###2001.03.01: ### ITT FOLYTATNI-ig feldolgozva, letoltve. ### MM FN ISI Export Format VR 1.0 PT Journal AU Cheng, RH Borca, CN Dowben, PA Stadler, S Idzerda, YU TI Potential phase control of chromium oxide thin films prepared by laser-initiated organometallic chemical vapor deposition SO APPLIED PHYSICS LETTERS NR 38 ID FE/CR(001) SUPERLATTICES; MAGNETIC-STRUCTURE; SPIN POLARIZATION; EXCHANGE BIAS; CRO2; MAGNETORESISTANCE; FABRICATION; FERROMAGNET; METAL AB We have used laser-initiated chemical vapor deposition to grow the chromium oxide thin films through the oxidation of Cr(CO)(6) in an oxygen environment. While both Cr2O3 and CrO2 are present in the film, the relative weight of each phase depends on the oxygen partial pressure. The Curie temperature of the film increases and approaches the bulk T-C of CrO2 (397 K) as the partial oxygen pressure is increased. (C) 2001 American Institute of Physics. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ARNONE C, 1986, APPL PHYS LETT, V48, P1018 BORCA CN, 1997, PHYS LOW-DIMENS STR, V11, P173 BRATKOVSKY AM, 1997, PHYS REV B, V56, P2344 BRIGGS D, 1996, PRACTICAL SURFACE AN, V1 COEY JMD, 1998, PHYS REV LETT, V80, P3815 DESISTO WJ, 2000, APPL PHYS LETT, V76, P3789 DOWBEN PA, 1990, J APPL PHYS, V67, P5658 DULLI H, 2000, APPL PHYS LETT, V77, P88 FULLERTON EE, 1998, PHYS REV B, V58, P12193 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 JIANG JS, 2000, J VAC SCI TECHNOL 1, V18, P1264 JU GP, 2000, PHYS REV B, V62, P1171 KAMPER KP, 1987, PHYS REV LETT, V59, P2788 KNELLER EF, 1991, IEEE T MAGN, V27, P3588 KOON NC, 1997, PHYS REV LETT, V78, P4865 KOROTIN MA, 1998, PHYS REV LETT, V80, P4305 KOUVEL JS, 1967, J APPL PHYS, V38, P979 KULATOV E, 1990, J PHYS-CONDENS MAT, V2, P343 LEWIS SP, 1997, PHYS REV B, V55, P10253 LI XW, 1999, J APPL PHYS 2B, V85, P5585 MALOZEMOFF AP, 1988, PHYS REV B, V37, P7673 MALOZEMOFF AP, 1985, PHYS REV B, V35, P3679 MANCINI DC, 1990, J VAC SCI TECHNOL B, V8, P1804 MANOHARAN SS, 1998, APPL PHYS LETT, V72, P984 MATAR S, 1992, J PHYS I, V2, P315 MEIKLEJOHN WH, 1956, PHYS REV, V102, P1413 NOGUES J, 1999, J MAGN MAGN MATER, V192, P203 PERKINS FK, 1991, THIN SOLID FILMS, V198, P317 RISTOIU D, 2000, APPL PHYS LETT, V76, P2349 SCHWARZ K, 1986, J PHYS F MET PHYS, V16, PL211 SOULEN RJ, 1999, J APPL PHYS 2A, V85, P4589 SOULEN RJ, 1998, SCIENCE, V282, P85 STAGARESCU CB, 2000, PHYS REV B, V61, PR9233 SUZUKI K, 1998, PHYS REV B, V58, P11597 VANLEUKEN H, 1995, PHYS REV B, V51, P7176 WEISENDANGER R, 1990, PHYS REV LETT, V65, P247 WELIPITIYA D, 1997, MATER RES SOC SYMP P, V475, P257 TC 0 BP 521 EP 523 PG 3 JI Appl. Phys. Lett. PY 2001 PD JAN 22 VL 78 IS 4 GA 393NV J9 APPL PHYS LETT UT ISI:000166477300045 ER PT Journal AU Marrows, CH Langridge, S Hickey, BJ TI Determination of equilibrium coupling angles in magnetic multilayers by polarized neutron reflectometry SO PHYSICAL REVIEW B NR 24 ID CO/CU MULTILAYERS; FE/CR(001) SUPERLATTICES; GIANT MAGNETORESISTANCE; LAYERS AB We have performed polarized neutron reflectometry (PNR) on Co/Cu multilayers grown by sputter deposition at the first antiferromagnetic (AF) maximum of the coupling oscillation. The growth of the Cu spacer layers was paused halfway through each layer for a variable amount of time to allow residual gases to be adsorbed onto the surface. A sample with clean Cu spacers shows good AF coupling, with low remanence and high saturation field. The PNR spectra show a strong 1/2-order Bragg peak and little splitting between the reflectivities for incident up arrow and down arrow spin neutrons at zero field, characteristic of AF ordering. Meanwhile, a more heavily gas- damaged sample with a remanent fraction of similar to root2/2 has strongly spin-split PNR spectra at the critical edge and nuclear Bragg peak, showing a significant ferromagnetic component. A strong 1/2-order Bragg peak is still present. We are able to fit accurately the magnetization and PNR data by assuming that such a sample shows considerable biquadratic coupling, with moments coupled close to 90 degrees at zero field. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1999, J MAGN MAGN MATER, V200, P741 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 DEMOKRITOV SO, 1998, J PHYS D APPL PHYS, V31, P925 FELCHER GP, 1999, PHYSICA B, V268, P154 FELICI R, 1988, APPL PHYS A, V45, P169 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 LANGRIDGE S, 2000, J APPL PHYS 2, V87, P5750 MARROWS CH, 1997, IEEE T MAGN 2, V33, P3673 MARROWS CH, 1998, J MAGN MAGN MATER, V184, P137 MARROWS CH, 1999, J PHYS-CONDENS MAT, V11, P81 MARROWS CH, 2000, PHYS REV B, V61, P4131 MARROWS CH, 1999, PHYS REV B, V59, P463 MATHON J, 1993, PHYS REV LETT, V67, P493 PARKIN SSP, 1991, PHYS REV LETT, V66, P2152 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 YANG ZJ, 1995, IEEE T MAGN, V31, P3921 YOUNG S, 1996, J MAGN MAGN MATER, V162, P38 TC 0 BP 11340 EP 11343 PG 4 JI Phys. Rev. B PY 2000 PD NOV 1 VL 62 IS 17 GA 371WH J9 PHYS REV B UT ISI:000165201900018 ER PT Journal AU Felcher, GP TI Neutron reflectometry as a tool to study magnetism (invited) SO JOURNAL OF APPLIED PHYSICS NR 41 ID FE/CR(001) SUPERLATTICES; FIELD PENETRATION; X-RAY; DEPTH; MULTILAYERS; REFLECTION; FILMS; DIFFRACTION; PHASE; MAGNETORESISTANCE AB Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across nonmagnetic spacers in multilayers and superlattices. The development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales. (C) 2000 American Institute of Physics. [S0021- 8979(00)15508-2]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BARTHELEMY A, 1990, J APPL PHYS, V67, P5908 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1997, PHYSICA B, V234, P458 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BORCHERS JA, 1999, PHYS REV LETT, V82, P2796 DOSCH H, 1986, PHYS REV LETT, V56, P1144 ENDOH Y, 1995, MAT SCI ENG B-SOLID, V31, P57 FELCHER GP, 1984, PHYS REV LETT, V52, P1539 FELCHER GP, 1999, PHYSICA B, V267, P154 FELCHER GP, 1993, PHYSICA B, V192, P137 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FERMON C, 1999, PHYSICA B, V267, P162 FULLERTON EE, 1996, PHYSICA B, V221, P370 GRAY KE, 1990, PHYS REV B, V42, P3971 GUNTHER R, 1998, PHYS REV LETT, V81, P116 HAHN W, 1994, J APPL PHYS, V75, P3564 HAMILTON WA, 1996, PHYSICA B, V221, P309 HAN SW, 1999, PHYS REV B, V59, P14692 HJORVARSSON B, 1997, PHYS REV LETT, V79, P901 HOPE S, 1997, PHYS REV B, V55, P11422 KASPER J, 1998, PHYS REV LETT, V80, P2614 KLEIN AG, 1983, REP PROG PHYS, V46, P259 KLOSE F, 1997, PHYS REV LETT, V78, P1150 LAUTERPASYUK V, 1999, PHYSICA B, V267, P149 LEKNER J, 1987, THEORY REFLECTION LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LOHSTROH W, 1999, J APPL PHYS 2B, V85, P5873 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1998, PHYS REV B, V58, P15416 MAJKRZAK CF, 1995, PHYSICA B, V213, P904 MANSOUR A, 1989, PHYSICA B, V156, P867 MCGRATH OFK, 1996, PHYS REV B, V54, P6088 REYNOLDS JM, 1998, PHYSICA B, V248, P163 SCHREYER A, 1995, PHYS REV B, V52, P16066 SINHA SK, 1988, PHYS REV B, V38, P2297 TEVELTHUIS SGE, 1999, APPL PHYS LETT, V75, P4174 TOLAN M, 1998, XRAY SCATTERING SOFT, V148 YUSUF SM, 1998, J APPL PHYS 2, V83, P6801 ZHANG H, 1995, PHYS REV B, V52, P10395 ZHOU XL, 1995, PHYS REP, V257, P223 TC 0 BP 5431 EP 5436 PG 6 JI J. Appl. Phys. PY 2000 PD MAY 1 VL 87 IS 9 PN 2 GA 308RT J9 J APPL PHYS UT ISI:000086727200248 ER PT Journal AU Temst, K Kunnen, E Moshchalkov, VV Maletta, H Fritzsche, H Bruynseraede, Y TI Magnetic order and the spin-flop transition in Fe/Cr superlattices SO PHYSICA B NR 4 DE multilayers; reflectometry; magnetic anisotropy; magnetoresistance AB We have studied the structural and magnetic properties of MBE- prepared epitaxial Fe/Cr(001) oriented superlattices. The samples consist of 20 periods with 25 nm Fe and 1.3 nm Cr individual layer thicknesses. The samples were characterized by X-ray diffraction, while: the magnetic properties were determined by magnetoresistivity, magnetooptical Kerr effect, and polarized neutron reflectivity measurements. The transition from antiparallel to parallel alignment of the magnetizations in adjacent Fe layers was investigated using polarized neutron reflectivity measurements while applying a held parallel to the layers. A spin-flop transition due to the fourfold anisotropy in the Fe layers was observed at a field of 200 Oe. (C) 2000 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 MILLS DL, 1968, PHYS REV LETT, V20, P18 SCHREYER A, 1995, PHYS REV B, V52, P16066 WANG RW, 1994, PHYS REV LETT, V72, P920 TC 0 BP 684 EP 685 PG 2 JI Physica B PY 2000 PD MAR VL 276 GA 303FZ J9 PHYSICA B UT ISI:000086413000311 ER PT Journal AU Zabel, H TI Magnetism of chromium at surfaces, at interfaces and in thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 113 ID SPIN-DENSITY-WAVE; COUPLED FE/CR(001) SUPERLATTICES; TRANSITION-METAL MONOLAYERS; EPITAXIAL CR(001) FILMS; ULTRATHIN CR FILMS; X-RAY-SCATTERING; PHASE-DIAGRAM; THEORETICAL INVESTIGATIONS; ELECTRONIC-STRUCTURE; FE/CR/FE TRILAYERS AB The spin density wave (SDW) magnetism of thin epitaxial Cr films has recently become the focus of interest because of its mediating role in exchange coupled superlattices. While the incommensurate SDW magnetism and the Neel temperature are well established for bulk Cr, the question arises of how these properties are altered in thin films and superlattices either due to dimensionality effects or due to proximity with the ferromagnetic or paramagnetic boundary layers. After a brief introduction to the basic properties of bulk Cr, this review provides an overview of the SDW magnetism in thin Cr films, starting with surface properties and continuing with the discussion of Cr films of various thickness. The emphasis is more on SDW order in different confined environments than on exchange coupling. The scaling of the Neel temperature with thickness, the critical thickness for the onset of SDW order, the orientation of the SDW wave vector in different environments and the enhancement of SDW order due to proximity effects are extensively discussed. Most important is the role of the interface roughness in case of contact with a ferromagnetic layer. Conflicting results obtained with different experimental techniques are critically reviewed and an interpretation of the SDW order depending on interface quality is proposed. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALLAN G, 1979, PHYS REV B, V19, P4774 ANKNER JF, 1995, J APPL PHYS, V81, P3765 ARROTT A, 1967, PHYS REV, V153, P624 BARBER MN, 1983, PHASE TRANSITIONS CR, V8, P145 BASTOW TJ, 1966, PHYS REV, V141, P510 BAUER E, 1999, J PHYS-CONDENS MAT, V11, P9365 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BERLOWITZ PJ, 1989, SURF SCI, V209, P345 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUGEL S, 1989, PHYS REV B, V39, P1392 BLUGEL S, 1992, PHYS REV LETT, V68, P851 BLUGEL S, 1988, PHYS REV LETT, V60, P1077 BODEKER P, 1999, PHYS REV B, V59, P9408 BODEKER P, 1998, PHYS REV LETT, V81, P914 BYKOV VN, 1958, DOKL AKAD NAUK SSSR, V4, P1149 CORLISS LM, 1959, PHYS REV LETT, V3, P211 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMUYNCK S, 1998, PHYS REV LETT, V81, P2562 ELMERS HJ, 1995, INT J MOD PHYS B, V9, P3115 ESCORCIAAPARICIO EJ, 1998, PHYS REV LETT, V81, P2144 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12677 FU CL, 1986, PHYS REV B, V33, P1611 FU CL, 1986, PHYS REV B, V33, P1755 FU CL, 1985, PHYS REV LETT, V54, P2700 FUCHS P, 1996, PHYS REV B, V54, P9304 FULLERTON EE, 1996, PHYS REV LETT, V17, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1996, PHYSICA B, V221, P370 GIBBS D, 1988, PHYS REV B, V37, P562 GREMPEL DR, 1981, PHYS REV B, V24, P3928 HANF MC, 1989, PHYS REV B, V39, P1546 HILL JP, 1995, PHYS REV B, V51, P10336 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HIRAI K, 1998, J PHYS SOC JPN, V67, P1776 HIRAI K, 1997, J PHYS SOC JPN, V66, P560 HIRAI K, 1993, J PHYS SOC JPN, V62, P690 HIRAI K, 1999, PHYS REV B, V59, PR6612 HUCHT A, 1998, COMMUNICATION IDZERDA YU, 1993, J APPL PHYS, V73, P6204 IDZERDA YU, 1993, PHYS REV B, V48, P4144 JANDELEIT J, 1994, SURF SCI, V319, P287 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 JUNGBLUT R, 1991, J APPL PHYS, V70, P5923 KAZANSKY AK, 1995, PHYS REV B, V52, P9477 KEUNE W, 1996, J APPL PHYS 1, V79, P4265 KIM SK, 1996, SURF SCI, V349, P160 KLEBANOFF LE, 1986, PHYS REV B, V33, P5301 KLEBANOFF LE, 1985, PHYS REV B, V32, P1997 KLEBANOFF LE, 1984, PHYS REV B, V30, P1048 KOTANI A, 1975, J PHYS SOC JPN, V38, P974 KREMBEL C, 1990, VACUUM, V41, P460 KUBLER J, 1980, J MAGN MAGN MATER, V20, P277 LAURENT DG, 1981, PHYS REV B, V23, P4977 LAWLER JF, 1996, PHYS REV B, V53, P11159 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 LOVESEY SW, 1984, THEORY NEUTRON SCATT MATTSON J, 1990, MATER RES SOC S P, V160, P231 MEERSSCHAUT J, 1995, J MAGN MAGN MATER, V148, P23 MEERSSCHAUT J, 1998, PHYS REV B, V57, PR5575 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 METOKI N, 1994, PHYS REV B, V49, P17351 MIBU K, 1999, J MAGN MAGN MATER, V198, P689 MIBU K, 1998, J PHYS SOC JPN, V67, P2633 MORI M, 1993, J PHYS CONDENS MATT, V5, PL77 NAKAJIMA S, 1975, J PHYS SOC JPN, V38, P330 NIKLASSON AMN, 1999, PHYS REV LETT, V82, P4544 NIKLASSON AMN, 1998, THESIS UPPSALA U OHRESSER P, 1996, SURF SCI, V352, P567 OVERHAUSER AW, 1962, PHYS REV, V128, P1437 PFLAUM J, 1999, J MAGN MAGN MATER, V198, P453 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIZZAGALLI L, 1996, PHYS REV B, V54, P12216 ROUYER D, 1995, SURF SCI, V322, P34 ROUYER D, 1994, SURF SCI, V307, P477 SCHEURER F, 1997, PHYS REV B, V56, P13490 SCHMITTE T, 1999, IN PRESS EUROPHYS LE SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SHI ZP, 1992, PHYS REV LETT, V69, P3678 SHINN ND, 1988, J VAC SCI TECHNOL A, V6, P597 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 SONNTAG P, 1998, J MAGN MAGN MATER, V183, P5 SONNTAG P, 1995, PHYS REV B, V52, P7363 SONNTAG P, 1994, PHYS REV B, V49, P2869 STIERLE A, IN PRESS STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TERAOKA Y, 1977, PHYSICA B, V86, P321 TSUNODA Y, 1974, SOLID STATE COMMUN, V14, P287 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, EUROPHYS LETT, V31, P561 VEGA A, 1995, PHYS REV B, V51, P11546 VENUS D, 1996, PHYS REV B, V53, PR1733 VICTORA RH, 1995, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WERNER SA, 1962, PHYS REV, V155, P528 WIESENDANGER R, 1990, PHYS REV LETT, V65, P247 XU ZD, 1995, PHYS REV B, V52, P15393 TC 11 BP 9303 EP 9346 PG 44 JI J. Phys.-Condes. Matter PY 1999 PD DEC 6 VL 11 IS 48 GA 265NW J9 J PHYS-CONDENS MATTER UT ISI:000084251100007 ER PT Journal AU Pierce, DT Unguris, J Celotta, RJ Stiles, MD TI Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 90 DE magnetic multilayers; interlayer exchange coupling; interfacial disorder; spin density wave ID SPIN-DENSITY-WAVE; CR THIN-FILMS; INTERLAYER EXCHANGE; PHASE- DIAGRAM; FE FILMS; GIANT MAGNETORESISTANCE; EPITAXIAL FE/CR(211); OSCILLATION PERIODS; LAYERED STRUCTURES; NEEL TRANSITION AB The interplay between interfacial disorder and the antiferromagnetic order in Cr lends to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Tr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr lends to results not explained by the conventional model. For nearly ideal interfaces, the Fe-Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results. (C) 1999 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1997, J APPL PHYS 2A, V81, P3765 ARNOTT AS, 1990, KINETICS ORDERING GR, P321 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1997, J MAGN MAGN MATER, V165, P471 BERGER A, 1994, PHYS REV LETT, V73, P193 BINASCH G, 1989, PHYS REV B, V39, P4828 BRUNO P, 1993, J MAGN MAGN MATER, V121, P248 BRUNO P, 1995, PHYS REV B, V52, P411 BRUNO P, 1992, PHYS REV B, V46, P261 BURGLER DE, COMMUNICATION COCHRAN JF, 1995, J MAGN MAGN MATER, V147, P101 DAVIES A, 1997, J MAGN MAGN MATER, V165, P82 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEMOKRITOV S, 1991, EUROPHYS LETT, V15, P881 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 DEMOKRITOV SO, 1998, J PHYS D, V13, P925 EDWARDS DM, 1991, PHYS REV LETT, V67, P493 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FISHMAN RS, 1998, J PHYS-CONDENS MAT, V10, PL277 FISHMAN RS, 1999, PHYS REV B, V59, P13849 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, J APPL PHYS 2A, V81, P4363 FREYSS M, 1997, PHYS REV B, V56, P6047 FREYSS M, 1996, PHYS REV B, V54, P12667 FULLERTON EE, COMMUNICATION FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GEERKEN BM, 1982, J PHYS F MET PHYS, V12, P603 GRUNBERG P, 1992, J MAGN MAGN MATER, V104, P1734 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GRUNBERG P, 1996, PHYSICA B, V221, P357 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J MAGN MAGN MATER, V156, P215 HEINRICH B, 1999, PHYS REV B, V59, P14520 HEINRICH B, 1991, PHYS REV B, V44, P9348 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 JOHNSON PD, 1992, MATER RES SOC S P, V231, P49 KOBLER U, 1992, J MAGN MAGN MATER, V103, P236 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 MEERSSCHAUT J, 1998, THESIS KATHOLIEKE U MIRBT S, 1997, PHYS REV B, V56, P287 MIRBT S, 1996, PHYS REV B, V54, P6382 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PFANDZELTER R, 1996, PHYS REV B, V54, P4496 PIERCE DT, 1993, J APPL PHYS, V73, P6201 PIERCE DT, 1994, PHYS REV B, V49, P14564 PIERCE DT, 1994, ULTRATHIN MAGNETIC S, V2, P117 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RIBAS