FN ISI Export Format VR 1.0 PT J AU Nawrath, T Fritzsche, H Klose, F Nowikow, J Maletta, H TI In situ magnetometry with polarized neutrons on thin magnetic films SO PHYSICAL REVIEW B NR 32 AB We shall discuss perspectives opened up by using polarized neutron reflectometry as an in situ technique to measure the magnetization of ultrathin films not covered by a protective layer. In order to demonstrate the advantage of this method, Fe(110) films of a thickness of up to 20 Angstrom were prepared on V(110) single crystals. In neutron measurements the absolute value of the magnetization of the films was determined precisely by a simple optical model, by fitting the spin-up and spin-down reflectivities separately. Additionally the measurements were compared with data obtained from magneto- optical Kerr magnetometry. Both techniques show that the magnetizations of the films are considerably reduced. [S0163- 1829(99)12033-2]. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BLAND JAC, 1987, PHYS REV LETT, V58, P1244 BLUGEL S, 1992, PHYS REV LETT, V68, P851 COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341 DEHAAN VO, 1994, PHYSICA B, V198, P24 DUDA LC, 1996, PHYS REV B, V54, P10393 EBERT H, 1996, REP PROG PHYS, V59, P1665 ELMERS HJ, 1990, APPL PHYS A-MATER, V51, P255 FELCHER GP, 1986, PHYSICA B & C, V136, P59 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FLANDERS PJ, 1988, J APPL PHYS, V63, P3940 FRITZSCHE H, 1994, J MAGN MAGN MATER, V135, P343 FRITZSCHE H, 1998, PHYSICA B, V241, P707 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, 1996, PHYS REV B, V53, P9123 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HUANG YY, 1993, PHYS REV B, V47, P183 KRIST T, 1995, PHYSICA B, V213, P939 LOVESEY SW, 1986, THEORY NEUTRON SCATT MARTIN P, 1995, J MAGN MAGN MATER, V148, P177 MEZEI F, 1995, PHYSICA B, V213, P898 NAWRATH T, 1997, PHYSICA B, V234, P505 NAWRATH T, 1998, SURF SCI, V414, P209 PARRATT LG, 1954, PHYS REV, V95, P359 POULOPOULOS P, 1997, J MAGN MAGN MATER, V170, P57 RAUSCH C, 1996, J NEUTRON RES, V3, P171 SEARS VF, 1992, NEUTRON NEWS, V3, P26 TOMAZ MA, 1997, J PHYS-CONDENS MAT, V9, PL179 TURTUR C, 1994, PHYS REV LETT, V72, P1557 VEGA A, 1991, J APPL PHYS, V69, P4544 VEGA A, 1993, PHYS REV B, V48, P985 WALKER TG, 1994, PHYS REV B, V49, P7687 TC 1 BP 9525 EP 9531 PG 7 JI Phys. Rev. B PY 1999 PD OCT 1 VL 60 IS 13 GA 244YW J9 PHYS REV B UT ISI:000083079200064 ER PT J AU Nawrath, T Fritzsche, H Klose, F Nowikow, J Polaczyk, C Maletta, H TI In-situ polarized neutron reflectivity of ultrathin epitaxial Fe layers on V(110) SO PHYSICA B NR 5 AB We have investigated magnetic properties of thin Fe layers epitaxially grown on a V(110) single crystal in an in-situ experiment by neutron reflectivity. The low interaction of the neutrons with the V substrate allows to determine the absolute magnetic moment of the uncovered films of monolayer thickness. The Fe films clearly show ferromagnetic ordering down to 5 ML thickness, whereas for a 3 ML film no in-plane magnetization is found even at a temperature of 80 K. CR DEHAAN VO, 1994, PHYSICA B, V198, P24 DIETZE M, 1996, NUCL INSTRUM METH A, V377, P320 GRADMANN U, 1993, HDB MAGNETIC MAT, V7 HUANG YY, 1993, PHYS REV B, V47, P183 MEZEI F, 1995, PHYSICA B, V213, P898 TC 5 BP 505 EP 507 PG 3 JI Physica B PY 1997 PD JUN VL 234 GA XG666 J9 PHYSICA B UT ISI:A1997XG66600189 ER PT J AU Baszynski, J Tolinski, T TI Magnetic anisotropy of Fe films in MgO/Cu(t(Cu))/Fe/Cu systems SO ACTA PHYSICA POLONICA A NR 10 AB Ferromagnetic resonance was employed to study the magnetic anisotropy of the Fe thin film in the MgO/Cu(t(Cu))/Fe/Cu system. The Fe film showed strong fourfold cubic anisotropy (H- K1 = 2K(1)/M = 46.15 kA/m) for t(Fe) = 23 nm and t(Cu) = 0. The spread of the crystallographic axes Delta beta = 0.5 degrees was evaluated from the angular dependence of the resonance line width Delta H-pp (4.4 < Delta H-pp < 6.4 kA/m). Such a small mosaicity confirmed the epitaxial growth of the Fe film. The Cu buffer layer destroys this growth of the Fe film which showed only a weak anisotropy. CR BARTH JV, 1995, PHYS REV B, V52, P11432 CHAPPERT C, 1986, PHYS REV B, V34, P3192 DASILVA EC, 1993, J MAGN MAGN MATER, V121, P528 GORYUNOV YV, 1995, PHYS REV B, V52, P13450 HUANG YY, 1993, PHYS REV B, V47, P183 KEUNE W, 1977, J APPL PHYS, V48, P2976 KOHMOTO O, 1992, JPN J APPL PHYS 1, V31, P2101 KOYANO T, 1988, J APPL PHYS, V64, P5763 KOYANO T, 1991, J PHYS-CONDENS MAT, V3, P5921 PARK YS, 1995, APPL PHYS LETT, V66, P2140 TC 0 BP 245 EP 248 PG 4 JI Acta Phys. Pol. A PY 1997 PD FEB VL 91 IS 2 GA WM648 J9 ACTA PHYS POL A UT ISI:A1997WM64800001 ER PT J AU Tanaka, N Yoshizaki, F Mihama, K TI HREM and measurement of magnetic properties of Fe-clusters embedded in MgO films SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING NR 38 AB Nanometer-sized bcc (alpha) and fee (gamma) Fe crystallites and clusters epitaxially embedded in single crystalline MgO films (Fe-MgO composite films) were prepared by an ultra-high vacuum co-deposition of Fe and MgO on NaCl (001) substrates. The atomic structure was analyzed in detail by high-resolution electron microscopy. The magnetic properties (M-T and M-H curves) were measured with a high-sensitivity SQUID apparatus or a Faraday-type magnetometer on the same samples. The samples showed a kind of super-paramagnetism with an enhancement of magnetization cwing to an interface effect with MgO. The effect of nanometer-sized Fe crystallites and clusters of a few atoms on the magnetic properties is discussed on the basis of the experimental results. CR ABELES B, 1975, ADV PHYS, V24, P407 ABELES B, 1976, APPL SOLID STATE SCI, V6, P64 BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3945 CANNELLA V, 1972, PHYS REV B-SOLID ST, V6, P4220 CHIKAZUMI S, 1964, PHYSICS MAGNETISM CHILDRESS JR, 1991, PHYS REV B, V43, P8089 DORMANN JL, 1983, J MAGN MAGN MATER, V35, P117 FAN JCC, 1978, THIN SOLID FILMS, V54, P139 GITTLEMAN JI, 1974, PHYS REV B, V9, P3891 HABERLAND H, 1994, CLUSTERS ATOMS MOL, V2 HABERLAND H, 1994, CLUSTERS ATOMS