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Supermatrix approach to polarized neutron reflectivity from arbitrary spin structures
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The general equation for polarized neutron reflectivity is derived and presented in an invariant vector form
that is independent of the selection of a specific coordinate system. Using this representation the reflectivity
may easily and thoroughly be analyzed for arbitrary orientation of the sample, the incident beam polarization,
and the direction of polarization analysis. It is shown that the complete information that can be extracted from
experimental data by a detailed polarization analysis is given by the following quantities: the two complex
eigenvalues of the reflectance matrix and a complex vector defining a direction that coincides with the direction
of the magnetizations in a collinear magnetization arrangement, but depends on the momentum transfer in the
general noncollinear case. A supermatrix formalism is developed and illustrated that allows us to calculate
these parameters for multilayers with arbitrary mutual orientation of the magnetizations in individual layers.
Our approach opens an alternative way to a complete and unambiguous characterization of artificial magnetic
structures of high complexity.@S0163-1829~99!04443-4#
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I. INTRODUCTION

The determination of magnetization profiles in compl
magnetic systems has been in the focus of scientific inte
for several decades.1–11 Major efforts have been undertake
to reveal and understand the various types of coupling
govern the magnetic structure of both naturally and ar
cially grown systems on an atomic scale. As demonstra
by a helical sequence in a Fe/La multilayer,11 today it seems
feasible to control the magnetic structure of multilayers o
microscopic scale by applying external magnetic fields d
ing growth, which opens ways to the production of artific
devices with taylored magnetic properties. Both improvi
quality and rising complexity of magnetic multilayers are
be expected in the future, and both aspects will result in
increasing demand for improved experimental techniq
and theoretical concepts providing detailed and accurate
formation about the microscopic structure of complex m
netic systems.

Neutron reflectometry, as a simple but powerful tec
nique, has been widely used in the past for the characte
tion of layered magnetization profiles.6–16 In principle, a
three-dimensional polarization analysis of the reflected be
can provide information even about subtle details of
multilayer structure.8 The outstanding sensitivity of th
method to the vector magnetization profile in a sample
mediated by spin-flip processes. In order to account for s
flip, a quantum-mechanical treatment is required, which r
ders the interpretation of neutron reflectivity from compl
noncollinear spin structures less trivial than for x-rays. M
trix formalisms are well suited for practical application a
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provide a rigorous dynamical approach.2,3,9 The multiplica-
tion of transfer matrices corresponds to recursion steps in
well-known Parratt formalism,17 with the difference that the
latter does not take into account the spin.

The matrix approaches routinely used so far allow to c
culate polarized neutron reflectivity from any given sp
structure. General software codes including all the neces
coordinate transformations do in fact exist at a few labora
ries. However, in the explicit equations published so far3,18

restrictions have been imposed on the orientation of the n
tron polarization and/or the magnetizations in the multilay
in order to simplify notation. It is one of the merits of ou
closed supermatrix formalism presented in this paper tha
is easily adaptable to any experimental situation: Expl
equations are presented in an invariant vector form rende
coordinate transformations unnecessary. The treatment
vides a rigorous formalism that is readily applied to layer
systems of arbitrary complexity.

II. THEORY

A. Reflectivity

The total Hamiltonian determining neutron reflectivi
from a layered system as illustrated in Fig. 1 may be rep
sented as a sumĤ5(Ĥm , where the HamiltoniansĤm

5Vm(z)2m̂Bm(z) characterizing the individual layers in
clude a nuclear potentialVm(z) and a magnetic contribution
proportional to the magnetic inductionBm(z) within themth
layer. As we will restrict our considerations to the sm
angle regime,Vm andBm may be approximated by consta
16 073 ©1999 The American Physical Society
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quantities within each layer. More general profiles can
modeled by further dividing each layer into thin slabs.17 The
magnetic moment of the neutron will be treated as an op
tor m̂5mŝ, where ŝ5(ŝx ,ŝy ,ŝz) is the vector of Pauli
matrices, and the eigenvectorsux& of the HamiltonianĤ are
two-component vectors in the neutron spin space. In
field-free region above the surface (m50) these eigenvec
tors may be written as

ux~z!&5 exp~ ip0z!ut0&1 exp~2 ip0z!ur 0&, ~1!

