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Abstract

A novel technique, polarized neutron re#ectometry with phase analysis (PNRPA), is suggested, in which not only the
moduli of re#ection matrix elements but also up to three phase di!erences are measured. It is realized in the scheme with
two #ippers and an analyzer, by re#ection of neutrons with the spin, in succession, parallel and antiparallel to two
inclined axes "xed to the sample. More detailed information about magnetic layered structures can be thus obtained. An
adequate mathematical formalism is given. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Both the magnitude and direction of magnetization can generally vary in thin "lms. One of the well-known
methods that can be used to study such structures is the magneto-optic Kerr e!ect (e.g. Ref. [1,2]). Electron
microscopy is irreplaceable in the study of details of the magnetic structure on the surface, but cannot be used
to study its depth dependence. This information for atomically thin layers can be obtained from low-energy
polarized electron re#ection [3].

The use of neutrons opens new, unrivalled possibilities. The sensitivity of specular neutron re#ection both
to magnitude and direction of magnetic "elds has been used in the study of magnetic multilayers (see reviews
[4,5]). If a magnetic structure to be studied is far from the surface of the material, neutrons may happen to be
the only tool permitting to get an insight into its details (an excellent example is Bloch's wall investigations
[6]).

In fact, polarized neutron re#ectometry (PNR) [7] became one of the basic methods of investigation of
magnetically complicated thin-"lm structures. This technique according to the scheme `polarizer-#ipper-
sample-#ipper-analyzera [8,9] (1D polarization analysis scheme) is reduced to measurement of the 4 moduli
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of the neutron re#ection matrix elements. Neutrons are initially polarized either `upa (#) or `downa (!)
the guide "eld. If P
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where kB
z

are two eigenvalues of the normal-to-the-surface component of the wave vector operator of the
incident neutron (here and further the z-axis is assumed to be along the surface normal).

It is also worth noting that the four re#ectivities can be measured with one #ipper (before the sample), if
measurements with the analyzer removed (R
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and R

~
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A novel technique, polarized neutron re#ectometry with phase analysis (PNRPA), in which not only the
moduli (non-spin-#ip and spin-#ip re#ectivities) of re#ection matrix elements but also up to three phase
di!erences are measured, is suggested in the present paper.

2. Full neutron re6ectometry

Generally, the spin of the incident neutron is inclined to the guide "eld. If Dt
3
(z)T and Dt

*
(z)T are the spinors

of the re#ected and incident neutron waves, accordingly, and r is a representative matrix of the re#ection
operator, then, by de"nition (the subscript shows that the representation with a quantization axis Z is used;
in the presence of a guide "eld H, the Z-axis is normally assumed to be along H)
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where the angles m and d (Fig. 1) are determined by the spin state of the incident neutron at z"z
0
. Due to

precession in the guide "eld, the relative phase shift of the opposite spin components d may be a function of
the surface coordinates, x and y. The beam intensities are found by averaging over the illuminated sample
surface [10,11]. Each re#ection event probability is determined by interaction with a coherent illumination
region, and the resultant re#ectivity is found by averaging probabilities of re#ection at di!erent parts of the
sample.

The moduli of the re#ection matrix elements Dr
``

D, Dr
`~

, Dr
~`

D, Dr
~~

D can be measured as described, e.g. in
Refs. [8,9]. To get more information about the magnetic structure, the absolute phases of the re#ection
matrix elements u

``
, u

`~
, u

~`
, u

~~
should be additionally measured. These phases can be found only in

experiments in which interference of the re#ected and incident beams is directly measured, e.g. by placing
a mirror into one of the arms of an interferometer. An explicit meaning to the phases of the re#ection matrix
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Fig. 1. Geometrical representation of the spin states of the incident and re#ected neutrons in terms of polarization vectors, respectively,
P
0

(m and d are its polar and axial angles) and P
3
(the corresponding angles are g and f) for an arbitrary quantization (Z) axis. The

(X, >, Z) reference frame is generally independent of the system of coordinates (x, y, z) related to the sample. Due to precession in the
guide "eld, the phase di!erence of the opposite spin components d (and, consequently, g and f) is, generally, a function of the surface
coordinates (x, y). The orientation of the polarization vector P

3
at the sample surface is de"ned by interference of each pair (NSF and SF)

of beams re#ected in the same spin state and superposition of the two resultant coherent beams of neutrons in opposite spin states.

elements can be attributed only in special cases (see Section 5). They can be found from theory by calculations
on the basis of a model and are results of interference and re#ections at the interfaces of layers where the
opposite spin eigenstates acquire di!erent phases (inside layers and at interfaces), coherently combine and
contribute to each resultant phase shift.

