
*Corresponding author. Tel.: #86-24-2384353155857; fax:
#86-24-23891320.

E-mail address: dygeng@imr.ac.cn (M.-h. Yu)

Journal of Magnetism and Magnetic Materials 195 (1999) 514}519

Spin con"gurations in the absence of an external magnetic
"eld in a magnetic bilayer with in-plane cubic or uniaxial

anisotropies

Ming-hui Yu!,",*, Zhi-dong Zhang!,"

!Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
"International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China

Received 23 October 1998

Abstract

The spin con"gurations in the absence of an external magnetic "eld have been systematically investigated for
a magnetic bilayer system consisting of two ferromagnetic layers separated by a non-magnetic layer with interlayer
exchange coupling. Based on a phenomenological model, the conditions for the existence of collinear and non-collinear
spin structures were derived for three kinds of magnetic bilayers with di!erent combinations of in-plane cubic and
uniaxial anisotropies for the two ferromagnetic layers. The phase diagrams of the spin con"gurations at zero "eld were
drawn, taking into account the lowest-order anisotropy parameters of both the ferromagnetic layers. The values of the
canting angle have been derived analytically and then numerically plotted. ( 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The ultrathin "lms, multilayers and superlattices
have attracted extensive attention over the last dec-
ade on both experimental and theoretical aspects
[1}5]. By growth techniques such as molecular
beam epitaxy (MBE), an extraordinarily high qual-
ity of thin magnetic "lms and layered system can be

obtained with nearly perfect crystals and layered
structures. Film thickness may reach a few or even
one atomic layer. It is natural, that such a high
quality of the new magnetic systems results in the
discovery of many static magnetic properties which
contain valuable information about the intrinsic
magnetism of layered structures. One feature of
these layer structures is the well-known oscillatory
interlayer exchange coupling between the adjacent
ferromagnetic layers through the non-magnetic
layer [6,7]. Several mechanisms have been pro-
posed for this oscillation, including the dipolar and
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Fig. 1. Model of a magnetic bilayer system consisting of two
ferromagnetic layers A and B, separated by an interlayer. On the
right side is the vertical view, and the dashed lines are the easy
axes of magnetization.

Ruderman}Kittel}Kasuya}Yosida (RKKY) inter-
actions as well as the quantum well [8}10]. The
strength of the interlayer coupling is quite weak as
compared with that of the intersublattice exchange
in bulk materials. But the ratio of interlayer ex-
change energy to anisotropy energy lies in the range
10~2}102. Therefore, the competition between the
exchange energy and the anisotropy energy also
exists in the layer structures, which plays an impor-
tant role in determining the spin arrangements.

Dieny et al. [11,12] have phenomenologically
studied the magnetic behaviour of magnetic bilayer
systems of cubic and uniaxial in-plane anisotropies
with assumed antiferromagnetic coupling between
adjacent identical ferromagnetic layers. What
would happen if the magnetic bilayer consists of
two distinct ferromagnetic layers, which possess
di!erent magnetizations and anisotropies? This
work extends the magnetic bilayer system to a gen-
eral case, and systematically investigates the spin
con"gurations in the absence of an external mag-
netic "eld for this bilayer system, which is depen-
dent on the competition between the strengths of
the exchange coupling and the anisotropies. More-
over, the phase diagrams for di!erent spin con"g-
urations have been drawn out for three kinds of
magnetic bilayers with di!erent combinations of
in-plane cubic and uniaxial anisotropies. This
method has even been successfully used in our
previous work on the two-sublattice system
[13,14].

2. Model

The magnetic bilayer system to be studied in
what follows can be de"ned by the free-energy
expression
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where J represents the interlayer exchange coup-
ling between two ferromagnetic layers. A positive
value of J favours antiparallel alignment (ferrimag-
netic coupling), whereas a negative J favours a
parallel one (ferromagnetic coupling). M

A
and

M
B

denote the magnitude of the magnetization of
layers A and B, respectively. It is postulated that
each ferromagnetic layer is single-domain and

single crystal and that the easy axes of magneti-
zation of both layers are parallel to each other.
Moreover, it is assumed that strong shape and/or
negative perpendicular anisotropy con"nes the
magnetic moments of both layers to the "lm planes.
Fig. 1 schematically represents the con"guration of
this magnetic bilayer model. The assumptions cor-
respond to the situation in magnetic bilayer with
(0 0 1)-type growth. a is the angle between the mo-
ments of the two layers. E

A
and E

B
are the anisot-

ropy energies of the layers A and B, respectively.
The anisotropy energy is set by K

1
cos2 h sin2 h for

the cubic case and K
u
sin2 h for the uniaxial case

with h the angle of the magnetization of each layer
with respect to the easy direction. If we use a con-
vention allowing for negative values of h

A
and h

B
,

then h
B

can be substituted by h
A
#a, so the model

can be studied in terms of only two independent
variables, h

A
and a.