MOL, V1 HOHL GF, 1995, APPL PHYS LETT, V66, P385 HUANG YY, 1993, PHYS REV B, V47, P183 KAUFMAN L, 1963, ACTA METALL, V11, P323 KEUNE W, 1989, PHYSICA B, V161, P269 KOYANO T, 1994, J APPL PHYS, V33, P3907 KURATA H, 1991, MICROSC MICROANAL M, V2, P183 LI C, 1991, PHYS REV B, V43, P780 MATSUI M, P MRS INT M ADV MAT, V11, P301 MATSUO S, 1994, JPN J APPL PHYS 1, V33, P3907 MITANI S, 1993, J MAGN MAGN MATER, V126, P76 MORRISON TI, 1985, PHYS REV B, V32, P3107 MORUP S, 1995, PHYS REV B, V52, P287 MORUZZI VL, 1986, PHYS REV B, V34, P1784 NAGAO M, 1986, JPN J APPL PHYS 2, V25, PL614 NEEL L, 1955, ADV PHYS, V4, P191 NEEL L, 1949, ANN GEOPHYS, V5, P99 SUMIYAMA K, 1995, MAT SCI ENG B-SOLID, V31, P133 TANAKA N, 1992, ACTA METALL MATER, V40, PS275 TANAKA N, 1990, J CRYST GROWTH, V99, P577 TANAKA N, 1989, J ELECTRON MICR TECH, V12, P272 TANAKA N, 1990, MATER T JIM, V31, P588 TANAKA N, 1988, ULTRAMICROSCOPY, V25, P241 THOLE BT, 1988, PHYS REV B, V38, P3158 WANG CS, 1985, PHYS REV LETT, V54, P1852 WEISS RJ, 1963, P PHYS SOC LOND, V82, P281 YOSHIZAKI F, 1990, J ELECTRON MICROSC, V39, P255 YOSHIZAKI F, 1991, Z PHYS D ATOM MOL CL, V19, P259 TC 2 BP 311 EP 318 PG 8 JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PY 1996 PD OCT 30 VL 217 GA VY090 J9 MATER SCI ENG A-STRUCT MATER UT ISI:A1996VY09000073 ER PT J AU Majkrzak, CF TI Neutron scattering studies of magnetic thin films and multilayers SO PHYSICA B NR 91 AB The basic principles of the elastic scattering of polarized neutrons from magnetic films and thin film superlattices, both kinematically as well as dynamically in the continuum limit, are summarized first. The quantitative accuracy presently attainable in practice is discussed along with other relevant issues regarding experimental technique and data analysis. Investigations of interlayer coupling and the effects of strain and finite thickness in single crystalline, epitaxially grown superlattices are reviewed, focussing on specular neutron diffraction and reflectivity measurements. These superlattices include rare earth and semiconductor systems in addition to those that exhibit ''giant'' magnetoresistive effects and which are of particular current technological interest. A survey of some of the more recent studies of the enhancement/reduction of ferromagnetic moments at an interface with a nonmagnetic material is then presented. Finally, several future research directions, for example, magnetic nonspecular scattering and studies of the magnetic state of the materials which form the intervening layers between coherently coupled ferromagnetic layers in superlattices, are discussed. CR ADENWALLA S, UNPUB PHYS REV B ANKNER JF, 1993, MATER RES SOC S P, V313, P761 BACON GE, 1975, NEUTRON DIFFRACTION BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BEACH RS, 1993, PHYS REV LETT, V70, P3502 BELYAKOV VA, 1976, SOV PHYS-SOLID STATE, V18, P1399 BLAND JAC, 1991, J APPL PHYS, V69, P4989 BLAND JAC, 1993, J MAGN MAGN MATER, V123, P320 BLAND JAC, 1992, J MAGN MAGN MATER, V104, P1798 BLAND JAC, 1989, J PHYS-CONDENS MAT, V1, P4399 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1987, PHYS REV LETT, V58, P1244 BLUME M, 1963, PHYS REV, V130, P1670 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BOHR J, 1986, PHYSICA A, V140, P349 BOHR J, 1989, PHYSICA B, V159, P93 BORCHERS JA, 1991, PHYS REV B, V43, P3123 BORCHERS JA, 1993, PHYS REV LETT, V70, P1878 BUTTIKER M, 1983, PHYS REV B, V27, P6178 CEBOLLADA A, 1989, PHYS REV B, V39, P9726 COWLEY RA, 1994, J APPL PHYS, V76, P6274 COWLEY RA, 1988, J PHYS C SOLID STATE, V21, P4113 DURBIN SM, 1982, J PHYS F MET PHYS, V12, PL75 ENDOH Y, IN PRESS MAT SCI ENG ERWIN RW, 1987, PHYS REV B, V35, P6808 FALICOV LM, 1990, J MATER RES, V5, P1299 FALICOV LM, 1992, PHYSICS TODAY, V46 FELCHER GP, 1994, PHYSICA B, V198, P150 FELCHER GP, 1993, PHYSICA B, V192, P137 FELCHER GP, 1986, PHYSICA B & C, V136, P59 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FLYNN CP, 1989, J PHYS-CONDENS MAT, V1, P5997 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, UNPUB PHYS REV LETT GEHRING PM, 1995, PHYS REV B, V51, P3234 GEHRING PM, 1993, PHYS REV LETT, V71, P1087 GEHRING PM, 1996, PHYSICA B, V221, P398 GIBBS D, 1986, PHYS REV B, V34, P8182 GIBBS D, 1985, PHYS REV LETT, V55, P234 GIEBULTOWICZ TM, 1995, IN PRESS J MAGN MAGN, V140 GIEBULTOWICZ TM, 1994, PHYSICA B, V198, P163 HAHN W, 1994, J APPL PHYS, V75, P3564 HIROTA K, 1994, PHYS REV B, V49, P11967 HOSOITO N, 1992, J PHYS SOC JPN, V61, P300 HOSOITO N, 1990, J PHYS SOC JPN, V59, P1925 HUANG YY, 1993, PHYS REV B, V47, P183 JEHAN DA, 1993, PHYS REV B, V48, P5594 KWO J, 1985, MATER RES SOC S P, V37, P509 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, IN PRESS HDB NEUTRON MAJKRZAK CF, 1987, J APPL PHYS, V61, P4055 MAJKRZAK CF, 1994, MAGNETIC MULTILAYERS, P299 MAJKRZAK CF, 1989, PHYS REV B, V40, P371 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK CF, 1989, PHYSICA B, V156, P619 MAJKRZAK CF, 1992, SPIE P, V1738, P90 MARTINEZ JL, 1992, PHYSICA B, V180, P39 MCMORROW DF, 1993, EUROPHYS LETT, V23, P523 MCMORROW DF, 1993, PHYSICA B, V192, P150 MENDIRATTA SK, 1976, PHYS REV B, V14, P144 MEZEI F, 1976, COMMUN PHYS, V1, P81 MOON RM, 1969, PHYS REV, V181, P920 NUNEZ V, 1994, B AM PHYS SOC, V39, P313 NUNEZ V, 1993, MATER RES SOC S P, V313, P431 NUNEZ V, 1991, PHYSICA B, V174, P60 NUNEZ V, 1993, UNPUB OKOROKOV AI, 1978, NUCL INSTRUM METHODS, V157, P487 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PASYUK VV, 1993, APPL SURF SCI, V65-6, P118 PLESHANOV NK, 1994, Z PHYS B CON MAT, V94, P233 PRINZ GA, 1995, PHYS TODAY, V48, P58 REKVELDT MT, 1971, J PHYS-PARIS, P579 RHYNE JJ, 1995, MAGNETIC MAT, V8, P1 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHAERPF O, 1989, PHYSICA B, V156, P631 SCHARPF O, 1978, J APPL CRYSTALLOGR, V11, P626 SCHREYER A, 1993, J APPL PHYS, V73, P7616 SCHREYER A, 1996, PHYSICA B, V221, P366 SCHREYER A, 1994, PHYSICA B, V198, P173 SCHWARZACHER W, 1991, J APPL PHYS, V69, P4040 SIMPSON JA, 1994, PHYS REV LETT, V73, P1162 SINHA SK, 1995, IN PRESS MRS S P, V376 SIVARDIERE PJ, 1975, ACTA