where 2p0 is the wave-number transfer perpendicular to
surface. The first term describes the propagation of the
coming and the second one that of the reflected neu
wave. In the course of reflection the vectorut0& is trans-
formed into the vectorur 0& by means of the reflectance m
trix R̂. It is important to realize, however, that it is not th
reflectance matrixR̂ but only the reflectivityR, which is
accessible in an experiment. The latter is given by the m
value of the squared modulus of the matrix element^r ur 0&
5^r uR̂ut0&, where the average is taken with respect to
density matrix of the initial states,r̂05ut0&^t0u, and the one
of the final states,r̂5ur &^r u. The density matrices are de
fined by the polarizer and analyzer characteristics. The fi
result may be represented in the form2,19

R5u^r uR̂ut0&u25Tr$r̂R̂r̂0R̂1%. ~2!

It is evident from Eq.~2! that the reflectivityR is influ-
enced by two fundamentally different kinds of quantities, t
reflectance matrix characterizing the sample and the den
matrices characterizing the specific polarizer-analyzer c
figuration. However, Eq.~2! does not specify the dependen
of R on the polarization directions and the sample orien
tion explicitly, which would facilitate its application to ex
periments. Therefore we will derive a more explicit expre
sion forR in the following. In order to avoid a complicate
notation we will use a vector representation of all the qu
tities involved in Eq.~2! that contains the vector of Pau
matricesŝ. As a major benefit of this procedure, the fin
result will be invariant under coordinate transformations,
contrast to former approaches to that problem.

To start with, one has to note that the reflectance ma
R̂, as any (232) matrix, can be decomposed into a sum
two terms according to19,20

FIG. 1. Sketch of a multilayer with magnetization profilem(z).
In this example one would have to divide layers 2 and 3 further i
thinner slabs to obtain constant single-layer magnetizations.
polarizer and analyzer characteristics~direction and efficiency! are
represented byP0 andP.
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R̂5 1
2 ~R01Rŝ!, ~3!

whereR05Tr$R̂% andR5Tr$R̂ŝ%. The latter quantities may
also be written in the formR05R11R2 and R5(R1

2R2)br with R6 denoting the~complex! eigenvalues of the
reflectance matrix andbrPC3 with br

251. By means of Eq.

~3! the four ~complex! elements of the matrixR̂ are param-
eterized by a complex numberR0 and a complex three
component vectorR. The quantitiesR0 andR depend only
on the nuclear and magnetic structure of the multilayer,
critical wave numbers, and the wave-number transfer 2p0,
but not on the polarization of the neutron beams. They
readily derived from the reflectance matrixR̂ after the latter
has been calculated within the framework of a conventio
matrix formalism3 or, preferably, the supermatrix formalism
outlined in Sec. II B below. It is worthwhile to mention tha
when the sample is rotated around its surface normal,
vector R transforms as a normal vector, exactly like th
single-layer magnetizations fixed to the sample.

The density matrices in Eq.~2! may be represented in
form very similar to Eq.~3!, namely1,2,19,20

r̂05 1
2 ~11P0ŝ! and r̂5 1

2 ~11Pŝ! ~4!

with P05P0n0 andP5Pn, wheren0 andn are unit vectors
in the directions of the initial polarization and the polariz
tion analysis, andP0 andP are the polarization efficiencie
of the polarizing and analyzing device, respectively.

Inserting Eqs.~3! and ~4! into Eq. ~2! and utilizing the
relation (aŝ)(bŝ)5(ab)1 i(a3b)ŝ for a,bPC3 leads to
the final result

R5 1
8 $uR0u2@11~P0P!#1uRu2@12~P0P!#%

1 1
4 Re$R0* R~P01P!1~R* P0!~RP!%

2 1
4 ImH R0* R~P03P!1

1

2
~R* 3R!~P02P!J . ~5!

