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Low-frequency dynamics in an antiferromagnetic superlattice
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Abstract. We present a theoretical study of the surface spin-flop transition which occurs in
Fe/Cr multilayer films. The low-frequency response is effectively reduced to the dynamics of an
antiferromagnetic discrete sine–Gordon equation due to the strong demagnetizing field created by
out-of-plane fluctuations. We thus carry out a detailed calculation of dynamic susceptibilities which
confirms and completes earlier theoretical work, and may suggest further experimental investigation
of some of the more intricate aspects of this subject.

1. Introduction

Interesting effects that could, in principle, be observed near the free surface of a crystalline
antiferromagnet were theoretically predicted some time ago [1–3]. The subject was recently
revived and significantly expanded with the advent of multilayer magnetic films that may be
thought of as synthetic superlattices [4]. Hence the early ideas were realized in the case of an
Fe/Cr(211) superlattice grown on a MgO(110) substrate [5]. Under such conditions each Fe
film acquires a twofold in-plane anisotropy, and the exchange coupling between neighbouring
films is antiferromagnetic when the thickness of the Cr layer is equal to 11 Å. The typical
thickness of each Fe layer lies in the range 20–40 Å and samples currently synthesized contain
about 20 such layers.

An important element is the surface spin-flop (SSF) transition predicted and experimentally
observed [6] to occur at a critical bias field which is smaller than the field required to induce the
more familiar bulk spin-flop (BSF) transition roughly by a factor

√
2. However, the finer details

of the SSF transition turned out to be rather intricate and lead to some apparently conflicting
claims in the literature [7, 8]. The picture was substantially clarified in [9] and further discussed
by the author [10] in relation to the ferromagnetic moment of an antiferromagnetic domain
wall [11].

In a parallel development the dynamics of an Fe/Cr superlattice was studied using Brillouin
scattering [12, 13] or response to a low-frequency AC magnetic field [14], the two cases
being distinguished mainly by the different behaviour of the dipolar coupling in the respective
frequency ranges. The current effort was directly inspired by [14] and intends to provide a
simplified treatment valid at low frequencies, with due attention to the finer details of the SSF
transition discussed in [10].

In section 2 the problem is reduced to the dynamics of what may be called an
antiferromagnetic sine–Gordon equation. In section 3 we give a simple account of surface
magnon modes and present some new exact results. We also make a first attempt to classify
a host of critical or characteristic fields which are pertinent to a precise understanding of the
phase transitions that take place on a finite superlattice. The SSF transition is further discussed
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in section 4 in preparation for a complete calculation of dynamic susceptibilities given in
section 5. A few general comments are included in section 6 and an appendix provides some
consistency checks in a simplified context.

2. Formulation

We consider an Fe/Cr superlattice whose consecutive Fe films are labelled by an index
` = 1, 2, . . . , 3 where3 is the total number of layers. Each Fe film carries a macroscopic
magnetic momentM` = (Mx

` ,M
y

` ,M
z
` ) which is assumed to be coherent within each layer in

the sense that it changes as a whole in response to interactions with neighbouring moments or
with applied fields [14]. It is then natural to postulate that the dynamics is equivalent to that
of a classical spin chain with3 sites and is governed by the Landau–Lifshitz equation [15] in
the form given by Gilbert [16] and further discussed by Kikuchi [17]:
∂M`

∂t
+ γ

(
M` × ∂M`

∂t

)
=M` × F` F` = − ∂W

∂M`

M2
` = 1 (2.1)

whereW is an energy functional andγ is a dissipation constant. This choice of dissipation
appears to be suitable for the current problem because it preserves the magnitude of each
moment. The latter has been normalized to unity and thus its physical unit is equal to the
ferromagnetic moment of each Fe film. The dissipation constantγ is then dimensionless.

The energy functional consists of three terms corresponding to exchange, anisotropy, and
Zeeman interactions, namely

W =
3−1∑
`=1

J (M` ·M`+1) +
1

2

3∑
`=1

[K1(M
x
` )

2 +K2(M
y

` )
2 +K3(M

z
` )

2] −
3∑
`=1

(H ·M`)

(2.2)

whereJ is a positive exchange constant,K1, K2, andK3 are anisotropy constants, andH is
an applied field. As a consequence the effective field in equation (2.1) is given by

F` = −J (M`+1 +M`−1)− (K1M
x
` e1 +K2M

y

` e2 +K3M
z
`e3) +H (2.3)

wheree1, e2, ande3 are unit vectors along the three axes. One should keep in mind that the
exchange term contains only one moment when it is applied for the outer layers(` = 1 or3).

All constants including the external field are measured in units of frequency thanks to the
normalizationM2

` = 1 adopted in equation (2.1). It is also clear that the anisotropy constants
may be restricted to

K1 = 0 K2 ≡ D K3 ≡ D0 (2.4)

without loss of generality because allKs can be shifted by a common constant without affecting
the equation of motion. Furthermore, thexy-plane is taken to coincide with the plane of
each layer, with thex-axis pointing along the easy axis, while thez-axis points along the
chain direction. Accordingly the positive constantD is the strength of the in-plane easy-
axis anisotropy, and the positive constantD0 provides an effective description of the intrafilm
demagnetizing field. The interfilm dipolar coupling [18] may be neglected at low wavenumbers
of current interest [12, 14]. For the moment we also assume that the external field is uniform
and is applied along the easy axis:

H = (H, 0, 0) = He1. (2.5)

Typical values of the parameters given in [14] areD0/J ∼ 21 andD/J ∼ 1/4, while the most
interesting effects are observed for modest bias fields in the kG range which corresponds to
H/J ∼ 1. Therefore we are in a situation where the strong inequalities

D0� D, J,H (2.6)
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are reasonably well satisfied and imply that out-of-plane fluctuations are significantly
suppressed.

The appearance of a disparate scale(D0) makes the Landau–Lifshitz equation awkward
but can be turned to advantage by a truncation of the dynamics capitalizing on the fact that
out-of-plane fluctuations may be treated as small perturbations. The idea of truncation was
first implemented by Mikeska for a planar ferromagnetic chain [19] and is also implicit in
his subsequent treatment of antiferromagnetic chains [20]. A more complete account of the
latter problem was given in [21, 22]. The present author first tested the domain of validity of
the truncated dynamics in a simple model containing only one moment. The results strongly
influenced his decision to adopt such an approach in the current problem and are thus briefly
described in the appendix.

