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Supermatrix approach to polarized neutron reflectivity from arbitrary spin structures
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The general equation for polarized neutron reflectivity is derived and presented in an invariant vector form
that is independent of the selection of a specific coordinate system. Using this representation the reflectivity
may easily and thoroughly be analyzed for arbitrary orientation of the sample, the incident beam polarization,
and the direction of polarization analysis. It is shown that the complete information that can be extracted from
experimental data by a detailed polarization analysis is given by the following quantities: the two complex
eigenvalues of the reflectance matrix and a complex vector defining a direction that coincides with the direction
of the magnetizations in a collinear magnetization arrangement, but depends on the momentum transfer in the
general noncollinear case. A supermatrix formalism is developed and illustrated that allows us to calculate
these parameters for multilayers with arbitrary mutual orientation of the magnetizations in individual layers.
Our approach opens an alternative way to a complete and unambiguous characterization of artificial magnetic
structures of high complexityS0163-182809)04443-4

l. INTRODUCTION provide a rigorous dynamical approach® The multiplica-
tion of transfer matrices corresponds to recursion steps in the

The determination of magnetization profiles in complexwell-known Parratt formalism’ with the difference that the
magnetic systems has been in the focus of scientific interedatter does not take into account the spin.
for several decadés™ Major efforts have been undertaken ~ The matrix approaches routinely used so far allow to cal-
to reveal and understand the various types of coupling thatulate polarized neutron reflectivity from any given spin
govern the magnetic structure of both naturally and artifi-Structure. General softyvare co<_jes mcludmg all the necessary
cially grown systems on an atomic scale. As demonstrategoordinate transformations do in fact exist at a few laborato-
by a helical sequence in a Fe/La multilayétoday it seems €S- However, in the explicit equations published so-fr
feasible to control the magnetic structure of multilayers on destrictions have been imposed on the orientation of the neu-
microscopic scale by applying external magnetic fields dur-f“on polanzapon _and/or the magnet|zat|ons in the_multllayer
ing growth, which opens ways to the production of artificial In order to simplify notation. It is one of the merits of our
devices with taylored magnetic properties. Both improving?'osed. supermatrix formalism pregented in _thls paper thr_;lt_ it
quality and rising complexity of magnetic multilayers are to 'S €asily adaptable to any experimental situation: Explicit
be expected in the future, and both aspects will result in afgduations are presented in an invariant vector form rendering
increasing demand for improved experimental techniquegoord'”ate transformations unnecessary. The treatment pro-

and theoretical concepts providing detailed and accurate in/ides a rigorous formalism that is readily applied to layered

formation about the microscopic structure of complex mag-Systéms of arbitrary complexity.
netic systems.

Neutron reflectometry, as a simple but powerful tech-
nigque, has been widely used in the past for the characteriza-
tion of layered magnetization profil&s*® In principle, a A. Reflectivity
three-dimensional polarization analysis of the reflected beam
can provide information even about subtle details of
multilayer structuré. The outstanding sensitivity of the - - Rt
method to the vector magnetization profile in a sample issented as a sur{=>7,, where the Hamiltoniansiy,
mediated by spin-flip processes. In order to account for spirF V(z) — B (z) characterizing the individual layers in-
flip, a quantum-mechanical treatment is required, which renelude a nuclear potentidd,,(z) and a magnetic contribution
ders the interpretation of neutron reflectivity from complex proportional to the magnetic inductids),(z) within the mth
noncollinear spin structures less trivial than for x-rays. Ma-layer. As we will restrict our considerations to the small
trix formalisms are well suited for practical application and angle regimey,, andB,,, may be approximated by constant

II. THEORY

The total Hamiltonian determining neutron reflectivity
afrom a layered system as illustrated in Fig. 1 may be repre-
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T o R= 1 (Ro+Ra), ®)

a whereR,=Tr{R} andR=Tr{Ra}. The latter quantities may

3

% also be written in the formRy,=R,+R_ and R=(R,
—R_)b, with R.. denoting thelcomplex eigenvalues of the
reflectance matrix ant, e C2 with b,zzl. By means of Eq.