Although this equation looks complicated at first sight,
boils down to very simple expressions of practical use wh
it is applied to typical experimental situations. We will illus
trate that in Sec. III. At this place, however, we would like
point out that the basic Eq.~5! describes, for any experimen
tal arrangement, the~measurable! neutron reflectivity from a
multilayer whose reflectance matrixR̂ is connected withR0
and R according to Eq.~3!. It should also be emphasized
that Eq.~5! represents the reflectivity in an invariant vect
form, thereby avoiding the limitations of other theoretic
approaches using an explicit notation in a certain coordin
system.3,9,10,18 A very similar general formula may be de
rived for grazing-angle neutron diffraction as briefly outline
in Ref. 21.

B. Reflectance matrix

Applying Eq. ~5! to practical cases requires the calcu
tion of the reflectance matrixR̂ from which R0 and R are
derived. For that purpose we use a supermatrix formal
with transfer supermatricesŜm that transform the neutron

o
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wave functionux(z)& and its derivativeux8(z)&, both evalu-
ated at the positionz5zm21 of the inner boundary of laye
m21 ~see Fig. 2!, into the corresponding quantities of lay
m according to22

S ux~zm!&

ux8~zm!&D 5ŜmS ux~zm21!&

ux8~zm21!&D . ~6!

Owing to the continuity conditions at each interface betwe
adjacent layers, the transfer supermatrices are explic
given by22–24

Ŝm5S Ŝm
11 Ŝm

12

Ŝm
21 Ŝm

22D 5S cosp̂mdm p̂m
21sin p̂mdm

2 p̂m sin p̂mdm cosp̂mdm
D .

~7!

In this equation,dm is the thickness of themth layer and
p̂m5$p0

22q̂mc
2 %1/2, whereq̂mc

2 52m/\2
•Ĥm . Instead of writ-

ing down the four (232) elements of the supermatrixŜm
explicitly, we use again the Pauli matrix representation19,20

Ŝm
mn5 1

2 $@Sm1
mn 1Sm2

mn #1~Bm
0 ŝ!@Sm1

mn 2Sm2
mn #%, ~8!

whereBm
0 5Bm /uBmu is a unit vector directed along the ma

netic fieldBm in the mth layer andSm6
mn are the eigenvalue

of the matricesŜm
mn , e.g., Sm6

11 5 cospm6dm, with pm6

5$p0
22qmc6

2 %1/2 and qmc6 denoting the critical wave num
bers of total reflection for neutrons with spin parallel a
antiparallel toBm . Due to the invariant form of Eq.~5! any

FIG. 2. Calculated non-spin-flip and spin-flip reflectivity for
FeCr multilayer and an experimental setup as depicted in the in
The multilayer is made up of four identical blocks of two FeCr b
layers each. The incident beam was assumed to be fully polar
along the x axis. The critical wave numbers wereqc1

Fe

50.0128 Å21, qc2
Fe 50.0061 Å21 ~corresponding to magneticall

saturated Fe layers! andqc
Cr5qc

GaAs50.0062 Å21. The thickness of
the Fe layers was set to 53 Å and that of the Cr layers to 17 Å.
magnetizations in adjacent Fe layers embrace an angle of
which produces a super-structure maximum at the half-order p
position 2p050.045 Å21 in both reflectivity curves. The sligh
shift of these maxima against the nominal position marked by
arrow is due to refraction.
n
ly

convenient coordinate system may be used to define
components ofBm for numerical calculations.

The final step is to derive the reflectance matrixR̂ from
the transfer supermatrixŜtot that transforms the neutron wav
function at the sample surface into the wave function at
semi-infinite substrate~layer n11), that is

S ux~zn!&

ux8~zn!&D 5ŜtotS ux~0!&

ux8~0!&D ~9!

with the four (232) elements of Ŝtot given by Ŝtot
mn

5(l,h, . . . ,z51
2 Ŝn

mlŜn21
lh . . . Ŝ1

zn , where m,nP$1,2%. It can

be seen from Eq.~1! that ux(0)&5(11R̂)ut0& and ux8(0)&
5 ip0(12R̂)ut0&. Correspondingly ux(zn)&5T̂ut0& and
ux8(zn)&5 ipsT̂ut0&, whereT̂ is the transmittance matrix. Af-
ter inserting these quantities into Eq.~9! and eliminatingT̂
one immediately obtains

