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Abstract

Based on a phenomenological model, spin structures either in the absence or in the presence of an external magnetic
"eld have been studied for ultrathin cubic ferromagnetic "lms with an in-plane uniaxial anisotropy. Phase diagrams of
the spin con"gurations in the absence of the magnetic "eld and of di!erent magnetization reversal processes have been
given. The magnetization reversal processes in the ultrathin cubic ferromagnetic "lms have been found to depend
sensitively on the competition among the energies of in-plane uniaxial and cubic anisotropies and of the domain wall
pinning. ( 1999 Elsevier Science B.V. All rights reserved.
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Keywords: Ultrathin "lms; Spin con"guration; In-plane uniaxial anisotropy; Magnetization reversal process; Domain
wall pinning

1. Introduction

In recent years, ultrathin ferromagnetic "lms
have attracted a tremendous amount of attention.
Magnetic anisotropies play an important role in
ultrathin ferromagnetic "lms. Anisotropy is neces-
sary in two-dimensional ferromagnets to obtain
long-range order, as proven rigorously by Mermin
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and Wagner [1]. Magnetic anisotropies in ultra-
thin "lms are strongly modi"ed, compared to those
in bulk materials, due to the broken symmetry at
the interface. These anisotropies include shape,
surface, interface, and crystalline anisotropies,
strain-induced magnetoelastic anisotropy, and an-
isotropies due to roughness, steps and atomic mix-
ing at the interface [2].

One of the most fascinating topics in this "eld is
how to understand the unusual magnetization re-
versal processes which take place in some ultrathin
cubic ferromagnetic "lms [3}12]. In these processes
the in-plane spin con"guration changes abruptly at
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well-de"ned strengths and orientations of an ap-
plied magnetic "eld, which is unexpected for
ultrathin "lms with purely cubic magnetocrystal-
line anisotropy. These peculiar magnetic switching
processes were attributed to the occurrence of
a weak in-plane uniaxial anisotropy which was
superimposed on the strong cubic magnetocrystal-
line anisotropy. Cowburn et al. [13,14] recently
developed a simple phenomenological model, ex-
plaining how so small a uniaxial anisotropy can
signi"cantly in#uence the magnetization reversal
processes. In their model a well-de"ned domain
wall (DW) pinning energy is considered along with
the anisotropy energy surface in order to determine
the energetics of the reversal processes. A good
agreement has been established between the model
prediction and the experimental observation
[10}14]. However, Cowburn et al. [13,14] focused
their attention only on the behaviors of Fe ultra-
thin "lms, i.e., the case of a positive in-plane
uniaxial anisotropy. In the present work, we extend
their discussion to the whole system, including the
situation with a negative in-plane cubic anisotropy
which indeed corresponds to Co ultrathin "lms
[15}18].

2. Model

The phenomenological model to be studied in
what follows is de"ned by the free energy [13,14]
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is the in-plane uniaxial anisotropy con-
stant, K

1
is the in-plane cubic anisotropy constant,

h and / are the angles of the magnetization M and
the applied "eld H with respect to the a-axis [1 0 0]
direction, respectively, as shown in Fig. 1. The
equilibrium state is found by minimizing Eq. (1)
with respect to the angle h. This involves the "rst
and second partial derivatives of the free energy
with respect to the angle h,
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Fig. 1. Schematic representation of the geometry of spin mo-
ment M and applied magnetic "eld H in the plane of an ultrathin
"lm.
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The solutions satisfying Eqs. (2) and (3) correspond
to the local energy minima. There is a problem how
to choose the resulting spin orientation among
these solutions, if they are not sole. Departing from
the Stoner}Wohlfarth's coherent rotation model
[19], one can take the resulting spin orientation
always corresponding to the con"guration of abso-
lute energy minimum which is determined by
choosing between all the local energy minima
calculated for a given set of parameters [20]. Mag-
netization curves calculated in this case never show
hysteresis, as the energy wall between the di!erent
local minima is neglected during the spin reversal
process. In real materials, however, the magneti-
zation reversal process also involves the nucleation
of domains and the propagation of domain walls
[4,5,21,22]. Therefore, the energetics of domain
formation and propagation are crucial in under-
standing the spin reversal process. Following the
method developed in Refs. [13,14], a phenom-
enological constant e is taken into account, which
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describes the pinning energy of a DW, and corres-
ponds to the maximum pinning pressure that de-
fects can exert on a DW as it propagates. Before the
spin transition from one local energy minimum
to another lower one, the energy advantage *E
between these two minima must be equal to the
energy cost in propagating a DW of the relevant
type. The activation energy needed to establish
these walls is ignored, and we take care of only the
drive energy involved in unpinning them so that
they can sweep freely across the "lm. Setting e"0
for any type of DW, we will return to the former
case, i.e., comparing the absolute energy minimum
directly.