: (3) the four(complex elements of the matriR are param-
n v Subsurte eterized by a complex numbd®, and a complex three-
component vectoR. The quantitieR; andR depend only
FIG. 1. Sketch of a multilayer with magnetization profitgz). on the nuclear and magnetic structure of the multilayer, the
In this example one would have to divide layers 2 and 3 further intocritical wave numbers, and the wave-number transfeg, 2
thinner slabs to obtain constant single-layer magnetizations. Thgut not on the polarization of the neutron beams. They are

f;'?;';:;tigdbana;ﬁe; characteristicirection and efficiencyare o4 ity derived from the reflectance matfxafter the latter
P Yo : has been calculated within the framework of a conventional

quantities within each layer. More general profiles can bematrlx formalisni or, preferably, the supermatrix formalism

modeled by further dividing each layer into thin sidbahe outlined in Sec. Il B below. It is WOI"[hWhHE to mention that,
when the sample is rotated around its surface normal, the

magnetic moment of the neutron will be treated as an opera- :
” . N~ A A _vector R transforms as a normal vector, exactly like the

tor u=po, where o=(0y,0y,0;) is the vector of Pauli  gjngle-layer magnetizations fixed to the sample.

matrices, and the eigenvectdpg of the HamiltoniarH are The density matrices in Eq2) may be represented in a

two-component vectors in the neutron spin space. In thgorm very similar to Eq.(3), namely>1%%°

field-free region above the surfacen€0) these eigenvec-
tors may be written as po=3%(1+Pyo) and p=1%(1+Po) (4)

m(z) Z

NN

| X(2))= exp(ipoz)|to) + exp(—ipe2)[ro), (1) with Py=Pyn, andP=Pn, wheren, andn are unit vectors
where 2, is the wave-number transfer perpendicular to theln the directions of the initial polarization and the polariza-
surface. The first term describes the propagation of the intion analysis, and®, and P are the polarization efficiencies
coming and the second one that of the reflected neutrofif the polarizing and analyzing device, respectively.
wave. In the course of reflection the vectag) is trans- Inserting Egs.(3) and (4) into Eq. (2) and utilizing the
formed into the vectofr,) by means of the reflectance ma- relation (ao)(bo)=(ab)+i(axb)o for abeC® leads to
trix R. It is important to realize, however, that it is not the the final result
reflectance matriX® but only the reflectivityR, which is N 5 )
accessible in an experiment. The latter is given by the mean = & {[Rol 1+ (PoP)]+[RI[1~ (PoP) ]}
value of the squared modulus of the matrix elem@nt )
=(r|R|to), where the average is taken with respect to the + 7RE[RG R(Py+P) + (R* Po) (RP)}
density matrix of the initial stategy=|to){to|, and the one
of the final statesp=|r)(r|. The density matrices are de-
fined by the polarizer and analyzer characteristics. The final

—im RSR(POXP)Jr;(R*XR)(PO—P) . (5

result may be represented in the fért Although this equation looks complicated at first sight, it
boils down to very simple expressions of practical use when
R=|(r|R|to)|?=Tr{pRpoR"}. (2) itis applied to typical experimental situations. We will illus-

trate that in Sec. Ill. At this place, however, we would like to

It is evident from Eq.(2) that the reflectivityR is influ-  point out that the basic E@5) describes, for any experimen-
enced by two fundamentally different kinds of quantities, thetal arrangement, théneasurableneutron reflectivity from a
reflectance matrix characterizing the sample and the densigy, iilayer whose reflectance matrik is connected WithR,
matrices characterizing the specific polarizer-analyzer consnqr according to Eq(3). It should also be emphasized,
figuration. However, Eq(2) does not specify the dependence that Eq, (5) represents the reflectivity in an invariant vector
of R on the polarization directions and the sample orientagorm, thereby avoiding the limitations of other theoretical
tion explicitly, which would facilitate its application to ex- approaches using an explicit notation in a certain coordinate
periments. Therefore we will derive a more explicit EXpres-gysten? 21918 A very similar general formula may be de-

sion for R in the following. In order to avoid a complicated rjyed for grazing-angle neutron diffraction as briefly outlined
notation we will use a vector representation of all the quan;, ref. 21.