CRYSTALLOGR A, V31, P340 SYROMYATNIKOV V, 2006 NUCL PHYS RUSS TAKEDA M, 1993, J PHYS SOC JPN, V62, P3015 TASSET F, 1988, J APPL PHYS, V63, P3606 THURSTON TR, 1993, PHYS REV LETT, V70, P3151 VETTIER C, 1986, PHYS REV LETT, V56, P757 YAFET Y, 1988, J APPL PHYS, V63, P3453 YAFET Y, 1987, J APPL PHYS, V61, P4058 YAFET Y, 1994, MAGNETIC MULTILAYERS, P19 TC 15 BP 342 EP 356 PG 15 JI Physica B PY 1996 PD APR VL 221 IS 1-4 GA UR277 J9 PHYSICA B UT ISI:A1996UR27700053 ER PT J AU Li, Y Polaczyk, C Klose, F Kapoor, J Maletta, H Mezei, F Riegel, D TI Magnetic and structural properties of thin Fe films grown on Ni/Si SO PHYSICAL REVIEW B-CONDENSED MATTER NR 36 AB Fe films ranging in thickness from 6 to 90 Angstrom have been prepared on Ni layers with constant thickness of 140 Angstrom grown on Si(100) in ultrahigh vacuum. Magnetic properties have been studied by spin-polarized neutron reflection and superconducting quantum interference device magnetometry and structural properties have been investigated by small-angle x- ray reflectometry and reflection high-enegy electron diffraction. As the main result of this work it is shown that the magnetic states of the Fe films strongly depend on their thicknesses. For Fe layers less than or equal to 32 Angstrom, the average magnetic Fe moments come out to be very low around 0.2 mu(B). For Fe layers greater than or equal to 60 Angstrom, the Fe moments increase by a factor of about 10 close to the value known for bulk iron. Most probably these changes can be attributed to a structural phase transition of the Fe films from fee-like to bce with increasing Fe layer thickness. Fe films below 32 Angstrom are either antiferromagnetic or exhibit almost vanishing Fe moments. The discussion includes a comparison of our results for Fe/Ni bilayers with results published for Fe/Ni multilayers and for Fe films on Cu. CR BACON GE, 1975, NEUTRON DIFFRACTION BLAND JAC, 1991, J MAGN MAGN MATER, V93, P513 BORN M, 1975, PRINCIPLES OPTICS BRUNO P, 1991, PHYS REV LETT, V67, P1602 CHENG SF, 1993, PHYS REV B, V47, P206 COLOMBO E, 1992, J MAGN MAGN MATER, V104, P1857 DEHAAN VO, 1994, PHYSICA B, V198, P24 DEHAAN VO, 1995, THESIS DELFT U TECHN DURAND O, 1993, J MAGN MAGN MATER, V121, P140 EDELSTEIN AS, 1990, SOLID STATE COMMUN, V76, P1379 ELLERBROCK RD, 1995, PHYS REV LETT, V74, P3053 FELCHER GP, 1994, PHYSICA B, V198, P150 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 GRADMANN U, 1993, HDB MAGNETIC MAT GRADMANN U, 1980, J MAGN MAGN MATER, V15-8, P1109 GUENZBURGER D, 1995, PHYS REV B, V51, P12519 HEINRICH B, 1994, ULTRATHIN MAGNETIC S HUANG YY, 1993, PHYS REV B, V47, P183 JENNETT NM, 1991, J MAGN MAGN MATER, V93, P472 KEAVNEY DJ, 1995, PHYS REV LETT, V74, P4531 KEUNE W, 1977, J APPL PHYS, V48, P2979 KRAFT T, 1994, PHYS REV B, V49, P11511 KRAFT T, 1993, PHYS REV B, V47, P9862 KRISHNAN R, 1991, J APPL PHYS, V70, P6421 LI DQ, 1994, PHYS REV LETT, V72, P3112 LI Y, 1995, J MAGN MAGN MATER, V140, P551 LI Y, UNPUB NAGAI Y, 1988, J APPL PHYS, V64, P1343 PAPPAS DP, 1991, PHYS REV LETT, V66, P504 PARKIN SSP, 1991, PHYS REV LETT, V67, P3598 PARRATT LG, 1954, PHYS REV, V95, P359 SKOLD K, 1986, NEUTRON SCATTERING M THOMASSEN J, 1992, PHYS REV LETT, V69, P3831 TOEWS H, 1993, THESIS HAHN MEITNER WIJN HP, 1986, LANDOLTBORNSTEIN A, V19 ZABEL H, 1994, APPL PHYS A-MATER, V58, P159 TC 9 BP 5541 EP 5546 PG 6 JI Phys. Rev. B-Condens Matter PY 1996 PD MAR 1 VL 53 IS 9 GA UA011 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996UA01100079 ER PT J AU DIETRICH, S HAASE, A TI SCATTERING OF X-RAYS AND NEUTRONS AT INTERFACES SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS NR 304 AB Based on the distorted wave Born approximation we derive a general expression for the kinematic scattering cross-section of X-rays and neutrons impinging on an arbitrary interfacial structure. The scattering intensity is expressed in terms of the two-point correlation function of the atomic number densities. Since our approach takes fully into account the refraction at the corresponding smooth mean interface profile, our results offer the basis for an accurate analysis of the diffuse scattering intensity, which allows one to extract the lateral correlations. As an illustration of this formalism, we discuss applications to particularly interesting systems such as liquid-vapor interfaces, thin films, and multilayers. The systematic separation of the contributions to the scattering intensity which are proportional to the volume of the sample and those scaling with the area of the illuminated surface yields a detailed description of the truncation rod scattering of crystals. In the case of fluctuating interfaces, we provide a systematic derivation for the expression of the scattering cross-section. We show which approximations are necessary in order to recover those formulae which are commonly used to describe the scattering intensity caused by fluctuating interfaces. Therefore, we are able to assess their range of validity and their limitations. Beyond that, we discuss cases in which the vector character of X-rays cannot be ignored or where the atomic form factors and the correlation functions do not factorize. CR ABERNATHY DL, 1992, PHYS REV LETT, V69, P941 ABERNATHY DL, 1992, SPRINGER P PHYSICS, V61, P37 ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS ABRUNA HD, 1991, ELECTROCHEMICAL INTE ABRUNA HD, 1990, SCIENCE, V250, P69 ALSNIELSEN J, 1991, HDB SYNCHROTRON RAD, V3, P471 ALSNIELSEN J, 1994, PHYS REP, V246, P251 ALSNIELSEN J, 1982, PHYS REV LETT, V48, P1107 ALSNIELSEN J, 1986, PHYSICA A, V140, P376 ALSNIELSEN J, 1984, PHYSICA B & C, V126, P145 ALUSTA K, 1991, PHYSICA B, V173, P65 ALUSTA K, 1990, Z PHYS B CON MAT, V79, P409 ANDREEV AV, 1988, J MOD OPTIC, V35, P1667 ANDREEV AV, 1985, SOV PHYS USP, V28, P70 ANDREWS SR, 1985, J PHYS C SOLID STATE, V18, P6427 ANDRIYANCHIK AA, 1993, PHYS STATUS SOLIDI A, V140, P49 BAHR D, 1993, PHYS REV B, V47, P4385 BARBERKA TA, 1994, THIN SOLID FILMS, V244, P1061 BARTON SW, 1992, EUROPHYS LETT, V17, P401 BELORGEY O, 1991, PHYS REV LETT, V66, P313 BERNHARD N, 