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Abstract

In the presence of random "elds at an interface between a ferromagnetic and an antiferromagnetic layer, the domain
walls in the ferromagnetic layer are pinned by local minimum energy. To move the domain walls, an applied magnetic
"eld must be large enough to overcome statistically #uctuating energy. We have calculated this energy and found that the
coercivity can be as large as a few kOe for a thin ferromagnetic layer. It is also found that the coercive "eld at low
temperature scales as 1/t3@2 where t is the F layer thickness, and the coercive "eld decreases strongly with temper-
ature. ( 1999 Elsevier Science B.V. All rights reserved.
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The nature of the magnetic interaction at the interface
between a ferromagnet and an antiferromagnet is a long
debated issue. Experimentally, there are two distinct fea-
tures in the magnetic hysteresis loop. First, the hysteresis
loop is o!set from zero applied magnetic "eld if the
bilayer "lm (ferromagnetic and antiferromagnetic layers)
is "eld cooled from temperature above the NeH el temper-
ature of the antiferromagnetic layer; this has been termed
the exchange bias [1]. The second e!ect is that the
coercivity of the ferromagnetic layer is much larger than
that without the underlying antiferromagnetic layer.

Up till now most of the theoretical studies have been
focused on understanding the "rst phenomenon, the ex-
change bias. Mauri et al. [2] considered a perfect &un-
compensated' interface where the moments of the "rst
layer of the antiferromagnet in contact with ferromag-
netic layer are ferromagnetically aligned. Koon [3] inves-
tigated a &compensated' interface where there are no net
moments on the "rst layer of the antiferromagnet. Both
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theories predict domain formation in the antiferromag-
netic layers and give the right order of magnitude of the
exchange bias in comparing with experimental values.
However, the above theories which are based on the
&ideal' nature of the interfaces have two signi"cant draw-
backs. First, the structure of AF layer and F layer of
experimental interfaces are usually not matched and far
away from simple perfect uncompensated or compensate
interfaces. It seems from vast experiments that the ex-
change bias does not require perfection of the interface.
The more serious problem is that the theories do not
address the phenomenon of the enhanced coercivity ob-
served experimentally.

The present study follows the idea that experimental
interfaces are not perfect and interactions at the interface
between F and AF layers are random as "rst proposed by
Malozemo! [4,5]. The presence of the random interac-
tion leads to an energy term which competes with other
energies in the system. As a result, the antiferromagnetic
layer breaks into domains with "nite sizes. Within each
domain, the ferromagnetic layer receives a statistically
net "eld from the antiferromagnetic layer, i.e., an ex-
change bias is induced by the random interaction [4,5].
Here, we examine the role of this random interaction on
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the coercivity, and determine the correlation between
exchange bias and the enhancement of the coercivity in
the ferromagnetic}antiferromagnetic bilayer system.

Let us consider a domain wall in the ferromagnetic
layer. The domain wall width and length are W and
L with its center coordinates x

0
and y

0
; the thickness of

the ferromagnetic layer is t, which is assumed to be small
so that the magnetization does not vary along the direc-
tion perpendicular to the "lm plane. The domain size
L will be determined later. In a magnetic "eld H, the
equilibrium position of the domain wall satis"es the
following equation:
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where the left-hand side represents the energy gain due to
external "eld as the domain wall moves along the y-
direction by dy and by d<"¸tdy in volume, M

4
is the

saturation magnetization per unit volume, the right hand
is the energy di!erence of the domain wall after and
before the move, and c(y

0
) is the total energy of the wall,

i.e.,
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where the integration is limited to the wall region,
Dx!x

0
D(¸/2 and Dy!y

0
D(=/2. The energy density of

the wall c(x, y) is assumed to be independent of z since the
ferromagnetic layer is thin so that the magnetization is
uniform along the z-direction. By taking the limit dyP0,
Eqs. (1) and (2) result in
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The wall energy density consists of number of energies in
the "lm; they are exchange energy, uniaxial anisotropy,
demagnetization energy and random "eld energy from
the antiferromagnetic "lm. The exchange energy and
uniaxial anisotropy are usually uniform within a "lm,
thus they do not contribute to the motion of the wall,
Eq. (3). The demagnetization "eld varies spatially and it
gives rise to the coercivity. Here we are neglecting this,
since this e!ect exists for "lms without the antiferromag-
netic layer and we are interested in the enhancement of the
coercivity in the presence of the antiferromagnetic layer.
We are focusing solely on the e!ect of random "elds on
the coercive force below.

