SCI TECHNOL A, V11, P1680 BRUNE H, 1994, PHYS REV LETT, V73, P1955 EHRLICH G, 1980, ANNU REV PHYS CHEM, V31, P603 FEIBELMAN PJ, 1993, COMMENTS CONDENS MAT, V16, P191 GUNTHER S, 1994, PHYS REV LETT, V73, P553 KELLOGG GL, 1987, SURF SCI, V192, PL897 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KITAMURA N, 1991, PHYS REV B, V48, P5704 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MICHELY T, 1991, SURF SCI, V256, P217 MO YW, 1990, PHYS REV LETT, V65, P1913 MO YW, 1989, PHYS REV LETT, V63, P2393 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SWARTZENTRUBER BS, 1990, PHYS REV LETT, V65, P1913 TSONG TT, 1990, ATOM PROBE FIELD ION TSONG TT, 1980, PHYS REV B, V21, P4564 VENABLES JA, 1994, SURF SCI, V299, P798 TC 14 BP 12444 EP 12446 PG 3 JI Phys. Rev. B-Condens Matter PY 1995 PD OCT 15 VL 52 IS 16 GA TB966 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TB96600125 ER PT J AU STROSCIO, JA PIERCE, DT DAVIES, A CELOTTA, RJ WEINERT, M TI TUNNELING SPECTROSCOPY OF BCC(001) SURFACE-STATES SO PHYSICAL REVIEW LETTERS NR 24 AB We have discovered an intense, sharp feature in tunneling spectra of the Fe(001) and Cr(001) surfaces that derives from a bce surface state near the Fermi level. Band-structure calculations show that this state is a general feature of bcc (001) surfaces, and that it originates from a nearly unperturbed d orbital extending out into the vacuum region. This general feature should permit chemical identification with atomic spatial resolution on bcc (001) surfaces. The surface state is in the minority spin band for Fe and Cr, so it should be useful for future spin-polarized tunneling experiments. CR ARROTT AS, 1990, KINETICS ORDERING GR, P321 AVOURIS P, 1994, J VAC SCI TECHNOL B, V12, P1447 BECKER RS, 1985, PHYS REV LETT, V55, P2032 BINNIG G, 1982, HELV PHYS ACTA, V55, P726 BROOKES NB, 1990, PHYS REV B, V41, P2643 CROMMIE MF, 1993, NATURE, V363, P524 GADZUK JW, 1973, REV MOD PHYS, V45, P487 HAMERS RJ, 1986, PHYS REV LETT, V56, P1972 HASEGAWA Y, 1993, PHYS REV LETT, V71, P1071 JUNG T, 1995, PHYS REV LETT, V74, P1641 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KUK Y, 1993, METHODS EXPT PHYSICS, V27, P284 PAN X, 1990, PHYS REV B, V42, P5025 PLUMMER EW, 1970, PHYS REV LETT, V25, P1493 SCHMID M, 1993, PHYS REV LETT, V70, P1441 SHOCKLEY W, 1939, PHYS REV, V56, P317 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1993, METHODS EXPT PHYSICS, V27 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STROSCIO JA, 1986, PHYS REV LETT, V57, P2579 TERSOFF J, 1985, PHYS REV B, V31, P805 TERSOFF J, 1983, PHYS REV LETT, V50, P1998 WEINERT M, 1982, PHYS REV B, V26, P4571 WENG SL, 1978, PHYS REV B, V18, P1718 TC 54 BP 2960 EP 2963 PG 4 JI Phys. Rev. Lett. PY 1995 PD OCT 16 VL 75 IS 16 GA RZ341 J9 PHYS REV LETT UT ISI:A1995RZ34100013 ER PT J AU SHEN, J GIERGIEL, J KIRSCHNER, J TI GROWTH AND MORPHOLOGY OF NI/CU(100) ULTRATHIN FILMS - AN IN- SITU STUDY USING SCANNING-TUNNELING-MICROSCOPY SO PHYSICAL REVIEW B-CONDENSED MATTER NR 20 AB A scanning tunneling microscopy (STM) study is presented of the growth of Ni films on Cu(100). From a series of STM images taken of the same surface region during film growth, detailed information is gained on the film growth and morphology. Multilayer growth starts after nearly layer-by-layer growth of 3.5 layers, and becomes dominant above film thicknesses of 6 ML. Above 4 ML the islands are of rectangular shape, with their edges