1987, Z PHYS B CON MAT, V69, P303 BIENFAIT M, 1991, NATO ASI SER B-PHYS, V267, P307 BINDER K, 1983, PHASE TRANSITIONS CR, V8, P1 BINDER K, 1991, Z PHYS B CON MAT, V84, P403 BIRCH WR, 1994, COLLOID SURFACE A, V89, P145 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, P305 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BORN M, 1975, PRINCIPLES OPTICS BOSIO L, 1984, J CHEM PHYS, V80, P959 BOUCHAUD E, 1986, EUROPHYS LETT, V2, P315 BRADLEY JE, 1988, LANGMUIR, V4, P821 BRASLAU A, 1988, PHYS REV A, V38, P2457 BRASLAU A, 1985, PHYS REV LETT, V54, P114 BRIDOU F, 1994, J PHYS III, V4, P1523 BROMWICH TJ, 1965, INTRO THEORY INFINIT, P392 BUHAENKO MR, 1988, THIN SOLID FILMS, V159, P253 BURANDT B, 1994, J PHYS-CONDENS MAT, V6, P7189 BURANDT B, 1993, PHYS REV LETT, V71, P1188 BYRNE J, 1994, NEUTROUS NUCLEI MATT CHAUDHURI J, 1994, J APPL PHYS, V76, P4454 CHAUDHURI J, 1989, J APPL PHYS, V66, P5373 CHAUDHURI J, 1994, THIN SOLID FILMS, V239, P79 CHIANG WC, 1993, J APPL PHYS, V74, P4331 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 CHIARELLO RP, 1994, SURF SCI, V306, P359 CLINTON WL, 1993, PHYS REV B, V48, P1 COSGROVE T, 1992, COLLOID SURFACE, V62, P199 DAILLANT J, 1989, EUROPHYS LETT, V8, P453 DAILLANT J, 1992, J CHEM PHYS, V97, P5824 DAILLANT J, 1992, J CHEM PHYS, V97, P5837 DASH JG, 1991, P NATO ASI B, V267, P339 DEBOER DKG, 1994, APPL PHYS A-MATER, V58, P169 DEBOER DKG, 1994, J PHYS III, V4, P1559 DEBOER DKG, 1994, PHYS REV B, V49, P5817 DEBOER DKG, 1991, PHYS REV B, V44, P498 DEGENNES PG, 1981, MACROMOLECULES, V14, P1637 DEGENNES PG, 1985, SCALING CONCEPTS POL DESJONQUERES MC, 1993, SPRINGER SERIES SURF, V30 DIEHL HW, 1986, PHASE TRANSITIONS CR, V10, P76 DIEHL HW, 1992, PHYS REV A, V45, P7145 DIEHL HW, 1993, PHYS REV B, V47, P5841 DIETRICH S, 1989, COLL PHYSIQUE C, V7, P233 DIETRICH S, 1986, J MAGN MAGN MATER, V54-7, P658 DIETRICH S, 1991, P NATO ASI B, P391 DIETRICH S, 1988, PHASE TRANSITIONS CR, V12, P1 DIETRICH S, 1991, PHYS REV A, V43, P1861 DIETRICH S, 1989, PHYS REV B, V39, P8873 DIETRICH S, 1987, PHYS REV LETT, V58, P140 DIETRICH S, 1983, PHYS REV LETT, V51, P1469 DIETRICH S, 1993, PHYS SCRIPTA, VT49B, P519 DIETRICH S, 1990, SPRINGER P PHYSICS, V50, P150 DIETRICH S, 1985, Z PHYS B CON MAT, V59, P35 DIETRICH S, 1984, Z PHYS B CON MAT, V56, P207 DIETRICH S, 1983, Z PHYS B CON MAT, V51, P343 DOSCH H, 1991, EUROPHYS LETT, V15, P527 DOSCH H, 1992, INT J MOD PHYS B, V6, P2773 DOSCH H, 1991, PHYS REV B, V43, P13172 DOSCH H, 1987, PHYS REV B, V35, P2137 DOSCH H, 1988, PHYS REV LETT, V60, P2382 DOSCH H, 1986, PHYS REV LETT, V56, P1144 DOSCH H, 1994, PHYSICA B, V198, P78 DOSCH H, 1993, PHYSICA B, V192, P163 DOSCH H, 1992, SPRINGER TRACTS MODE, V126 DOSCH H, 1992, SURF SCI, V279, P367 EISENBERGER P, 1981, PHYS REV LETT, V46, P1081 FEIDENHANSL R, 1985, SURF SCI REP, V25, P545 FELCHER GP, 1985, J APPL PHYS, V57, P3789 FELCHER GP, 1994, PHYS REV B, V50, P9565 FELCHER GP, 1984, PHYS REV LETT, V52, P1539 FELCHER GP, 1991, PHYSICA B, V173 FELICI R, 1990, SOLID STATE COMMUN, V76, P989 FINDEISEN E, 1994, J APPL PHYS, V76, P4636 FINDEISEN E, 1993, J PHYS-CONDENS MAT, V5, P8149 FLAMENT C, 1994, J PHYS II, V4, P1021 FLOM EB, 1992, J CHEM PHYS, V96, P4743 FLOM EB, 1993, SCIENCE, V260, P332 FLOTER G, 1995, IN PRESS Z PHYS B FULLERTON EE, 1993, PHYS REV B, V48, P17432 FUOSS PH, 1988, PHYS REV LETT, V60, P2046 GAROFF S, 1989, J CHEM PHYS, V90, P7505 GAU TS, 1994, PHYS LETT A, V196, P223 GAY JM, 1993, J APPL PHYS, V73, P8169 GAY JM, 1989, J PHYS, P289 GAY JM, 1994, PHYS SCRIPTA, V50, P204 GEER RE, 1993, PHYS REV LETT, V71, P1391 GELFAND IM, 1964, GENERALIZED FUNCTION, V1 GIBAUD A, 1993, PHYS REV B, V48, P14463 GIBBS D, 1988, PHYS REV B, V38, P7303 GIBBS D, 1991, PHYS REV LETT, V67, P3117 GIERLOTKA S, 1990, EUROPHYS LETT, V12, P341 GOMPPER G, 1986, Z PHYS B CON MAT, V62, P357 GOMPPER G, 1984, Z PHYS B CON MAT, V56, P217 GRAMSBERGEN EF, 1986, J PHYS-PARIS, V47, P711 GRAY KE, 1990, PHYS REV B, V42, P3971 GRUNDY MJ, 1988, THIN SOLID FILMS, V159, P43 GUISELIN O, 1992, EUROPHYS LETT, V17, P57 GUISELIN O, 1991, J CHEM PHYS, V95, P4632 GUISELIN O, 1989, J PHYS-PARIS, V50, P3407 GUISELIN O, 1991, PHYSICA B, V173, P113 HAASE A, 1992, SPRINGER P PHYSICS, V61, P95 HELD GA, 1989, J PHYS, P245 HELD GA, 1987, PHYS REV LETT, V59, P2075 HELD GA, 1989, SOLID STATE COMMUN, V72, P37 HELGESEN G, 1993, PHYS REV B, V48, P15320 HIGGINS JS, 1994, POLYM NEUTRON PHYSIC HIGHFIELD RR, 1983, THIN SOLID FILMS, V99, P165 HJORVARSSON B, 1994, PHYS REV B, V50, P11223 HODGSON RJW, 1991, J APPL PHYS, V70, P4023 HOLY V, 1994, APPL PHYS A-MATER, V58, P173 HOLY V, 1994, PHYS REV B, V49, P10668 HOLY V, 1993, PHYS REV B, V47, P15896 HOMMA H, 1992, J APPL PHYS, V72, P5668 HUAI Y, 1994, APPL PHYS LETT, V65, P830 HUANG YY, 1993, PHYS REV B, V47, P183 IGNATOVICH VK, 1994, PHYS REV E, V50, P4231 IVISON PK, 1989, J PHYS-CONDENS MAT, V1, P3655 JANNINK G, 1993, J PHYS I, V3, P1405 JIANG XM, 1992, APPL PHYS LETT, V61, P904 JONES RAL, 1990, EUROPHYS LETT, V12, P41 KASHIHARA Y, 1987, JPN J APPL PHYS 2, V26, PL1029 KAWAMOTO EH, 1993, PHYS REV B, V47, P6847 KAWAMURA T, 1994, J APPL PHYS, V75, P3806 KELLAY H, 1993, J PHYS II, V3, P1747 KENN RM, 1991, J PHYS CHEM-US, V95, P2092 KJAER K, 1989, J PHYS CHEM-US, V93, P3200 KJAER K, 1988, THIN SOLID FILMS, V159, P17 KORTRIGHT JB, 1991, J APPL PHYS, V70, P3620 KRECH M, 1993, J PHYS CHEM-US, V97, P1722 KROLL DM, 1990, PHYS REV B, V42, P6531 LAGOMARSINO S, 1994, ACTA PHYS POL A, V86, P553 LAI B, 1992, PHYS REV B, V46, P2481 LEE EM, 1990, EUROPHYS LETT, V13, P135 LEE LT, 1991, PHYS REV LETT, V67, P2678 LEE LT, 1991, PHYS REV LETT, V67, P2838 LEGRAND JF, 1994, THIN SOLID FILMS, V248, P95 LEKNER J, 1994, PHYSICA B, V202, P16 LEKNER J, 1987, THEORY REFLECTION LEVI AC, 1991, P NATO ASI B, V267, P327 LI M, 1994, J PHYS D APPL PHYS, V27, P1929 LI ZX, 1993, MOL PHYS, V80, P925 LIANG KS, 1987, PHYS REV LETT, V59, P2447 LIED A, 1994, PHYS REV LETT, V72, P3554 LIU AJ, 1989, PHYS REV A, V40, P7202 LU BC, 1978, J CHEM PHYS, V68, P5558 LU JR, 1994, J PHYS CHEM-US, V98, P11519 LUI WW, 1986, J APPL PHYS, V60, P1555 