3. Spin con5gurations at H"0

In this section, we shall discuss the spin con"g-
urations in the absence of the applied magnetic "eld
for ultrathin ferromagnetic "lms with in-plane
uniaxial and cubic anisotropies. One can easily "nd
the analytic solutions of Eqs. (2) and (3) in the
absence of the magnetic "eld, i.e., H"0.
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Fig. 2 gives the phase diagram of the spin con"g-
urations of the "lm system with zero applied "eld,
where regions I}IV correspond to solutions
(4a)}(4d), respectively. Under di!erent conditions,
three kinds of easy magnetization directions can be
taken, namely, easy a-axis, easy b-axis and easy
cone. Region I is divided into two subregions Ia
and Ib, because the absolute energy minima among
the four local energy minima in the two subregions
di!ers from each other. Subregion Ib like region II

Fig. 2. Phase diagram of di!erent spin con"gurations of an
ultrathin ferromagnetic "lm with in-plane uniaxial and cubic
anisotropies in the absence of an external magnetic "eld. The
black arrows represent all possible directions of spin moment
corresponding to the stablest energy minima. The blank arrows
correspond to the metastable ones.

takes easy a-axis, while subregion Ia like region III
favors easy b-axis. It must be noted that the region
III has a biaxial anisotropy and four local energy
minima with spin orientations h

0
,!h

0
, 1803!h

0
,

or 1803#h
0

have the same value of the energy. In
this case the uniaxial anisotropy K

6
only changes

the value of the cone angle, does not a!ect the
biaxial feature of the purely cubic anisotropy. The
magnetization reversal processes in those regions
would be discussed below.

4. Magnetization reversal processes

In this section, magnetization reversal processes
of the system studied will be discussed for three
di!erent cases in three subsections, respectively.
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M. Yu et al. / Journal of Magnetism and Magnetic Materials 195 (1999) 327}335 329



always approximately be in the set Mh"03, h"903,
h"!903, h"!1803N. These local energy min-
ima can be found by substituting the relevant
values of h into Eq. (1):

E
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The spin reversals between these four states will
be mediated by the sweeping of 903 and 1803DWs.
In Ref. [13] it was proved experimentally that
e
1803

"2e
903

. When several possible jumps among
these four states compete, we assume the one which
can occur at the lower critical "eld is taken as the
one observed actually. A magnetic phase diagram
showing the number of irreversible jumps expected
during the spin reversal was given by Cowburn
et al. [14], only considering K

6
'0. In Fig. 3, we

extend this phase diagram to the case of K
6
(0,

and distinguish the region b from the region c,
where their spin states are distinct. The spin states
are shown schematically in the boxes. Two rows of
boxes are displayed in each region. The lower one
demonstrates the spin jumps on increasing the ap-
plied "eld, while the upper one corresponds to
those when the applied "eld is decreased. It is worth
noting that either 1-jump or 3-jump reversals ex-
perience the same routes on increasing and decreas-
ing the external magnetic "eld, whereas 2-jump
reversal undergoes di!erent ones. The critical "eld
of these spin jumps can be solved analytically by
setting the energy advantage *E equal to the do-
main wall pinning energy e between two spin stable
states.