R̂5D̂21
•$~Ŝtot

222 ip0
21Ŝtot

21!p02~Ŝtot
111 ip0Ŝtot

12!ps% ~10!

with D̂5(Ŝtot
221 ip0

21Ŝtot
21)p01(Ŝtot

112 ip0Ŝtot
12)ps and ps5$p0

2

2qsc
2 %1/2, whereqsc is the critical wave number in the sub

strate.
Note that Eqs.~7! and ~10! transform into equations wel

known from the theory of electromagnetic waves24 as soon
as the spin-nature of the neutron is ignored by replacing
four (232) elements of the transfer supermatrices in Eq.~7!

by their scalar counterparts, e.g., cosp̂mdm by cospmdm.

III. DISCUSSION

The supermatrix approach to neutron reflectivity p
sented in this paper may be regarded as a straightforw
extension of the theory of reflection for electromagne
waves24 to the case of neutrons. The clear structure of
formalism provides transparency to the physics behi
which is one of its merits. A second merit is that the form
ism is very general and immediately applicable to any
perimental arrangement, because the notation does no
pend on the selection of a specific coordinate system. Th
the formalism is well suited for implementation in a fittin
routine like that available from our internet homepage.25 The
numerical simulation of reflectivity data takes typically on
a few seconds per parameter set, including the calculatio
the eigenvalues of the reflectance matrix, the vectorbr , the
total cross section defined byds/dV5Tr$R̂r0R̂1% and the
polarization vector of the reflected beam.1,2,19 In addition,
our software delivers the non-spin-flip and spin-flip refle
tivities typically measured in a polarized neutron reflecti
experiment.3,6,8 Finally, for a fixed wave-number transfe
2p0 the dependence of the reflectivity on an azimuthal ro
tion of the sample may be calculated. Interestingly, the la
may provide valuable information on the magnetization p
file in the sample as we will discuss in the following.

In a typical polarized neutron reflection experiment o
measures the non-spin-flip and spin-flip reflectivitiesR NSF

5R(P5P0) andR SF5R(P52P0) for certain orientations
of P0. For this typical case Eq.~5! may be simplified to
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R NSF5 1
4 uR01Ruuu2, ~11!

R SF5 1
4 ~ uRu22uRuuu2!1 1

4 Im~R3R* ! uu , ~12!

where the suffixes ‘‘uu ’’ denote the projection onP0, e.g.,
Ruu5RP0. If we expressR0 andR in terms of the eigenval-
ues of the reflectance matrix and the vectorbr , then Eqs.
~11! and ~12! may be written as

R NSF5u~R11R2!1~R12R2!cosgu2, ~13!

R SF5 1
4 uR12R2u23@ ubru22ucosgu21Im~br3br* ! uu#,

~14!

where the~complex! angleg is defined by cosg5brP0. For
collinear magnetization profilesbr is real valued and coin
cides with the magnetization direction in the layers. In th
case, Eq.~14! may be simplified to

R SF5 1
4 uR12R2u2 sin2g, ~15!

andg is the real angle between the magnetization directi
in the sample and the polarization vectorP0 of the incident
beam.

In the following, we will illustrate and discuss these equ
tions by means of the noncollinear magnetization profile
picted in Fig. 2. The multilayer is made up of eight identic
FeCr bilayers deposited on GaAs with zero magnetization
the Cr layers and magnetically saturated Fe layers. Motiva
by previous experiments8 we assumed that the direction o
the Fe magnetizations oscillates with a period of two bilay
and the magnetizations in adjacent Fe layers embrace
angle of 50°. The non-spin-flip and spin-flip reflectivi
curves in Fig. 2 are calculated according to Eqs.~13! and
~14! for an incident beam polarizationP05x0, wherex0 de-
notes the unit vector along thex-axis.