As shown in Section 4, in re#ectometry only measurements of three relative phases are possible, i.e. the
di!erences between the phases of re#ection matrix elements, e.g.
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They depend on the magnetic structure of layered materials and may provide an additional information
about it. The respective technique may be called as polarized neutron re#ectometry with phase analysis
(PNRPA).

Calculations for a magnetically non-collinear structure shown in Fig. 2 have been made to illustrate the
approach. The results are represented in Fig. 3(a)}(c). In Fig. 3(d) and (e) are given the calculations for the case
when the magnetization vectors in the layers are parallel. Some comments on the results of calculations will
be given later. Here we only mention that the abrupt changes (jumps) of a phase are in the vicinity of values of
k
z
at which the modulus of the respective re#ection element vanishes. A more detailed calculation shows that

for the most part the jumps are of "nite width in k
z
.

Generally, the 2]2 neutron re#ection matrix is fully determined by 8 quantities, 4 moduli and 4 phases.
Since only relative phases can be measured in re#ectometry, the number of quantities to be found is 7. De"ne
`full neutron re#ectometrya as the measurement of any set of re#ectivities that allow determining the
re#ection matrix within a phase (see also Section 4). Thus, full neutron re#ectometry should include, at least,
7 measurements of intensities (re#ectivities). Such a minimum set of re#ectivities is de"ned in the present
paper. The analysis given below shows that the moduli and up to three-phase di!erences can be measured,
provided that re#ections of neutrons with the spin, in succession, parallel and antiparallel to two inclined
axes "xed to the sample are accomplished in the scheme with two #ippers and an analyzer. The measured
re#ectivities can be used directly to "t the model parameters. However, it might be useful for analysis to work
with the moduli and relative phases of the re#ection matrix elements. When the magnetic induction vectors
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Fig. 2. A structure model (three layers on a glass substrate). The z-axis is normal to the sample surface. Parameters of the model (i stands
`for the ith layera): d
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(right) are given as a function of the

wave vector component normal to the sample surface, k
;
. Since all re#ectivities approach unity at small k

;
, one can easily guess their

absolute magnitudes (the curves are shifted to each other by an integer number of orders). Calculations (a, b, c) are for the structure
model shown in Fig. 2. Calculations (d, e) are for the same structure, but when the magnetization in the third layer is parallel to that in
the "rst layer. The quantization axis is always along the applied "eld which is either along the x-axis (a, e) or along the z-axis (b, c, d) (the
coordinate system is de"ned in Fig. 2). The magnitude of the applied "eld H is assumed to be vanishing except for the case (c) when it is
0.2 T. The magnetic induction vector in the i-th layer is B

i
"M

i,*/
#H (i"1, 2, 3).

inside and outside the structure lie in one plane, both the moduli and phases of the non-diagonal matrix
elements in representation with the quantization axis in the same plane are degenerate. It means that full
neutron re#ectometry in the case of &in-plane' "elds is reduced to the measurement of 5 re#ectivities. Or even
to the measurement of 3 re#ectivities, when the "elds in the layered structure are collinear (the re#ection
matrix can be then diagonalized). It is not unlikely, though, that di!erent re#ectivities may be sensitive to
di!erent parameters of the layered structure, and it will be wise to measure all re#ectivities available in the
schemes under consideration.

External magnetic "elds are usually weak enough, so that refraction under spin-#ip re#ection of neutrons
[10,12,13] can be neglected, and the beams re#ected in di!erent spin states merge. One may assume in the
weak guide "eld approximation that the wave vectors for the neutron states with the spin `upa (#) and
`downa (!) the "eld are equal, k`"k~. All further analysis is carried out on these assumptions.

To outline the approach, the case of completely polarized neutrons specularly re#ected from a homogene-
ous mirror will be considered. It is necessary that the spins of all incident neutrons be identically oriented at
the moment of re#ection (at the sample surface). Consequently, the angles m and d do not depend on the
surface coordinates, x and y. Besides, the #ippers and the analyzer are assumed to be perfect (f

1
"f

2
"1,

R`
a
"1, R~

a
"0), in order to avoid cumbersome corrections irrelevant for our consideration.

Technically, re#ection of neutrons with the spin, in succession, parallel and antiparallel to two axes
inclined to each other may be realized by (1) changing the beam polarization, as it is practiced in 3D
polarization analysis technique, when the "eld in the sample region is zero, (2) rotating a mirror `neutron 2D
polarizera (described below) about its surface normal, the surfaces of the polarizer and the sample being
parallel, (3) rotating the sample about its surface normal, and (4) rotating the magnetic system about the
sample. Rotations of the sample and the magnetic system are permissible only if they do not lead to changes
in the magnetic state of the sample.