The hysteresis loops of the magnetization either
parallel or perpendicular to the direction of the
applied "eld, and the variation of the angle h with
respect to the applied "eld in di!erent regions are
shown in Fig. 4a. The magnetization reversal pro-
cesses when e"0 are shown as dashed lines for
comparison. Columns a}e correspond to the varied
irreversible jumps in regions a}e in Fig. 3, respec-
tively. These irreversible jumps on the hysteresis
loops are markedly obvious. A very small uniaxial
anisotropy can signi"cantly in#uence the magneti-

Fig. 3. Phase diagram of irreversible jumps expected during spin
reversal as a function of the applied "eld orientation / and the
ratio of the in-plane uniaxial anisotropy K

6
to the pinning

energy e
903

of a 903 DW. The spin states on increasing and
decreasing the "eld are shown schematically by the down and up
rows of the boxes, respectively.

zation reversal process in a strong cubic anisotropy
system. Changing the sign of K

6
can also lead to

a similar e!ect while only the spin states and the
relation with respect to the applied "eld orientation
are altered. This is because it does not matter for
a cubic system where the uniaxial anisotropy is
applied along the (1 0 0) or (0 1 0) axis. However,
for the completeness of the phase diagram, we con-
sider the case of K

6
(0 in Fig. 3. If e

903
"0, i.e.,

K
6
/e

903
PR, one will see that only 1-jump or 3-

jump reversals remain. No 2-jump reversal could be
observed (no dashed lines in columns b}d of

&&&&&&&&&&&&&&&&&&&&&c
Fig. 4. (a) Hysteresis loops of the magnetization either parallel
or perpendicular to the applied "eld and the variation of the spin
states during the magnetization reversal processes. The para-
meters used during the calculation are: K

6
/M"3 Oe,

K
1
/M"275 Oe, (a) /"353, e
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/M"3 Oe; (b) /"353, e
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/

M 5 Oe; (c) /"753, e
903

/M"4 Oe; (d) /"753, e
903

/M"

1.5 Oe; (e) /"753, e
903

/M"0.5 Oe. The dashed lines represent
the magnetization reversal processes for e"0. (b) Hysteresis
loops of the magnetization either parallel or perpendicular to
the applied "eld and the variation of the spin states during the
magnetization reversal processes. The parameters used during
the calculation are: K

6
/M"110 Oe, K

1
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/M"100 Oe; (e) /"803, e

1803
/M"20 Oe. The

dashed lines represent the magnetization reversal processes for
e"0.
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Fig. 4a) if only the absolute energy minimum were
considered. Thus the occurrence of the 2-jump
reversals must involve the mechanism of domain
nucleation and propagation of the domain wall.

It is interesting to compare our numerical results
with the hysteresis loops observed experimentally
in literature. The hysteresis loops in columns a}c of
Fig. 4a are similar to those denoted as I}III (and
IV) in Fig. 3 of Ref. [13], observed in Ag/Fe/
Ag(1 0 0). The hysteresis loops in column d seems
to be of the same type as the Kerr signal in the right
column of Fig. 13 of Ref. [23]. The hysteresis loop
of 3-jumps in column e calculated for /"753 is
similar to that observed by Cowburn et al. [14] in
a magnetic "eld at /"513$33. This is because we
have given an example of 3-jumps for / between
453 and 903, where in a certain condition of K

6
/e

903
the hysteresis loops have the same characteristics.