The steps of the derivation are elementary and proceed by introducing the familiar spherical
parametrization

Mx
` = sinθ` cosφ` M

y

` = sinθ` sinφ` Mz
` = cosθ` (2.7)

in equation (2.2) to produce an energy functionalW = W(θ, φ). The general form of the
Landau–Lifshitz equation (2.1) then reads

sinθ`
∂φ`

∂t
+ γ

∂θ`

∂t
= −∂W

∂θ`
sinθ`

∂θ`

∂t
− γ sin2 θ`

∂φ`

∂t
= ∂W

∂φ`
. (2.8)

At vanishing dissipation(γ = 0) the preceding equations are in the standard Hamiltonian
form; we note that the variableπ` = cosθ` is canonically conjugate to the azimuthal angleφ`.

In order to derive the truncated dynamics it is convenient to consider the rescaled variables

ρ =
√
J/D0 �0 =

√
JD0 τ = �0t (2.9)

where the dimensionless ratioρ � 1 controls the size of out-of-plane fluctuations,�0 sets
a unit for frequency, andτ is a dimensionless time variable. One could use a different scale,
say,D instead ofJ in equation (2.9) but this is only a matter of convenience as long as the
inequalities (2.6) are all satisfied (see the appendix). The list of rationalized parameters is
completed with

δ = D/J h = H/J λ = γ /ρ (2.10)

for the in-plane easy-axis anisotropy, the applied field, and the dissipation constant, resp-
ectively. Implicit in the last relation is the assumptionγ � 1 which is certainly reasonable
and must supplement the inequalities (2.6). Finally we make the change of variables

θ` = π

2
− ρχ` (2.11)

anticipating the fact that the component of the magnetic moment along the chain direction is
small whenρ � 1.

Inserting the above variables in (2.8) leads to a system of coupled equations which appear
to be rather complicated. However, substantial simplifications occur in the limit of smallρ.
The final result is simple and self-explanatory and is thus stated here without further ado:

χ` = φ̇` φ̈` + λφ̇` = f` (2.12)

where the dot denotes differentiation with respect toτ and the ‘force’f` is derived from the
‘potential’

V =
3−1∑
`=1

cos(φ` − φ`+1) +
3∑
`=1

(
δ

2
sin2 φ` − h cosφ`

)
(2.13)
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according to the standard prescription:

f` = − ∂V
∂φ`
= sin(φ` − φ`+1) + sin(φ` − φ`−1)− δ cosφ` sinφ` − h sinφ`. (2.14)

Again only one of the (exchange) sine terms is present at the outer layers. The second relation
in (2.12) is an antiferromagnetic discrete sine–Gordon equation including dissipation and the
first relation provides a lowest-order approximation ofθ` in equation (2.11). Substituting this
in equation (2.7) yields

Mx
` ≈

(
1− 1

2
ρ2φ̇2

`

)
cosφ` M

y

` ≈
(

1− 1

2
ρ2φ̇2

`

)
sinφ` Mz

` ≈ ρφ̇`. (2.15)

Therefore, given a solutionφ` = φ`(τ ) of the discrete sine–Gordon equation, the original
magnetic moments are completely specified to leading order inρ. The sine–Gordon equation
contains only the rationalized parameters (2.10) and will provide the basis for all subsequent
calculations.

This section is concluded with a few general comments. We think that the conventions
and notation used here are well suited for the present work but differ significantly from those of
most previous studies including our own [10, 11]. In particular, the fieldh of equation (2.10)
differs from the fieldh of the above references by the rescalingh = 2εh, whereε is related
to the easy-axis anisotropy asδ = ε2. Such a rescaling is very convenient in the discussion
of the continuum limit of bulk domain walls, which play an important role in this subject, but
would lead to unnecessary notational complications in the current work. Therefore, to avoid
any confusion, the continuum limit will not be discussed in the present paper. Furthermore,
numerical calculations will be carried out for the specific anisotropyδ = 1/4 or ε = 1/2 for
which the two definitions of the rationalized field become identical.

3. Surface magnon modes

The central mathematical problem consists of finding the minimum (ground state) of the
effective potentialV . It should be stressed that the minimum of this reduced potential coincides
with that of the original energy functionalW irrespective of the specific value ofD0. In other
words, the truncation of the dynamics at largeD0 discussed in section 2 does not affect the
ground state itself, even though it certainly simplifies the dynamics of fluctuations.

The nature of the ground state is highly nontrivial on a finite chain and depends crucially
on the strength of the bias fieldh. Yet one should expect that the simple Néel state
φ` = φ

(0)
` = (0, π,0, π, . . .) is the minimum-energy configuration for a sufficiently weak

bias field. Our immediate task is then to examine the domain of local stability of the Néel state
for various values ofh. Hence we return to the second equation in (2.12), applied for vanishing
dissipation(λ = 0), and linearize it by settingφ` = φ(0)` +ψ` and neglecting nonlinear terms
in ψ` to obtain

ψ̈1 + (ψ1− ψ2) + (δ + h)ψ1 = 0
ψ̈` + (2ψ` − ψ`+1− ψ`−1) + [δ − (−1)`h]ψ` = 0 ` = 2, 3, . . . , 3− 1
ψ̈3 + (ψ3 − ψ3−1) + (δ − h)ψ3 = 0.

(3.1)

Here we assume that the total number of layers is even(3 = 2N). The case of an odd
superlattice(3 = 2N + 1) will not be discussed until section 6.