LURIO LB, 1993, PHYS REV B, V48, P9644 LURIO LB, 1992, PHYS REV LETT, V68, P2628 MAAZA M, 1994, PHYS LETT A, V195, P9 MAILANDER L, 1990, PHYS REV LETT, V64, P2527 MARRA WC, 1979, J APPL PHYS, V50, P6927 MARRA WC, 1982, PHYS REV LETT, V49, P1169 MARSHALL W, 1971, THEORY THERMAL NEUTR MATSUI J, 1993, ANNU REV MATER SCI, V23, P295 MAZUR P, 1982, PHYS REV B, V26, P5175 MCCLAIN BR, 1944, PHYS REV LETT, V72, P246 MECKE K, 1994, WUB9445 BERG U WUPP MELENDRES CA, 1992, EQUILIBRIUM STRUCTUR, P319 MICELI PF, 1993, SEMICONDUCTOR INTERF, P87 MING ZH, 1994, APPL PHYS LETT, V65, P1382 MULLERBUSCHBAUM P, IN PRESS MULLERBUSCHBAUM P, 1994, Z PHYS B CON MAT, V95, P331 NAKATANI S, 1994, SURF SCI, V311, P433 NAPIORKOWSKI M, 1993, PHYS REV E, V47, P1836 NAUDON A, 1993, CR ACAD SCI II, V317, P1275 NEVOT L, 1980, REV PHYS APPL, V15, P761 NICHLOW RM, 1981, PHYS REV B, V23, P1081 OCKO BM, 1994, PHYS REV LETT, V72, P242 OCKO BM, 1986, PHYS REV LETT, V57, P94 PALASANTZAS G, 1993, PHYS REV B, V48, P2873 PARKIN SSP, 1986, APPL PHYS LETT, V48, P604 PARKIN SSP, 1985, J APPL PHYS, V57, P3771 PARKIN SSP, 1990, PHYS REV B, V42, P10583 PARRATT LG, 1954, PHYS REV, V95, P359 PENFOLD J, 1990, J PHYS-CONDENS MAT, V2, P1369 PERSHAN PS, 1990, FARADAY DISCUSS CHEM, V89, P231 PERSHAN PS, 1994, J PHYS-CONDENS MAT, V6, PA37 PERSHAN PS, 1987, PHYS REV A, V35, P4800 PERSHAN PS, 1994, PHYS REV E, V50, P2369 PERSHAN PS, 1984, PHYS REV LETT, V52, P759 PERSHAN PS, 1993, PHYSICA A, V200, P50 PFLANZ S, 1992, ACTA CRYSTALLOGR A, V48, P716 PHANG YH, 1992, APPL PHYS LETT, V60, P2986 PHANG YH, 1993, J APPL PHYS, V74, P3181 PHANG YH, 1992, J APPL PHYS, V72, P4627 PIETSCH U, 1991, SEMICOND SCI TECH, V6, P743 PIETSCH U, 1994, THIN SOLID FILMS, V247, P230 PIZZINI S, 1993, PHYS REV B, V47, P8754 PLOTZ W, 1994, J PHYS III, V4, P1565 PLOTZ WM, 1994, J PHYS III, V4, P1503 POMERANTZ M, 1980, THIN SOLID FILMS, V68, P33 PRAKASH M, 1984, CHEM PHYS LETT, V111, P395 PRUDNIKOV AP, 1988, INTEGRALS SERIES PYNN R, 1992, PHYS REV B, V45, P602 QIAN YL, 1994, SCIENCE, V265, P1555 REICHERT H, 1995, IN PRESS PHYS REV LE REIMER PM, 1992, PHYS REV B, V45, P11426 REISS G, 1994, PHYS LETT A, V196, P133 RHAN H, 1990, Z PHYS B CON MAT, V80, P347 RICE SA, 1987, P NATL ACAD SCI USA, V84, P4709 ROBINSON I, 1994, ACTA PHYS POL A, V86, P513 ROBINSON IK, 1990, J PHYS-PARIS, V51, P103 ROBINSON IK, 1986, PHYS REV B, V33, P3830 ROBINSON IK, 1992, REP PROG PHYS, V55, P599 ROBINSON IK, 1992, SURF SCI, V261, P123 RONDELEZ F, 1987, ANNU REV PHYS CHEM, V38, P317 ROSER SJ, 1994, LANGMUIR, V10, P3853 SALDITT T, 1994, J PHYS III, V4, P1573 SALDITT T, 1994, PHYS REV LETT, V73, P2228 SALDITT T, 1994, Z PHYS B CON MAT, V96, P227 SANYAL MK, 1993, EUROPHYS LETT, V21, P691 SANYAL MK, 1991, PHYS REV LETT, V66, P628 SASAKI YC, 1991, APPL PHYS LETT, V58, P1384 SAVAGE DE, 1993, J APPL PHYS, V74, P6158 SAVAGE DE, 1992, J APPL PHYS, V71, P3283 SAVAGE DE, 1991, J APPL PHYS, V69, P1411 SAVILLE PM, 1994, J PHYS CHEM-US, V98, P5935 SCHAAF P, 1987, SURF SCI, V191, P579 SCHALCHLI A, 1994, CR ACAD SCI II, V319, P745 SCHALCHLI A, 1994, EUROPHYS LETT, V26, P271 SCHLOMKA JP, 1995, IN PRESS PHYS REV B SCHLOSSMAN ML, 1991, J PHYS CHEM-US, V95, P6628 SCHLOSSMAN ML, 1991, PHYS REV LETT, V66, P1599 SCHWARTZ DK, 1992, J CHEM PHYS, V96, P2356 SCHWARTZ DK, 1990, PHYS REV A, V41, P5687 SCHWEIKA W, 1990, PHYS REV LETT, V65, P3321 SEARS VF, 1993, PHYS REV B, V48, P17477 SHIMURA T, 1994, PHYSICA B, V198, P195 SINHA SK, 1994, J PHYS III, V4, P1543 SINHA SK, 1988, PHYS REV B, V38, P2297 SINHA SK, 1994, PHYSICA B, V173, P25 SINHA SK, 1992, SPRINGER P PHYSICS, V61, P91 SLUIS D, 1983, J CHEM PHYS, V79, P5658 SPILLER E, 1993, J APPL PHYS, V74, P107 STEPANOV SA, 1994, J APPL PHYS, V76, P7809 STEYERL A, 1972, Z PHYS, V254, P169 SUN X, 1988, EUROPHYS LETT, V6, P207 SWADDLING PP, 1994, PHYS REV LETT, V73, P2232 SWISLOW G, 1991, PHYS REV A, V43, P6815 THOMPSON C, 1994, PHYS REV B, V49, P4902 TIDSWELL IM, 1991, J CHEM PHYS, V95, P2854 TIDSWELL IM, 1991, PHYS REV B, V44, P10869 TIDSWELL IM, 1990, PHYS REV B, V41, P1111 TIDSWELL IM, 1991, PHYS REV LETT, V66, P2108 TOLAN M, 1995, IN PRESS PHYS REV B TOLAN M, 1994, J APPL PHYS, V75, P7761 TOLAN M, 1994, PHYSICA B, V198, P55 TONEY MF, 1989, J APPL PHYS, V65, P4763 TONEY MF, 1994, NATURE, V368, P444 TSUJI K, 1994, J APPL PHYS, V76, P7860 TSUJI K, 1994, J APPL PHYS, V75, P7189 TWEET DJ, 1990, PHYS REV LETT, V65, P2157 VANDERVEEN JF, 1991, P NATO ASI B, V267, P289 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANHOVE L, 1954, PHYS REV, V95, P249 VIGOUREUX JM, 1991, J OPT SOC AM A, V8, P1697 VINEYARD GH, 1982, PHYS REV B, V26, P4146 VLIEG E, 1989, SURF SCI, V210, P301 VOGES D, 1992, SURF SCI, V269, P1142 VONLAUE M, 1936, ANN PHYS, V26, P55 WANG J, 1991, PHYS REV B, V46, P10321 WANG J, 1993, PHYSICA A, V200, P679 WEBER W, 1992, PHYS REV B, V46, P7953 WEEKS JD, 1980, ORDERING STRONGLY FL, P293 WILLE K, 1991, REP PROG PHYS, V54, P1005 WOLF SG, 1988, THIN SOLID FILMS, V159, P29 WONG PZ, 1988, PHYS REV B, V37, P7751 WU XZ, 1993, PHYS REV LETT, V70, P958 YAN X, 1993, PHYS REV B, V47, P2362 YAN X, 1994, PHYSICA A, V207, P379 YOU H, 1992, SPRINGER P PHYSICS, V61, P47 YUN WB, 1990, J APPL PHYS, V68, P1421 ZABEL H, 1994, APPL PHYS A-MATER, V58, P159 ZEGENHAGEN J, 1993, SURF SCI REP, V18, P199 ZEILINGER A, 1983, PHYS REV B, V27, P7239 ZHANG H, 1994, PHYS REV LETT, V72, P3044 ZHAO W, 1992, J CHEM PHYS, V97, P8536 ZHOU X, 1994, LANGMUIR, V10, P2866 ZHOU XL, 1991, J PHYS CHEM-US, V95, P9025 ZHOU XL, 1992, PHYS REV A, V46, P1839 ZHOU XL, 1994, PHYS REV E, V49, P5345 ZHU XM, 1988, PHYS REV B, V37, P7157 ZHU XM, 1990, PHYS REV LETT, V65, P2692 TC 73 BP 1 EP 138 PG 138 JI Phys. Rep.