The equilibrium state is found by minimizing
Eq. (1) with respect to the angles h

A
and a. Detect-

ing the minima of Eq. (1) involves the "rst and
second partial derivatives of the free energy with
respect to the angles h

A
and a:
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The solutions of Eqs. (2) and (3) satisfying the
inequalities (4) and (5) correspond to the local
minima of the free energy. We shall choose the
one corresponding to the lowest minima of the
free energy to determine the resulting moment
orientations.

3. Spin con5gurations

In this section, we investigate the possible stable
spin con"gurations of the magnetic bilayer model
in three cases which correspond to the possible
combinations of the cubic and uniaxial anisot-
ropies for each layer. In each case, only the lowest-
order term of the anisotropy energies is taken into
account.

3.1. Two cubic in-plane anisotropies

First, we consider the case where both the layers
have cubic in-plane anisotropy. Eq. (1) can be
rewritten as follows:
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For simplicity, the relative magnitude of the inter-
layer exchange and the anisotropy energies and the
ratio of the two anisotropy energies are de"ned as
x and y, respectively:
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Making a convenience of this notation, Eqs. (2) and
(3) and inequalities (4) and (5) can be expanded and
reduced to
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A collinear spin con"guration will always satisfy
Eqs. (7) and (8), because for a"0, n and
h
A
"0, p/4, p/2, 3p/4, every term in both equations

vanishes. To investigate whether such solutions in-
deed correspond to energy minima one has to turn
to the criterion D'0 and L2E/Lh2

A
'0, which en-

sures the existence of a minimum. If under certain
conditions, multiple solutions satisfy the criterion,
the one corresponding to the lowest energy min-
imum will be e!ective. Therefore, provided
K

1A
'0, combining inequalities (10) and (11) for

a"0, p and h
A
"0, p/4, p/2, 3p/4 gives collinear

con"gurations in four regions.
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III. For a"p, h
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y'!1 and x'0 and x'!2y/(1#y);
IV. For a"p, h

A
"p/4, 3p/4:

y(!1 and x'2y/(1#y).

In the case of K
1A

(0, we can also observe these
four regions, but the collinear con"gurations in
them are interchanged symmetrically about the ori-
gin. In Fig. 2 these results are summarized, four
curves and the positive y-axis separate the four
regions. In each case, there are always two di!erent
spin con"gurations as the consequence of the bi-
axial symmetry of the cubic anisotropy. The central
part of the phase diagram delineated by the border-
lines of the collinear regions undoubtedly repre-
sents non-collinear spin arrangements where one
shall be only interested in the value of the canting
angle a. In order to reveal the dependence of the
canting angle on x and y, one has to solve Eqs. (8)
and (9). To get the solutions of Eqs. (8) and (9), we
"rst subtract Eq. (9) from Eq. (8) to obtain

sin 4h
A
#2x sin a"0 (12)

and use this result to eliminate h
A

from Eq. (9), and
remove the common term sin a (sin aO0) to obtain

x[1#y(1!2 sin22a)]

"2y cos a J(1!4x2 sin2a)(1!sin22a). (13)
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Fig. 2. Phase diagrams of the di!erent spin con"gurations of
a magnetic bilayer in the absence of an external "eld (K

1A
'0).

Both the layers take the cubic in-plane anisotropy. Only the
lowest-order anisotropy constants of the two layers are taken
into account. The de"nition of the axes x and y is in Eq. (7).

Fig. 3. Dependence of the canting angle a on the values of x and
y, which are de"ned in Eq. (7). Both the layers have the cubic
in-plane anisotropy (K

1A
'0).

After performing further manipulations, one can
get a cubic equation in terms of cos 2a:

!2y2 cos32a#2y(2x2!y)cos22a

#x2(1!y)2"0. (14)

This cubic equation determines the value of the
canting angle in the region for non-collinear spin
con"gurations. The required root must be a real,
not complex, so it is very di$cult to "nd the true
root from the three roots of this cubic equation
[15]. But we can numerically determine the value of
the canting angle from Eq. (14). The dependence of
the canting angle a on x and y is represented in
Fig. 3. It is worth noting that there is a gap of (p/4,
3p/4) (for x"0) for the canting angle. The reason
shall also be attributed to the biaxial symmetry
of the cubic anisotropy, which can force the canting
angle to lie in the range of 0!p/4 (or 3p/4!p) in
order to diminish the interlayer exchange coupling
energy.