tities involved in Eq.(2) that contains the vector of Pauli

matriceso. As a major benefit of this procedure, the final

result will be invariant under coordinate transformations, in

contrast to former approaches to that problem. Applying Eq. (5) to practical cases requires the calcula-
To start with, one has to note that the reflectance matrition of the reflectance matriR from which R, andR are

R, as any (22) matrix, can be decomposed into a sum ofderived. For that purpose we use a supermatrix formalism

two terms according {6%° with transfer supermatriceS,, that transform the neutron

B. Reflectance matrix
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convenient coordinate system may be used to define the
components oB,, for numerical calculations.

The final step is to derive the reflectance maffitrom

the transfer supermatr, that transforms the neutron wave
function at the sample surface into the wave function at the
semi-infinite substratdayern+1), that is

X))\ [ 1x(0))

X' (z)) | =Sl [x'(0) ©
with the four (2x2) elements ofS, given by S/
10 A =37, =SSN, .S, where p,ve{1,2. It can

000 002 004 006 008 010 be seen from Eq(1) that |x(0))=(1+R)|te) and|x'(0))
Wave-number transfer 2p, (A') =ipo(1—R)|ty). Correspondingly |x(z,))=T|t,) and

FIG. 2. Calculated non-spin-flip and spin-flip reflectivity for a | X’ (1)) =ipsT|to), whereT is the transmittance matrix.AAf-
FeCr multilayer and an experimental setup as depicted in the inseter inserting these quantities into E®) and eliminatingT
The multilayer is made up of four identical blocks of two FeCr bi- one immediately obtains
layers each. The incident beam was assumed to be fully polarized
along the x axis. The critcal wave numbers wergLS R=A"1.{(82_ip-182Yp. — (814 ip.S12 10
=0.0128 A%, g-*=0.0061 A* (corresponding to magnetically {(Sa=1Po "Sio)Po~ (St 1PoSe) Pt (10)
saturated Fe Iaye)randqg’:qceaAS:O.O%Z A1 The thickness of SR &22 i —1821 Ql1_ ;. &l2 2

with A= +i + —i n =
the Fe layers was set to 53 A and that of the Cr layers to 17 A. The_t 2112 ( hOt Po .S“;‘%po (t °t| PoSio) Ps s d pih {Po b
magnetizations in adjacent Fe layers embrace an angle of 50°,tglst0(}a » WNhereqsc IS the cnitical wave number in the sub-

which produces a super-structure maximum at the half-order pea§ . .
position 20,=0.045 A~! in both reflectivity curves. The slight Note that Eqs(7) and(10) transform into equations well

shift of these maxima against the nominal position marked by th&nown from the theory of electromagnetic watfeas soon
arrow is due to refraction. as the spin-nature of the neutron is ignored by replacing the

four (2X 2) elements of the transfer supermatrices in 4.
wave function|x(z)) and its derivativex’(z)), both evalu- by their scalar counterparts, e.g., @asl, by cospydy,.
ated at the positioz=z,,_, of the inner boundary of layer
m—1 (see Fig. 2, into the corresponding quantities of layer Il DISCUSSION
m according t6 '

Reflectivity

The supermatrix approach to neutron reflectivity pre-
IX(zm)) \ [ [x(Zm-1) sented in this paper may be regarded as a straightforward
Ix'(Zm)) =S, X (Zm-1)) |- (6)  extension of the theory of reflection for electromagnetic
wave$* to the case of neutrons. The clear structure of the
Owing to the continuity conditions at each interface betweerl;orr.na“.Sm prov!des transparency 1o thg physics behind,
. , .- which is one of its merits. A second merit is that the formal-
adjacent layers, the transfer supermatrices are explicitl

