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Abstract

Polarized neutron di!raction in multilayers is considered in the framework of the Supermatrix formulation of the
distorted wave born approximation (DWBA). The general equations for the polarized neutron scattering cross sections
are derived and illustrated by the example of di!raction from the regular ferromagnetic multilayered structure. It is
shown that, due to the resonance enhancement of the neutron wave "eld inside the "lms, the intensity of birefrigent
spin-#ip and non-spin-#ip di!raction is signi"cantly ampli"ed, if the wavelength is matched with the multilayers
period. ( 1999 Elsevier Science B.V. All rights reserved.
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The interplay between wave-like and geometrical
optic limits, as well as between the behavior of a
quantum spin-1

2
particle and its optic counterpart,

is nicely demonstrated experimentally and fairly
understood theoretically by the example of neutron
grazing angle di!raction from a single magnetic
"lm on a non-magnetic substrate [1]. As is well
known [2], if the neutron wave impinges on a solid

at grazing incidence its propagation perpendicular
to the surface is mostly described by geometrical
optics, while the di!raction in the direction parallel
to the surface plane manifests its wave-like behav-
ior and occurs if the lateral component Q of the
momentum transfer is equal to a reciprocal lattice
vector s displayed within the surface plane. Due to
the optical e!ects the di!racted beam intensity
shows a sharp maximum if the normal to the sur-
face components, the incoming, p*, and outgoing, p&,
wave vectors are close to the critical wave number
of the total re#ection. Due to the Zeeman e!ect
[3,4] the magnetized media is optically active, and
the incident and di!racted waves, refracted at the
surface, are split into two components with di!er-
ent neutron spin projections onto the "eld direction
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and with di!erent momentum transfer components
perpendicular to the surface. Magnetic scattering
by the atomic spins mixes neutron spin states and
causes the spin-#ip process. This results in the par-
tial polarization of the four di!racted beams re-
corded in Ref. [1] in the scan over the (p*, p&)-plane.
As we shall show, similar e!ects are dramatically
enhanced along the Bragg sheets in multilayered
structures if either the incoming or the outgoing
glancing angle is close to the angle of the total
re#ection. General equations for the polarized neu-
tron di!raction will be derived and illustrated by
the example of the perfectly ordered single crystal-
line multibilayer.

The neutron wave falling onto the surface at low
angle a;1 and having a small wave vector com-
ponent p

0
+ka orthogonal to the surface averages

out almost all details of the crystal structure over
its wavelength j

M
"2p/p<a, where a is the in-

teratomic spacing and k"2p/j is the neutron wave
number. This is a reason to decompose the Hamil-
tonian H(r) of the neutron interaction with the
magnetic crystal into two parts: H(r)"H

0
(z)#

HI (r), where the "rst term H
0
(z) depends upon the

only coordinate z perpendicular to the surface and
accounts for the interaction with the potential aver-
aged over the crystalline structure. The second one
HI (r) varies with the period of the lattice spacing
and causes the Bragg di!raction. The Hamiltonian
HI (r) is regarded as a perturbation for the eigen-
functions of the Hamiltonian H

0
(z). The latter de-

scribes the optical e!ects, i.e. the mirror re#ection
from, refraction by, and transmission through the
mean interaction potential: H

0
(z)"<(z)!l( B(z),

where <(z)"S<(r)T is the mean value of the nu-
clear potential<(r), B(z)"SB(r)T is the mean mag-
netic "eld, l("kr( is the neutron magnetic moment,
r("Mp(

x
,p(

y
, p(

z
N is a set of the Pauli matrices. In

strati"ed media the Hamiltonian is written as sums:
H

0
(z)"+MH

m
(z)#HI

m
(z)N, where H

m
(z)"<M

m
!

l( BM
m
, is the optical potential of the mth layer of the

thickness d
m
"z

m
!z

m~1
, z

m
is the coordinate of

the mth interface, and z
0
"0. The eigenvectors of

the reference HamiltonianH
0
(z) are factorized into

the products: DW(r)T"exp(ijq)Dt(z)T, where j is the
in-plane component of the wave vector k, q is the
lateral coordinate, and Dt(z)T is the two-component
vector in the neutron spin space.

The interaction with the reference Hamiltonian
H

0
causes the specular re#ection, and trans-

forms the vector of the incoming neutron state
Dt

*
(z)T"exp(ip

0
z)Dt

0
T into the "nal state vector

t
r
(z)"exp(!ip

0
z)RK Dt

0
T, where RK is the matrix of

the re#ection amplitudes and Dt
0
T is the vector of

the neutron initial spin state. Then, the probability
amplitude to "nd a re#ected neutron in a certain
state DrT is equal to the element SrDRK Dt

0
T of the 2]2

matrix RK . The re#ectivity R is de"ned as a mean

value R"DSrDRK Dt
0
TD2"1

4
TrMo(

0
RK `o( RK N, where the

density matrices of the polarizer, o(
0
, and the ana-

lyzer o( are parametrized as o(
0
"Dt

0
TSt

0
D"

M1#P
0
r( N and o("DrTSrD"M1#Pr( N, i.e. by the

initial polarization vector P
0

and the vector of the
polarization analysis P.