-Rev. Sec. Phys. Lett. PY 1995 PD SEP VL 260 IS 1-2 GA RU756 J9 PHYS REP-REV SECT PHYS LETT UT ISI:A1995RU75600001 ER PT J AU DEKOSTER, J DEGROOTE, S KOBAYASHI, T LANGOUCHE, G TI CONVERSION ELECTRON MOSSBAUER INVESTIGATION OF THIN EPITAXIAL BCC FE ON MGO(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 3 AB The hyperfine interaction of thin body centered cubic Fe layers with various thicknesses (2 to 9 monolayers) epitaxially deposited at 293 K on MgO(001) was measured in UHV with Fe-57 integral conversion electron Mossbauer spectroscopy. The thinnest Fe layer is found to be paramagnetic at room temperature while with increasing layer thickness a resolved magnetic interaction is observed. These results are interpreted in terms of a three dimensional growth mode of Fe on MgO and are complemented with in situ RHEED observations. The magnetic component is oriented in the plane of the sample. CR FREEMAN AJ, 1991, SCI TECHNOLOGY NANOS, P1 HUANG YY, 1993, PHYS REV B, V47, P183 KOYANO T, 1988, J APPL PHYS, V64, P5763 TC 2 BP 93 EP 94 PG 2 JI J. Magn. Magn. Mater. PY 1995 PD JUL VL 148 IS 1-2 GA RM330 J9 J MAGN MAGN MATER UT ISI:A1995RM33000044 ER PT J AU BLUNDELL, SJ GESTER, M BLAND, JAC LAUTER, HJ PASYUK, VV PETRENKO, AV TI SPIN-ORIENTATION DEPENDENCE IN NEUTRON REFLECTION FROM A SINGLE MAGNETIC-FILM SO PHYSICAL REVIEW B-CONDENSED MATTER NR 14 CR BLAND JAC, 1993, J MAGN MAGN MATER, V123, P320 BLAND JAC, 1989, J PHYS-CONDENS MAT, V1, P4399 BLAND JAC, 1987, PHYS REV LETT, V58, P1244 BLUNDELL SJ, 1993, J APPL PHYS, V73, P5948 BLUNDELL SJ, 1993, J MAGN MAGN MATER, V121, P2660 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BUTTIKER M, 1983, PHYS REV B, V27, P6178 FELCHER GP, 1981, PHYS REV B, V24, P1595 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 HUANG YY, 1991, J MAGN MAGN MATER, V99, PL31 HUANG YY, 1993, PHYS REV B, V47, P183 PENFOLD J, 1990, J PHYS-CONDENS MAT, V2, P1369 SCHUTZ G, 1987, PHYS REV LETT, V58, P737 SEARS VF, 1989, NEUTRON OPTICS TC 4 BP 9395 EP 9398 PG 4 JI Phys. Rev. B-Condens Matter PY 1995 PD APR 1 VL 51 IS 14 GA QT246 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QT24600094 ER PT J AU BLAND, JAC DABOO, C HEINRICH, B CELINSKI, Z BATESON, RD TI ENHANCED MAGNETIC-MOMENTS IN BCC FE FILMS SO PHYSICAL REVIEW B-CONDENSED MATTER NR 42 CR BATESON RD, 1993, J MAGN MAGN MATER, V121, P189 BLAND JAC, 1990, J APPL PHYS, V67, P5397 BLAND JAC, 1992, J MAGN MAGN MATER, V113, P173 BLAND JAC, 1992, J MAGN MAGN MATER, V104, P1909 BLAND JAC, 1991, J MAGN MAGN MATER, V93, P331 BLAND JAC, 1991, J MAGN MAGN MATER, V93, P513 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUGEL S, 1989, APPL PHYS A-MATER, V49, P547 BLUNDELL SJ, 1993, J MAGN MAGN MATER, V121, P185 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BRUNO P, 1991, PHYS REV B, V43, P6015 CELINSKI Z, 1993, J APPL PHYS, V73, P5966 CELINSKI Z, 1991, J APPL PHYS, V70, P5870 CELINSKI Z, 1990, PHYS REV LETT, V65, P1156 CHEN H, 1990, PHYS REV B, V40, P1443 DESANTO JA, 1991, WAVES RAND MED, V1, PS41 EGELHOFF WF, 1991, MATER RES SOC S P, V229, P27 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FU CL, 1987, PHYS REV B, V35, P925 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, UNPUB GRADMANN U, 1989, APPL PHYS A-MATER, V49, P563 GRADMANN U, 1987, THIN FILM GROWTH LOW HEINRICH B, 1991, J APPL PHYS, V70, P5769 HEINRICH B, 1991, J MAGN MAGN MATER, V93, P75 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1990, PHYS REV LETT, V64, P673 HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2 HUANG YY, 1993, PHYS REV B, V47, P183 KORECKI J, 1985, PHYS REV LETT, V55, P2491 KRAMS P, 1992, PHYS REV LETT, V69, P3674 MCHENRY ME, 1990, J MAGN MAGN MATER, V88, P134 NEVOT L, 1980, REV PHYS APPL, V15, P761 NEWSTEAD DA, 1987, J PHYS C SOLID STATE, V20, P6245 OHNISHI S, 1984, PHYS REV B, V30, P36 SCHNEIDER C, COMMUNICATION SCHURER PJ, 1993, PHYS REV B, V48, P2577 SINHA SK, 1988, PHYS REV B, V38, P2297 STEYERL A, 1972, Z PHYS, V254, P169 TC 25 BP 258 EP 272 PG 15 JI Phys. Rev. B-Condens Matter PY 1995 PD JAN 1 VL 51 IS 1 GA QB377 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995QB37700034 ER PT J AU PAPPAS, DP PRINZ, GA KETCHEN, MB TI SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE MAGNETOMETRY DURING ULTRAHIGH-VACUUM GROWTH SO APPLIED PHYSICS LETTERS NR 9 CR BAYREUTHER G, 1989, PHYS REV B, V40, P7399 FALICOV LM, 1990, J MATER RES, V5, P1299 HAUGDAHL JB, 1988, REV SCI INSTRUM, V59, P480 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HUANG YY, 1993, PHYS REV B, V47, P183 IDZERDA YU, 1993, J APPL PHYS, V73, P6204 MCGUIRE TR, 1984, J APPL PHYS, V55, P2505 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 4 BP 3401 EP 3403 PG 3 JI Appl. Phys. Lett. PY 1994 PD DEC 26 VL 65 IS 26 GA PY280 J9 APPL PHYS LETT UT ISI:A1994PY28000033 ER PT J AU ADENWALLA, S PARK, YS FELCHER, GP TEITELMAN, M TI MAGNETIC RESPONSE OF ULTRATHIN FE ON MGO - A POLARIZED NEUTRON REFLECTOMETRY STUDY SO JOURNAL OF APPLIED PHYSICS NR 10 CR DURR W, 1989, PHYS REV LETT, V62, P206 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 HUANG YY, 1993, PHYS REV B, V47, P183 JACOBS IS, 1963, MAGNETISM, V3, PCH6 LI C, 1991, PHYS REV B, V43, P780 LIU C, 1988, J APPL PHYS, V64, P5325 LIU C, 1992, J MAGN MAGN MATER, V111, P225 MERMIN ND, 1966, PHYS REV LETT, V17, P1133 VATERLAUS A, 1988, J APPL PHYS, V64, P5331 XIAO G, 1986, PHYS REV B, V34, P7573 TC 1 BP 6443 EP 6445 PG 3 JI J. Appl. Phys. PY 1994 PD NOV 15 VL 76 IS 10 PN 2 GA PT848 J9 J APPL PHYS UT ISI:A1994PT84800133 ER PT J AU WU, RQ FREEMAN, AJ TI MAGNETISM AT METAL-CERAMIC INTERFACES - EFFECTS OF A AU OVERLAYER ON THE MAGNETIC-PROPERTIES OF FE/MGO(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 23 AB In the search for a benign magnetic substrate with which to explore 2D magnetism in transition metal monolayer, MgO(001) has emerged from studies of the metal-ceramic interaface as a prime candidate. Since Au overlayers are now used to prevent oxidation, we have determined their effects on the electronic and magnetic properties of Fe/MgO(001) by means of first principles calculations using the full potential linearized augmented plane wave method. Some Fe-Au hybridization is found which diminishes the giant spin moment in Fe/MgO(001) by 0.14mu(B). In turn, the Fe layer induces a sizable magnetic moment at the Au site, namely, a 0.069mu(B) spin moment and a 0.042mu(B) orbital moment. A substantial magnetic circular dichroism signal is predicted for Au, which