along [011] and [0 ($) over bar 11] directions. Annealing the film at a temperature of 450 K smooths the film surface without any significant substrate interdiffusion. Magnetooptical Kerr-effect measurements show the magnetization of a 10.2-ML film to remain perpendicular with a reduction less than 15% in amplitude, suggesting that the morphology is not responsible for the spin reorientation in this system. CR ABUJOUDEH MA, 1986, SURF SCI, V171, P331 BRUNE H, COMMUNICATION BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHAMBLISS DD, 1994, SURF SCI, V313, P215 CHEN Y, 1991, PHYS REV B, V43, P6788 ELMERS HJ, 1994, PHYS REV LETT, V73, P898 GIERGIEL J, 1995, PHYS REV B, V52, P8528 HUANG F, 1994, PHYS REV B, V49, P3962 KOPATZKI E, 1993, SURF SCI, V284, P154 MOHAMED MH, 1989, PHYS REV B, V40, P1305 OBRIEN WL, 1994, PHYS REV B, V49, P15370 SCHMID AK, 1991, J VAC SCI TECHNOL B, V49, P649 SCHMID AK, 1993, PHYS REV B, V48, P2855 SCHNEIDER CM, 1993, MAGNETISM STRUCTURE, P453 SCHULZ B, 1994, PHYS REV B, V50, P13467 SHEN J, 1995, SURF SCI, V328, P32 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 VOTER AF, 1987, SPIE, V821, P214 YONEZAWA F, 1989, PHYS REV B, V40, P636 ZHANG J, 1993, SURF SCI, V298, P351 TC 41 BP 8454 EP 8460 PG 7 JI Phys. Rev. B-Condens Matter PY 1995 PD SEP 15 VL 52 IS 11 GA RV818 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995RV81800102 ER PT J AU BRUNE, H RODER, H BROMANN, K KERN, K TI KINETIC PROCESSES IN METAL EPITAXY STUDIED WITH VARIABLE- TEMPERATURE STM - AG/PT(111) SO THIN SOLID FILMS NR 33 AB Variable-temperature scanning tunneling microscopy has been applied to study kinetic processes involved in epitaxial growth. This paper concentrates on nucleation and aggregation of submonolayer Ag films on a Pt(lll) surface. From island density versus temperature data, the activation barrier for Ag adatom diffusion as well as the stability of adsorbed Ag dimers are determined. From the adsorbed aggregate shapes conclusions on Ag perimeter diffusion can be drawn. An anisotropy in edge diffusion leads to dendritic aggregates with the trigonal substrate symmetry. A crossover to randomly ramified fractals is observed upon lowering of the deposition flux. CR BENJACOB E, 1985, PHYS REV LETT, V55, P1315 BENNETT PA, 1993, J VAC SCI TECHNOL A, V11, P1680 BESOCKE K, 1987, SURF SCI, V181, P145 BRUNE H, 1995, APPL PHYS A-MATER, V60, P167 BRUNE H, 1994, NATURE, V369, P469 BRUNE H, 1994, PHYS LOW DIM STRUCT, V1, P67 BRUNE H, 1994, PHYS REV LETT, V73, P1955 BUKA A, 1986, NATURE, V323, P424 CROMMIE MF, 1993, PHYS REV B, V48, P2851 DAVID R, 1986, REV SCI INSTRUM, V57, P2771 ECKMANN JP, 1990, PHYS REV LETT, V65, P52 EHRLICH G, 1991, SURF SCI, V246, P1 EVANS JW, 1990, PHYS REV B, V41, P5410 FROHN J, 1989, REV SCI INSTRUM, V60, P1200 GRIER D, 1986, PHYS REV LETT, V56, P1264 GUNTHER C, 1993, BER BUNSEN PHYS CHEM, V97, P522 GUNTHER S, 1994, PHYS REV LETT, V73, P553 GURNEY T, 1965, J CHEM PHYS, V42, P3939 HORVATH V, 1987, PHYS REV A, V35, P2353 MEAKIN P, 1983, PHYS REV A, V27, P1495 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MICHELY T, 1991, SURF SCI, V256, P217 RODER H, 1993, NATURE, V366, P141 SAWADA Y, 1986, PHYS REV LETT, V56, P1260 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1994, PHYS REV LETT, V72, P254 VENABLES JA, 1984, REP PROG PHYS, V47, P399 WANG SC, 1993, PHYS REV LETT, V71, P4174 WANG SC, 1993, PHYS REV LETT, V70, P41 