Methodically, full neutron re#ectometry consists of two stages. On the "rst stage are measured the moduli
of the re#ection matrix elements. The analyzer axis (and, by de"nition, the quantization axis) is directed along
the guide "eld and is, thus, collinear to spins of the incident neutrons. Fix the orientation of the quantization
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axis near the sample (taking into account the possible gradual change of the guide "eld direction in the
magnetic region between the sample and the analyzer) and designate it as Z

1
. When the sample is rotated or

other experimental conditions are changed, the axis Z
1

introduced in this manner preserves the mutual
orientation of the incident neutron spins and the sample surface during measurement of the "rst set of
re#ectivities.

On the second stage of full neutron re#ectometry are determined the di!erences of re#ection matrix
element phases. For this aim the methods (1)}(4) provide that the spins of the incidents neutrons at the
sample surface are inclined to Z

1
. Yet, there is an important di!erence between methods (1) and (2), on the

one hand, and (3) and (4), on the other hand. In methods (1) and (2) the analyzer axis does not change its
orientation with respect to the sample (scheme with one analyzing axis). In methods (3) and (4) the spins of the
incidents neutrons at the sample surface are supposed to be collinear to the guide "eld. Therefore, the
analyzer axis changes its orientation with respect to the sample surface (scheme with two analyzing axes).
Designate the corresponding quantization axis as Z

2
. It is to be noted that the change of the orientation of

the quantization axis in method (4) by no means signi"es that the analyzer itself is rotated, for it can be
provided by a gradual change of the magnetic "eld direction in the region between the sample and the
analyzer.

The scheme with one analyzing axis suggests the use of one representation for the neutron spinors and the
re#ection operator. Therefore, it is simpler for analysis and will be considered "rst.

3. Scheme with one analyzing axis

Rewrite Eq. (3) as (z
0

denotes that the quantity is calculated at the sample surface)

t
r
(z

0
)T

Z1
"exp(iu

``
) A

Dr
``

DcosA
m
2B#Dr

~`
DsinA

m
2B exp(i(d#D

`
))

Cr`~
DcosA

m
2B exp(!iD

~
)#Dr

~~
DsinA

m
2B exp(id)Dexp(iD

NSF
) B

"exp(iu
``

)A
r
`
(z

0
)

r
~

(z
0
)exp(iD

NSF
)B"exp(iu

``
)A

JR`(m, d) exp(ic
`
(m, d))

JR~(m, d) exp(ic
~
(m, d)#iD

NSF
)B

"exp[iu
``

#ic
`
(m, d)]JR`(m, d)#R~(m, d) A

cosA
g(m, d)

2 B
sinA

g(m, d)

2 B exp(if(m, d))B, (5)

RD`,Dr
`
(z

0
)D2, R~,Dr

~
(z

0
)D2, c

`
,arctan

Im[r
`
(z

0
)]

Re[r
`

(z
0
)]

, c
~
,arctan

Im[r
~
(z

0
)]

Re[r
~
(z

0
)]

,

g,2arctan
Dr
`

(z
0
)D

Dr
~

(z
0
)D
, f,c

~
!c

`
#D

NSF
.

Here the angles g and f (see Fig. 1) de"ne the orientation of the re#ected neutron spin at the sample surface
and play the same role as the angles m and d for the incident neutron. Therefore, the change of the
polarization vector under re#ection from a layered magnetic structure can be represented by two consecutive
rotations, one in the plane (Z, P

0
) by an angle g!m and the other about the Z-axis (here: about the guide
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"eld) by an angle f!d (Fig. 1). Note that the phase factor exp[iu
``

#ic
`
(m, d)] is independent of the

surface coordinates (it is technically provided that the spins of all incident neutrons are identically oriented at
z
0
) and is insigni"cant in further considerations.
It follows from Eq. (5) that the angle between the quantization axis Z and P

3
is
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are the re#ectivities measured with the analyzer, when the #ipper after the sample is switched, respectively, o!
and on. So, D
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and D
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can be experimentally found, provided that the incident beam polarization (m and d) is

known and R
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Generally, only two-phase di!erences can be determined by preparing incident beam polarization

arbitrarily and switching the two #ippers on and o!. Particularly, for three mutually perpendicular directions
of P
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(along X, > and Z at the moment of re#ection) the re#ectivities are
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where the upper and lower symbols in superscripts and subscripts correspond to the states of #ipper 2,
(#)"&o!' and (!)"&on', respectively.