The normal modes of the linearized system (3.1) are calculated by first making the
replacemenẗψ`→−ω2ψ` whereω is a characteristic frequency. We also introduce sublattice
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variables according toαn = ψ2n−1 andβn = ψ2n, with n = 1, 2, . . . , N , to write

(η − 1 +h)α1 = β1

(η + h)αn = βn−1 + βn n = 2, 3, . . . , N

(η − h)βn = αn + αn+1 n = 1, 2, . . . , N − 1

(η − 1− h)βN = αN

(3.2)

whereη = 2 + δ − ω2 is used as a temporary notational abbreviation.
Analytical solution of this linear system is complicated by the appearance of the two

distinct equations at the outer layers. Thus it is useful to consider for the moment the case of
a cyclic chain where the first and fourth equations in (3.2) are absent and the remaining ones
may be written as

βn = αn + αn+1

η − h
(η2 − h

2)αn = 2αn + αn+1 + αn−1 (3.3)

and are valid for alln. An explicit solution is now given byαn = eiqn whereq = 2πν/N ,
with ν = 0, 1, . . . , N − 1, is a sublattice momentum, provided that

η2 = 4 cos2(q/2) + h
2.

This eigenvalue condition leads to two branches of normal frequencies:

ω2
±(q) = 2 + δ ±

√
4 cos2(q/2) + h2 (3.4)

which may be referred to as the ‘optical’ and ‘acoustical’ branches. The frequencies (3.4) are
measured in units of the fundamental frequency�0 of equation (2.9) and are valid for large
D0, as explained in section 2.

The normal frequencies of a cyclic chain are contained within the two shaded regions
of figure 1 which are bounded by the four linesω±(q = 0) andω±(q = π) viewed as
functions of the applied field. For each field value there existN eigenvalues in each branch
and their distribution becomes dense asN → ∞. It is evident that the acoustical branch is

Figure 1. Schematic illustration of the magnon spectrum in the Néel state as a function of the bias
field. The two distinct gap modes are given analytically by equations (3.5) and (3.6). Here and in
all subsequent illustrations we use the specific anisotropyδ = 1/4.
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itself separated from the ground state by a gap and a similar gap opens between the acoustical
and optical branches at any finite field. This picture remains substantially correct on an open
chain with some important deviations. The eigenvalues are somewhat rearranged within each
continuum while each branch loses exactly one eigenvalue that becomes a gap mode. Therefore
there exist two distinct gap modes.

Although we have been unable to derive an analytical solution for the complete spectrum
of an open chain the two gap modes can be calculated explicitly. Indeed one may return to
the linear system (3.2) and verify all four equations by direct substitution of the following two
special solutions:

ω2 = ω2
1 = 1 + δ −

√
1 +h2 αn = ξN−n+1 βn = ξN−n (3.5)

and

ω2 = ω2
2 = 1 + δ +

√
1 +h2 αn = (−1)n−1ξn−1 βn = (−1)nξn (3.6)

where, in both cases,

ξ =
√

1 +h2 − h 0< ξ < 1 (3.7)

andn = 1, 2, . . . , N . The mode (3.5) is exponentially localized near the rightmost layer,
where the applied field opposes the Néel moment, and its frequencyω1 lies within the lowest
gap in figure 1. Similarly the mode (3.6) is localized near the leftmost layer, where the field is
parallel to the Ńeel moment, and its frequencyω2 lies within the middle gap.

The significance of these surface magnon modes is that the lowest one becomes soft
(ω1 = 0) at a critical field

h2 =
√

2δ + δ2 (3.8)

beyond which the Ńeel state ceases to be stable even locally, as discussed by Mills and Saslow
for a semi-infinite system [2]. The present derivation together with the remarks included in
the first paragraph of this section establish that the critical field (3.8) is actually exact on an
open even chain of any size. The fate of the ground state forh > h2 is a nontrivial question
that cannot be addressed within the linearized theory. One should also note that the Néel
state could, in principle, become globally unstable at an earlier stage(h < h2) through a first-
order transition. These important issues will be taken up in section 4 by a direct numerical
minimization of the effective potentialV .

Nevertheless, some further general features of the anticipated results can be surmised
from an elementary analysis of acyclic chain for which the ground state can be analytically
constructed for allh. Surface modes are, of course, absent in this case and the system would
proceed directly to the familiar BSF transition at a critical field that is higher thanh2. In fact,
the BSF transition is first order and is characterized by three critical fields [11]

h3a = (4− δ)
√

δ

4 + δ
h3b =

√
4δ − δ2 h3c =

√
4δ + δ2 (3.9)

ordered ash3a < h3b < h3c. The Ńeel state is locally stable forh < h3c as is evident from
the bulk magnon spectrum (3.4) whose lowest eigenvalueω−(q = 0) vanishes ath = h3c.
Actually the Ńeel state is rendered globally unstable at an earlier stage to become a canted
stateφ` = (−1)`φ0 with

cosφ0 = h

4− δ . (3.10)

The canted state is locally stable forh > h3a but has higher energy than the Néel state until the
field reaches the valueh3b after which the role of the two states is interchanged. Therefore,
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strictly speaking, the BSF transition occurs at the critical fieldh3b. However, all three fields
in equation (3.9) are important in connection with hysteresis that would be observed near the
first-order BSF transition on a cyclic chain. The three fields become indistinguishable in the
limit of weak easy-axis anisotropy, namelyh3a ≈ h3b ≈ h3c ≈

√
4δ, and differ from the field

h2 ≈
√

2δ in the same limit by the well-known factor
√

2.
The magnon spectrum in the canted state of a cyclic chain is similarly derived to yield

ω2
±(q) = 2[c1± c2 cos(q/2)] c1 = 1− δ

2
sin2 φ0 c2 = 2 sin2 φ0 − 1 (3.11)

and its lowest squared eigenvalueω2
−(q = 0) = 2(c1 − c2) is non-negative forh > h3a, in

accord with our interpretation of the critical fields (3.9). The spectrum shows an interesting
behaviour when the field is increased beyond the BSF transition. Hence the coefficientc2

vanishes at the characteristic field

hch = (4− δ)/
√

2 c2 = 0 (3.12)

where the dispersion collapses to the single valueω2
± = 2c1 = (4− δ)/2 for all q. Abovehch

the lowest boundary of the spectrum is given byω2
+(q = 0) = 2(c1 + c2) and vanishes at yet

another critical field

h4 = 4− δ (3.13)

beyond which the systems orders ferromagnetically(φ` = 0). The magnon spectrum for
h > h4 reads

ω2(k) = δ + h− 2(1− cosk) (3.14)

wherek = 2πλ/3, with λ = 0, 1, . . . , 3− 1, is now the crystal momentum on the complete
lattice. The lowest eigenvalue occurs at the zone boundary(k = π) and becomes soft at
h = h4.