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 YOUNG RD, 1965, J CHEM PHYS, V42, P3943 TC 27 BP 230 EP 235 PG 6 JI Thin Solid Films PY 1995 PD AUG 15 VL 264 IS 2 GA RV753 J9 THIN SOLID FILMS UT ISI:A1995RV75300018 ER PT J AU JONA, F MARCUS, PM TI STUDIES OF ULTRATHIN EPITAXIAL-FILMS BY QUANTITATIVE LOW- ENERGY-ELECTRON DIFFRACTION (QLEED) SO CRITICAL REVIEWS IN SURFACE CHEMISTRY NR 84 AB This article* presents a review of the application of quantitative low-energy electron diffraction (QLEED) to the study of ultrathin epitaxial films. After a general introduction into types and growth modes of epitaxy, the procedures followed for their study by QLEED are described and examples are given of cases in which QLEED was useful in determining growth modes. Strain analysis of pseudomorphic films is discussed next and two approaches are described for the determination of strain ratios: by minimization of strain energy for the case of similar unit meshes of film and substrate and by numerical methods. A few case studies of thicker (more than five atomic layers) pseudomorphic films of copper and iron by QLEED are then described, and a comprehensive table of epitaxial systems studied by QLEED to date is presented. Two appendices present FORTRAN computer programs for the calculation of strain ratios for two different types of epitaxy, and one appendix lists the primitive vectors of the 20 densest atomic planes of the face-centered and the body-centered cubic lattice. CR BADER SD, 1987, J APPL PHYS, V61, P3729 BAUER E, 1982, APPL SURF SCI, V11-2, P479 BAUER E, 1986, PHYS REV B, V33, P3657 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BAUER E, 1958, Z KRISTALLOGR, V110, P395 BEGLEY AM, 1993, J PHYS CONDENS MATT, V5, P1 BEGLEY AM, 1993, PHYS REV B, V48, P1779 BEGLEY AM, 1993, PHYS REV B, V48, P1786 BEGLEY AM, 1993, SURF SCI, V280, P289 CERDA JR, 1993, J PHYS-CONDENS MAT, V5, P2055 CHEN CH, 1980, SURF SCI, V164, P171 CLARKE A, 1987, SURF SCI, V192, PL843 CLARKE A, 1987, SURF SCI, V187, P327 DARICI Y, 1987, SURF SCI, V182, P477 DETZEL T, 1993, SURF SCI, V293, P227 EGAWA C, 1987, SURF SCI, V188, P563 EGAWA C, 1987, SURF SCI, V182, PL506 EVANS JW, 1990, PHYS REV B, V41, P5410 FLORES T, 1992, SURF SCI, V279, P251 GAUTHIER Y, 1994, SURF SCI, V303, P36 GRAHAM GW, 1990, PHYS REV B, V41, P3353 GRAHAM GW, 1986, SURF SCI, V171, PL432 HELLWEGE KH, 1984, LANDOLTBORNSTEIN TAB, V18 JESSER WA, 1967, PHILOS MAG, V15, P1097 JONA F, 1989, SURF SCI, V223, PL897 JONA F, 1991, SURFACE PHYSICS RELA, P213 LEHMPFUHL G, 1991, SURF SCI, V245, PL159 LI H, 1992, PHYS REV B, V45, P3853 LI H, 1991, PHYS REV B, V43, P6342 LI H, 1990, PHYS REV B, V42, P9195 LI H, 1989, PHYS REV B, V40, P5841 LI H, 1938, PHYS REV B, V44, P1438 LI H, 1991, SOLID STATE COMMUN, V77, P651 LI H, 1991, STRUCTURE SURFACES, V3, P328 LI YS, 1991, PHYS REV B, V44, P8261 LIU C, 1990, PHYS REV B, V41, P553 LU SH, 1989, SURF SCI, V221, P35 LU SH, 1989, SURF SCI, V209, P364 MARCUS PM, MATER RES SOC S P, V83, P21 MAURER M, 1989, EUROPHYS LETT, V9, P803 MAURER M, 1990, MATER RES SOC S P, V87, P231 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MITURA Z, 1992, SURF SCI, V276, PL15 NYE JF, 1957, PHYSICAL PROPERTIES ONELLION M, 1987, SURF SCI, V179, P219 OSSI PM, 1988, SURF SCI, V201, PL519 PASHLEY DW, 1975, EPITAXIAL GROWTH A, PCH1 PASHLEY DW, 1990, GROWTH CHARACTERIZAT, P1 PEARSON WB, 1967, HDB LATTICE SPACINGS PENDRY JB, 1980, J PHYS C SOLID STATE, V13, P937 QUINN J, 