Thus, the phase di!erences D
`

and D
~

are obtained with relative ease. However, Eqs. (7) or (8) are satis"ed
for two (within 2p) values of D

`
and D

~
. Besides, D

`
and D

~
may exceed 2p, which by no means can be

observed directly. Yet, measuring D
`

and D
~
&continuously' from low-momentum transfers for which they do

not exceed p, one can resolve the ambiguities at larger momentum transfers.
When all magnetic induction vectors throughout the layered structure and the external "eld (the

quantization axis) lie in one plane, the direct calculations by numerical methods [14] show that
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(Not to go into numerous details, we do not discuss here the origin of these equalities.) It may be concluded
that measurement of 5 re#ectivities is then su$cient for full neutron re#ectometry.

Equality (9a) means that R
`~

"R
~`

(e.g. see calculations in Ref. [5] for di!erent magnetically non-
collinear layered structures; see also Fig. 3(a). Measurements of both R

`~
and R

~`
are easily made, once the

experimental scheme with two #ippers is implemented, and the equality R
`~

"R
~`

is used in PNR to check
or de"ne the measurement conditions. Particularly, the e$ciency of the analyzer may be found, provided that
the e$ciencies of the #ippers are known.

N.K. Pleshanov / Physica B 269 (1999) 79}94 85



Equality (9b) is also important for us. It means that
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and one may do without measuring D
NSF

directly.
Another useful con"guration for investigating magnetic-layered structures is to arrange the external "eld

so that it is out of plane with the sample surface. Calculations in Fig. 3(b) are for the structure model shown in
Fig. 2. Here (a) Dr

~~
D"Dr

``
D and (b) u

~~
"u

``
. In calculations represented in Fig. 3(a) and (b) the

external "eld magnitudes are supposed to be vanishing, and the only di!erence between the two sets of
calculations is the choice of the quantization axis, respectively, parallel and perpendicular to the sample
surface. One can see that the number of model-dependent quantities is the same.

The external "eld component normal to the surface penetrates through the layers. When this "eld
component is su$ciently strong, there may appear a magnetization component perpendicular to the sample
surface. Though the neutron re#ectivity is sensitive to the perpendicular magnetic induction component (see
also discussion in Ref. [15]), it is not sensitive to the perpendicular magnetization component, fully
compensated by demagnetizing "elds. This insensitivity is normally used to point out the restrictions of PNR.
However, knowing the saturation magnetization M

4
and measuring the in-plane magnetization M

*/
, one may

determine its perpendicular component M
M
"(M2

4
!M2

*/
)1@2 (for the model of homogeneous layers).

When the external "eld is inclined to the sample surface, magnetic induction vectors inside and outside
layers are no longer in one plane, and there is no universal relation between any pair of re#ectivities or phases
(e.g. see Fig. 3(c)). Therefore, measurement of the third-phase di!erence D

NSF
may provide additional

information about the structure. In order to measure D
NSF

, the angle f should be found (see Eq. (5)) and,
hence, the exact orientation of the polarization vector P

3
of the re#ected neutrons at the sample surface (at the

moment of re#ection) should be determined. So far, such a problem was not posed before the experimenter.
The knowledge of the spin orientation at the moment of scattering is not necessary for measurement of the
NSF and SF scattering cross sections. Normally, measurement of the spin orientation at the moment of
scattering makes no sense, because not only scattering events are randomly distributed in a comparatively
large region in the sample, but also the spins are often orientated di!erently after scattering events. One of the
consequences is that usually the SF scattering leads to reduction in the length of the polarization vector
(depolarization) rather than to a change in its orientation. Particularly, in 3D polarization analysis [16,17]
the task is to measure the shortening of the polarization vector for di!ering initial orientations.

The use of a homogeneous mirror sample makes the di!erence. Numerous events of scattering are then
distributed on the mirror surface, i.e. spatially correlated in a de"nite way. If the incident neutrons polarized
either `upa or `downa the guide "eld is re#ected from homogeneous layers magnetized non-collinear to the
guide "eld, the spins of the re#ected neutrons point in one direction, generally inclined to the guide "eld
(Fig. 4). The orientation of the polarization vector is de"ned by the fact that each pair (non-spin-#ip and
spin-#ip) of beams re#ected in the same spin state interfere (`cross interferencea [10]), and the two resultant
beams of neutrons in opposite spin states coherently superpose. However, the polarization vector does not
retain its direction in the region between the sample and the analyzer, because of its precession in the external
"eld. Since the directions of all spins of the re#ected neutrons at the sample surface are the same, the re#ected
beam is polarized only in the cross section parallel to the sample surface (the precessing component of the
polarization vector is reduced or even vanishes, when averaging is made in other beam cross sections). The
plane in which the polarization vector is constant in direction is parallel to the mirror surface (Fig. 4), i.e.
almost parallel to neutron trajectories (detailed consideration of `non-frontal neutron spin precessiona is
given in Ref. [18]). In order to restore the polarization vector orientation at the mirror surface, one has to
know the neutron paths and magnetic "elds in the `sample-analyzera region.