Needless to say, some departures from the preceding picture should be expected to occur
on an open chain. In particular, interesting surface magnon modes occur also forh > h2 but
an analytical treatment seems impossible. Therefore we turn to numerical calculation of the
magnon spectrum for allh, in section 5, after the true ground state has been determined in
section 4.

4. Surface spin-flop transition

This section is a simplified version of [10]. We consider a numerical minimization of the
effective potentialV for a wide range of field values. An elementary algorithm may be based
on the dissipative sine–Gordon equation (2.12). A further simplification is possible if one only
desires to compute the minima of the potential. One may then employ the fully dissipative
equation

φ̇` = f` = − ∂V
∂φ`

(4.1)

in the sense that an arbitrarily chosen initial configurationφ` will eventually relax to a terminal
stateφ(0)` that is a local minimum of the potential. The resulting equilibrium spin configuration
is given by

Mx
` = cosφ(0)` ≡ Qx

` M
y

` = sinφ(0)` ≡ Qy

` Mz
` = 0 (4.2)

which is a static version of equation (2.15).
A straightforward first-order time differencing (Euler) scheme, with a time step in the

neighbourhood of 10−2, proved to be sufficient for an accurate determination of the terminal
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states of equation (4.1). Numerical calculations were performed on an even chain with3 = 20
sites and a specific easy-axis anisotropyδ = 1/4 which are typical values in currently
synthesized superlattices [14]. The picture would be significantly different for very large
anisotropy [9], as is also evident in the discussion of section 3 from the repeated appearance
of the quantity 4− δ which becomes negative forδ > 4.

The Ńeel stateφ` = (0, π, . . . ,0, π) is an exact static solution for any bias field but
is locally stable only forh < h2 = 0.75; the latter field value was obtained from equation
(3.8) applied withδ = 1/4. To verify this statement we consider a ‘small’ fluctuation in the
Néel state realized here by replacing the last entryφ3 = π with, say,φ3 = 0.99π . The
resulting configuration is then used as initial condition in equation (4.1) which is solved by the
elementary numerical algorithm described above. Not surprisingly the perturbed configuration
quickly relaxes back to the Ńeel state as long ash < h2. However, ath = h2, the calculated
terminal state is highly nontrivial and describes a domain wall that has suddenly nucleated
somewhere between the rightmost layer and the centre of the superlattice; see figure 1 of [10].

The process is continued beyondh2, now in steps ofδh = 10−3, using as initial
configuration at each step the terminal state obtained in the preceding step. The domain
wall quickly moves to the centre of the lattice and becomes symmetric about the centre to
16-place accuracy forh & 1. This is roughly the field region of the would-be BSF transition
predicted by the critical fieldsh3 of equation (3.9). However, the BSF transition is rapid but not
sharp on an open chain. Meanwhile the domain wall expands symmetrically with increasing
field to become a nearly uniform canted state within the bulk with notable nonuniformities
near the edges. Complete ferromagnetic order is eventually achieved when the field exceeds
the valueh = 3.73 which is slightly different from the critical fieldh4 = 4− δ = 3.75 thanks
to a minor finite-size effect. In this respect, one should recall that no such effect was observed
for the critical fieldh2 = 0.75 because equation (3.8) is exact on an open even chain of any
size.

A good illustration is provided by the calculated total magnetic moment

µ =
3∑
`=1

M` = (µ1, µ2, µ3)

µ1 =
∑
`

Qx
` µ2 =

∑
`

Q
y

` µ3 = 0
(4.3)

whose field dependence is shown by a solid line in figure 2. This figure uses a limited field
range(0 < h < 1.5) to emphasize important details that are present in the spin-flop regime.
The componentµ1 along the easy axis suffers a sudden jump ath2 and also develops a shoulder
nearh ∼ h3 ∼ 1 which reflects a rapid crossover at the BSF regime. Further increase of the
applied field beyond the figure range leads to a monotonic increase ofµ1 until it reaches
ferromagnetic saturation(µ1 = 3 = 20) at the critical fieldh4. Finally, the inset of figure 2
demonstrates that a small transverse componentµ2 appears, just aboveh2, which reflects the
fact that the nucleated domain wall is initially off centre. The transverse momentµ2 and the
corresponding asymmetry of the domain wall about the centre disappear to 16-place accuracy
for h & 1.

The familiar BSF transition is thus pre-empted by a SSF transition. The latter will
generically occur at the critical fieldh2, where a surface magnon mode turns soft, if
the ascending-field sequence is implemented without special precautions; e.g., by slowly
increasing the applied field either in small steps or continuously. On the other hand, the
sudden nucleation of a domain wall within the chain, the sudden jump of the total moment,
and a corresponding sudden reduction of the energy, make it clear that the SSF transition is
first order and could occur at a field smaller thanh2.
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Figure 2. Total magnetic momentµ = (µ1, µ2, µ3 = 0) for an open chain with3 = 20 sites for
the various field sequences as described in the text.

In order to probe for such a possibility we repeat the procedure by invoking a ‘large’
fluctuation in the initial Ńeel state. The moment of the outer layer is now nearly flipped by
replacing its Ńeel valueφ3 = π with, say,φ3 = 0.01π . If we then use such an initial condition
in equation (4.1) the perturbed configuration no longer relaxes to the pure Néel state when the
field exceeds a new critical valueh1 = 0.656 which is smaller thanh2 = 0.75. Aboveh1 the
relaxed configuration is a nontrivial surface state in which the outer moment forms a nearly
60◦ angle to the easy axis and should thus be identified with the ‘true’ SSF state of [9]. We
have continued the process beyondh1, again in steps ofδh = 10−3, to find that the SSF state
eventually evolves into the domain wall discussed earlier. Similarly the corresponding total
magnetic moment, depicted by a dotted line in figure 2, joinssmoothlywith the earlier results
at h2. The appearance of a sizable transverse componentµ2 in the region [h1, h2] implies
that the SSF state is significantly twisted and comes in two varieties distinguished by their
handedness. The transverse moment would be negative if the initial configuration were chosen
such thatφ3 = −0.01π .