4.1.2. DK
6
D+K

1
If the strength of the uniaxial anisotropy is close

to that of the cubic anisotropy, a low "eld would be
insu$cient to saturate the "lm. However, increas-
ing the strength of the applied "eld will destroy the
approximate analytic solutions of (2) and (3), and
force the local energy minima away from the crys-
talline axes. In this case one has to develop a calcu-
lation procedure to determine the stable spin state
at a certain magnetic "eld. Fig. 4b shows the calcu-
lation results for K

6
/K

1
"0.4. The dashed lines in

columns a and e correspond to the results cal-
culated by considering only the absolute energy
minimum. It is similar to the case in Fig. 4a, but the
"rst and third jumps of the 3-jump reversal in
column e diverge from the crystalline axes. In this
case if the propagation of the domain wall is taken
into account the DW would no longer keep an
angle of 903 or 1803. We assume that the pinning
pressure of a h DW is directly proportional to the
value of its angle h. During the numerical calcu-
lation, the phenomenological constant of a h DW is
de"ned as eh"e

1803
) h/180. Even if taking into ac-

count the propagation of the domain wall, one type
of 2-jump reversal related to column b in Fig. 4a
cannot be observed in Fig. 4b. This is due to the
limitation of the DWs pinning energy, beyond
which the coherent rotation would dominate the

magnetization reversal process. A coherent rota-
tion model is requested to describe such a pro-
cess in this case. The hysteresis loops possessing
the same shape as in columns (a) and (c) in Fig. 4b
have been frequently observed in Fe/GaAs(0 0 1)
[5,10,12].

4.2. DK
6
D'DK

1
D

Now, let us consider what will happen if
K

6
'K

1
as in the region II of Fig. 2. As the

strength of the uniaxial anisotropy is stronger than
that of the cubic anisotropy, only two local energy
minima appear at zero applied "eld since the other
two are eliminated. At low "eld there is nothing but
a 1-jump reversal mediated by the sweeping of the
1803 DW, irrespective of the direction of the ap-
plied "eld. We need to increase the strength of the
applied "eld in order to detect more jumps. Fig. 5
displays the simulation results for K

6
/K

1
"1.1.

The shape of the hysteresis loops resembles that in
Fig. 4b. But one type of 2-jump reversal related to
column c in Fig. 4b vanishes in Fig. 5. The reason is
the same as the above mentioned (in Section 4.1.2).
Further increasing the strength of the uniaxial an-
isotropy, the critical "elds for the "rst and third
jumps in the case of 3-jump reversal will be grad-
ually enhanced and "nally the jumps disappear at
a certain point, where the 3-jump reversal turns
into a 1-jump one. What happens in region III in
Fig. 2 is analogous to that in region II. Therefore,
the in#uence of an in-plane uniaxial anisotropy on
the jumps in the magnetization reversal processes
of an ultrathin cubic ferromagnetic "lm would be
weakened, and the critical "elds would be greatly
enhanced by increasing the strength of the uniaxial
anisotropy.

4.3. K
1
(0, K

1
(K

6
(!K

1

In this case, in the absence of the external mag-
netic "eld, the easy magnetization direction
deviates from the crystallographic directions. The
simulation results are di!erent from those in other
regions. No more jumps occur in the magnetization
curves except for 2-jump spin reversal, as shown in
Fig. 6. The dashed lines also prove that in the case
of considering the absolute energy minima, only
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Fig. 5. Hysteresis loops of the magnetization either parallel or perpendicular to the applied "eld and the variation of the spin states
during the magnetization reversal processes. The parameters used during the calculation are: K

6
/M"300 Oe, K

1
/M"275 Oe, (a)

/"403, e
1803

/M"500 Oe; (d) /"803, e
1803

/M"200 Oe; (e) /"803, e
1803

/M"50 Oe. The dashed lines represent the magnetization
reversal processes for e"0.

1-jump reversal can take place no matter what
direction the magnetic "eld is applied. For
K

6
;DK

1
D and K

6
"!K

1
/2, one obtains the cone

angles h
0
"453 and 303, respectively. When a low

"eld is applied, four states with spin orientations
h
0
, !h

0
, 1803!h

0
, 1803#h

0
are the stable states.