invites experimental verification. CR EASTMAN DE, 1970, PHYS REV B, V2, P1 EIBLER R, 1993, SURF SCI, V280, P398 FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497 FU CL, 1986, PHYS REV B, V33, P1611 GRADMANN U, 1991, J MAGN MAGN MATER, V100, P481 HANSSON GV, 1978, PHYS REV B, V18, P1572 HUANG YY, 1993, PHYS REV B, V47, P183 KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107 LI C, 1988, J MAGN MAGN MATER, V75, P201 LI C, 1993, PHYS REV B, V48, P8317 LI C, 1991, PHYS REV B, V43, P78 OHNISHI S, 1983, PHYS REV B, V28, P6741 POTTER HC, 1975, J VAC SCI TECHNOL, V12, P6351 SAMANT MG, IN PRESS PHYS REV LE SCHUTZ G, 1987, PHYS REV LETT, V58, P737 STOHR J, 1993, SCIENCE, V259, P658 URANO T, 1988, J PHYS SOC JPN, V57, P3043 VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629 WEINERT M, 1982, PHYS REV B, V26, P4571 WIMMER E, 1981, PHYS REV B, V24, P864 WU RQ, 1993, COMPUT PHYS COMMUN, V76, P58 WU RQ, 1993, J APPL PHYS, V73, P6739 WU RQ, 1993, PHYS REV LETT, V71, P3581 TC 2 BP 127 EP 133 PG 7 JI J. Magn. Magn. Mater. PY 1994 PD OCT VL 137 IS 1-2 GA PN821 J9 J MAGN MAGN MATER UT ISI:A1994PN82100017 ER PT J AU PYNN, R BAKER, S TI NEUTRON REFLECTION FROM FACETED SURFACES SO PHYSICA B NR 6 AB Diffuse scattering, often taken as evidence that a surface is rough on very small length scales, can also arise when neutrons (or X-rays) are reflected from a surface composed of many smooth facets. For a surface composed of facets misoriented with respect to the average surface, the diffuse scattering displays a fringe at a wave vector transfer perpendicular to the surface that is equal to twice the critical wave vector. The damping of the specular reflectivity does not follow the usual Nevot-Croce form for such a faceted surface. A surface morphology of this type can explain data we have obtained by reflecting neutrons from several different samples including one of polished silicon. CR BECKMANN P, 1987, SCATTERING ELECTROMA HUANG YY, 1993, PHYS REV B, V47, P183 NEVOT L, 1980, REV PHYS APPL, V15, P761 PYNN R, 1992, P SPIE NEUTRON OPTIC, V1738 PYNN R, 1992, PHYS REV B, V45, P602 SINHA SK, 1988, PHYS REV B, V38, P2297 TC 6 BP 1 EP 6 PG 6 JI Physica B PY 1994 PD APR VL 198 IS 1-3 GA NR013 J9 PHYSICA B UT ISI:A1994NR01300002 ER PT J AU OHTA, H IMAGAWA, S MOTOKAWA, M KITA, E TI MAGNETIC ANISOTROPIES OF FE/MGO MULTILAYERS DETERMINED BY SUBMILLIMETER-WAVE FMR SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN NR 23 AB The dependences of the resonance fields and the FMR absorption intensities of Fe/MgO multilayered films on the thickness of the Fe layer have been obtained by the submillimeter wave FMR using the pulsed magnetic field up to 15 T at 4.2 K. The magnetic anisotropy of each film, which is determined by the frequency dependence of the FMR with the aid of the results of the magnetization measurements, can explain the angular dependence of the FMR completely. The dependence of FMR absorption intensity on the thickness of Fe layer, however, turned out to be rather different from the results of the magnetization measurements. CR AJIRO Y, 1989, J PHYS SOC JPN, V58, P3339 CARCIA PF, 1985, APPL PHYS LETT, V47, P178 FREEMAN AJ, 1992, J MAGN MAGN MATER, V104, P1 FREEMAN AJ, 1990, MRS BULL, V15, P27 GERHARDTER F, 1993, PHYS REV B, V47, P11204 HEINRICH B, 1988, J APPL PHYS, V63, P3863 HOFFMANN H, 1993, IN PRESS 1ST P INT S HUANG YY, 1993, PHYS REV B, V47, P183 KITA E, UNPUB KITTEL C, 1986, INTRO SOLID STATE PH KITTEL C, 1958, PHYS REV, V110, P1295 KOYANO T, 1988, J APPL PHYS, V64, P5763 KOYANO T, 1991, J PHYS-CONDENS MAT, V3, P5921 KOYANO T, 1989, MRS INT M ADV MATS, V10, P349 LI C, 1991, PHYS REV B, V43, P780 MOTOKAWA M, 1991, INT J INFRARED MILLI, V12, P149 MOTOKAWA M, 1992, J PHYS SOC JPN, V61, P322 NEEL L, 1953, CR HEBD ACAD SCI, V237, P1468 PRINZ GA, 1982, J APPL PHYS, V53, P2087 SEAVEY MH, 1959, J APPL PHYS, V30, PS227 SHINJO T, 1979, J PHYS PARIS C, V2, P86 SHINJO T, 1991, SURF SCI REP, V12, P49 YAMAZAKI H, 1988, J PHYS SOC JPN, V57, P4343 TC 7 BP 4467 EP 4473 PG 7 JI J. Phys. Soc. Jpn. PY 1993 PD DEC VL 62 IS 12 GA MN152 J9 J PHYS SOC JPN UT ISI:A1993MN15200040 ER PT J AU FELCHER, GP TI MAGNETIC DEPTH PROFILING STUDIES BY POLARIZED NEUTRON REFLECTION SO PHYSICA B NR 58 AB A review is given of the role of polarized neutron reflectivity (PNR) in measuring the magnetic profile close to the surface and in thin films of superconductors and magnetic materials. For type I and type II superconductors PNR provided a new and direct determination of the penetration depth. For very thin ferromagnetic films PNR was able to determine the absolute value of the magnetic moments. In magnetic superlattices, formed by the alternation of ferromagnetic layers and nonmagnetic spacers, PNR was used to confirm the basic magnetic structure as well as to determine the direction of the magnetic moments of the individual layers. In addition to reflectivity, forward magnetic scattering may very well extend the usefulness of PNR to the case of laterally dishomogeneous systems. CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BLAND JAC, 1991, J APPL PHYS, V69, P4989 BLAND JAC, 1991, J MAGN MAGN MATER, V93, P331 BLAND JAC, 1991, J MAGN MAGN MATER, V93, P513 BLAND JAC, 1987, PHYS REV LETT, V58, P1244 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BOOTHROYD AT, 1992, ISIS EXPT REP, PA164 BROWN PJ, 1993, PHYSICA B, V192, P14 CHERNENKO LP, 1992, SPRINGER P PHYS, V61, P209 DOSCH H, 1993, PHYSICA B, V192, P163 DUFOUR C, 1993, J MAGN MAGN MATER, V121, P300 FALICOV LM, 1990, J MATER RES, V5, P1299 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FELCHER GP, 1989, P SOC PHOTOOPT INSTR, V983, P2 FELCHER GP, 1981, PHYS REV B, V24, P1595 FELCHER GP, 1984, PHYS REV LETT, V52, P1539 FELCHER GP, 1986, PHYSICA B & C, V136, P59 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FELCHER GP, 1992, SEP P S ULTR FILMS M FELICI R, 1988, APPL PHYS A-MATER, V45, P169 FELICI R, 1987, NATURE, V329, P523 FREEMAN AJ, 1990, MRS BULL, V15, P27 FULLERTON EE, 1992, J MAGN MAGN MATER, V117, PL301 GAPONOV SV, 1989, JETP