Ysm is very general and immediately applicable to any ex-

H 2-24
given by perimental arrangement, because the notation does not de-
a1l al2 - A oA pend on the selection of a specific coordinate system. Third,
- S S COSPrmdr P SiNPrr( the formalism is well suited for implementation in a fitting
Sm=| & &2[=| 5 sing D - routine like that available from our internet homepag&he
m m pm Smpmdm Cospmdm p

numerical simulation of reflectivity data takes typically only
(7) a few seconds per parameter set, including the calculation of
In this equationd,, is the thickness of thenth layer and the elgenvalueg of the. reflectance matr|>f, th}a vebforthe
Ao so ~y 2 7 . total cross section defined lo/dQ=Tr{Rpy,R*} and the
Pm=1Po— Ome} " Wheregm,=2m/A%. Hy . Instead of writ- polarization vector of the reflected bedrh!® In addition,
ing down the four (2« 2) elements of the supermatr,  our software delivers the non-spin-flip and spin-flip reflec-
explicitly, we use again the Pauli matrix representafiéi tivities typically measured in a polarized neutron reflection
A o~ experiment®® Finally, for a fixed wave-number transfer
S =3 {[Shi +Sh1+(Bro)[Shi—Shi1}, (80 2p, the dependence of the reflectivity on an azimuthal rota-
0 . . . tion of the sample may be calculated. Interestingly, the latter
whereB,= By, /|By is a unit vector directed along the mag- 1, hrovide valuable information on the magnetization pro-
netic fieldBy, in the mth layer andS;;.. are the eigenvalues fjje in the sample as we will discuss in the following.
of the matricesS”, e.g., Srlnli= COSPm+dm, With pr- In a typical polarized neutron reflection experiment one
={p3— .. }? and g.. denoting the critical wave num- measures the non-spin-flip and spin-flip reflectivitied's"™
bers of total reflection for neutrons with spin parallel and=R(P=P,) andR SF=R(P=—P,) for certain orientations
antiparallel toB,,,. Due to the invariant form of Eq5) any  of Py. For this typical case Eq5) may be simplified to
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RNF=7 [Ry+Ry |2, (11) 0.05 —

RS=1(IR>= R[>+ FIM(RXR*), (12

where the suffixes |” denote the projection orP,, e.g.,

R||=RPq. If we expressR, andR in terms of the eigenval-
ues of the reflectance matrix and the vedbpr then Egs.
(11) and(12) may be written as

Reflectivity

RNSF=|(R, +R_)+ (R, —R_)cosy|?, (13)

RSF=%|R+—R,|2><[|br|2—|COSy|2+Im(brxbf)H]é ) Azimuth angle © (rad)
14

) ) FIG. 3. Variation of the non-spin-flip and spin-flip reflectivity in
where the(complex angle y is defined by cog=DbP;. For  gependence of the azimuthal rotation angles calculated for the
collinear magnetization profiled, is real valued and coin- sample and the experimental setup depicted in Fig. 3. The data are
cides with the magnetization direction in the layers. In thatcalculated for a wave-number transfepy2=0.045 A" corre-

case, Eq(14) may be simplified to sponding to the half-order position marked by the arrow in Fig. 2.
The thin-solid line represents another non-spin-flip signal calculated
RSF=%1|R,—R_|?sirty, (15)  according to Eq(15) under the assumption of a collinear magneti-

zation profile. In contrast t&® NSF, it obeys the symmetry relations
and vy is thereal angle between the magnetization directiongiven in the text.
in the sample and the polarization vec®y of the incident )
beam. above and may be shown to cover the whole set of functions

In the following, we will illustrate and discuss these equa-that can be calculated on tth basis of Etp). ,
tions by means of the noncollinear magnetization profile de-, 1he spin-flip reflectivityR ®" shows an other characteris-

picted in Fig. 2. The multilayer is made up of eight identical tic deviation from the behavior expected for a collinear mag-