Owing to `non-frontalitya of neutron spin precession, measurement of the angle f requires that the surface
of the analyzer be parallel to that of the sample. An analyzer made from a polarizing (super)mirror on the
basis of magnetically anisotropic "lms could be used. The possibility to work with such polarizers in weak
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Fig. 4. The incident neutrons polarized &up' the guide "eld (P
0
DDH) are assumed to be re#ected in a state with the spins non-collinear to H.

Since the spins of the re#ected neutrons start precessing at di!erent points of the sample surface, they are oriented identically
(P

3
"const) only in the beam cross sections parallel to the sample surface.

external "elds, owing to remanent magnetization, has been mentioned (e.g. Ref. [19]). Moreover, the
remanence property of a FeCo "lm has been used [20] to make a polarizer that can produce neutrons of
opposite spins without using a spin #ipper. A `neutron 2D polarizera rotated about its surface normal was
proposed [21] to be used in zero "eld for preparation and/or analysis of neutron beam polarization. Rotating
the spin-selective axis of the `neutron 2D analyzera in su$ciently weak "elds and changing either the
distance sample-analyzer or the "eld magnitude in this region, one can restore the polarization vector
orientation at the sample surface for a given neutron wavelength. It is to be noted, however, that the glancing
angles are very small and the paths from the sample to the analyzer may essentially di!er in length for
di!erent neutrons. The precessing component of the measured polarization vector is then reduced or even
vanishes, for neutron spins accumulate di!erent precession angles before the analyzer. It requires a precise
alignment of the sample and analyzer surfaces and restricts vertical and horizontal divergences of the incident
beam, as well as the magnitude and variations of the "eld in the region between the sample and the analyzer.

To summarize, the relative phase shifts reveal themselves due to cross interference (D
`

and D
~
) and

superposition of the opposite spin states of the re#ected neutron (D
NSF

).

4. Scheme with two analyzing axes

The neutron spin state is a superposition of the states with the spin `upa and `downa an arbitrary
quantization axis. Transition from one quantization axis (Z

1
) to another (Z

2
) is made by a standard unitary

transformation

;"A
cos(s/2) exp(!d/2) !sin(s/2) exp(!d/2)

sin(s/2) exp(d/2) cos(s/2) exp(d/2) B, (11)

where s and d are the angles, respectively, between Z
1

and Z
2
, and between the planes (Z

1
, X

1
) and (Z

2
, X

2
).

Sometimes, a neutron state in a given region is more conveniently described when the quantization axis is
parallel to a mean magnetic "eld in this region. Depending on the choice of the quantization axis, the
following notations were used earlier [18]:

f (C) and (B) for the neutron states with the spin, respectively, parallel and antiparallel to an arbitrary
quantization axis;

N.K. Pleshanov / Physica B 269 (1999) 79}94 87



f (#) and (!) for the neutron states with the spin, respectively, parallel and antiparallel to the mean
magnetic induction in a given region.

Up to now the notations (#) and (!) used in this paper comply with this convention.
Consider the full neutron re#ectometry scheme with two analyzing axes. Mention that at the "rst stage are

measured the moduli of the re#ection matrix elements. The axis Z
1

gives the mutual orientation of the
incident neutron spins and the sample surface during this measurement. On the second stage are determined
the di!erences of re#ection matrix element phases. In methods (3) and (4) the analyzer axis changes its
orientation with respect to the sample surface. The corresponding quantization axis is Z

2
. Neutron spins on

the second stage are either parallel (a) or antiparallel (b) to Z
2
. Re#ection processes can be described as

follows:

Dt
3
(z

0
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"oDt

*
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0
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,

(a) Dt
*
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0
)T
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"A

1

0B, (b) Dt
*
(z

0
)T

Z2
"A

0

1B, (12)

where o is the re#ection matrix in the representation with the quantization axis Z
2
.

The same re#ection processes can be described in the representation with the quantization axis Z
1
:
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0
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0
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2B exp(!id/2)

cosA
m
2B exp(id/2) B . (13)

Here the subscripts (C) and (B) are used, because Z
1

is inclined to the guide "eld direction.
One can "nd also the following relations between the matrix elements in the two representations:

o";r;~1,

o
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o
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sin s[r
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exp(!id)]. (14)

Each element of o is a linear combination of the four elements of r. Two important consequences for neutron
re#ectometry are: (1) only the phase di!erences (up to 3), not the absolute phases of the re#ection matrix
elements, can be found from measurements of the moduli of o; (2) the phase di!erences found for one
representation de"ne the di!erences between the phases of the re#ection matrix elements in any other
representation.