1991, PHYS REV B, V43, P3959 RAWLINGS KJ, 1980, THIN SOLID FILMS, V67, P171 RESH J, 1989, PHYS REV B, V40, P11799 SCHEURER F, 1993, PHYS REV B, V48, P9890 SCHMITZ PJ, 1985, PHYS REV B, V40, P11477 SEGMUELLER A, 1988, TREATISES MATERIALS, V27, P143 SIMMONS G, 1971, SINGLE CRYSTAL ELAST SMITH GC, 1982, SURF SCI, V119, PL287 STROSCIO JA, 1992, B AM PHYS SOC, V37, P359 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THIKOV M, 1990, SURF SCI, V232, P73 THOMASSEN J, 1992, PHYS REV LETT, V26, P3831 THOMASSEN J, 1992, SURF SCI, V264, P406 TIAN D, 1992, PHYS REV B, V46, P7216 TIAN D, 1992, PHYS REV B, V45, P3749 TIAN D, 1992, PHYS REV B, V45, P11216 TIAN D, 1991, SOLID STATE COMMUN, V80, P783 TIAN D, 1990, SOLID STATE COMMUN, V74, P1017 TIAN D, 1989, SOLID STATE COMMUN, V70, P199 TIAN D, 1992, SURF SCI, V273, PL393 VANDERMERWE JH, 1982, PHILOS MAG A, V45, P145 VANDERMERWE JH, 1989, PHYS REV B, V39, P3632 VANHOVE MA, 1977, SURF SCI, V64, P85 WANDER A, 1993, SURF SCI, V281, P42 WANG ZQ, 1987, PHYS REV B, V35, P9322 WANG ZQ, 1987, SOLID STATE COMMUN, V62, P181 WANG ZQ, 1987, SOLID STATE COMMUN, V61, P623 WU SC, 1988, PHYS REV B, V38, P5363 WU SC, 1988, PHYS REV B, V37, P4296 WUTTIG M, 1993, SURF SCI, V282, P237 ZANAZZI E, 1977, SURF SCI, V62, P61 ZARESTKY J, 1987, PHYS REV B, V35, P4500 ZUR A, 1985, J APPL PHYS, V57, P600 ZUR A, 1984, J APPL PHYS, V55, P378 TC 11 BP 189 EP 266 PG 78 JI Crit. Rev. Surf. Chem. PY 1994 VL 4 IS 3-4 GA RV990 J9 CRIT REV SURF CHEM UT ISI:A1994RV99000002 ER PT J AU LIU, SD BONIG, L METIU, H TI EFFECT OF SMALL-CLUSTER MOBILITY AND DISSOCIATION ON THE ISLAND DENSITY IN EPITAXIAL-GROWTH SO PHYSICAL REVIEW B-CONDENSED MATTER NR 36 AB We suggest that for many systems the epitaxial growth conditions are such that the mobility of small clusters, such as dimers, substantially affects the density of the islands formed by nucleation, while the dissociation of the clusters is less important. We study the effect of small-cluster mobility on the island density formed under epitaxial growth conditions with both rate equations and computer simulations. We find that the scaling derived by Villain, Pimpinelli, Tang, and Wolf from simple rate equations is in agreement with the simulations, if great care is taken to make sure that the system has reached the scaling regime. As an application we suggest a more plausible analysis of some important recent experiments. The scaling equations can be used to extract the activation barriers for monomer and small-cluster diffusion from data on island-density dependence on temperature and deposition rate. CR BALES GS, 1994, PHYS REV B, V50, P6057 BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1994, SURF SCI, V314, PL829 BASSETT DW, 1978, SURF SCI, V70, P520 BEDANOV VM, 1993, SURF SCI, V297, P127 BLANDIN P, 1992, SURF SCI, V279, PL219 BOTT M, 1992, SURF SCI, V272, P161 CHEN CL, 1990, PHYS REV B, V41, P12403 DVORETZKY A, 1951, 2ND P BERK S, V33 ERNST HJ, 1992, PHYS REV B, V46, P1929 EVANS JW, 1994, J VAC SCI TECHNOL A, V12, P1800 FEIBELMAN PJ, 1994, PHYS REV B, V49, P10548 FEIBELMAN PJ, 1987, PHYS REV LETT, V58, P2766 GUNTHER S, 1994, PHYS REV LETT, V73, P553 JONES GW, 1990, PHYS REV LETT, V65, P3317 KELLOGG GL, 1991, PHYS REV LETT, V67, P622 LIU SD, 1993, PHYS REV LETT, V71, P2967 LIU SD, 1994, SURF SCI, V321, P161 MICHELY T, 1992, SURF SCI, V272, P204 MO YW, 1991, PHYS REV LETT, V66, P1998 MOCHRIE SGJ, 1990, PHYS REV LETT, V64, P2925 