|
|
|
||
| 11 of 12 |
![]() |
This Document | ||||
![]() |
|||||
![]() |
SummaryPlus | ![]() |
|||
![]() |
Full Text + Links | ![]() |
|||
![]() |
PDF (275 K) | ![]() |
|||
![]() |
|||||
![]() |
Actions | ||||
![]() |
|||||
![]() |
Cited By | ||||
![]() |
Save as Citation Alert | ||||
![]() |
E-mail Article | ||||
![]() |
Export Citation | ||||
![]() |
|||||
Polarized neutron reflectometry with phase analysis
Petersburg Nuclear Physics Institute, PNPI, 188350, Gatchina, St. Petersburg, Russia
Received 21 March 1997; revised 20 November 1998. Available online 7 July 2000.
A novel technique, polarized neutron reflectometry with phase analysis (PNRPA), is suggested, in which not only the moduli of reflection matrix elements but also up to three phase differences are measured. It is realized in the scheme with two flippers and an analyzer, by reflection of neutrons with the spin, in succession, parallel and antiparallel to two inclined axes fixed to the sample. More detailed information about magnetic layered structures can be thus obtained. An adequate mathematical formalism is given.
Author Keywords: Polarized neutrons; Reflectometry; Neutron optics; Magnetic films
PACS classification codes: 61.12.Ha
and
are its polar and axial angles) and Pr (the corresponding angles are
and
) for an arbitrary quantization (Z) axis. The (X, Y, Z) reference frame is generally independent of the system of coordinates (x, y, z) related to the sample. Due to precession in the guide field, the phase difference of the opposite spin components
(and, consequently,
and
) is, generally, a function of the surface coordinates (x, y). The orientation of the polarization vector Pr at the sample surface is defined by interference of each pair (NSF and SF) of beams reflected in the same spin state and superposition of the two resultant coherent beams of neutrons in opposite spin states.
1=
3=
/6, (
i is the angle between Mi,in and the (y, z)-plane).
++,
+−,
−+,
−− of the reflection matrix elements (center) and the phase differences Δ+≡
−+−
++, Δ−≡
−−−
+−, ΔNSF≡
−−−
++, ΔSF≡
−+−
+− (right) are given as a function of the wave vector component normal to the sample surface, kz. Since all reflectivities approach unity at small kz, one can easily guess their absolute magnitudes (the curves are shifted to each other by an integer number of orders). Calculations (a, b, c) are for the structure model shown in Fig. 2. Calculations (d, e) are for the same structure, but when the magnetization in the third layer is parallel to that in the first layer. The quantization axis is always along the applied field which is either along the x-axis (a, e) or along the z-axis (b, c, d) (the coordinate system is defined in Fig. 2). The magnitude of the applied field H is assumed to be vanishing except for the case (c) when it is 0.2 T. The magnetic induction vector in the i-th layer is Bi=Mi,in+H (i=1, 2, 3). 1. G.S. Krinchik, V.E. Zubov and L.V. Nikitin. Poverkhnost' 1 (1982), p. 22.
2. G.S. Krinchik, Physics of Magnetic Phenomena. , Moscow State University, Moscow (1985).
3. S. Alvarado, M. Campanga and H. Hopster. Phys. Rev. Lett. 48 (1982), p. 51. Abstract-INSPEC | $Order Document | Full Text via CrossRef
4. G.P. Felcher. Physica B 192 (1993), p. 137. Abstract | Abstract + References | PDF (794 K)
5. H. Zabel. Physica B 198 (1994), p. 156. Abstract | Abstract + References | PDF (531 K)
6. O. Schärpf and H. Strothmann. Phys. Scripta T 24 (1988), p. 58. Abstract-INSPEC | $Order Document
7. G.P. Felcher. Phys. Rev. B 24 (1981), p. 1595. Abstract-INSPEC | $Order Document | Full Text via CrossRef
8. R.M. Moon, T. Riste and W. Koehler. Phys. Rev. 181 (1969), p. 920. Abstract-INSPEC | $Order Document | Full Text via CrossRef
9. C.F. Majkrzak, S. Satija, D.A. Neumann, J.F. Ankner, NIST reactor: summary of activities, July 1989–June 1990, in: C. O'Connor (Ed.), NIST Technical Note 1285, Washington, DC, US Government Printing Office, p. 55, 1990.
10. N.K. Pleshanov. Z. Phys. B 94 (1994), p. 233. Abstract-INSPEC | $Order Document | Full Text via CrossRef
11. V.M. Pusenkov, N.K. Pleshanov, V.G. Syromyatnikov, V.A. Ul'yanov and A.F. Schebetov. J. Magn. Magn. Mater. 175 (1997), p. 237. SummaryPlus | Full Text + Links | PDF (857 K)
12. V.K. Ignatovich, Physics of Ultracold Neutrons. , Nauka, Moscow (1988).
13. G.P. Felcher, S. Adenwalla, V.O. De Haan and A.A. Van Well. Nature 377 (1995), p. 409. Abstract-INSPEC | $Order Document | Full Text via CrossRef
14. N.K. Pleshanov. Z. Phys. B 100 (1996), p. 423. Abstract-INSPEC | $Order Document | Full Text via CrossRef
15. N.K. Pleshanov. Physica B 234–236 (1997), p. 516. SummaryPlus | Full Text + Links | PDF (174 K)
16. A.I. Okorokov, V.V. Runov, V.I. Volkov and A.G. Gukasov. Zh. ETP 69 (1975), p. 590. Abstract-INSPEC | $Order Document
17. M.Th. Rekveldt, J. Van Woesik and J. Meijer. Phys. Rev. 181 (1977), p. 920.
18. N.K. Pleshanov, Phys. Lett. A (1998) submitted for publication.
19. P. Böni, D. Clemens, H.A. Grimmer, H. Van Swyygenhoven, Annual Report 1994, Annex F3A, PSI Condensed Matter Research and Material Sciences.
20. D.A. Korneev, Neutron optical devices and applications, in: C.F. Majkrzak, J.L. Wood (Eds.), Proceedings of the SPIE, vol. 1738, 1992, p. 477.
21. N.K. Pleshanov, Preprint PNPI-2131, 1996.
22. K. Chadan and P.C. Sabatier, Inverse Problems in Quantum Scattering Theory. , Springer, New York (1977).
23. R. Lipperheide, G. Reiss, H. Leeb and S.A. Sofianos. Physica B 221 (1996), p. 514. Abstract | PDF (314 K)
24. C.F. Majkrzak and N.F. Berk. Physica B 221 (1996), p. 520. Abstract | PDF (250 K)
25. V.O. de Haan, A.A. van Well, P.E. Sacks, S. Adenwalla and G.P. Felcher. Physica B 221 (1996), p. 524. Abstract | PDF (513 K)
26. G. Reiss. Physica B 221 (1996), p. 533. Abstract | PDF (243 K)
27. N.K. Pleshanov. Physica B 198 (1994), p. 70. Abstract | Abstract + References | PDF (130 K)
28. N.K. Pleshanov and V.M. Pusenkov. Z. Phys. B 100 (1996), p. 507. Abstract-INSPEC
| $Order Document
| Full Text via CrossRef
Corresponding author. Tel.: +7-812-71-46973; Fax: +7-81271-39053; email: pnk@hep486.pnpi.spb.zu
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume 269, Issue 1 , July 1999, Pages 79-94 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 11 of 12 |
| Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V. |