Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
43 of 48 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (226 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Volume 157, Issues 1-4
2 August 1999
Pages 291-296

PII: S0168-583X(99)00446-2
Copyright © 1999 Elsevier Science B.V. All rights reserved.

Submonolayer homoepitaxy on Fe(1 0 0) studied by grazing ion¯surface scattering: experiments and computer simulations

R. Pfandzelter,

Humboldt-Universität zu Berlin, Institut für Physik, Invalidenstrasse 110, 10115 Berlin, Germany

Available online 2 September 1999.

Abstract

Grazing ion-surface scattering is used to study in real space and real time epitaxial growth processes. By example of 25 keV He+-ions scattered during submonolayer homoepitaxy on Fe(1 0 0), we show that an interpretation of experiments is straightforward by means of classical mechanics computer simulations. A fit of intensity and angular profile of the specular beam allow one to deduce basic quantities like the island density.

Author Keywords: Medium energy ion scattering; Low index single crystal surfaces; Iron; Computer simulations; Single crystal epitaxy; Surface structure, morphology, roughness, and topography; Ion¯solid interactions

PACS classification codes: 79.20.Rf; 79.20.Ap; 68.55.-a

Article Outline

1. Introduction
2. Experiment
3. Computer simulation
4. Results
5. Summary
Acknowledgements
References


(11K)
Fig. 1. Frequency distribution of sizes of uncovered patches ("holes") from an examination of an STM image (Fig. 1a in Ref. [15]) for 0.07 ML Fe grown on Fe(1 0 0) at 293 K. The lines are best fits for a geometric distribution (=0.029) (solid line) and a gamma distribution (M=1.55, =0.0575) (dashed line). Roughly 1000 patches have been recorded for random lines of intersection around the [0 0 1] lattice direction.

(19K)
Fig. 2. Measured (circles) and simulated (curves) polar angular distributions for 25 keV He+-ions scattered from Fe/Fe(1 0 0). The distributions are normalized to the maxima for the uncovered surface. Upper row: growth on a flat substrate surface (average separation of substrate steps >2000 Å); lower row: irregularly stepped surface (average separation 250 Å). The simulations were performed for a geometric distribution of island and hole sizes with a constant average island separation of 90 Å. The right-hand distributions (solid circles) were recorded after annealing the 1 ML Fe/Fe(1 0 0) surface at 720 K. Growth temperature: 440 K; deposition rate: 2.7×10-3 ML s-1 (upper row) and 4×10-3 ML s-1 (lower row).

(11K)
Fig. 3. Intensity of specularly reflected 25 keV He+-ions (solid circles) recorded during homoepitaxial growth on Fe(1 0 0). The simulations are best fits for a geometric distribution of island and hole sizes (dotted curves) and a gamma distribution (solid curves). The average island separation is assumed to be independent of coverage (constant island density). Growth temperatures (from top to bottom): 590, 590, and 420 K; deposition rates: 9.0×10-3, 5.75×10-2, and 2.1×10-1 ML s-1.

(12K)
Fig. 4. Upper panel: intensity of specularly reflected 25 keV He+-ions recorded during homoepitaxial growth on Fe(1 0 0) at 550 K and a deposition rate of 1.4×10-2 ML s-1. Inset: calculated intensity of specularly reflected 25 keV He+-ions versus pair correlation C(10) for a geometric distribution of island and hole sizes and a growth temperature 550 K. Lower panel: island density vs. coverage as inferred from experiment and calculated calibration curve.

References

1. H.-J. Ernst, F. Fabre and J. Lapujoulade. Phys. Rev. B 46 (1992), p. 1929. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

2. Q. Jiang, A. Chan and G.-C. Wang. Phys. Rev. B 50 (1994), p. 11116. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

3. Q. Jiang and G.-C. Wang. Surf. Sci. 324 (1995), p. 357. Abstract-INSPEC | Abstract-Compendex | Abstract |  $Order Document

4. J.-K. Zuo and J.F. Wendelken. Phys. Rev. Lett. 66 (1991), p. 2227. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

5. J.-K. Zuo, J.F. Wendelken, H. Dürr and C.-L. Liu. Phys. Rev. Lett. 72 (1994), p. 3064. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

6. H. Dürr, J.F. Wendelken and J.-K. Zuo. Surf. Sci. Lett. 328 (1995), p. L527. Abstract-Compendex | Abstract-INSPEC | Abstract |  $Order Document

7. H.-J. Ernst, F. Fabre, R. Folkerts and J. Lapujoulade. J. Vac. Sci. Technol. A 12 (1993), p. 1809.

8. W. Li, G. Vidali and O. Biham. Phys. Rev. B 48 (1993), p. 8336. Full-text via CrossRef

9. J.A. Venables, G.D.T. Spiller and M. Hanbücken. Rep. Prog. Phys. 47 (1984), p. 399. Abstract-INSPEC |  $Order Document

10. J.G. Amar, F. Family and P.M. Lam. Phys. Rev. B 50 (1994), p. 8781. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

11. Y. Fujii, K. Narumi, K. Kimura, M. Mannami, T. Hashimoto, K. Ogawa, F. Ohtani, T. Yoshida and M. Asari. Appl. Phys. Lett. 63 (1993), p. 2070. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

12. T. Igel, R. Pfandzelter and H. Winter. Europhys. Lett. 35 (1996), p. 67. Abstract-INSPEC |  $Order Document

13. R. Pfandzelter, Surf. Sci. 421 (1999) 263.

14. R. Pfandzelter. Phys. Rev. B 57 (1998), p. 15496. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

15. J.A. Stroscio, D.T. Pierce and R.A. Dragoset. Phys. Rev. Lett. 70 (1993), p. 3615. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

16. J.A. Stroscio and D.T. Pierce. Phys. Rev. B 49 (1994), p. 8522. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

17. J.G. Amar and F. Family. Phys. Rev. Lett. 74 (1995), p. 2066. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

18. J.G. Amar and F. Family. Phys. Rev. B 52 (1995), p. 13801. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

19. R. Pfandzelter, T. Igel and H. Winter. Surf. Sci. 375 (1997), p. 13. Abstract | Journal Format-PDF (768 K)

20. R. Pfandzelter, T. Igel and H. Winter. Surf. Sci. 389 (1997), p. 317. Abstract | Journal Format-PDF (853 K)

21. R. Pfandzelter, T. Hecht and H. Winter. Europhys. Lett. 44 (1998), p. 116. Abstract-INSPEC |  $Order Document

22. T.-M. Lu and M.G. Lagally. Surf. Sci. 120 (1982), p. 47. Abstract-INSPEC |  $Order Document

23. C.S. Lent and P.I. Cohen. Surf. Sci. 139 (1984), p. 121. Abstract-INSPEC |  $Order Document

24. P.R. Pukite, C.S. Lent and P.I. Cohen. Surf Sci. 161 (1985), p. 39. Abstract-INSPEC |  $Order Document

25. R. Pfandzelter, T. Igel, M. Ostwald, H. Winter, Appl. Surf. Sci. 142 (1999) 470.

Tel.: +49-30-2093-7693; fax: +49-30-2093-7899; email: pfandz@physik.hu-berlin.de
This document
SummaryPlus
Article
Journal Format-PDF (226 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Volume 157, Issues 1-4
2 August 1999
Pages 291-296


43 of 48 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.