The calculated total moment displays a rather bumpy field dependence within the SSF
region, which is not clearly visible on the scale of figure 2. To make this feature completely
apparent we consider the static susceptibility

χ11 = 1

3

∂µ1

∂h
(4.4)

which is plotted in figure 3 using both a dotted and a solid line corresponding to the two field
sequences. The rounded maximum in the vicinity ofh ∼ 1 is due to the rapid crossover that
has replaced a sharp BSF transition. The situation is far more complex in [h1, h2] and even
finer structure may emerge if the field step is chosen to be smaller than the currently employed
δh = 10−3. Therefore the details of figure 3 indicate a ‘chaotic’ behaviour in the otherwise
‘deterministic’ effective potentialV defined on an open chain [7, 8]. Finally, the notation of
equation (4.4) suggests that the susceptibility tensor also acquires nonvanishing off-diagonal
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Figure 3. The static susceptibility of equation (4.4) using as input numerical data from figure 2.

elements due to the twisting effect described in the preceding paragraph. Such elements may
be computed using our numerical results for the transverse momentµ2 but this issue will not
be pursued further.

We thus return to the main argument and examine whether or not a transition can actually
occur at the critical fieldh1. A contrived scenario for instigating such a transition is suggested
by the method of calculation; namely, by temporarily applying a strong field pulse opposing the
Néel moment at the outer layer as the bias field crosses the valueh1. A more natural alternative
results from an appreciation of the detailed nature of the SSF transition. A closer examination
of the numerical energy data reveals that we are dealing with a genuine first-order transition
characterized by three distinct field values ordered ash1 < hc < h2 whereh1 = 0.656 and
h2 = 0.75 are the fields already discussed. The low-energy data may be roughly interpreted
by invoking an uneven double well whose two local minima correspond to the Néel and SSF
states. The Ńeel state is locally stable forh < h2 and the SSF state forh > h1. The energies of
the two minima coincide at the critical fieldhc = 0.682 which lies in the overlapping domain
[h1, h2]. The SSF state first appears as a metastable local minimum in [h1, hc] and becomes
the absolute minimum forh > hc. Similarly the Ńeel state is the absolute minimum forh < hc

and survives as a metastable local minimum in [hc, h2]. Beyondh2 the SSF state has clearly
transformed into a domain wall which is detached from the surface and quickly moves to the
centre of the superlattice; in general agreement with the interpretation of [9] where the critical
field h2 is derived by a different reasoning and is thought to provide the phase boundary of
the AF3:AF4 transition. We think that the coincidence of such a phase boundary with the
boundary of local stability of the Ńeel state, i.e., the field where a surface magnon mode turns
soft, is a model-dependent accident that is partly responsible for the confusion generated on
this subject.

To summarize, the ‘true’ SSF transition occurs at the critical fieldhc. Nevertheless, all
three fieldsh1, hc, andh2 are relevant in connection with hysteresis,hc being the least important.
Specifically, let us invoke the original scenario and drive the system to a nominal fieldh0, just
aboveh2, where a domain wall appears within the chain but is still off centre. If we then
reverse the cycle by reducing the field adiabatically, the domain wall returns to the outer layer
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through formation of the SSF state in reverse order, and finally exits the system ath = h1

where the chain returns to the pure Néel state. Accordingly the total moment follows the solid
line in figure 2 during the ascending-field sequence but the dotted line during the descending
sequence, a fact that can be checked numerically provided that the nominal fieldh0 is close to
h2. Therefore the ‘true hysteresis loop’ is given by the solid and dotted lines of figure 2 taken
in combination.

It would thus appear that we have obtained a complete description of the SSF transition
including hysteresis. Nonetheless, a further interesting possibility arises when the nominal
field h0 is chosen to be sufficiently large, practically in the regionh0 > 0.8, where the relaxed
configuration is symmetric about the centre to great numerical precision which reaches machine
(16-place) accuracy forh0 & 1. The calculated hysteresis curve is then rather elongated and
typically extends all the way down to vanishing field [10, 12, 14], as shown in figure 2 by open
circles starting fromh0 = 1.5. The explanation for a elongated hysteresis is that the domain
wall loses its memory as the field descends through the SSF regime and remains trapped in a
metastable state near the centre of the superlattice even at low field values. This possibility was
previously discussed [10] as a means for experimental detection of the theoretically predicted
ferromagnetic moment of an antiferromagnetic domain wall [11].

We conclude this section with a comment concerning the elementary Euler scheme used to
solve the fully dissipative equation (4.1). One needs about 106–107 time steps ofδτ = 10−2 to
obtain complete relaxation for each field value within the SSF regime, a process that amounts
to about one CPU minute on a modest workstation. The required number of time steps can
be reduced by several orders of magnitude away from the critical region, and hence the whole
numerical effort is well within current capabilities. Furthermore, the calculation was subjected
to several consistency checks, including a fourth-order Runge–Kutta solution of the complete
sine–Gordon equation (2.12) at finiteλ.

5. Dynamic response

We now consider the response of the superlattice to an AC magnetic field applied in a direction
that is perpendicular to both the easy axis and the chain direction. Such a field is accounted
for by the simple substitution

F`→ F` +H⊥ cos(�t)e2 (5.1)

in the original Landau–Lifshitz equation (2.1). Within the context of the truncated dynamics,
the sine–Gordon equation (2.12) is accordingly extended to

φ̈` + λφ̇` = f` + h⊥ cos(ωτ) cosφ` (5.2)

whereτ is given by equation (2.9),ω = �/�0 is the frequency in units of�0, andh⊥ = H⊥/J
is the amplitude of the AC field normalized as in equation (2.10).