FeCr bilayers deposited on GaAs with zero magnetization ift€tization profile. As shown in Fig. 3, it does not vanish for
the Cr layers and magnetically saturated Fe layers. Motivate@ny value ofw, which is in contradiction to Eq15) unless

by previous experimerftave assumed that the direction of there is a magnetization component perpendicular to the sur-
the Fe magnetizations oscillates with a period of two bilayerdace. However, frequently this can be ruled out in practice,
and the magnetizations in adjacent Fe layers embrace any’ce the perpendicular component would also be present
angle of 50°. The non-spin-flip and spin-flip reflectivity 2°0Ve the surface due to continuity requirements. As evi-

curves in Fig. 2 are calculated according to E() and ~ denced by Fig. 3, however, in the noncollinear case a per-
(14) for an incident beam polarizatid®, = x°, wherex? de- pendicular magnetization component is not required to pro-
notes the unit vector along theaxis. ' duce a constant offset in the azimuthal variatiorRot" with

The example depicted in Fig. 2 is well suited to reveal a®- This may be explained by the fact that in a noncollinear
fundamental difference between collinear and noncollineaffangement not all the Fe magnetizations can be aligned
magnetization profiles in regard to polarized neutron reflecWith the polarization of the incident beam simultaneously;
tometry. A general analysis of Eq&L3) to (15) shows that therefore, there is always at least one Fe layer causing spin
the presumption of a collinear magnetization profile seri-flip- ) ) o L .
ously reduces the variety of reflectivity data sets that can be While the offset in the spin-flip intensity in an azimuthal
modeled. This may be most easily demonstrated by the dd&flectivity scan might also be caused by a constant back-
pendence of the reflectivity on an azimuthal rotation of thedround or an imperfect polarizer or analyzer efficiency in a
sample. This dependence turns out to be qualitatively differ'€a! €xperiment, the fundamentally altered symmetry of the
ent for collinear and noncollinear arrangements, respectively?oN-SPin-flip intensity may serve as an unambiguous crite-

due to the fact that in the general noncollinear dasandy ~ 1on for a noncollinear spin structure in a specific sample. On
are complex quantities. the basis of our results we suggest to record an azimuthal

In the collinear case an azimuthal rotation of the sampld€fl€Ctivity scan in any neutron reflection experiment where a
around its surface normal would result in a variation of theoncollinear spin structure is to be expected in the sample. In
non-spin-flip intensityR NSF with the rotation angles that contrast to a complete setup for three—dlmensmnal_po]arlza—
obeys R NSF(w) = R NSF(— w) and RNSF(7r+ w) =R NSF( = tion anal_yS|s a §ample rqtatlon stagg may be easny imple-

mented in existing experimental stations. Special measures
_may be required to examine samples in an external magnetic
eﬁeld rotated together with the sample, since any influence of
ﬁhe field on the neutron beams outside the sample has to be
favoided.

—w), if one definesw:=0 for a situation where the projec-
tions of b, and P, onto the surface are collinear. Both sym
metries are usually broken in case of a noncollinear magn
tization structure as evidenced by the example illustrated i
Fi%.SF?). The thin-solid line represents an approximation o
R _ that has b(_een_ calculated under the as_sumptécF)n of a V. SUMMARY

collinear magnetization arrangement according/RQp;ox

=A+B cos—wp)+CcoF(w—w,) Wwith wg,A,B,Cel. We combined several theoretical concepts developed for
This approximation obeys the symmetry relations giventhe analysis of neutron reflection and diffraction data to an
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exact, but still simple, closed matrix formalism that may bereflectivity curve in order to avoid misinterpretation of mea-
directly applied to calculate the measurable reflectivity fromsured neutron reflectivity data.

multilayer systems of in principle arbitrary complexity.

Analogously to the Parratt formalism our supermatrix ap-

proach also provides an approximate solution for continuous ACKNOWLEDGMENTS
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