The cross section of the di!raction is propor-
tional to the averaged over the spin states modulus
of the matrix element SW&DHI DW*T squared, with
superscripts (i, f ) referred to the initial or "nal neu-
tron states. Due to the in-plane periodicity of the
Hamiltonian HI the di!raction occurs at Q"s,
and in its amplitude

f (p&, p*; Q)JSt&DHI Dt*T"+
m

St&
m
DHI

m
Dt*

m
T, (1)

where Dt*,&
m

T are the vectors of the neutron states
within the mth layers. These vectors may generally
be represented as a linear superposition

Dt
m
(z)T"Mexp(iu(

m
(z))tK

m
#exp(!iu(

m
(z))r(

m
NDt

0
T, (2)

of the transmitted and re#ected waves propagating
inside the layer. Here u(

m
(z)"p(

m
(z!z

m
), p( 2

m
"

p2
0
!q( 2

mc
, +2q( 2

mc
"2mH

m
(z), and Dt

m
T"tK

m
Dt
0
T,

Dr
m
T"r(

m
Dt
0
T, tK

m
"Dt

m
TSt

0
D is the transmission,

while r(
m
"Dr

m
TSt

0
D is the re#ection matrix. For

arbitrary non-collinear multilayered structure their
elements can, for instance, be computed by use of
the supermatrix approach which generalizes the
conventional matrix formalism [6] for the case of
the spin-1

2
particle interacting with a strati"ed mag-

netic media. Such a generalization is needed due to
the fact that entering the magnetic layer the neu-
tron wave is birefrigent into two with the wave
numbers p

mB
"Mp2

0
!q2

mcB
N1@2, which are the eig-

envalues of the operator p(
m

and q
mcB

are the critical
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wave numbers of the total re#ection for one or the
other spin component.

The re#ected wave is also split and four waves
with the wave numbers $p

mB
are travelling in the

layer. However, in the course of refraction neutron
spin may be #ipped and the matrices tK

m
and r(

m
are,

in general, not diagonal in the representation with
the quantization axis along the mean magnetic "eld
inside the layer.

After substitution Dt(z)T from Eq. (2) into Eq. (1)
one can express the amplitude f

m
"f

m
(p&, p*; s) of

di!raction from the mth layer via the atomic scat-
tering operator fK

m
"FN

m
#FM

m
(mM

m
r( ), where

FN
m
"bN

m
SN
m
, is the nuclear and FM

m
"bM

m
SN
m

is the
magnetic scattering amplitude, bN

m
is the nuclear,

and bM
m

is the magnetic scattering length, SN
m

is the
nuclear structure factor, and SM

m
is the magnetic

form-factor of the unit cell; mM
m
"m

m
!e(em

m
) is

the component of the unit vector m
m
"M

m
/M

m
,

perpendicular to the unit vector e directed along
the momentum transfer, and M

m
is the magnetic

moment of the ions in the mth layer. The operator
fK
m

does not commute with either p(
m
, or with tK

m
and

r(
m
. Therefore the equation for the scattering ampli-

tude contains a number of terms which may be
classi"ed if f

m
is represented as f

m
"SrDFK

m
Dt
0
T,

where the operator FK
m
, which transforms the in-

coming state into the "nal, is decomposed into the
sum: FK

m
"FK tt

m
#FK tr

m
#FK rt

m
#FK rr

m
. The partial

scattering operators FK tt
m
"tK &

m
FK tt

m
tK *
m
, transform the

transmitted into the layer wave to the wave "rst
scattered and then transmitted through the layer,
FK rr

m
"r( &

m
FK rr
m
r( *
m

transforms the initially re#ected
wave into that which is scattered and then re#ected,
while the operators FK tr

m
"tK &

m
FK tr
m
r( *
m
, and FK rt

m
"

r( &
m
FK rt

m
tK *
m
, mix re#ected and transmitted waves. The

component of the (super)matrix FK ab
m

(with Ma, bN"
Mt, rN) are written as

FK ab
m
"1

2
M[FN

m
#FM

m
(b

m
mM

m
)][1#(b

m
r)]Gab̀

`

# [FN
m
!FM

m
(b

m
mM

m
)][1!(b

m
r( )]Gab

~ ~

#FM
m
[(bM

m
r( )(Gab̀

~
#Gab

~`
)

! i(ba
m
r( )(Gab̀

~
!Gab

~`
)]N. (3)

Here b
m
, bM

m
"mM!b

m
!(b

m
mM) and ba

m
"