With small variations of the main theme to be discussed later, the mathematical problem
consists of the following simple steps. Suppose that the superlattice has relaxed in its ground-
state configurationφ(0)` at a specific value of the bias fieldh. One must then solve equation
(5.2) with initial condition

φ`(τ = 0) = φ(0)`
to determine the configurationφ`(τ ) at all later times. Of special importance is the case of a
weak transverse field which probes the intrinsic properties of the superlattice and allows us to
invoke the linear approximation

φ`(τ ) ≈ φ(0)` + h⊥u`(τ ). (5.3)
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To lowest order inh⊥, equation (5.2) becomes

ü` + λu̇` +
3∑
m=1

C`mum = Qx
` cos(ωτ) (5.4)

where the nonvanishing elements of the tridiagonal3×3 matrixC = (C`m) are given by

C11 = −(Q1 ·Q2) + δ[(Qx
1)

2 − (Qy

1)
2] + hQx

1

C`` = −Q` · (Q`+1 +Q`−1) + δ[(Qx
`)

2 − (Qy

`)
2] + hQx

`

C33 = −(Q3 ·Q3−1) + δ[(Qx
3)

2 − (Qy

3)
2] + hQx

3

C`,`+1 = (Q` ·Q`+1) = C`+1,`

(5.5)

and are expressed entirely in terms of the two-component vectorQ` = (Qx
` ,Q

y

`) defined in
equation (4.2) for a specific ground-state configurationφ

(0)
` calculated in section 4.

Thanks to dissipation, transients die out quickly and the terminal state is described by the
particular solution of equation (5.4)

u`(τ ) = A` cos(ωτ) +B` sin(ωτ) (5.6)

where the local dynamic susceptibilitiesA` andB` satisfy the linear system of algebraic
equations

λωA` =
∑
m

D`mBm λωB` +
∑
m

D`mAm = Qx
` D ≡ C − ω2I. (5.7)

The matrixD = (D`m) can readily be constructed in terms of the matrixC of equation (5.5) and
the3×3 unit matrixI = diag(1, 1, . . . ,1). The calculation of the dynamic susceptibilities
can then be carried out by any standard numerical algorithm solving the linear system (5.7).

In order to complete the theoretical description we must return to the original magnetic
momentsM`. Inserting the linearized field (5.3) in equation (2.15) the corresponding linear
approximation of the local moments reads

Mx
` ≈ Qx

` − h⊥Q
y

`u` M
y

` ≈ Qy

` + h⊥Qx
`u` Mz

` ≈ ρh⊥u̇` (5.8)

whereu` is the terminal state (5.6). Hence the total moments are given by

µ1(τ ) = µ1 +3h⊥[χ ′12 cos(ωτ) + χ ′′12 sin(ωτ)]

µ2(τ ) = µ2 +3h⊥[χ ′22 cos(ωτ) + χ ′′22 sin(ωτ)]

µ3(τ ) = µ3 +3h⊥[χ ′32 cos(ωτ) + χ ′′32 sin(ωτ)]

(5.9)

whereµ1, µ2, andµ3 in the right-hand side are the static total moments of equation (4.3) and

χ ′12 = −
1

3

∑
`

Q
y

`A`

χ ′22 =
1

3

∑
`

Qx
`A`

χ ′32 =
ρω

3

∑
`

B`

χ ′′12 = −
1

3

∑
`

Q
y

`B`

χ ′′22 =
1

3

∑
`

Qx
`B`

χ ′′32 = −
ρω

3

∑
`

A`

(5.10)

are the sought-after total dynamic susceptibilities expressed in terms of the local ones withA`
andB` determined from the linear system (5.7).

Now χ ′12 andχ ′′12 manifestly vanish in the Ńeel state(Qy

` = 0) and are also found to
practically vanish for bias fields greater thanh2. They do acquire small finite values within the
SSF region [h1, h2] which are more a nuisance than a clear signature for the SSF transition.
Similarly the sums inχ ′32 andχ ′′32 are small and further suppressed by the factorρω � 1.
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Therefore, although no additional effort is required to calculate all sums in equation (5.10),
we shall confine our attention to the diagonal susceptibilities relabelled as

χ ′22 ≡ χ ′ = χ ′(ω, h) χ ′′22 ≡ χ ′′ = χ ′′(ω, h) (5.11)

and examined in the following as functions of frequencyω and bias fieldh; for lattice size
3 = 20, easy-axis anisotropyδ = 1/4, and dissipation constantλ = 0.1.

Figure 4. The magnon spectrum for3 = 20 along the most likely ascending-field sequence
reaching beyond ferromagnetic saturation.

Inspection of the linear system (5.7) suggests that potential resonances occur at frequencies
such that

detD = det(C − ω2I ) = 0 (5.12)

whose eigenvalues are determined numerically using as input the ground-state configuration
Q` calculated in section 4 at any given bias fieldh. We are thus in a position to complete the
discussion of section 3 and calculate the normal frequenciesω = ω(h) for all h. Consider
first the most likely ascending-field sequence in which the Néel state survives as a metastable
local minimum beyond the true critical fieldhc = 0.682, until the bias field crosses the value
h2 = 0.75 where a sudden SSF transition occurs. The corresponding eigenvalues of equation
(5.12) are shown in figure 4 for a wide field range reaching beyond the critical fieldh4 = 3.73
required for ferromagnetic saturation.

The overall appearance of figure 4 is similar to that of figure 7 in [12] in spite of the
use of truncated dynamics. The main difference is that we now assume that the Néel state is
trapped in its metastable phase in the region [hc, h2]. As a result the spectrum for the complete
interval [0, h2] is the spectrum of the Ńeel state provisionally discussed in section 3 and shown
schematically in figure 1. As expected the first and the eleventh modes counting from the
bottom of figure 4 were found equal to the gap modesω1 andω2 of equations (3.5) and (3.6)
which are valid for all3 including3 = 20. In particular, the lowest mode was numerically
found to vanish at the critical fieldh2 given analytically by equation (3.8). One should add
that several important features of the calculated spectrum were already present in the earlier
calculation of N̈ortemannet al [23, 24].