Introducing a random "eld h(x, y) acting on the inter-
face of the bilayer, the energy density is written as

c(x, y)"!M
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where a
0

is the monolayer separation, and m( (x, y) is the
unit vector to represent the direction of the local mag-
netic moment. By placing Eq. (4) into Eq. (3), one has
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where we have used m( (x, y
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x
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0
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x
at the domain wall boundaries, and de"ned
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$=/2),h

x
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$=/2)!hM with hM as the aver-

age of the random "eld. The "rst term in Eq. (5) repres-
ents the exchange bias which has been calculated by

Malozemo! [4,5]. hM +JA
AF

K
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/2M
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where A
AF

and
K

AF
are the exchange sti!ness and anisotropy constant of

the AF layer. It is the second term in Eq. (5) which is
related to the coercive "eld. As one changes the applied
"eld, the wall moves back and forth according to the
statistically #uctuating "eld g(x) until a critical "eld such
that the second term reaches maximum. Further increas-
ing the "eld will lead to irreversible jumps of the wall.
Therefore, one can de"ne the coercivity by the maximum
value of the second term in Eq. (5). As pointed out by
Ho!mann [6,7], the estimation of this quantity can be
carried out by evaluating the statistical average of the
random "eld, i.e., one de"nes the coercivity as
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Since the random "eld is not correlated when they are
separated by a distance of the domain wall width, the cross
term in Eq. (6) is averaged to zero, i.e., Sg(x, y
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"0. Then we simplify the above equation to
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where we have dropped y
0
$=/2 variable in the func-

tion g. The random function g(x) is usually described
by an auto correlation function, i.e., (1/¸):dxg(x) )
g(x#x
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4
is the average

coupling energy of nearest-neighbour F and AF spins at
the interface while f (x

1
) represents the range of the cor-

relation of the random function. As usual, f (x
1
) can be

assumed in the form of Gaussian or exponential, and we
take the latter form as an example, i.e., f (x

1
)"

exp(!Dx
1
D/a

0
) where we have used white noise approxi-

mation for the random "eld so that the range of the
correlation function is the order of monolayer thickness
a
0
. With all these plausible simpli"cations, one can ex-

press the coercivity, Eq. (7), as
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It remains to determine L, the domain size.
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Fig. 1. The values of coercivity as function of NiFe thickness t of
exchange-coupled NiFe(t)/CoO at 80 K and Ni

0.5
Co

0.5
O/

NiFe(t) at 10 K showing the H
#
"A/tn dependence with n"

1.51$0.05 and 1.427$0.05, respectively.

The domain size L can be derived from the minimiz-
ation of the competing energies,
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where the "rst and second terms are the exchange energy
and the energy from the random "eld per domain, z and z@
are the coordination numbers in the ferromagnetic layer
and at the interface, and J

F
is exchange constant of the

ferromagnetic "lm. In writing down the "rst term, we
assumed ¸]¸ square domains with linear variation of
magnetization from one domain to the next, which is
slightly di!erent from the circular domains assumed by
Malozemo! [4,5], but the scaling relation that the ex-
change energy goes as 1/¸2 is generally valid. The second
term comes from statistical average energy of N"¸2/a2

0
spins such that the root mean square of the random

energy per site goes down as J
4
/JN which results in the

second term in Eq. (9). Minimizing the above energy, one
"nds the domain size is
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It is noticed that the same line of reasoning has been
applied to estimate the size of AF domains, where a sim-
ilar linear relation between the AF domain size and
thickness of the AF layer was previously obtained [4,5].

By placing Eq. (10) into Eq. (8), we arrive at the scaling
relation between the coercivity and the thickness of fer-
romagnetic layers,
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To estimate the order of magnitude of the coercivity
from Eq. (11), we need to determine J

4
. J

4
is expected to

depend on the interface roughness; therefore, the coerciv-
ity will be di!erent for di!erent growth methods. Unfor-
tunately, the independent measurement of J

4
is currently

unavailable. Nevertheless, one may assume that J
4
and

J
F

are at the same order of magnitude. Within the mean
"eld approximation, J

F
is a fraction of the Curie temper-

ature. If we take J
F
"J

4
"¹

#
/8 (where ¹

#
is the Curie

temperature), z"8, z@"4, and use the bulk magneti-
zation of NiFe, we "nd that the coercivity is of the order
of 1 kOe for the thickness of t"50 As , which agrees with
experiments well. A most important prediction of Eq. (11)
is that of the coercivity scales as 1/t3@2, which is quite in
contrast with exchange bias "eld which scales as 1/t.

To experimentally examine the magnitude and scaling
relation, Eq. (11), we have studied two series of samples:
(1) NiFe(t)/CoO/Si and (2) Ni

0.5
Co

0.5
O/NiFe(t)/MgO.

In series (1), a wedged NiFe layer from 50 to 400 As was
grown on a uniform CoO layer of 250 As , resulted in

many individual samples in which the thickness of NiFe
was the only variable. In series (2), individual samples
with 120 As of Ni

0.5
Co

0.5
O and di!erent NiFe thickness

were grown and measured. In the thickness range of our
interest, we did not observe any microstructure di!er-
ences in each of the two sets of the samples. In both series,
while the coercivity of the uncoupled NiFe is small (a few
Oe at room temperature, and about 20 Oe at 10 K), the
coercivity of the exchange-coupled layers increases dra-
matically for samples with small t to as much as 2 kOe.
More importantly, H

#
has been observed to vary as

H
#
"A/tn, and the exponent is n"1.51$0.05 at

T"80 K for the series (1) samples and 1.427$0.05 for
the series (2) samples, both in excellent agreement with
the theoretical prediction of Eq. (11) with n"1.5, see
Fig. 1.
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