Provided that the induction vectors in the layered structure on the "rst and second experimental stages are
essentially the same, one may suppose that r

tt
"r

``
, r
ts
"r

`~
, r
st
"r

~`
, r
ss
"r

~~
.

The result of the two stages of full neutron re#ectometry is the measurement of the moduli of the elements
of the matrices r and o. The respective di!erences between the phases of the elements of r (and o) can be
numerically found from Eq. (14).
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Fig. 5. All magnetic "elds (B) inside a strati"ed structure are assumed to be collinear. The unit vector b speci"es one of the two opposite
directions of B.

Mention that in methods (1) and (2) the axis Z
2

can be also inclined to Z
1

by rotation of the `neutron 2D
analyzera about its surface normal. Obviously, the surface of the analyzer should be parallel to that of the
sample. Besides, since the analyzer axis is then inclined to the guide "eld, the orientation of the respective
quantization axis at the sample surface will depend on neutron wavelength, sample-analyzer distance and
guide "eld magnitude.

5. Magnetically collinear layered structures

When all magnetic "elds inside a layered structure are collinear, only spin-up and spin-down re#ectivities
are usually measured. The use of PNRPA may yield additional information on the magnetic state of thin
layers.

Indeed, assume that all magnetic "elds (B) inside a layered structure are collinear (Fig. 5). Introduce a unit
vector b specifying one of the two possible (opposite) directions of B. In general, b is not collinear with the
guide "eld H. It has been shown [10] that the re#ection matrix in the weak guide "eld approximation
(k`

1z
+k~

1z
) is diagonal in a representation with the quantization axis collinear to b, the diagonal elements

being common Fresnel coe$cients calculated on assumption that H is collinear with b. Therefore, the
re#ection matrix elements in the representation with the quantization axis parallel to H can be expressed in
terms of the Fresnel coe$cients as follows [10]:

r
``

(s)"r
``

(0) cos2A
s
2B#r

~~
(0) sin2A
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2B,
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(0) cos2A

s
2B, (15)

where s is the angle between H and b. Of course, this expression can be obtained by substitution of
r
ts
"r
st
"0 into Eq. (14).

The Fresnel coe$cients (s"0) can be written as

r
``

(0),r
`
(0),Dr

`
(0)D exp(iu

`
),

r
~~

(0),r
~
(0),Dr

~
(0)D exp(iu

~
), (16)
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where u
B

are the phase shifts of the opposite (along $b) spin components with respect to the phases of the
corresponding incident neutron spin components, and Eq. (15) can be written as
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Consequently, the re#ectivities are
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where Du"u
~
!u

`
is the phase di!erence of the Fresnel coe$cients. It follows that

cos s"
R

``
(s)!R
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(s)
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(0)!R
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(0)
, cos (Du)"

R
`
(0)#R

~
(0)!4R
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2JR
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. (19)

To summarize, PNRPA for collinear layered structures comes to the following. First, two re#ectivities,
R

B
(0), are measured with a guide "eld H made collinear to the magnetic "elds inside the layered structure.

Then, an angle between the spins of the incident neutrons and b is introduced by one of the methods
mentioned in Section 2, and four re#ectivities (two NSF and two SF re#ections) are measured in the scheme
with two #ippers and an analyzer. (If the method consists in rotation of either the sample or the external
magnetic "eld, precautions should be made to minimize any possible changes in the magnetic structure.
Particularly, the external "eld can be changed so that the magnitude and direction of its in-plane component
remains constant.) As a result, one "nds not only the angle between H and b, but also the relative phase shift
of the Fresnel coe$cients. Mention that only 3 re#ectivities are required to de"ne the neutron re#ection
matrix for a given model of the structure. It follows from the fact that the re#ection matrix is diagonal when
H is collinear to b. The re#ectivities R

`
(0) and R

~
(0) de"ne the moduli of its diagonal elements, and the

respective phase di!erence Du can be found from each of the four re#ectivities (18).
Two sets of calculations (Fig. 3(d) and Fig. 3(e)) made for re#ection from a magnetically collinear structure

illustrate the situation. Note that the only di!erence between the models used in calculations represented by
Fig. 3(b) and 3(d) is that the direction of the magnetization in the third layer is, respectively, inclined (see Fig.
2) or parallel to that in the "rst layer. In Fig. 3(d) u

~`
!u

`~
is constant and depends only on the choice of

the X-axis in the reference frame with the quantization axis Z along the sample surface normal. Since the
X-axis coincides then with the x-axis (see Fig. 2), u

~`
!u

`~
"2(p/2!c)"2p/3. Usually only re#ectivities

shown in Fig. 3(e) (i.e. R
`
(0) and R

~
(0)) are measured when the guide "eld is collinear to the directions of

magnetization in the layers. However, only combination of measurements as described above may yield
information about the phase di!erence Du"D

NSF
.