The discontinuity of the spectrum ath2 is yet another consequence of the first-order nature
of the SSF transition. The imprint of the BSF transition is also made apparent in figure 4 by the
observed crossover behaviour ath ∼ 1. The evolution of the spectrum for larger field values
is quite spectacular. Most eigenvalues cluster around a single value at the characteristic field
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hch ≈ 2.65 predicted for a cyclic chain by equation (3.12) and mildly corrected to account for
the open chain considered here. However, a definite difference from the cyclic chain emerges
with the appearance of surface modes whose eigenvalues are clearly separated belowand
above the continuum for fields in the regionh ∼ hch. Indeed the lowest gap mode(ω1) in
the Ńeel state is gradually joined by the next mode to evolve into a pair of nearly degenerate
surface states with frequencies well within the lowest gap. Similarly the middle gap mode
(ω2) in the Ńeel state is joined by a nearby partner and they both work their way through
the upper continuum to reappear as surface states with nearly degenerate frequencies above
the continuum. A fifth gap mode can also be discerned just below the accumulation point
of the eigenvalues ath ∼ hch. Finally, the spectrum regroups itself into a more or less rigid
continuum above the ferromagnetic transition which takes place ath4 = 3.73.

A detailed analysis of the various surface states is certainly possible by examining the
wavefunctions associated with the eigenvalue problem (5.12). Here we are mainly interested
in their potential contributions to resonances in the dynamic susceptibilitiesχ ′ andχ ′′. The
simpleq = 0 rule known to apply for cyclic or infinite chains should be viewed with caution in
the presence of open boundaries. Our numerical calculation is not based on any assumptions
of that nature. Hence in figure 5 we illustrate the calculated frequency dependence of the
dynamic susceptibilities for a number of typical values of the bias fieldh taken along the
described ascending-field sequence.

At low values of the bias field the main absorption peak occurs at the highest eigen-
frequency which is accurately predicted by the numerical results of figure 4 or approximately
by the bulk magnon spectrum (3.4) as

ω2
+(q = 0) = 2 + δ +

√
4 +h2 (5.13)

to within a minor finite-size correction. The above frequency accounts for the main resonance
observed in figure 5 both ath = 0 andh = 0.5. A new low-frequency feature begins to
emerge in the latter case due to absorption by the lowest gap mode with frequencyω1 given
analytically by equation (3.5). The contribution of this surface mode becomes increasingly
significant when the Ńeel state enters its metastable phase for fields greater thanhc = 0.682,
as illustrated in theh = 0.735 entry of figure 5 which exhibits a rather strong low-frequency
signal.

When the bias field crosses the critical valueh2 = 0.75 of equation (3.8) the SSF transition
becomes inevitable. Accordingly the low-frequency peak in the dynamic susceptibilities is
suddenly quenched and is difficult to discern on the scale of theh = 0.75 entry of figure 5.
Nevertheless, low-frequency absorption is again amplified, albeit to a lesser extent, when the
field approaches the BSF crossover regime; as shown in theh = 1 entry of figure 5.

The superlattice is set on a clearly new course for fields beyond the BSF regime. Thus
the low-frequency peak drifts to a higher frequency initially along the lowest eigenvalue of
figure 4. However, it eventually shifts to the lower side of the continuum, i.e., to the third
mode counting from the bottom of figure 4, as the bias field approaches the characteristic
valuehch ≈ 2.65 of equation (3.12). Meanwhile the highest eigenfrequency loses its intensity
and is replaced by a secondary peak drifting along with the middle gap mode on its way to
emerging as a surface state above the continuum. Forh > hch a partial reversal takes place
and the two peaks observed at, say,h = 3 correspond to the frequencies of the upper side of
the continuum and of the highest surface mode. Finally, above the ferromagnetic transition,
e.g., ath = 4, the two peaks merge into a single clear signal at the highest magnon frequency
given by equation (3.14) as

ω2(k = 0) = δ + h (5.14)

again to within a minor finite-size correction.
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Figure 5. Dynamic susceptibility as a function of frequency for representative values of the bias
field along the most likely ascending-field sequence. The real part(χ ′) is depicted by a solid line
and the imaginary part(χ ′′) by a dotted line.

Therefore an experiment that would determine the frequency dependence of the
susceptibilities would probe in detail the dynamics of the superlattice. However, to the best of
our knowledge, such an experiment has not yet been performed. Instead the susceptibilities
were measured as functions of the DC bias field with an AC field also pointing along the easy
axis and operating at a fixed very low frequency [14]. Here and in the calculation of the above
reference the AC field is assumed to be perpendicular to the easy axis. In the upper panel of
figure 6 we display the field dependence of the dynamic susceptibilities calculated here at the
fixed relatively low frequencyω = 0.1. This result is consistent in its gross features with the
calculation in [14].

The strong signal just belowh2 = 0.75 as well as the lower bump near the BSF regime
h ∼ 1 are consistent with the frequency dependences of figure 5. The first peak is expected
and numerically verified to become increasingly sharp at lower frequencies and its location
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approaches the critical fieldh2 from below. It is then clear that the most likely ascending-field
sequence yields a sensitive probe of the critical field where the Mills–Saslow surface magnon
mode turns soft [2], but bypasses the finer details of the SSF transition. On the other hand,
these important details could be accessible through hysteresis.

Hence we recall the discussion of section 4 and consider the calculation of dynamic
susceptibilities along the ‘true’ hysteresis curve given by the dotted line of figure 2. The
corresponding normal frequencies calculated from equation (5.12) are shown in figure 7 and
differ from those of figure 4 only in the field interval [h1, h2]. The frequency dependence of
the diagonal susceptibilitiesχ ′ = χ ′22 andχ ′′ = χ ′′22 is depicted in figure 8 for two typical
field valuesh = 0.675 andh = 0.725 within the region of metastability(h < hc) and absolute

Figure 6. Field dependence of the dynamic susceptibility at a fixed low frequencyω = 0.1. The
arrow in each frame indicates the direction of increasing (decreasing) bias field along the three field
sequences as described in the text.
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Figure 7. The magnon spectrum of figure 4 with the exception of the field interval [h1,h2] where
the spectrum is now calculated in the SSF instead of the Néel state.

stability (h > hc) of the true SSF state, respectively. In both cases the low-frequency features
are tamed. As a result the field dependence along the descending sequence illustrated in the
middle panel of figure 6 shows no dramatic variations in the SSF region [h1, h2]. One should
further recall our earlier comment that the off-diagonal susceptibilitiesχ ′12 andχ ′′12 also acquire
finite values of comparable variation in the same field region. The overall conclusion is that a
clear signal for the finer details of the SSF transition does not seem feasible through dynamic
response in a transverse AC magnetic field.