LETT, V49, P277 GRAY KE, 1990, PHYS REV B, V42, P3971 GRUENBERG P, 1986, PHYS REV LETT, V57, P2442 HUANG YY, 1991, J MAGN MAGN MATER, V99, PL31 HUANG YY, 1993, PHYS REV B, V47, P183 HUGHES DJ, 1953, PILE NEUTRON RES JAMES RW, 1962, OPTICAL PRINCIPLES D KLIBANOV MV, 1992, J MATH PHYS, V33, P3813 KORNEEV DA, 1992, SPRINGER P PHYS, V61, P213 LAUTER HJ, 1992, SPRINGER P PHYSICS, V61, P219 LEKNER J, 1987, THEORY REFLECTION LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LOWENHAUPT M, 1993, J MAGN MAGN MATER, V121, P173 MAAZA M, 1992, 64 P INT SCH PHYS E, P341 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 MANSOUR A, 1989, PHYSICA B, V156, P867 MATTSON JE, 1993, J APPL PHYS, V73, P5969 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1986, APPL PHYS LETT, V48, P604 PARKIN SSP, 1990, PHYS REV B, V42, P1058 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PEDERSEN JS, 1992, J APPL CRYSTALLOGR, V25, P129 RODMACQ B, 1991, EUROPHYS LETT, V15, P503 SCHREYER A, 1993, JAN INT WORKSH USE N SCREYER A, IN PRESS J APPL PHYS SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 TINKHAM M, 1975, INTRO SUPERCONDUCTIV TULIPAN K, 1991, THESIS LUDWIGSMAXIMI UNGURIS J, 1991, PHYS REV LETT, V67, P140 VJIHN HPJ, 1988, LANDOLDTBORNSTEIN MA, V19 WATSON RE, 1972, AIP C P, V10, P32 YAFET Y, 1987, J APPL PHYS, V61, P4058 TC 39 BP 137 EP 149 PG 13 JI Physica B PY 1993 PD OCT VL 192 IS 1-2 GA ME992 J9 PHYSICA B UT ISI:A1993ME99200014 ER PT J AU LI, C WU, RQ FREEMAN, AJ FU, CL TI ENERGETICS, BONDING MECHANISM, AND ELECTRONIC-STRUCTURE OF METAL-CERAMIC INTERFACES - AG/MGO(001) SO PHYSICAL REVIEW B-CONDENSED MATTER NR 30 AB Electronic-structure total-energy investigations for the metal- ceramic interface system Ag/MgO(001) show that the preferred adsorption site for the overlayer Ag atom is above the O site of the clean MgO(001) surface. The binding energy of the overlayer Ag atom on the MgO(001) surface is 0.3 eV/atom (0.64 J/m2). No significant charge transfer is found between the overlayer Ag and the MgO(001) substrate, and the interface effect on the MgO(001) substrate is limited to the interface layer. The Ag overlayer shows typical metal features in the electronic band structure as well as in the charge distributions. The interface O atom is slightly metallized, i.e., the occupied states at the Fermi energy have hybridized O-Ag character. Compared with the O, the Mg is less influenced by the Ag. CR ALSTRUP I, 1988, APPL SURF SCI, V33-4, P143 BALLUFFI RW, 1987, MATER SCI ENG, V89, P1 BARNETT RN, 1979, PHYS REV B, V19, P4259 CHAN EM, 1977, SURF SCI, V67, P285 CHEN TS, 1977, PHYS REV B, V15, P1167 CLARKE DR, 1986, MATER SCI ENG, V83, P197 DELPLANCKE MP, 1986, THIN SOLID FILMS, V143, P43 DUFFY DM, 1992, ACTA METALL, V40, P511 ERSCHBAUMER H, 1991, SURF SCI, V243, P317 FECHT HJ, 1988, ACTA METALL MATER, V36, P689 FECHT HJ, 1985, ACTA METALL MATER, V33, P557 FUCHS G, 1988, THIN SOLID FILMS, V165, P347 HE JW, 1987, SURF SCI, V180, P411 HE JW, 1986, SURF SCI, V178, P934 HENRICH VE, 1980, PHYS REV B, V22, P4764 HENRICH VE, 1985, REP PROG PHYS, V48, P1481 HOEL RH, 1986, SURF SCI, V169, P317 HUANG YY, 1993, PHYS REV B, V47, P183 JOHNSON KH, 1982, J APPL PHYS, V53, P6634 LAKSHMI G, 1981, PHYS REV B, V23, P2035 LAKSHMI G, 1980, PHYS REV B, V22, P5009 LEE VC, 1978, J PHYS SOC JPN, V45, P895 LI C, 1991, PHYS REV B, V43, P780 OU HJ, 1987, ULTRAMICROSCOPY, V22, P207 SATAKO C, 1978, J PHYS SOC JPN, V45, P1333 SCHONBERGER U, 1992, ACTA METALL MATER, V40, P51 SUTTON AP, 1987, ACTA METALL MATER, V35, P2177 URANO T, 1988, J PHYS SOC JPN, V57, P3043 VONHARRACH H, 1974, THIN SOLID FILMS, V22, P305 WIMMER E, 1981, PHYS REV B, V24, P864 TC 68 BP 8317 EP 8322 PG 6 JI Phys. Rev. B-Condens Matter PY 1993 PD SEP 15 VL 48 IS 11 GA LY665 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1993LY66500067 ER PT J AU SCHREYER, A ZEIDLER, T MORAWE, C METOKI, N ZABEL, H ANKNER, JF MAJKRZAK, CF TI SPIN-POLARIZED NEUTRON REFLECTIVITY STUDY OF A CO CU SUPERLATTICE SO JOURNAL OF APPLIED PHYSICS NR 28 AB We present spin polarized neutron reflectivity data on a Co/Cu (111) superlattice and show how not only the magnitude but also the orientation of the average magnetic moment of each layer can be extracted by analyzing the polarization of the reflected beam. This method allows more detailed conclusions about the exchange coupling of magnetic layers across nonmagnetic interlayers and the magnetic in-plane anisotropy in such systems. We present a theoretical fit to the spin-flip and non- spin-flip data which leads to quantitative conclusions about the spin structure. These spin polarized neutron reflectivity results coincide well with the macroscopic magnetic properties which were measured using the magneto-optic Kerr effect revealing a newly discovered uniaxial anisotropy in this system. CR ALUSTA K, 1992, SPRINGER P PHYSICS, V61, P239 ANKNER JF, IN PRESS SPIE C P, V1738 ANKNER JF, 1989, PHYS REV B, V40, P792 ANKNER JF, 1991, PHYSICA B, V173, P89 ANKNER JF, 1992, SPRINGER P PHYSICS, V61, P105 BADER SD, 1991, J MAGN MAGN MATER, V100, P440 BELYAKOV VA, 1976, SOV PHYS-SOLID STATE, V18, P1399 BERGER A, 1992, PHYS REV LETT, V68, P839 BLAND JAC, 1987, PHYS REV LETT, V58, P1244 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BODEKER P, 1993, PHYS REV B, V47, P2353 FELCHER GP, 1986, PHYSICA B & C, V136, P59 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HUANG YY, 1993, PHYS REV B, V47, P183 MAJKRZAK CF, IN PRESS HDB NEUTRON MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 MENDIRATTA SK, 1976, PHYS REV B, V14, P144 METOKI N, 1993, J MAGN MAGN MATER, V118, P57 MORAWE C, 1991, J MAGN MAGN MATER, V102, P223 MORAWE C, UNPUB NEEL L, 1954, J PHYS RADIUM, V15, P225 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 RIEUTORD F, 1989, ACTA CRYSTALLOGR A, V45, P445 SCHWARZACHER W, 1991, J APPL PHYS, V69, P4040 SEARS VF, 1989, NEUTRON OPTICS, P89 SIVARDIERE PJ, 1975, ACTA CRYSTALLOGR A, V31, P340 TC 12 BP 7616 EP 7621 PG 6 JI J. Appl. Phys. PY 1993 PD JUN 1 VL 73 IS 11 GA LE952 J9 J APPL PHYS UT ISI:A1993LE95200092 ER