(Calculations show that a conspicuous di!erence in the behavior of u
``

and u
~~

seen in Fig. 3(e) persists
also with a similar magnetic single layer, when the re#ected wave amplitude R in the q-region far from the
total re#ection plateau may be described with the Fresnel re#ection coe$cients for the upper (R

1
) and lower
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(R
2
) boundaries: R"R

1
#R

2
e*b"R

1
#R

2
cos b#iR

2
sin b, where b is the di!erence between the phases

of the waves re#ected from the upper and lower boundaries. Beyond the total re#ection plateau both R
1

and
R

2
are real. For the structure model under consideration R

1
for spin-up neutrons is positive and noticeably

larger than DR
2
D. Consequently, R

2
cos b as a function of k

;
do not exceed R

1
and the real part of R is always

positive. Oscillations of the phase u
``

about zero are due to the fact that R
2

sin b as a function of k
;
changes

its sign. The situation is di!erent for spin-down neutrons. The sign of both real and imaginary parts of
R change, and the phase accumulates when the complex number vector turns on the complex plane.)

The phase information can, in principle, be used to "nd the potential pro"le directly from neutron
measurements (to solve the inverse problem [22]). Particularly, if the potential for one of the spin
components is known, i.e. one of the phases is known from a theoretical model based on an additional
information, the unknown potential pro"le for the other spin component can be found directly from
measurements of the respective re#ectivity and Du. Mention also that the nuclear part of the potential can be
known from complimentary methods, such as X-ray re#ectometry. It is not unlikely that the direct
information about the magnetic part of the potential pro"le can be extracted from the relative phase-shift
measurements. The possibility of the retrieval of the phase information by the technique described in the
present paper has not been so far discussed in literature on di!erent aspects of the inverse scattering problem
in neutron re#ection [23}26]. It might play an important role in solution of the inverse problem. However,
more detailed consideration is still required.

Under total re#ection of neutrons R
`
(0)"R

~
(0)"1, and it follows from Eq. (19) that
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Thus, knowing s, the relative phase shift under total re#ection Du can be obtained directly from the moduli
of the re#ection matrix elements:

sinA
Du

2 B"$Dr
~`

(s)D/sin s, 2, (21)

where the sign can be often deduced from physical considerations (e.g. see below).
If neutrons are totally re#ected from a boundary between vacuum and a medium with a potential <'0,

the phase shift is [27]
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M
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#
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M
), (22)

where the energy E
M
(< and the wavelength j

M
correspond to the component of the particle momentum

perpendicular to the boundary of partition of the two media, and j
#
is the so called characteristic wavelength

of the medium.
For neutrons totally re#ected at the boundary of partition with a magnetic medium (B is its magnetic "eld),

the relative phase shift Du can be found (in the approximation of weak external "eld) from
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Evidently, since Du"u
~
!u

`
"Du

`
D!Du

~
D,

sin(Du/2)"cos(u
~
/2) sin(u

`
/2)!(cos(u

`
/2) sin(u

~
/2)

"j~
#
/j

M
J1!(j`

#
/j

M
)2!j`

#
/j

M
J1!(j~

#
/j

M
)2 (j

M
*j~

#
*j`

#
). (24)

Therefore, Du'0, and the sign in Eq. (21) is &plus'. It is to be noted that the positive phase di!erence
corresponds to an anti-clockwise spin precession, i.e. its sense is the same as in the common Larmor
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precession of the neutron spin (its magnetic moment is negative). However, the Larmor precession angle
is known to be proportional to the neutron wavelength j, whereas under total re#ection it decreases with
j
M
. The latter corresponds to the fact that neutron waves with smaller j

M
penetrate under total

re#ection deeper into the medium. Of interest is also that, due to a di!erence in exponential extinction of the
opposite (along $B) spin components tunneling through a homogeneous magnetic medium, the spin
precession will be from the direction of the polarization vector of the incident beam at the boundary of
partition (P

0
) to B, i.e. about the axis perpendicular to the plane (B, P

0
), in contrast to common precession

about B.
Generally, when quantum mechanical e!ects are dominant, as is the case in re#ectometry and for UCN in

su$ciently strong "elds, the conception of the Larmor precession originating from classical physics should
not be uncritically used for the neutron spin precession. When the di!erence in velocities of neutrons with the
spin up and down the "eld is essential, the neutron motion and the spin motion are no longer related as
usually: even if the expected spin orientation is known for a neutron at any given point and instant, the spin
evolution in magnetic "elds cannot be, without loss in rigor, described by attaching the spin to a neutron
moving with a certain velocity. Therefore, the usual description of the neutron motion and the related spin
motion, incl. precession, is no longer exact, even if the spin behavior is fully de"ned. Only when this di!erence
in velocities is negligible, and usually it is, `precession in spacea (a change of the spin orientation from point
to point) is precession in time for a neutron moving with a certain velocity along a classical trajectory.
Mention that in static "elds the spin orientation is "xed at any point of the neutron trajectory.