[mM]b
m
] are three orthogonal vectors, and Gabkl are

the Laue functions:

Gab̀
`
"Me*(u&

ma`r*
mb)!1N/Me*(/&

ma`(*
mb)!1N,

Gab̀
~
"Me*(u&

ma~r*
mb)!1N/Me*(/&

ma~(*
mb)!1N,

Gab
~~

"Gab̀
`
e~2**(r&

ma`r*
mb)~((&

ma`(*
mb)+,

Gab
~`

"Gab̀
~
e~2**(r&

ma~r*
mb)~((&

ma~(*
mb)+,

(4)

where /
ma"p

maam, and a
m

is the unit cell constant.
If one represents the matrices tK

m
and r(

m
in the

form [5]: tK
m
"t

0m
#(t

m
r( ), where t

0m
"1

2
TrMtK

m
N and

the vector t
m
"1

2
TrM(tK

m
r( )N, and r(

m
"r

0m
#(r

m
r( ),

where r
0m

"1
2
TrMr(

m
N and r

m
"1

2
TrM(r(

m
r( )N, then us-

ing Eqs. (3) and (4) one can readily calculate the
matrix elements FK ab

m
. However, the result looks

quite lengthy, and we do not bring it into the paper.
Instead, we note, that these calculations are needed
to determine the parameters of scattering operator
FK

m
. If it is represented as FK

m
"F

0m
#(F

m
r( ), and

F"bF
1
, with DbD"1 then F

0,1
"1

2
[F

`
$F

~
],

where F
B

are the eigenvalues of the matrix FK .
This representation, leads us to the general equa-

tion for the polarized neutron scattering cross sec-
tion:

dp
dX

"1
2
MDF

0
D2[1#(P

0
P)]#DFD2[1!(P

0
P)]N

#ReMFH
0
(F[P

0
#P])#(FHP

0
)(FP)N

!ImMFH
0
(F[P

0
]P])

#1
2
(P

0
!P) [F*]F]N, (5)

whereF
0
and F are the sums of F

m0
and F

m
over

the whole sequence of layers.
Usually only the projections $P"$(Pb

0
)

onto the direction of the incident polarization
b
0

can be analyzed for initial polarization vectors
P
0
"$P

0
b
0
, where Db

0
D"1, P

0
and P are the

e$ciencies of the polarizing and analyzing devices,
respectively. Hence, in an ideal case of P"P

0
"1

the equations for four scattering cross sections
(dp/dX)kl: non-spin-#ip if MklN"M$$N, and
spin-#ip, if MkkN"M$GN, have the form:

dp&*

dX
``

"KF`
cos2

c
2
#F

~
sin2

c
2K

2
, (6)

dp&*

dX
~ ~

"KF`
sin2

c
2
#F

~
cos2

c
2K

2
, (7)
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Fig. 1. Contour plots of the cross sections of: (##) and (!!)
non-spin-#ip, (#!) spin-#ip, neutron di!raction from
(70Fe/30Si) multilayer computed in accordance with Eqs. (6)}(8)
as a function of the scattering angles a& at the incidence angles a*.

dp&*

dX
`~

"

dp*&

dX
~`

"

1

4
DF

`
!F

~
D2sin2 c, (8)

where c is the angle between the vectors b
0

and b.
For the regular multilayered structure the sum-

mation over m can be performed analytically [7]
and the results for the case of the magnetized fer-
romagnetic multibilayer are illustrated in Fig. 1,
where the di!raction intensities for the periodic
stacking of 20 bilayer (70Fe/30Si) are plotted as
a functions of the incident, a

*
, and scattered, a

&
,

glancing angles.
In Fig. 1 one can observe a set of features usual

for such systems: peaks of intensity in the range of
total re#ection, quasi-Bragg sheets [8], etc. How-
ever, we should note some new features, which are
not appropriate for a non-magnetic system. First is
that the position of the peak intensities are di!erent
for ## and !! scattering. This is clearly due
to the di!erent refraction indices for the neutrons
with the positive and negative spin projections onto
the magnetization direction. The second e!ect is the
spin-#ip di!raction. It occurs in the fairly saturated
magnetic state even at b

0
DDb, when the spin-#ip pro-

cess is impossible in the specular channel. In the case
qO0 spin may be #ipped by the microscopic mag-
netic "elds created by the atomic magnetic moments.
In the spin-#ip di!raction neutron experience
transition between the states split by the Zeeman
e!ect and, thus, changes the absolute value of its
momentum projection normal to the surface. This
brings distortion into the intensity distribution
over the (a

*
, a

&
)-plane, as it was "rst observed

in the recent experiments and clearly seen in Figs. 3
and 4 of Ref. [1]. The e!ect is the most pronounced
if at least one of the angles, a

*
, or a

&
, is small.
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