R, 1992, PHYS LETT A, V167, P103 RUHRIG M, 1993, J MAGN MAGN MATER, V121, P330 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHEINFEIN MR, 1990, REV SCI INSTRUM, V61, P2501 SCHMIDT CM, 1999, IN PRESS PHYS REV B, V60 SCHREYER A, COMMUNICATION SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHREYER A, 1996, PHYSICA B, V221, P366 SHI ZP, 1994, PHYS REV B, V49, P15159 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1789 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 THEISBROHL K, 1998, PHYS REV B, V57, P4747 TSETSERIS L, 1997, PHYS REV B, V56, P11392 TSETSERIS L, 1997, PHYS REV B, V55, P11586 UNGURIS J, IN PRESS J MAGN MAGN UNGURIS J, 1997, PHYS REV LETT, V79, P2734 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VEGA A, 1995, EUROPHYS LETT, V31, P561 VENUS D, 1996, PHYS REV B, V53, PR1733 WANG RW, 1992, PHYS REV B, V46, P11681 WANG Y, 1990, PHYS REV LETT, V65, P2732 WERNER SA, 1967, PHYS REV, V155, P528 WOLF JA, 1993, J MAGN MAGN MATER, V121, P253 TC 12 BP 290 EP 321 PG 32 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700019 ER PT Journal AU Schuller, IK Kim, S Leighton, C TI Magnetic superlattices and multilayers SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 154 DE magnetic superlattices; multilayer materials; physical properties ID X-RAY-DIFFRACTION; PERPENDICULAR GIANT MAGNETORESISTANCE; POLYCRYSTALLINE FE/CR SUPERLATTICES; CO-CU MULTILAYERS; CO/CU MULTILAYERS; THIN-FILM; INTERFACIAL-ROUGHNESS; OSCILLATORY BEHAVIOR; TRANSPORT-PROPERTIES; NI/CO MULTILAYERS AB We briefly review the active areas of current research in magnetic superlattices, emphasizing later years. With recent widening use of advanced technologies, more emphasis has been made on quantitative atomic level chemical and structural characterization. Examples where the multilayer structure has been controlled, characterized and correlated with the physical properties are discussed. The physical properties are categorized according to the complexity of a structure needed to observe a particular effect. We outline a number of general important unsolved problems, which could considerably benefit from theoretical and experimental input. An extensive list of magnetic multilayer materials is provided, with references to recent publications. (C) 1999 Published by Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALLEN PB, 1997, SOLID STATE COMMUN, V102, P127 ANGELAKERIS M, 1997, J APPL PHYS, V82, P5640 ATKINSON R, 1996, J MAGN MAGN MATER, V162, P131 AURIC P, 1998, J PHYS-CONDENS MAT, V10, P3755 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BEACH RS, 1993, PHYS REV LETT, V70, P3502 BELIEN P, 1994, PHYS REV B, V50, P9957 BORCHERS JA, 1993, PHYS REV LETT, V70, P1878 BRYNJACOBSEN C, 1997, J PHYS-CONDENS MAT, V9, P8727 BURGLER DE, 1998, PHYS REV LETT, V80, P4983 CABLE JW, 1986, PHYS REV B, V34, P1643 CAMLEY RE, 1990, PHYS REV LETT, V64, P2703 CARCIA PF, 1985, APPL PHYS LETT, V47, P178 CAREY MJ, 1993, J APPL PHYS, V73, P6892 CARLISLE JA, 1996, PHYS REV B, V53, PR8824 CASTANO FJ, 1997, J PHYS CONDENS MATT, V8, P10603 CEBOLLADA A, 1989, PHYS REV B, V39, P9726 CHAIKEN A, 1996, PHYS REV B, V53, P5518 CHEN LH, 1993, APPL PHYS LETT, V63, P1279 CHIANG WC, 1998, PHYS REV B, V58, P5602 CHILDRESS JR, 1994, J MAGN MAGN MATER, V130, P13 CHRISEY DB, 1994, PULSED LASER DEPOSTI COLINO JM, 1996, PHYS REV B, V54, P13030 COWLEY RA, 1998, J PHYS-CONDENS MAT, V10, P2115 DEBERNABE A, 1998, J APPL PHYS, V84, P1881 DELMORAL A, 1998, J PHYS-CONDENS MAT, V10, PL139 DHEZ P, 1987, PHYSICS FABRICATION DIENY B, 1991, J MAGN MAGN MATER, V93, P101 DINIA A, 1998, EUROPHYS LETT, V42, P331 DU J, 1998, PHYS STATUS SOLIDI A, V167, P183 DUDA LC, 1996, PHYS REV B, V54, P10396 DUMOND JWM, 1935, PHYS REV, V48, P703 FALICOV LM, 1990, J MATER RES, V5, P1299 FENG JW, 1996, J MAGN MAGN MATER, V152, P27 FNIDIKI A, 1998, J APPL PHYS, V84, P3311 FOLKERTS W, 1993, J APPL PHYS, V73, P3922 FOLKERTS W, 1991, J MAGN MAGN MATER, V94, P302 FULLERTON EE, 1998, APPL PHYS LETT, V72, P380 FULLERTON EE, 1993, APPL PHYS LETT, V63, P1699 FULLERTON EE, 1997, PHYS REV B, V56, P5468 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1992, PHYS REV B, V45, P9292 FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 GALLEGO JM, 1994, APPL PHYS LETT, V64, P2590 GALLEGO JM, 1995, PHYS REV LETT, V74, P4515 GANSHINA EA, 1995, J MAGN MAGN MATER, V146, P143 GIJS MAM, 1994, J APPL PHYS, V75, P6709 GOLUB VO, 1997, J MAGN MAGN MATER, V174, P95 GRANBERG P, 1998, J MAGN MAGN MATER, V186, P154 GRANBERG P, 1996, PHYS REV B, V54, P1199 GRANDMANN U, 1993, HDB MAGNETIC MAT, V7, P1 GRIMSDITCH M, 1983, PHYS REV LETT, V51, P498 GRUNBAUM E, 1975, EPITAXIAL GROWTH GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GU T, 1997, PHYS REV B, V56, P6474 GYORGY EM, 1982, PHYS REV B, V25, P6739 HONDA S, 1997, J APPL PHYS, V82, P4428 HUANG JCA, 1995, PHYS REV B, V52, P13110 JOHNSON M, 1985, PHYS REV LETT, V55, P1790 KANO H, 1993, APPL PHYS LETT, V63, P2839 KAWAKAMI RK, 1998, PHYS REV LETT, V80, P1754 KIM S, 1996, PHYS REV B, V74, PR4967 KIM SH, 1998, PHYS REV B, V58, P2240 KIWI M, 1973, AIP C P, V18, P347 KIWI M, 1996, PHYS REV B, V54, P15335 KLINKHAMMER F, 1996, J MAGN MAGN MATER, V161, P49 KRISHNAN R, 1997, J MAGN MAGN MATER, V174, PL17 KRISHNAN R, 1997, J MAGN MAGN MATER, V168, P15 KUBINSKI DJ, 1996, J APPL PHYS, V79, P7395 KUCH W, 1997, EUROPHYS LETT, V37, P465 KUCH W, 1998, J MAGN MAGN MATER, V184, P127 KUCH W, 1998, PHYS REV B, V58, P8556 LASSRI H, 1997, J MAGN MAGN MATER, V172, P61 LEE SF, 1995, PHYS REV B, V52, P15426 LESMES F, 1996, APPL PHYS LETT, V69, P2596 LEVY PM, 1996, J MAGN MAGN MATER, V164, P284 LEVY PM, 1994, SOLID STATE PHYSICS, V47 LI Y, 1997, J PHYS-CONDENS MAT, V9, P6301 LUCINSKI T, 1998, J MAGN MAGN MATER, V189, P39 MACKAY JF, 1996, PHYS REV LETT, V77, P3925 MAJKRZAK CF, 1986, PHYS REV LETT, V56, P2700 MANOHARAN SS, 1998, PHYS REV B, V58, P8549 MATTSON JE, 1993, J APPL PHYS, V73, P5969 MAURICE JL, 1998, J MAGN MAGN MATER, V184, P1 MILLER T, 1992, PHYS REV LETT, V68, P3339 MULLOY M, 1995, J MAGN MAGN MATER, V147, P177 MURAYAMA A, 1998, PHYS REV B, V58, P8596 NALLET P, 1996, J APPL PHYS, V79, P6884 NILSSON A, 1996, PHYS REV B, V54, P2917 NOAKES TCQ, 1998, PHYS REV B, V58, P4934 ODONOVAN KV, 1998, J MAGN MAGN MATER, V186, P161 OKEEFFE AP, 1998, APPL PHYS LETT, V73, P1002 OKUNO SN, 1994, PHYS REV LETT, V72, P1553 ONO T, 1997, PHYS REV B, V55, P14457 ONO T, 1998, SOLID STATE COMMUN, V105, P93 PAN FM, 1998, PHYS LETT A, V247, P187 PANIAGO R, 1995, PHYS REV B, V52, P17052 PAPE I, 1998, PHYSICA B, V253, P278 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PECHAN MJ, 1994, J APPL PHYS, V75, P6178 PIRAUX L, 1996, J MAGN MAGN MATER, V159, PL287 POLLARD RJ, 1997, J MAGN MAGN MATER, V176, P134 POLLARD RJ, 1995, J MAGN MAGN MATER, V148, PL375 POTTER CD, 1994, PHYS REV B, V49, P16055 PRATT WP, 1991, PHYS REV LETT, V66, P3060 RABE A, 1994, PHYS REV LETT, V73, P2728 RAMOS CA, 1990, PHYS REV LETT, V65, P2913 REISS G, 1998, J MAGN MAGN MATER, V184, P281 RENEVIER H, 1997, PHYS REV LETT, V78, P2775 RENSING NM, 1993, J MAGN MAGN MATER, V121, P436 RICHOMME F, 1996, PHYS REV B, V54, P416 ROBINSON A, 1998, P WORKSH SCI DIR ADV SAKURAI M, 1995, J MAGN MAGN MATER, V147, P16 SALAMON MB, 1986, PHYS REV LETT, V56, P259 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 SCHAD R, 1998, PHYS REV B, V57, P13692 SCHREIBER F, 1994, J MAGN MAGN MATER, V135, P215 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SCHULLER IK, 1980, PHYS REV LETT, V44, P1597 SCHULLER IK, 1994, SOLID STATE COMMUN, V92, P141 SEVENHANS W, 1986, PHYS REV B, V34, P5955 SHAN ZS, 1989, PHYS REV LETT, V63, P449 SHINJO T, 1988, METALLIC SUPERLATTIC SIMPSON JA, 1997, J PHYS-CONDENS MAT, V9, P8693 STAUDHAMMER KP, 1973, ATLAS BINARY ALLOYS SUZUKI M, 1995, PHYS REV B, V52, P361 TAPPERT J, 1997, J MAGN MAGN MATER, V164, P261 THALER BJ, 1978, PHYS REV LETT, V41, P336 TOMAZ MA, 1997, J PHYS-CONDENS MAT, V9, PL179 TONNERRE JM, 1995, PHYS REV LETT, V75, P740 TSUI F, 1994, PHYS REV LETT, V72, P3084 UBA S, 1996, PHYS REV B, V53, P6526 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VAEZZADEH M, 1994, PHYS REV B, V50, P6113 VELEZ M, 1998, J MAGN MAGN MATER, V184, P275 WALSER P, 1998, PHYS REV LETT, V80, P2217 WANG ZJ, 1998, J MAGN MAGN MATER, V188, P269 WANG ZJ, 1997, J MAGN MAGN MATER, V176, P127 WELLER D, 1994, PHYS REV B, V49, P12888 WU P, 1997, J APPL PHYS, V81, P7301 WU P, 1997, J MAGN MAGN MATER, V168, P43 WU RQ, 1992, PHYS REV LETT, V69, P2867 XU J, 1997, PHYS REV B, V55, P416 YAN ML, 1995, J APPL PHYS, V77, P1816 YAN ML, 1996, J PHYS-CONDENS MAT, V8, PL711 YANG ZJ, 1995, PHYS REV B, V52, P4263 YU CT, 1995, PHYS REV B, V52, P1123 ZEIDLER T, 1998, J MAGN MAGN MATER, V187, P1 ZEIDLER T, 1996, PHYS REV B, V53, P3256 ZHANG XY, 1998, J MAGN MAGN MATER, V187, P12 ZHOU WS, 1981, PHYSICA B, V108, P953 ZORCHENKO VV, 1998, J MAGN MAGN MATER, V183, P25 ZUCKERMANN MJ, 1973, SOLID STATE COMMUN, V12, P745 TC 2 BP 571 EP 582 PG 12 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700034 ER PT Journal AU Ankner, JF Felcher, GP TI Polarized-neutron reflectometry SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 74 DE reflectometry; polarized neutron; magnetic thin films ID ANNEALED NI80FE20/AG MULTILAYERS; YBA2CU3O7 SUPERCONDUCTING FILMS; FIELD PENETRATION DEPTH; FE/CR(001) SUPERLATTICES; MAGNETIC-STRUCTURES; X-RAY; FE/SI MULTILAYERS; THIN-FILMS; REFLECTION; PHASE AB Polarized-neutron specular reflectometry (PNR) was developed in the 1980s as a means of measuring depth-resolved magnetization in flat films with characteristic thicknesses from 2 to 5000 Angstrom. PNR has been widely used to study homogeneous and heterogeneous magnetic films, as well as superconductors. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify phenomena as diverse as the magnetism of very thin films, the penetration of fluxoids in superconductors, and the magnetic coupling across non-magnetic spacers. Although PNR is considered to be a probe of depth-dependent magnetic structure, laterally averaged in the plane of the him, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity can resolve in-plane structures over nanometer to micron length scales. Presently limited by the neutron fluxes available, neutron reflectivity is expected to blossom in the next century, thanks to the increased brightness of the neutron beams, due not only to continuing improvements in neutron optics, but especially to the advent of second-generation spallation neutron sources. (C) 1999 Elsevier Science B.V. All rights reserved. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1993, J APPL PHYS, V73, P6436 ANKNER JF, 1992, SPIE C P, V1738, P260 BALL AR, 1996, APPL PHYS LETT, V69, P1489 BLAND JAC, 1996, J APPL PHYS 2B, V79, P6295 BLAND JAC, 1997, J MAGN MAGN MATER, V165, P46 BLAND JAC, 1995, J PHYS-CONDENS MAT, V7, P6467 BLAND JAC, 1998, PHYS REV B, V57, P10272 BLAND JAC, 1995, PHYS REV B, V51, P258 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BODEKER P, 1998, PHYSICA B, V248, P114 BORCHERS JA, 1998, J APPL PHYS 2, V83, P7219 BORCHERS JA, 1996, J APPL PHYS 2A, V79, P4762 BORCHERS JA, 1996, PHYS REV B, V54, P9870 BORN M, 1980, PRINCIPLES OPTICS CELINSKI Z, 1997, J MAGN MAGN MATER, V166, P6 COULTER KP, 1990, NUCL INSTRUM METH A, V288, P463 DOSCH H, 1986, PHYS REV LETT, V56, P1144 ENDOH Y, 1995, MAT SCI ENG B-SOLID, V31, P57 EVETTS J, 1992, ENCY MAGN SUPERCONDU, P95 FELCHER GP, 1998, APPL PHYS LETT, V72, P2894 FELCHER GP, 1993, J MAGN MAGN MATER, V121, P105 FELCHER GP, 1995, NATURE, V377, P409 FELCHER GP, 1993, PHYSICA B, V192, P137 FERMI E, 1947, PHYS REV, V71, P666 FERMI E, 1946, PHYS REV, V70, P103 FREDRIKZE H, 1998, PHYSICA B, V248, P157 FRITZSCHE H, 1997, PHYSICA B, V241, P707 FULLERTON EE, 1996, PHYSICA B, V221, P370 GUIMPEL J, 1993, PHYS REV LETT, V71, P2319 GUNTHER R, 1998, PHYS REV LETT, V81, P116 HAHN W, 1994, J APPL PHYS, V75, P3564 HAHN W, 1995, PHYS REV B, V52, P16041 HAN SW, IN PRESS PHYS REV B HJORVARSSON B, 1997, PHYS REV LETT, V79, P904 HOPE S, 1997, PHYS REV B, V55, P11422 HOSOITO N, 1996, J MAGN MAGN MATER, V156, P325 HUGHES DJ, 1953, PILE NEUTRON RES IJIRI Y, 1998, PHYS REV LETT, V80, P608 IVES AJR, 1996, J MAGN MAGN MATER, V154, P301 JOYCE DE, 1998, PHYSICA B, V248, P152 KASPER J, 1998, PHYS REV LETT, V80, P2614 KLEIN AG, 1983, REP PROG PHYS, V46, P259 KLOSE F, 1997, PHYS REV LETT, V78, P1150 KOHLHEPP M, 1997, PHYS REV B, V55, PR696 KOON NC, 1997, PHYS REV LETT, V78, P4865 KORNEEV DK, 1996, J PHYS SOC JAPAN SA, V65, P37 LAUTERPASYUK V, 1998, PHYSICA B, V248, P166 LAUTERPASYUK V, 1997, PHYSICA B, V241, P1095 LEE J, 1997, J PHYS-CONDENS MAT, V9, PL137 LEKNER J, 1987, THEORY REFLECTION LEPAGE JG, 1990, PHYS REV LETT, V65, P1152 LI Y, 1997, PHYSICA B, V234, P489 LI Y, 1997, PHYSICA B, V234, P492 LUCHE MC, 1995, J MAGN MAGN MATER, V150, P175 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1998, PHYS REV B, V58, P15416 MAJKRZAK CF, 1995, PHYS REV B, V52, P10827 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 MALOZEMOFF AP, 1987, PHYS REV B, V35, P3679 MAO M, 1996, J APPL PHYS 2A, V79, P4769 MCGRATH OFK, 1996, PHYS REV B, V54, P6088 PARKIN SSP, 1990, PHYS REV B, V42, P10583 REYNOLDS JM, 1998, PHYSICA B, V248, P163 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1996, PHYSICA B, V221, P366 SYROMYATNIKOV V, 1997, PHYSICA B, V234, P575 TAPPERT J, 1996, J MAGN MAGN MATER, V158, P317 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P479 YUSUF SM, 1998, J APPL PHYS 2, V83, P6801 ZHANG H, 1995, PHYS REV B, V52, P10395 ZHOU XL, 1995, PHYS REP, V257, P223 TC 2 BP 741 EP 754 PG 14 JI J. Magn. Magn. Mater. PY 1999 PD OCT VL 200 IS 1-3 GA 241DP J9 J MAGN MAGN MATER UT ISI:000082867700045 ER PT Journal AU Fishman, RS Shi, ZP TI Collinear spin-density-wave ordering in Fe Cr multilayers and wedges SO PHYSICAL REVIEW B NR 44 ID FE/CR MULTILAYERS; CHROMIUM-ALLOYS; MAGNETIC MULTILAYERS; OSCILLATION PERIODS; PHASE-DIAGRAM; THIN-FILMS; SUPERLATTICES; FE(100); ANTIFERROMAGNETISM; DEPENDENCE AB Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number N of Cr monolayers, the SDW may be either commensurate (C) or incommensurate (I) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the I SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between I SDW phases with different numbers n of nodes. If the I SDW has n = m nodes at T = 0, then it increases by one at each phase transition from m to m-1 to m-2 up to the C phase with n = 0 above T-IC(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever n changes by one. In the limit N--> infinity, T-IC(N) is independent of the Fe-Cr coupling strength. We find that T- IC(infinity) is always larger than the bulk Neel transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the I SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the C phase is never stable and the transition temperature T-N(N) takes on a seesaw pattern as n greater than or equal to 2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the I phase to be unstable above the bulk Neel temperature. Model II also predicts that the I SDW may undergo a single phase transition from n = m to m-1 before disappearing above TN(N). This behavior has recently been confirmed by neutron-scattering measurements on CrMn/Cr multilayers. While model I very successfully predicts the behavior of Fe/Cr/Fe wedges, a refined version of model II describes some properties of sputtered Fe/Cr multilayers. [S0163-1829(99)03021-0]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ASANO S, 1967, J PHYS SOC JPN, V23, P714 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 DAVIES A, 1996, PHYS REV LETT, V76, P4175 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P8245 FETTER A, 1971, QUANTUM THEORY MANY, P426 FISHMAN RS, 1998, PHYS REV B, V58, P414 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1997, PHYS REV B, V55, P8347 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FISHMAN RS, 1998, PHYS REV LETT, V81, P4979 FREYSS M, 1997, PHYS REV B, V56, P6047 FROM M, 1994, J APPL PHYS, V75, P6181 FULLERTON EE, COMMUNICATION FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, SCRIPTA METALL MATER, V33, P1637 GRIESSEN R, 1977, PHYSICA B, V91, P205 GRUNBERG P, 1991, J APPL PHYS, V69, P4789 JIANG XW, 1997, J PHYS-CONDENS MAT, V9, P3417 LI DQ, 1997, PHYS REV LETT, V78, P1154 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 MARCUS PM, 1998, J PHYS CONDENS MATT, V29, P6541 MATTSON J, 1990, J APPL PHYS, V67, P4889 MIRBT S, 1996, PHYS REV B, V54, P6382 OVERHAUSER AW, 1960, PHYS REV LETT, V4, P226 PIERCE DT, 1994, PHYS REV B, V49, P14564 RICE TM, 1971, J PHYS, V32, P39 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STILES MD, 1996, PHYS REV B, V54, P14679 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1991, PHYS REV B, V44, P10389 TOMAZ MA, 1997, PHYS REV B, V55, P3716 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063 VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923 VENUS D, 1996, PHYS REV B, V53, PR1733 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 3 BP 13849 EP 13860 PG 12 JI Phys. Rev. B PY 1999 PD JUN 1 VL 59 IS 21 GA 204RV J9 PHYS REV B UT ISI:000080778700065 ER PT Journal AU Felcher, GP TI Polarized neutron reflectometry - a historical perspective SO PHYSICA B NR 61 DE neutron reflectivity; polarized neutrons ID ANNEALED NI80FE20/AG MULTILAYERS; FE/CR(001) SUPERLATTICES; MAGNETIC-STRUCTURES; PENETRATION DEPTH; FE/SI MULTILAYERS; THIN-FILMS; X-RAY; REFLECTION; GD/FE; MAGNETOMETRY AB Born in the early 1980s to study magnetic films, polarized neutron reflectometry (PNR) has enjoyed growing popularity as witnessed by the number of instruments assembled at neutron research centers. PNR has proved its usefulness by providing information as diverse as the penetration depth of the magnetic field in superconductors and the absolute value of the magnetic moments in ultrathin ferromagnetic layers; yet its widest application has become the study of the magnetic configurations in multilayers. Two types of reflectometers have been constructed: time of flight and crystal analyzer. The relative merits of the two types are discussed in the light of present and future applications, (C) 1999 Published by Elsevier Science B.V. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BLAND JAC, 1996, J APPL PHYS 2B, V79, P6295 BLAND JAC, 1997, J MAGN MAGN MATER, V165, P46 BLAND JAC, 1995, J PHYS-CONDENS MAT, V7, P6467 BLAND JAC, 1998, PHYS REV B, V57, P10272 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1997, PHYSICA B, V234, P458 BODEKER P, 1998, PHYSICA B, V248, P114 BORCHERS JA, 1996, J APPL PHYS 2A, V79, P4762 BORCHERS JA, 1996, PHYS REV B, V54, P9870 CELINSKI Z, 1997, J MAGN MAGN MATER, V166, P6 CLEMENS D, 1996, PHYSICA B, V221, P507 ENDOH Y, 1995, MAT SCI ENG B-SOLID, V31, P57 EVETTS J, 1992, ENCY MAGN SUPERCONDU, P95 FELCHER GP, 1998, APPL PHYS LETT, V72, P2894 FELCHER GP, 1995, NATURE, V377, P409 FELCHER GP, 1993, PHYSICA B, V192, P137 FITZSIMMONS MR, 1998, PHYSICA B, V241, P121 FREDRIKZE H, 1998, PHYSICA B, V248, P157 FRITZSCHE H, 1997, PHYSICA B, V241, P707 FULLERTON EE, 1996, PHYSICA B, V221, P370 GUIMPEL J, 1993, PHYS REV LETT, V71, P2319 HAHN W, 1995, PHYS REV B, V52, P16041 HJORVARSSON B, 1997, PHYS REV LETT, V79, P901 HOPE S, 1997, PHYS REV B, V55, P11422 HOSOITO N, 1996, J MAGN MAGN MATER, V156, P325 IVES AJR, 1996, J MAGN MAGN MATER, V154, P301 JOYCE DE, 1998, PHYSICA B, V248, P152 KLOSE F, 1997, PHYS REV LETT, V78, P1150 KOHLHEPP J, 1997, PHYS REV B, V55, PR696 KORNEEV DK, 1996, J PHYS SOC JAPAN SA, V65, P37 KRIST T, 1998, PHYSICA B, V241, P82 KRIST T, 1998, PHYSICA B, V241, P86 LAUTERPASYUK V, 1998, PHYSICA B, V248, P166 LEE J, 1997, J PHYS-CONDENS MAT, V9, PL137 LI Y, 1997, PHYSICA B, V234, P489 LI Y, 1997, PHYSICA B, V234, P492 LUCHE MC, 1995, J MAGN MAGN MATER, V150, P175 MAAZA M, 1996, PHYS LETT A, V218, P312 MAJKRZAK CF, 1991, ADV PHYS, V40, P99 MAJKRZAK CF, 1996, PHYSICA B, V221, P342 MAJKRZAK CF, 1995, PHYSICA B, V213, P904 MAO M, 1996, J APPL PHYS 2A, V79, P4769 MCGRATH OFK, 1996, PHYS REV B, V54, P6088 MEZEI F, 1995, PHYSICA B, V214, P898 MEZEI F, 1995, PHYSICA B, V213, P898 NUNEZ V, 1998, PHYSICA B, V241, P148 REKVELDT MT, 1994, MATER SCI FORUM, V154, P163 REYNOLDS JM, 1998, PHYSICA B, V248, P163 SARKISSIAN B, 1995, VACUUM, V46, P1187 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHREYER A, 1996, PHYSICA B, V221, P366 SIEBRECHT R, 1998, PHYSICA B, V241, P169 SYROMYATNIKOV V, 1997, PHYSICA B, V234, P575 SYROMYATNIKOV VG, 1998, PHYSICA B, V248, P355 TAPPERT J, 1996, J MAGN MAGN MATER, V158, P317 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P157 VANDERGRAAF A, 1997, J MAGN MAGN MATER, V165, P479 YUSUF SM, 1998, J APPL PHYS 2, V83, P6801 ZHANG H, 1995, PHYS REV B, V52, P10395 TC 1 BP 154 EP 161 PG 8 JI Physica B PY 1999 PD JUN VL 268 GA 194AZ J9 PHYSICA B UT ISI:000080171100028 ER PT Journal AU Charlton, T Lederman, D Yusuf, SM Felcher, GP TI Anisotropy of the sublattice magnetization and magnetoresistance in Co/Re superlattices on Al2O3(11(2)over- bar0) SO JOURNAL OF APPLIED PHYSICS NR 14 ID CO-RE SUPERLATTICES; GIANT MAGNETORESISTANCE; EXCHANGE; FE/CR(211) AB [Co(20 Angstrom)/Re(6 Angstrom)](20) superlattices were grown on a (11 (2) over bar 0) surface of a Al2O3 single crystal, with the [0001] direction of their hcp structure in the plane of the film. The Co layers were found to be antiferromagnetically coupled (AF), with a saturating field of 6 kOe. Polarized neutron reflectivity was used to determine the direction of the sublattice magnetization. In zero applied field, the AF moments are aligned along the Co[0001] axis. In a magnetic field H perpendicular to the Co[0001] axis, the sublattices moments evolve to a canted arrangement, with the AF component always perpendicular to the field. With H along the Co[0001] axis, the AF moments flop in a direction perpendicular to Co[0001] axis. The spin flop transition is not abrupt, but can be described as a gradual rotation that is completed at 2 kOe. The anisotropy of the sublattice magnetization is related to the anisotropy of the magnetoresistance. This has the conventional dumbbell behavior with the field applied perpendicular to the Co[0001] axis, but exhibits an extended plateau near H=0, and a slight increase up to H similar to 2 kOe, when H is parallel to Co[0001] axis. (C) 1999 American Institute of Physics. [S0021-8979(99)18708-5]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BAIBICH MN, 1988, PHYS REV LETT, V62, P2472 CHARLTON T, UNPUB CHIKAZUMI S, 1964, PHYSICS MAGNETISM, P419 FERT A, 1995, J MAGN MAGN MATER, V140, P1 FONER S, 1963, MAGNETISM, V1, P388 FREITAS PP, 1992, PHYS REV B, V45, P2495 FULLERTON EE, 1993, PHYS REV B, V48, P15755 GUNBERG P, 1986, PHYS REV LETT, V57, P2442 HAYTER JB, 1978, NEUTRON DIFFRACTION, P47 MELO LV, 1991, J APPL PHYS, V70, P7370 VIDAL B, 1984, APPL OPTICS, V23, P1794 WANG RW, 1994, PHYS REV LETT, V72, P920 ZEIDLER T, 1998, J MAGN MAGN MATER, V187, P1 TC 0 BP 4436 EP 4438 PG 3 JI J. Appl. Phys. PY 1999 PD APR 15 VL 85 IS 8 PN 2A GA 188MK J9 J APPL PHYS UT ISI:000079850700052 ER PT Journal AU Fishman, RS TI Helical and incommensurate spin-density waves in Fe/Cr multilayers with interfacial steps SO PHYSICAL REVIEW LETTERS NR 22 ID MAGNETIC-STRUCTURE; CHROMIUM-ALLOYS; SUPERLATTICES; CR; ANTIFERROMAGNETISM; TRANSITION AB Although absent in bulk transition metals, a noncollinear, helical (H) spin-density wave (SDW) is stabilized by steps at the interfaces in Fe/Cr multilayers. Using the random-phase approximation, we evaluate the phase boundary between the H SDW and the collinear, incommensurate (I) SDW found in bulk Cr. In agreement with neutron-scattering results, the I-to-H transition temperature T-IH is always lower than the bulk Neel temperature T-N and the nodes of the I SDW lie near the Fe-Cr interfaces. While a H SDW with a single +/-pi/2 twist has lower free energy than a I SDW above T-N, H SDW's with larger twists are stable between T-IH and T-N. [S0031-9007(98)07739-4]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BODEKER P, 1998, PHYS REV LETT, V81, P914 BROWN PJ, 1965, P PHYS SOC LOND, V85, P1185 DONATH M, 1991, PHYS REV B, V43, P13164 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FEDDERS PA, 1966, PHYS REV, V143, P8245 FISHMAN RS, 1998, PHYS REV B, V57, P10284 FISHMAN RS, 1993, PHYS REV B, V48, P3820 FISHMAN RS, 1996, PHYS REV LETT, V76, P2398 FISHMAN RS, UNPUB FULLERTON EE, 1996, PHYS REV LETT, V77, P1382 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HIRAI K, 1996, J PHYS SOC JPN, V65, P586 LOMER WM, 1962, P PHYS SOC LOND, V80, P489 OVERHAUSER AW, 1960, PHYS REV LETT, V4, P462 SCHREYER A, 1997, PHYS REV LETT, V79, P4914 SHI ZP, 1997, PHYS REV LETT, V78, P1351 SHIBATANI A, 1969, PHYS REV, V177, P984 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 UNGURIS J, 1991, PHYS REV LETT, V67, P140 TC 11 BP 4979 EP 4982 PG 4 JI Phys. Rev. Lett. PY 1998 PD NOV 30 VL 81 IS 22 GA 142WT J9 PHYS REV LETT UT ISI:000077223900049 ER PT Journal AU Bland, JAC Daboo, C Patel, M Fujimoto, T Penfold, J TI Interface selective vector magnetometry of FeNi/Cu/Co trilayer spin-valve structures SO PHYSICAL REVIEW B NR 21 ID NEUTRON-REFLECTIVITY; FE/CR(001) SUPERLATTICES; MULTILAYERS; FILMS; FE; CO AB Using polarized neutron reflectometry (PNR) together with superconducting quantum interference device magnetometry, the interface and interior magnetic moments have been determined for each of the ultrathin FeNi and Co layers within an epitaxial FeNi/Cu/Co trilayer structure, so demonstrating interface selectivity in layers of the same nominal chemical composition. The reduced moment found for the Co/Cu and FeNi/Cu interface regions are consistent with a model of enhanced electron spin-flip scattering at rough interfaces proposed to explain the temperature dependence of the giant magnetoresistance amplitude in FeNi/Cu/Co spin-valve structures. We further show that the layer-dependent vector moments can be determined by PNR with high precision. [S0163- 1829(98)00117-9]. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 CHAKARIAN V, 1995, APPL PHYS LETT, V66, P3368 CHAKOS MH, 1996, ARCH GEN PSYCHIAT, V53, P313 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FUJIMOTO T, 1995, PHYS REV B, V51, P6719 HAHN W, 1995, PHYS REV B, V52, P16041 MCGRATH OFK, 1996, PHYS REV B, V54, P6088 NAIK R, 1993, J MAGN MAGN MATER, V121, P60 PATEL M, 1994, J APPL PHYS, V75, P6528 PATEL M, 1996, J MAGN MAGN MATER, V156, P53 RODMACQ B, 1993, PHYS REV B, V48, P3556 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1993, PHYS REV B, V47, P15334 SPIERINGS G, 1993, J MAGN MAGN MATER, V121, P109 VEGA A, 1995, PHYS REV B, V51, P11546 TC 8 BP 10272 EP 10275 PG 4 JI Phys. Rev. B PY 1998 PD MAY 1 VL 57 IS 17 GA ZL728 J9 PHYS REV B UT ISI:000073464500016 ER ### ITT FOLYTATNI -> A kovetkezo meg nincs feldolgozva! ### 2001.03.01 PT Journal AU Fullerton, EE Bader, SD Robertson, JL TI Spin-density-wave antiferromagnetism of Cr in Fe/Cr(001) superlattices SO PHYSICA B NR 14 DE Fe/Cr superlattices; antiferromagnetism; spin density waves; neutron scattering; multilayers ID MAGNETORESISTANCE; CHROMIUM; FILMS AB The antiferromagnetic spin-density-wave (SDW) order of Cr layers in Fe/Cr(0 0 1) superlattices was investigated by neutron scattering. For Cr thicknesses from 51 to 190 Angstrom, a transverse SDW is formed for all temperatures below the Neel temperature with a single wave vector Q normal to the layers. A coherent magnetic structure forms with the nodes of the SDW near the Fe-Cr interfaces. For thinner Cr layers, the magnetic scattering can be described by commensurate antiferromagnetic order. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BORCHERS JA, 1995, PHYS REV B, V51, P8272 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FULLERTON EE, 1992, PHYS REV B, V45, P9292 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 FULLERTON EE, 1996, PHYSICA B, V221, P370 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 HILL JP, 1995, PHYS REV B, V51, P10366 MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SONNTAG P, 1995, PHYS REV B, V52, P7363 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 TC 0 BP 234 EP 238 PG 5 JI Physica B PY 1997 PD JUL VL 237 GA XM233 J9 PHYSICA B UT ISI:A1997XM23300084 ER PT Journal AU Bland, JAC TI Magnetic multilayers studied by polarised neutron reflection SO PHYSICA B NR 35 DE polarized neutron reflection; magnetic multilayers; exchange coupling; magnetometry ID INTERFACE MAGNETISM; FILMS; SUPERLATTICES; DICHROISM; ROUGHNESS; MOMENTS; FE(001); PROBE AB The capabilities of polarized neutron reflection (PNR) for directly determining the magnetic and non-magnetic structure in magnetic multilayers and superlattices aw reviewed. We discuss examples of studies of the layer-dependent moments and spin orientations in various single films, exchange coupled trilayers and superlattices based on transition metal ferromagnetic layers. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BATESON RD, 1993, J MAGN MAGN MATER, V121, P189 BLAND JAC, 1991, J APPL PHYS, V69, P4989 BLAND JAC, 1996, J APPL PHYS 2B, V79, P6295 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLAND JAC, UNPUB BLUNDELL SJ, 1993, J MAGN MAGN MATER, V121, P185 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 CELINSKI Z, IN PRESS J MAGN MAGN CHAKARIAN V, 1995, APPL PHYS LETT, V66, P3368 CHEN CT, 1993, PHYS REV B, V48, P642 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 FELCHER GP, 1993, PHYSICA B, V192, P137 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FU CL, 1985, PHYS REV LETT, V54, P2700 FUJIMOTO T, 1995, PHYS REV B, V51, P6719 FULLERTON EE, 1995, PHYS REV B, V51, P6364 HAHN W, 1995, PHYS REV B, V52, P16041 HEINRICH B, 1993, PHYS REV B, V47, P5077 HOPE S, IN PRESS PHYS REV B HUANG YY, 1991, J MAGN MAGN MATER, V99, P31 MAJKRZAK CF, 1991, PHYSICA B, V173, P75 NEVOT L, 1980, REV PHYS APPL, V15, P761 NORTEMANN FC, 1992, PHYS REV B, V46, P10847 OHNISHI S, 1984, PHYS REV B, V30, P36 PATEL M, 1996, J MAGN MAGN MATER, V156, P53 RODMACQ B, 1993, PHYS REV B, V48, P3556 SCHREYER A, 1995, EUROPHYS LETT, V32, P595 SCHREYER A, 1993, PHYS REV B, V47, P15334 SPIERINGS G, 1993, J MAGN MAGN MATER, V121, P109 STEYERL A, 1972, Z PHYS, V254, P169 TAKEDA M, 1993, J PHYS SOC JPN, V62, P3015 WU Y, 1992, PHYS REV LETT, V69, P2307 TC 3 BP 458 EP 463 PG 6 JI Physica B PY 1997 PD JUN VL 234 GA XG666 J9 PHYSICA B UT ISI:A1997XG66600173 ER PT Journal AU Bland, JAC TI Vector magnetometry in ultrathin magnetic structures with atomic layer resolution by polarized neutron reflection SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS NR 46 ID ANTIFERROMAGNETICALLY COUPLED MULTILAYERS; FERROMAGNETIC- RESONANCE; TEMPERATURE-DEPENDENCE; INTERFACE MAGNETISM; SPIN CONFIGURATIONS; CIRCULAR-DICHROISM; EPITAXIAL-FILMS; FE FILMS; NI; SUPERLATTICES AB Polarized neutron reflection (PNR) can be used for directly determining the layer dependent magnetic moment distribution in magnetic thin film structures with atomic layer resolution. The interface roughness amplitude and layer thickness can be accurately determined and diffuse scattering measurements can be used to probe spin and structural disorder at interfaces. These capabilities are illustrated in this review of recent experimental results obtained by PNR. Measurements of the interface magnetization in X/Fe/Ag(001) structures prepared by molecular beam epitaxy (MBE) with X = Pd, Ag, Au, and Cu are compared with the predictions based on theoretical calculations which take into account the measured interface roughness. For the case of strained fct Ni/Cu(001) structures prepared by MBE, the thickness dependence of the magnetic moments reveals a strong variation in Ni moment which is reflected in the variation of the ratio of orbital and spin moments with thickness determined from x-ray circular dichroism (XMCD) measurements. It is shown that the magnetic moments determined from applying sum rules to the XMCD results agree with the absolute moments determined by PNR using the same test sample. PNR can be used in these structures to determine the degree of uniformity of the magnetization profile across the depth of the Ni layers, so allowing a test of models which assume that the reduced magnetization to be of interfacial origin. The thickness obtained from an analysis of the wavevector dependence of the reflectivity is shown to agree with that obtained from x-ray reflectivity measurements. Measurements of the layer dependent moments in FeNi/Cu/Co spin valve structures are presented and it is shown that by comparing the PNR measurements with superconducting quantum interference device magnetometry measurements of the total sample moment it is possible to determine the interface moments on an atomic scale. Vector magnetometry measurements of the layer dependent magnetic moment orientations are shown to provide a powerful approach to studying spin orientations in ferromagnetic (FM)/nonmagnetic (NM)/FM trilayer structures. For epitaxial FeNi/Cu/Co(001) spin valve structures with negligible coupling, it is shown that the layer dependent moment orientation and amplitude can be determined with percent precision as a function of applied field. (C) 1997 American Vacuum Society. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ANKNER JF, 1993, J APPL PHYS, V73, P6436 BATESON RD, 1993, J MAGN MAGN MATER, V121, P189 BLAND JAC, 1990, J APPL PHYS, V67, P5397 BLAND JAC, 1996, J APPL PHYS 2B, V79, P6295 BLAND JAC, 1995, PHYS REV B, V51, P258 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V2 BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1 BLUNDELL SJ, 1993, J MAGN MAGN MATER, V121, P185 BLUNDELL SJ, 1995, PHYS REV B, V51, P9395 BLUNDELL SJ, 1992, PHYS REV B, V46, P3391 BOCHI G, 1995, PHYS REV LETT, V75, P1839 CELINSKI Z, 1997, J MAGN MAGN MATER, V166, P6 CHAKARIAN V, 1995, APPL PHYS LETT, V66, P3368 CHEN CT, 1993, PHYS REV B, V48, P642 ERCOLE A, 1996, J MAGN MAGN MATER, V156, P121 FELCHER GP, 1987, REV SCI INSTRUM, V58, P609 FERMON C, 1995, PHYSICA B, V213, P236 FU CL, 1985, PHYS REV LETT, V54, P2700 FUJIMOTO T, 1995, PHYS REV B, V51, P6719 FULLERTON EE, 1995, PHYS REV B, V51, P6364 HAHN W, 1995, PHYS REV B, V52, P16041 HEINRICH B, 1993, PHYS REV B, V47, P5077 HOPE S, IN PRESS PHYS REV B HUANG YY, 1991, J MAGN MAGN MATER, V99, PL31 LEE J, IN PRESS PHYS REV LEE J, 1997, J APPL PHYS, V81, P15 LEE J, 1997, J PHYS-CONDENS MAT, V9, PL137 LEE JY, UNPUB MARCUS PM, 1988, J APPL PHYS, V63, P4045 MARCUS PM, 1985, MATER RES SOC S P, V63, P117 NAIK R, 1993, J MAGN MAGN MATER, V121, P60 NAIK R, 1995, PHYS REV B, V51, P3549 NAIK R, 1993, PHYS REV B, V48, P1008 NEVOT L, 1980, REV PHYS APPL, V15, P761 NORTEMANN FC, 1993, PHYS REV B, V47, P11910 NORTEMANN FC, 1992, PHYS REV B, V46, P10847 OBRIEN WL, 1994, PHYS REV B, V49, P15370 OHNISHI S, 1984, PHYS REV B, V30, P36 RODMACQ B, 1993, PHYS REV B, V48, P3556 