It is to be emphasized that observation of the phase di!erence may give additional information on the
magnetic state of thin layers. For example note that the &spin-up' and &spin-down' re#ectivities under total
re#ection of neutrons are equal to 1 and give no information about the sample. On the other hand, meas-
urement of the phase di!erence in the total re#ection region of momentum transfers yields a direct
information on the magnetic state of the surface (the signal in the region of large momentum transfers is
de"ned by the whole structure, rather than by its surface only).

When the magnitude of magnetization of a "lm is small, the spin-down and spin-up re#ectivities are
indistinguishable, whereas the phase di!erences of the corresponding amplitudes may be noticeable, if the
"lm is su$ciently thick. Not only low magnetization, but also large thickness can be measured in this way,
even when the interference patterns for the spin-down and spin-up re#ectivities are completely blurred out by
instrumental resolution.

However, PNRPA may be especially useful in the study of complicated, magnetically non-collinear layered
structures (e.g. rare-earth superlattices Gd/Y, Dy/Y, Ho/Y or giant magnetoresistance superlattices Co/Cu,
Fe/Cr, etc.). Full neutron re#ectometry yields additional information related to the features of the magnetic
structure and may contribute to the correct choice of the structure model and more precise determination of
its parameters.

6. Summary

A novel technique, polarized neutron re#ectometry with phase analysis (PNRPA), in which not only the
moduli of re#ection matrix elements (non-spin-#ip and spin-#ip re#ectivities) but also the phase di!erences
are measured, has been suggested and considered. More detailed information about magnetic layered
structures can be thus obtained. Obviously, the phase information for transmission matrix elements can be
obtained in the same manner.

The operator formalism developed for re#ectometry of spin particles [10,14] has been used to formulate an
appropriate mathematical approach for PNRPA.

Generally, the 2]2 neutron re#ection matrix is fully determined by 8 quantities, 4 moduli and 4 phases. It
has been shown that only relative phases can be measured in re#ectometry, so the number of quantities to be
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found is 7. Thus, &full neutron re#ectometry' should include, at least, 7 measurements of intensities
(re#ectivities). Such a minimum set of re#ectivities has been de"ned in the present paper. The measured
re#ectivities can be used either directly to "t the model parameters or "rst to determine the moduli and
relative phases of the re#ection matrix elements and then to "t the model parameters. For &in-plane' "elds full
neutron re#ectometry may be reduced to measurement of 5 re#ectivities. Or even to measurement of
3 re#ectivities, when the "elds in the layered structure are collinear (the re#ection matrix can be diagonalized
and only one phase di!erence is model-dependent). Of course, it may be wise to measure all re#ectivities
available in the scheme under consideration for more precise determination of di!erent parameters of the
layered structure or experimental conditions.

Up to three phase di!erences of re#ection matrix elements can be measured, provided that re#ections of
neutrons with the spin, in succession, parallel and antiparallel to two inclined axes "xed to the sample are
accomplished in the scheme with two #ippers and an analyzer. Technically, it may be realized by (1) chang-
ing the beam polarization, as it is practiced in 3D polarization analysis technique, when the "eld in the
sample region is zero, (2) rotating a mirror `neutron 2D polarizera about its surface normal, the surfaces of
the polarizer and the sample being parallel, (3) rotating the sample about its surface normal, and (4) rotating
the magnetic system about the sample. Generally, the possibility of precise alignments and rotations of
polarizer, sample, and analyzer about their surface normals is useful for retrieval of more detailed informa-
tion about magnetic layered structures.

Now it is important to experimentally demonstrate the complimentary nature of the phase information to
conventional measurements of cross sections. The di!erences between the phases of the four (two NSF and
two SF) amplitudes of not only specular but also di!use scattering from layered structures can be measured
in addition to measurements of the respective cross sections. As di!erent models of roughness and magnetic
domain structure lead to di!erent phase shifts, it could yield additional information about inhomogeneities
of magnetic-layered structures. Note that the SF-scattering from inhomogeneities leads to some depolariz-
ation (the spins of neutrons scattered in one direction are oriented di!erently). However, when the dephasing
is not complete, the relative phase shifts reveal themselves and complimentary information can be obtained.
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