3.2. One uniaxial, the other cubic

In this subsection, we let one layer take the
uniaxial in-plane anisotropy, the other the cubic

one, which results in the following free energy ex-
pression:
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Accordingly, the de"nitions of x and y are changed
into
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Eqs. (2) and (3) and inequalities (4) and (5) should be
expanded and reduced to
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For a"0, p and h"0, p/2, the solutions of
Eqs. (17) and (18), combining inequalities (19)
and (20) would lead to four possible collinear
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Fig. 4. Phase diagrams of the di!erent spin con"gurations of
a magnetic bilayer in the absence of an external "eld (K

6A
'0).

One layer takes the uniaxial in-plane anisotropy, the other cubic
one. Only the lowest-order anisotropy constants of the two
layers are taken into account. The de"nition of the axes x and
y is in Eq. (16).

Fig. 6. Dependence of the canting angle a on the values of x and
y, which are de"ned in Eq. (16). One layer takes the uniaxial
in-plane anisotropy (K

6A
'0), the other cubic one.

Fig. 5. Phase diagrams of the di!erent spin con"gurations of
a magnetic bilayer in the absence of an external "eld (K

6A
(0).

One layer takes the uniaxial in-plane anisotropy, the other cubic
one. Only the lowest-order anisotropy constants of the two
layers are taken into account. The de"nition of the axes x and
y is in Eq. (16).

con"gurations.

I. For a"0, h
A
"0:

K
6A
'0 and y'!1 and x(0 and x(2y/

(1#y);
II. For a"0, h

A
"p/2:

K
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(0 and y(1 and x'0 and x'2y/

(1!y);
III. For a"n, h

A
"0:

K
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'0 and y'!1 and x'0 and x'!2y/

(1#y);
IV. For a"n, h

A
"p/2:

K
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(0 and y(1 and x(0 and x(2y/

(y!1).

These results are displayed in Figs. 4 and 5 for
K

6A
'0 and K

6A
(0, respectively. The existence of

the collinear structures are very sensitive to the sign
of the anisotropy coe$cient of layer A. Moreover,
the boundaries between collinear and non-collinear
con"gurations are di!erent in Figs. 4 and 5. Ac-
cording to the procedure described in the above
subsection, we can obtain a six-order equation in
terms of the cosine of the canting angle:

16y2 cos6a!16x3y cos5a!16y2 cos4a

#8xy(3x2!1)cos3a#y2(4!x4)cos2a

#4xy(1!2x2)cos a#x2(x2y2!y2#1)"0.

(21)

Fig. 6 shows the dependence of the canting angle
a on x and y in the case of K

6A
'0, which is

numerically derived from Eq. (21). The gap of (p/4,
3p/4) for the canting angle results from the cubic
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anisotropy of layer B. For K
6A

(0, the dependence
of the canting angle a on x and y has a feature
similar to that for K

6A
'0, however, correspond-

ing to Fig. 5. It is a central symmetry of Fig. 6 with
respect to the origin.

3.3. Two uniaxial in-plane anisotropies

This case in a magnetic bilayer system is very
similar to that in a two-sublattice system, when
only the second-order anisotropy constants of the
two sublattices are taken into account. Substituting
the c-axis and the intersublattice molecular-"eld
coe$cient n

AB
in Ref. [13] with the a-axis and the

interlayer exchange coupling J will enable the re-
sult obtained in Ref. [13] to be applicable in this
subsection. Figs. 1 and 2 in Ref. [13] showed the
phase diagram of the di!erent spin con"gurations
and the dependence of the canting angle a on the
values of x and y, respectively. The phase diagram
resembles that obtained in Section 3.1, but in each
region there is only one possible spin arrangement.
This is due to the di!erence in symmetry between
the cubic and uniaxial anisotropies, which also
leads to the disappearance of the gap of the canting
angle in the region of non-collinear con"gurations.

4. Summary

We have systematically studied the spin con"g-
urations in the absence of an external magnetic
"eld in a highly idealized bilayered model consist-
ing of two ferromagnetic layers of uniaxial or cubic
anisotropies intervening by a non-magnetic layer.
The results obtained indicate that the model can
describe a wealth of possible relative spin arrange-
ments between the two ferromagnetic layers. The
competitions between three energies, the exchange

coupling energy and the two anisotropy energies,
result in collinear or non-collinear con"gurations.
The symmetry of the anisotropy determines the char-
acter of the spin arrangement in the layer structures.
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