SCHAFER M, 1995, EUROPHYS LETT, V32, P595 SCHAFER M, 1994, J APPL PHYS, V75, P6193 SPIERINGS G, 1993, J MAGN MAGN MATER, V121, P109 STEYERL A, 1972, Z PHYS, V254, P169 TAKEDA M, 1993, J PHYS SOC JPN, V62, P3015 WU Y, 1992, PHYS REV LETT, V69, P2307 TC 0 BP 1759 EP 1765 PG 7 JI J. Vac. Sci. Technol. A-Vac. Surf. Films PY 1997 PD MAY-JUN VL 15 IS 3 PN 2 GA XE732 J9 J VAC SCI TECHNOL A UT ISI:A1997XE73200117 ER PT Journal AU Xia, K Zhang, WY Lu, M Zhai, HR TI Noncollinear interlayer exchange coupling caused by interface spin-orbit interaction SO PHYSICAL REVIEW B NR 27 ID MAGNETIC MULTILAYERS; BIQUADRATIC EXCHANGE; MECHANISM; IMPURITIES; ORIGIN; LAYERS AB The interlayer exchange couplings between neighboring ferromagnetic layers in ferromagnetic-nonmagnetic multilayer structures are derived analytically in the frame of the extended Anderson s-d mixing model with spin-orbit interaction. After transforming the extended Anderson mixing model into an s-d exchange model and taking into account the spin frustration at interfaces, the second-order perturbation calculation naturally gives rise to both the noncollinear Dzyaloshinski- Moriya (DM) exchange coupling as well as the usual isotropic Ruderman-Kittel-Kasuya-Yosida exchange coupling between the neighboring ferromagnetic layers. The isotropic and anisotropic exchange couplings have a decaying oscillatory behavior as a function of spacer layer thickness, but they differ by a phase factor of pi/2. While the exact value of the DM coupling depends on the material parameters as well as the interface s-d mixing effect, a rough estimate suggests that it is significant. Thus our result offers an alternative explanation to the noncollinear exchange coupling as was observed in the experiments. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BRUNO P, 1992, PHYS REV B, V46, P261 CAMPBELL IA, 1970, J PHYS F MET PHYS, V1, PS95 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 CHIKAZUMI S, 1964, PHYSICS MAGNETISM, P47 DEAVEN DM, 1991, PHYS REV B, V44, P5977 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380 ERICKSON RP, 1993, PHYS REV B, V47, P2626 ERRANDONEA D, 1995, J PHYS-CONDENS MAT, V7, P9439 FERT A, 1980, PHYS REV LETT, V44, P1538 INOUE J, 1994, J MAGN MAGN MATER, V136, P233 MORIYA T, 1960, PHYS REV LETT, V4, P228 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 RUCKER U, 1995, J APPL PHYS, V78, P387 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER F, UNPUB SCHRIEFFER JR, 1966, PHYS REV, V149, P491 SHEKHTMAN L, 1992, PHYS REV B, V47, P174 SHEKHTMAN L, 1992, PHYS REV LETT, V69, P836 SHI ZP, 1994, PHYS REV B, V49, P15159 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1993, J MAGN MAGN MATER, V126, P374 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STAUNTON JB, 1988, J PHYS C SOLID STATE, V21, P1595 UNGARIS J, 1993, J MAGN MAGN MATER, V127, P205 ZHANG Q, 1986, PHYS REV B, V34, P1884 TC 3 BP 12561 EP 12565 PG 5 JI Phys. Rev. B PY 1997 PD MAY 1 VL 55 IS 18 GA XA260 J9 PHYS REV B UT ISI:A1997XA26000087 ER PT Journal AU Panaccione, G Sirotti, F Narducci, E Cherepkov, NA Rossi, G TI Magnetic interface formation at Fe/Cr/Fe(100) SO SURFACE SCIENCE NR 31 DE angle resolved photoemission; chromium; iron; magnetic interfaces; magnetic surfaces; single crystal epitaxy; synchrotron radiation photoelectron spectroscopy ID CORE-LEVEL PHOTOEMISSION; FE/CR(001) SUPERLATTICES; ELECTRONIC- STRUCTURE; LINEAR DICHROISM; FE(100); CR; TRANSITION; IRON; FE AB Photoemission magnetic dichroism of Fe and Cr 3p core levels was employed to investigate the magnetic order at the Fe/Cr/Fe(100) interface. For submonolayer and monolayer Fe coverages on Cr(100) the interface system appears magnetically frustrated, with no net magnetization along the parallel (antiparallel) direction of the substrate magnetization. The analysis of the Fe 3p photoemission dichroism allows to conclude that, at these low coverages, Fe is magnetically ordered but along an axis lying at 90 degrees from the substrate Fe(100) magnetization, favoring the interpretation of biquadratic coupling between the ultrathin iron overlayer and the bulk iron substrate, across the Cr interlayer. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALVARADO SF, 1987, PHYS REV B, V36, P2433 ALVARADO SF, 1988, PHYSICA B, V149, P43 BLUM K, 1981, DENSITY MATRIX THEOR CHEREPKOV NA, 1995, J PHYS B ATOM MOL PH, V28, P1221 CHEREPKOV NA, 1989, J PHYS B ATOM MOL PH, V22, PL405 CHEREPKOV NA, 1994, PHYS REV B, V50, P13813 DAVIES A, 1996, PHYS REV LETT, V76, P4175 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HILLEBRECHT FU, 1995, PHYS REV LETT, V75, P2883 IDZERDA YU, 1993, PHYS REV B, V48, P4144 LEVY PM, 1990, J APPL PHYS, V67, P5914 LIBERATI M, COMMUNICATION PANACCIONE G, 1997, PHYS REV B, V55, P389 ROSSI G, IN PRESS ROSSI G, 1995, MATER RES SOC SYMP P, V384, P447 ROSSI G, 1995, NATO ASI SERIES B, V345 ROSSI G, 1994, SOLID STATE COMMUN, V90, P557 ROTH C, 1993, PHYS REV LETT, V70, P3479 ROTH C, 1993, SOLID STATE COMMUN, V86, P647 SIROTTI F, 1995, PHYS REV B, V52, P17063 SIROTTI F, 1994, PHYS REV B, V49, P15682 STILES MD, 1993, PHYS REV B, V48, P7238 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1994, PHYS REV B, V49, P14564 VANDERLAAN G, 1995, PHYS REV B, V51, P240 VICTORA RH, 1985, PHYS REV B, V31, P7335 XU JH, 1993, PHYS REV B, V47, P165 XU ZD, 1995, PHYS REV B, V52, P15393 TC 1 BP 445 EP 449 PG 5 JI Surf. Sci. PY 1997 PD APR 20 VL 377 IS 1-3 GA WZ496 J9 SURFACE SCI UT ISI:A1997WZ49600095 ER PT Journal AU Freyss, M Stoeffler, D Dreysse, H TI Noncollinear magnetic orders in Fe/Cr superlattices SO JOURNAL OF APPLIED PHYSICS NR 17 ID TRILAYERS; FE(100) AB We calculate in a full self-consistent way the noncollinear distribution of magnetic moments in Fe-5/Cr-n (n=1-6) superlattices by means of a d-band tight-binding model. Self- consistency is obtained on both magnitude and orientation of the moments: only the relative orientation Delta phi between the central moments of two adjacent Fe layers is fixed, the other moments being free to orientate. We find that, when Delta phi is varied from 0 to 180 degrees, the total energy of the system behaves in accordance with the phenomenological proximity magnetism model proposed by Slonczewski only when the Cr thickness is not too small. For very thin Cr layers (n < 2), the behavior is totally different. (C) 1997 American Institute of Physics. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 CADE NA, 1981, J PHYS F MET PHYS, V11, P2399 CORNEABORODI C, UNPUB FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 HEINRICH B, 1993, PHYS REV B, V47, P5077 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KUBLER J, 1988, J PHYS F MET PHYS, V18, P469 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 STOEFFLER D, 1993, NATO ADV SCI INST SE, V309, P411 UHL M, 1996, PHYS REV LETT, V77, P334 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 4 BP 4363 EP 4365 PG 3 JI J. Appl. Phys. PY 1997 PD APR 15 VL 81 IS 8 PN 2A GA WV536 J9 J APPL PHYS UT ISI:A1997WV53600235 ER PT Journal AU Panaccione, G Sirotti, F Narducci, E Rossi, G TI Magnetic interface formation at Cr/Fe(100) and Fe/Cr/Fe(100): Magnetic dichroism in photoemission study SO PHYSICAL REVIEW B NR 39 ID CORE-LEVEL PHOTOEMISSION; FE/CR(001) SUPERLATTICES; POLARIZED PHOTOEMISSION; ELECTRONIC-STRUCTURE; LINEAR DICHROISM; FE CR; FE(100); INTERLAYER; MOMENTS; FILMS AB The early stages of the growth of Cr/Fe(100) and Fe/Cr/Fe(100) interfaces have been investigated by magnetic dichroism in photoemission of Fe 3p and Cr 3p core levels as measured from chiral experiments employing linearly polarized synchrotron radiation. Evidence is obtained for a 30% larger magnetic moment of interface Cr atoms with respect to Cr atoms belonging to epitaxial ultrathin films and a 40% magnetic moment enhancement of top Fe interface atoms in the Fe/Cr/Fe(100) trilayer. The kinetic growth conditions (450 K) lead to a uniform overlayer growth, without intermixing, but dominated by islanding. As a consequence the formation of a single-surface ferromagnetic domain for Fe/Cr/Fe(100) is frustrated up to two Fe monolayer (ML) thickness. The line shape of Fe 3p photoemission in the frustrated regime is consistent with the presence of in-plane magnetic order at 90 degrees with respect to the substrate magnetization direction. The appearance of photoemission magnetic dichroism for Fe overlayer thicknesses exceeding 2 ML is interpreted as due to domain rotation towards the direction antiparallel to the Fe substrate magnetization. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 ALVARADO SF, 1988, PHYSICA B, V149, P43 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BERGER A, 1994, PHYS REV LETT, V73, P193 CARBONE C, 1987, PHYS REV B, V36, P2433 FU CL, 1985, PHYS REV LETT, V54, P2700 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 HILLEBRECHT FU, 1995, PHYS REV LETT, V75, P2883 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KITTEL C, 1976, INTRO SOLID STATE PH LEVY PM, 1990, J APPL PHYS, V67, P5914 PANACCIONE G, 1995, J ELECTRON SPECTROSC, V76, P189 ROSSI G, 1995, MATER RES SOC SYMP P, V384, P447 ROSSI G, 1995, NATO ADV STUDY I B, V345 ROSSI G, 1994, SOLID STATE COMMUN, V90, P557 ROSSI G, UNPUB ROTH C, 1993, PHYS REV LETT, V70, P3479 ROTH C, 1993, SOLID STATE COMMUN, V86, P647 SCLONZEWSKY JC, 1991, PHYS REV LETT, V67, P3172 SIROTTI F, 1995, PHYS REV B, V52, P17063 SIROTTI F, 1994, PHYS REV B, V49, P15682 STILES MD, 1993, PHYS REV B, V48, P7238 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 THOLE BT, 1994, PHYS REV B, V50, P11474 TURTUR C, 1994, PHYS REV LETT, V72, P1557 UNGURIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGURIS J, 1994, PHYS REV B, V49, P14564 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 UNGURIS J, 1991, PHYS REV LETT, V67, P140 VANDERLAAN G, 1995, PHYS REV B, V51, P240 VANDERLAAN G, 1994, SOLID STATE COMMUN, V92, P427 VEGA A, 1995, PHYS REV B, V51, P11546 VICTORA RH, 1985, PHYS REV B, V31, P7335 WALKER TG, 1992, PHYS REV LETT, V69, P1121 WANG Y, 1990, PHYS REV LETT, V65, P2732 XU JH, 1993, PHYS REV B, V47, P165 XU ZD, 1995, PHYS REV B, V52, P15393 TC 14 BP 389 EP 396 PG 8 JI Phys. Rev. B PY 1997 PD JAN 1 VL 55 IS 1 GA WD788 J9 PHYS REV B UT ISI:A1997WD78800064 ER PT Journal AU Thomas, RK TI Neutron reflectometry in solid state and materials science SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE NR 50 ID THIN-FILMS; X-RAY; SPECULAR REFLECTION; DIBLOCK COPOLYMERS; POLYMERS; SCATTERING; INTERFACES; DEPENDENCE; PHASE; CONFINEMENT AB Neutron specular reflectometry has emerged as a highly effective technique for studying the structure of open and buried interfaces. it is particularly useful when the interface is somewhat disordered, as in polymer systems, or complex, as in many composite structures, and it is also able to study magnetism in thin films. (C) Current Chemistry Ltd CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BALL AR, 1995, J MAGN MAGN MATER, V148, P46 BERK NF, 1995, PHYS REV B, V17, P11296 BLAND JAC, 1995, J MAGN MAGN MATER, V148, P85 BLUNDELL SJ, 1995, PHYS REV B, V51, P9395 CLARKE CJ, 1995, MACROMOLECULES, V28, P2042 CROSSLEY A, 1995, J NON-CRYST SOLIDS, V187, P221 DEHAAN VO, 1995, PHYS REV B, V52, P10831 DIETRICH S, 1995, PHYS REP, V260, P1 ENGLISCH U, 1995, THIN SOLID FILMS, V266, P234 FERMON C, 1995, PHYSICA B, V213, P910 FRAGNETO G, 1996, J COLLOID INTERF SCI, V178, P531 FRAGNETO G, 1996, LANGMUIR, V12, P477 FRAGNETO G, 1995, SCIENCE, V267, P657 GEOGHEGAN M, 1995, J POLYM SCI POL PHYS, V33, P1307 GEOGHEGAN M, 1996, PHYS REV E B, V53, P825 HOPKINSON I, 1995, MACROMOLECULES, V28, P627 KONERIPALLI N, 1995, MACROMOLECULES, V28, P2897 KORNEEV D, 1995, PHYSICA B, V213, P954 LEE EM, 1995, J APPL CRYSTALLOGR, V28, P518 LEKNER J, 1995, PHYSICA B, V215, P329 LIN H, 1995, MACROMOLECULES, V28, P1470 LIPPERHEIDE R, 1995, PHYS REV B, V51, P11032 LIPPERHEIDE R, 1995, PHYSICA B, V213, P914 LIU Y, 1995, EUROPHYS LETT, V32, P211 LU JR, 1996, ACTA CRYSTALLOGR A 1, V52, P11 LU JR, 1995, NUCL INSTRUM METH A, V354, P149 MAJKRZAK CF, 1995, PHYS REV B, V52, P10827 MAJKRZAK CF, 1995, PHYSICA B, V213, P904 MANSFIELD TL, 1995, MACROMOLECULES, V28, P492 MANSKY P, 1995, MACROMOLECULES, V28, P8092 NORTON LJ, 1995, MACROMOLECULES, V28, P8621 POGOSSIAN SP, 1996, J MAGN MAGN MATER, V152, P305 RUSSELL TP, 1996, CURR OPIN COLLOID IN, V1, P107 RUSSELL TP, 1996, MRS BULL, V21, P49 RUSSELL TP, 1995, PHYSICA B, V213, P22 SCHREYER A, 1995, PHYS REV B, V52, P16066 SCHUBERT DW, 1995, MACROMOLECULES, V28, P2519 SINGH N, 1995, J PHYS II, V5, P377 SIQUEIRA DF, 1995, COLLOID POLYM SCI, V273, P1041 STAMM M, 1995, ANNU REV MATER SCI, V25, P325 THOMAS RK, 1996, CURR OPIN COLLOID IN, V1, P23 THOMAS RK, 1995, SCATTERING METHODS P TORIKAI N, 1995, PHYSICA B, V22, P694 VANALSTEN JG, 1995, MACROMOLECULES, V28, P7019 VANDERGRAAF A, 1995, J MAGN MAGN MATER, V144, P695 WEISLER DG, 1995, THIN SOLID FILMS, V266, P69 ZHANG H, 1995, PHYS REV B, V52, P10395 ZHOU XL, 1995, PHYS REP, V257, P223 ZHOU XL, 1995, PHYS REV E, V52, P1938 TC 1 BP 636 EP 644 PG 9 JI Curr. Opin. Solid State Mat. Sci. PY 1996 PD OCT VL 1 IS 5 GA VV095 J9 CURR OPIN SOLID STATE MAT SCI UT ISI:A1996VV09500005 ER PT Journal AU Freyss, M Stoeffler, D Dreysse, H TI Noncollinear order contribution to the exchange coupling in Fe/Cr(001) superlattices SO PHYSICAL REVIEW B NR 13 ID FE(100) AB By means of a d-band tight-binding Hamiltonian, we calculate the noncollinear distribution of magnetic moments in Fe/Cr superlattices, as a function of the relative orientation Delta phi of the magnetic moments at the center of two adjacent Fe layers. All magnetic moments are computed self-consistently in both magnitude and angle. We find that for thick layers of a Cr spacer, the total energy varies parabolically as a function of Delta phi, in accordance with the phenomenological proximity magnetism model proposed by Slonczewski. However, this model is not entirely satisfied for small Cr thicknesses because of the assumptions made in it. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 FILIPKOWSKI ME, 1995, PHYS REV LETT, V75, P1847 HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215 HILLEBRECHT FU, 1992, EUROPHYS LETT, V19, P711 IDZERDA YU, 1993, PHYS REV B, V48, P4144 KUBLER J, 1994, J APPL PHYS, V76, P6694 RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHMAUDER H, 1995, J MAGN MAGN MATER, V151, PL1 SCHREYER A, 1995, PHYS REV B, V52, P16066 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1993, J MAGN MAGN MATER, V121, P259 WALKER TG, 1992, PHYS REV LETT, V69, P1121 TC 15 BP 12677 EP 12680 PG 4 JI Phys. Rev. B PY 1996 PD NOV 1 VL 54 IS 18 GA VT682 J9 PHYS REV B UT ISI:A1996VT68200014 ER PT Journal AU Fullerton, EE Adenwalla, S Felcher, GP Riggs, KT Sowers, CH Bader, SD Robertson, JL TI Neutron diffraction and reflectivity studies of the Cr Neel transition in Fe/Cr(001) superlattices SO PHYSICA B NR 32 ID MAGNETIC MULTILAYERS; GIANT MAGNETORESISTANCE; BIQUADRATIC EXCHANGE; FE LAYERS; OSCILLATIONS; DEPENDENCE AB The effects on the interlayer coupling of the Cr Nel transition is studied in Fe/Cr(001) superlattices. The Neel transition is suppressed for Cr layer thickness < 42 Angstrom. For > 42 Angstrom of Cr, the Neel temperature T-N initially increases rapidly and then asymptotically approaches its bulk value with a three-dimensional transition-temperature shirt exponent value of lambda = 1.4 +/- 0.3. Neutron diffraction confirms both the Cr antiferromagnetic order and the existence of the incommensurate, transverse spin density wave whose nesting wave vector is the same as that of bulk Cr. The ordering of the Cr dramatically alters the coupling of the Fe layers. The biquadratic Fe interlayer coupling observed for T > T-N vanishes below T-N as confirmed by polarized neutron reflectivity. The behavior can be understood in terms of finite-size and spin frustration effects at rough Fe-er interfaces. CR ADENWALLA S, 1996, PHYS REV B, V53, P2474 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BINDER K, 1983, PHASE TRANSITIONS CR, P1 BRUNO P, 1991, PHYS REV LETT, V67, P1602 CELINSKI Z, 1995, J MAGN MAGN MATER, V145, PL1 DEMOKRITOV S, 1994, PHYS REV B, V49, P720 FAWCETT E, 1994, REV MOD PHYS, V66, P25 FAWCETT E, 1988, REV MOD PHYS, V60, P209 FULLERTON EE, 1995, MATER RES SOC SYMP P, V384, P145 FULLERTON EE, 1993, PHYS REV B, V48, P15755 FULLERTON EE, 1995, PHYS REV LETT, V75, P330 GRUNBERG P, 1986, PHYS REV LETT, V57, P2442 GUTIERREZ CJ, 1992, J MAGN MAGN MATER, V116, PL305 HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2, P45 MATHON J, 1991, J MAGN MAGN MATER, V100, P527 PARKIN SSP, 1991, APPL PHYS LETT, V58, P1473 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PIERCE DT, 1994, PHYS REV B, V49, P14564 PURCELL ST, 1991, PHYS REV LETT, V67, P903 RODMACQ B, 1993, PHYS REV B, V48, P3556 RUCKER U, IN PRESS J APPL PHYS RUHRIG M, 1991, PHYS STATUS SOLIDI A, V125, P635 SCHREYER A, 1996, PHYSICA B, V221, P366 SCHREYER A, 1994, PHYSICA B, V198, P173 SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957 SLONCZEWSKI JC, 1995, J MAGN MAGN MATER, V150, P13 SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260 STOEFFLER D, 1991, PHYS REV B, V44, P10389 UNGARIS J, 1993, J MAGN MAGN MATER, V127, P205 UNGARIS J, 1991, PHYS REV LETT, V67, P140 VEGA A, 1995, PHYS REV B, V51, P11546 TC 9 BP 370 EP 376 PG 7 JI Physica B PY 1996 PD APR VL 221 IS 1-4 GA UR277 J9 PHYSICA B UT ISI:A1996UR27700056 ER