MONTROLL EW, 1965, J MATH PHYS, V6, P167 POPPA H, 1975, EPITAXIAL GROWTH, P69 RAEKER TJ, 1994, SURF SCI, V317, P283 RATSCH C, 1994, PHYS REV LETT, V72, P3194 SHIANG KD, 1994, PHYS REV B, V49, P7670 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG LH, 1993, J PHYS I, V3, P935 VELFE HD, 1982, THIN SOLID FILMS, V98, P115 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 WANG SC, 1990, SURF SCI, V239, P301 ZUO JK, 1994, PHYS REV LETT, V72, P3064 TC 25 BP 2907 EP 2913 PG 7 JI Phys. Rev. B-Condens Matter PY 1995 PD JUL 15 VL 52 IS 4 GA RM154 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995RM15400093 ER PT J AU SCHAD, R POTTER, CD BELIEN, P VERBANCK, G DEKOSTER, J LANGOUCHE, G MOSHCHALKOV, VV BRUYNSERAEDE, Y TI INTERPLAY BETWEEN INTERFACE PROPERTIES AND GIANT MAGNETORESISTANCE IN EPITAXIAL FE/CR SUPERLATTICES SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 9 AB Epitaxial Fe/Cr superlattices with negligible intralayer scattering have been grown on MgO(100) using MBE. The careful structural analysis of such superlattices prepared under different conditions reveals the details of the interfacial origin of the giant magnetoresistance (GMR). We find the highest GMR in samples with minimum intermixing but an enhanced density of steps at the interfaces. Such Fe/Cr superlattices display GMR amplitudes up to 220%. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 FULLERTON EE, 1993, APPL PHYS LETT, V63, P1699 FULLERTON EE, 1992, PHYS REV LETT, V68, P859 HOOD RQ, 1992, PHYS REV B, V46, P8287 KORECKI J, 1985, PHYS REV LETT, V55, P2491 PETROFF F, 1991, J MAGN MAGN MATER, V93, P95 RENSING NM, 1993, J MAGN MAGN MATER, V121, P436 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TC 9 BP 331 EP 332 PG 2 JI J. Magn. Magn. Mater. PY 1995 PD JUL VL 148 IS 1-2 GA RM330 J9 J MAGN MAGN MATER UT ISI:A1995RM33000140 ER PT J AU ZHONG, C RUGGIERO, ST FLETCHER, R MOSER, E TI TRANSPORT-PROPERTIES OF YBCO FILMS ON ULTRA-THIN AG LAYERS SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY NR 18 AB We discuss our results on the transport properties of YBCO thin films deposited on ultra-thin (1-11 nm) Ag underlayers. Samples were of the form: YBCO/Ag/LaAlO3. It was seen that T-c remained relatively unaffected by the Ag underlayers, ranging from 86 - 89K. Critical currents generally decreased with increasing Ag underlayer thickness, but showed an apparent significant enhancement for 8 nm of underlayer thickness. Film resistivity was found to be consistently higher for all underlayer thicknesses. CR CANLOEN EJ, 1983, THIN SOLID FILMS, V104, P9 CHEN L, 1993, J APPL PHYS, V73, P7563 CHEUNG CT, 1989, J MATER RES, V4, P1 DIIORIO MS, 1991, APPL PHYS LETT, V58, P2552 IIJIMA Y, 1992, APPL PHYS LETT, V60, P769 KUMAR A, 1990, APPL PHYS LETT, V57, P2594 MA QY, 1989, J APPL PHYS, V66, P1866 MATTHEWS JW, 1967, PHYSICS THIN FILMS MICHELY T, 1993, PHYS REV LETT, V70, P3943 ONO RH, 1991, APPL PHYS LETT, V59, P1126 PASHLEY DW, 1964, PHILOS MAG, V10, P127 RUSSO RE, 1990, J APPL PHYS, V68, P1354 SAITOH J, 1990, JPN J APPL PHYS 2, V29, PL1117 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TARTE EJ, 1991, PHYSICA C, V185, P2575 WITANACHCHI S, 1990, J MATER RES, V5, P717 ZHAO J, 1991, APPL PHYS LETT, V58, P89 ZHONG C, 1994, J MATER RES, V9, P2761 TC 1 BP 1529 EP 1532 PG 4 JI IEEE Trans. Appl. Supercond. PY 1995 PD JUN VL 5 IS 2 PN 2 GA RP637 J9 IEEE TRANS APPL SUPERCONDUCT UT ISI:A1995RP63700097 ER