The example depicted in Fig. 2 is well suited to revea
fundamental difference between collinear and noncollin
magnetization profiles in regard to polarized neutron refl
tometry. A general analysis of Eqs.~13! to ~15! shows that
the presumption of a collinear magnetization profile se
ously reduces the variety of reflectivity data sets that can
modeled. This may be most easily demonstrated by the
pendence of the reflectivity on an azimuthal rotation of
sample. This dependence turns out to be qualitatively dif
ent for collinear and noncollinear arrangements, respectiv
due to the fact that in the general noncollinear casebr andg
are complex quantities.

In the collinear case an azimuthal rotation of the sam
around its surface normal would result in a variation of t
non-spin-flip intensityR NSF with the rotation anglev that
obeysR NSF(v)5R NSF(2v) and R NSF(p1v)5R NSF(p
2v), if one definesvª0 for a situation where the projec
tions of br andP0 onto the surface are collinear. Both sym
metries are usually broken in case of a noncollinear mag
tization structure as evidenced by the example illustrated
Fig. 3. The thin-solid line represents an approximation
R NSF that has been calculated under the assumption o
collinear magnetization arrangement according toR approx

NSF

5A1B cos(v2v0)1Ccos2(v2v0) with v0 ,A,B,CPR.
This approximation obeys the symmetry relations giv
t
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above and may be shown to cover the whole set of functi
that can be calculated on the basis of Eq.~15!.

The spin-flip reflectivityR SF shows an other characteris
tic deviation from the behavior expected for a collinear ma
netization profile. As shown in Fig. 3, it does not vanish f
any value ofv, which is in contradiction to Eq.~15! unless
there is a magnetization component perpendicular to the
face. However, frequently this can be ruled out in practi
since the perpendicular component would also be pre
above the surface due to continuity requirements. As e
denced by Fig. 3, however, in the noncollinear case a p
pendicular magnetization component is not required to p
duce a constant offset in the azimuthal variation ofR SF with
v. This may be explained by the fact that in a noncolline
arrangement not all the Fe magnetizations can be alig
with the polarization of the incident beam simultaneous
therefore, there is always at least one Fe layer causing
flip.

While the offset in the spin-flip intensity in an azimuth
reflectivity scan might also be caused by a constant ba
ground or an imperfect polarizer or analyzer efficiency in
real experiment, the fundamentally altered symmetry of
non-spin-flip intensity may serve as an unambiguous cr
rion for a noncollinear spin structure in a specific sample.
the basis of our results we suggest to record an azimu
reflectivity scan in any neutron reflection experiment wher
noncollinear spin structure is to be expected in the sample
contrast to a complete setup for three-dimensional polar
tion analysis a sample rotation stage may be easily im
mented in existing experimental stations. Special meas
may be required to examine samples in an external magn
field rotated together with the sample, since any influence
the field on the neutron beams outside the sample has t
avoided.

IV. SUMMARY

We combined several theoretical concepts developed
the analysis of neutron reflection and diffraction data to

FIG. 3. Variation of the non-spin-flip and spin-flip reflectivity i
dependence of the azimuthal rotation anglev as calculated for the
sample and the experimental setup depicted in Fig. 3. The data
calculated for a wave-number transfer 2p050.045 Å21 corre-
sponding to the half-order position marked by the arrow in Fig.
The thin-solid line represents another non-spin-flip signal calcula
according to Eq.~15! under the assumption of a collinear magne
zation profile. In contrast toR NSF, it obeys the symmetry relation
given in the text.
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exact, but still simple, closed matrix formalism that may
directly applied to calculate the measurable reflectivity fro
multilayer systems of in principle arbitrary complexit
Analogously to the Parratt formalism our supermatrix a
proach also provides an approximate solution for continu
magnetization profiles. The source code of our simulat
software is available from our internet homepage.25

Using our formalism, we demonstrated that in polariz
neutron reflection experiments an azimuthal sample rota
may provide direct evidence for noncollinear spin structur
The dependence of the reflected intensity on the azim
angle should be recorded at least at some positions in
R

e

A

,

-
s
n

d
n

s.
th
he

reflectivity curve in order to avoid misinterpretation of me
sured neutron reflectivity data.
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