If the energy advantages between these states sat-
isfy the density cost in unpinning a DW of one of
the three types, e

2h, e1803~2h and e
1803

which are
directly proportional to the angle of the DW, the
spin orientation will rotate from one state to an-
other stabler one. It can be seen, from the four
columns in Fig. 6 that only 2-jump spin reversal
occurs between these four states, regardless of the
values of the cone angle h

0
, the applied "eld ori-

entation / and the ratio of K
6
/e

1803
. They are

similar to the case of K
6
"0 in Fig. 3 when no

uniaxial anisotropy is taken into account. This be-
havior can be attributed to the unique biaxial an-
isotropy of this system at zero applied "eld. This

kind of 2-jump spin reversal processes was found
experimentally by Diao et al. in Co/Cu/Co sand-
wich structures [17].

5. Discussions and conclusion

In this work, based on the consideration of the
domain process, we attain a clear cognizance of the
spin reversals in ultrathin ferromagnetic "lms with
in-plane uniaxial and cubic anisotropies. These re-
sults have certain signi"cance in both theoretical
and experimental aspects. They provide a criterion
of the possible mechanism of spin reversal in ultra-
thin "lms, which is closely related with the spin
con"gurations in the absence of the magnetic "eld.

Recent advances in thin-"lm growth techniques
have enabled us to establish new phases of mag-
netic materials. Cobalt, which naturally occurs in
the hexagonal close-pack phase, has been grown in
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Fig. 6. Hysteresis loops of the magnetization either parallel or perpendicular to the applied "eld and the variation of the spin states
during the magnetization reversal processes. The parameters used during the calculation are: (a) K

6
/M"3 Oe, K

1
/M"!275 Oe,

/"103, e
903

/M"1 Oe; (b) K
6
/M"3 Oe, K

1
/M"!275 Oe, /"803, e

903
/M"1 Oe; (c) K

6
/M"137.5 Oe, K

1
/M"!275 Oe,

/"103, e
1803

/M"3 Oe; (d) K
6
/M"137.5 Oe, K

1
/M"!275 Oe, /"803, e

1803
/M"3 Oe. The dashed lines represent the magneti-

zation reversal processes for e"0.

metastable FCC and BCC phases as thin supported
"lms. Generally, these ultrathin Co "lms have the
easy magnetization direction along the S1 1 0T
axis, indicating that K

1
(0 [15}18,24}26]. On the

other hand, the easy magnetization direction of the
Fe "lms is usually along the S1 0 0T axis, i.e.,
K

1
'0 [10}14]. It is a common phenomenon in

ultrathin cubic ferromagnetic "lms that an addi-
tional in-plane uniaxial anisotropy is introduced.
It can be attributed to several mechanisms,
for example, the oblique incidence of deposition
particles [27,28], lattice mismatch strain-induced
magnetoelastic e!ects [29,30], atomic steps on
the interface [31}36], the internal oxidation along
the oxygen chains on the surface of the sub-
strate (Al

2
O

3
, MgO) [36,37], or dangling bands on

the arsenic/gallium rich surface [12]. Moreover, the
strength of the uniaxial anisotropy is dependent on

the thickness of the "lm [2,23]. One can obtain
cubic ferromagnetic "lms with di!erent values of
K

1
and K

6
after accurately controlling the com-

position and the microstructure of the "lm and
substrate. According to the consequence of this
work, one can take a prior prediction of the pattern
of the spin reversal in the "lms.

In conclusion, we have investigated the in#uence
of an in-plane uniaxial anisotropy on the magneti-
zation reversal processes of ultrathin cubic fer-
romagnetic "lms. The phase diagram of the spin
con"gurations of this system in the absence of the
applied "eld has been derived. The spin reversals
induced by the applied "eld via the absolute energy
minimum or the propagation of the DW have been
studied numerically. Increasing the strength of the
uniaxial anisotropy diminishes its e!ect on jumps
in the magnetization reversal processes. If a cone

334 M. Yu et al. / Journal of Magnetism and Magnetic Materials 195 (1999) 327}335



angles present in the absence of the magnetic "eld,
the uniaxial anisotropy does not change the biaxial
anisotropy of this cubic system, but the value of the
cone angle, and no more jumps can take place.
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