Figure 8. Dynamic susceptibility as a function of frequency for two typical values of the bias field
in the regions of metastability(h = 0.675) and absolute stability(h = 0.725) of the SSF state.

Furthermore, the descending-field sequence assumed in the middle panel of figure 6 is
artificial in an important respect. The corresponding hysteresis curve is realized only if the
nominal fieldh0 at which the cycle is reversed is chosen to be just above the critical field
h2 = 0.75. Whenh0 is sufficiently large the superlattice loses memory of the SSF transition
and is locked into a symmetric state. Thus the generic hysteresis curve shown by open circles
in figure 2 extends all the way down to vanishing field, reflecting the fact that a domain wall
is trapped in a metastable state near the centre of the superlattice. The field dependence of
the susceptibilities along the generic hysteresis curve is depicted in the lower panel of figure
6 and continues to display the standard BSF peak ath ∼ 1 but is featureless in the SSF region
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Figure 9. Dynamic susceptibility as a function of frequency in the presence of a bulk domain wall
trapped at the centre of the chain for two typical values of the bias field.

[h1, h2]. This result is a consequence of the absence of an interesting low-frequency behaviour
in the dynamic susceptibilities, a fact illustrated in figure 9 for the two representative field
valuesh = 0 andh = 0.5. Therefore lack of structure in the dynamic susceptibilities near the
SSF region would provide indirect experimental evidence for the realization of the elongated
hysteresis curve of figure 2.

We have additionally examined the spectrum of normal frequencies in the presence of a
bulk domain wall at the centre of a finite chain. This spectrum exhibits a nearly zero-frequency
bulk mode, instead of a surface gap mode, which is a finite-lattice analogue of the strict zero
mode that would occur in the continuum limit(δ → 0) of an infinite lattice(3 → ∞)
reflecting translation invariance. It is thus not surprising that such a mode is not excited by the
uniform AC field and is not conspicuous in figure 9.

The preceding analysis may be carried further to address the question of local stability
of a bulk domain wall trapped at the centre of a finite chain. In fact, at vanishing bias field,
the lowest squared normal frequency was found to be negative(ω2 ∼ −10−4) for 3 = 20
and positive(ω2 ∼ 10−5) for 3 = 100. Therefore the domain wall is actually a marginally
unstable saddle point on a sufficiently short chain. More generally one should expect that a
bulk domain wall would become locally stable on a chain that exceeds a certain critical size
3 = 3c(δ, h) which is a function of anisotropyδ and bias fieldh. As a consequence the
elongated hysteresis curve shown by open circles in figure 2 should become more robust on
larger superlattices.

The numerical method followed in the present work is completely elementary and easy
to implement. Nevertheless, an interesting alternative was suggested by the authors of [14].
Within the context of the truncated dynamics the method of the above reference would amount
to solving the initial-value problem for thenonlineardissipative sine–Gordon equation (5.2)
in the presence of a weak AC field. The dynamic susceptibilities would then be extracted from
the steady state acquired byφ`(τ ) when the DC bias field is changed adiabatically. We have
actually implemented the method for equation (5.2) and reproduced some of the described
results for special values of the parameters. Our preference to the standard linear response
theory adopted in the text was due to its ability to provide detailed information on the normal
frequencies of the system. However, the method of [14] is more natural and will certainly play
an important role in future micromagnetic calculations.

6. Concluding remarks

Although the main features of the SSF transition are clearly understood, a number of more
detailed issues remain to be investigated both theoretically and experimentally. The nature
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of the hysteresis is probably the most urgent issue that has not been completely settled.
Furthermore, the finer details of the transition have not yet been resolved and could, in fact,
be irrelevant to actual experiments.

One should thus address and possibly quantify the question of robustness in the presence
of disorder and/or noise. Static disorder may result from a variation of the parameters as one
moves from one layer to the next. Similarly noise may be induced dynamically either by the
external field or by internal fluctuations including a partial lack of coherence in the moment of
each layer. A formulation of the relevant stochastic dynamics might prove fruitful especially
near the SSF transition where the effective potential displays a multitude of local minima with
energies that differ only slightly. In particular, one might be able to explain in detail a certain
loss of memory and irreversibility that are responsible for the elongated hysteresis curve of
figure 2.

Throughout this paper we have confined our attention to an even superlattice. The main
difference in the Ńeel state of an odd superlattice is that the moments of the two outer layers
point in the same direction. Therefore when the bias field is applied along the direction of
the outer moments a SSF transition is absent and the system proceeds directly to the BSF
transition. When the field is applied in the opposite direction a SSF transition takes place at
both ends. Thus the picture appears to be more complicated on an odd superlattice but does
not add anything fundamentally new. In any case, all calculations can be repeated for an odd
chain without difficulty.
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Appendix. Dynamics of a single moment

We return to the discussion of section 2 and consider the special limit of vanishing exchange
constant(J = 0) in which the moments of the various layers decouple. The dynamics of
each momentM = (Mx,My,Mz) = (sinθ cosφ, sinθ sinφ, cosθ) is then governed by the
Hamiltonian

W = 1

2
(D sin2 θ sin2 φ +D0 cos2 θ)−H sinθ cosφ −H⊥ cos(�t) sinθ sinφ (A1)

where the external field consists of a DC component of strengthH along the easy,x-axis and
an AC component of amplitudeH⊥ and frequency� along they-axis. For the moment we
make no assumptions on the relative strength of the anisotropy constantD0.

The corresponding Landau–Lifshitz equations read

sinθ
∂φ

∂t
+ γ

∂θ

∂t
= (D0 −D sin2 φ) cosθ sinθ + [H cosφ +H⊥ cos(�t) sinφ] cosθ

∂θ

∂t
− γ sinθ

∂φ

∂t
= D sinθ cosφ sinφ +H sinφ −H⊥ cos(�t) cosφ

(A2)

and our task is to determine the evolution of the moment induced by a weak AC field. One
may then invoke the linear approximationθ ≈ π/2− gH⊥ andφ ≈ fH⊥ or

Mx ≈ 1− 1

2
(f 2 + g2)H 2

⊥ My ≈ fH⊥ Mz ≈ gH⊥ (A3)
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where the amplitudesf andg satisfy the linear system

∂f

∂t
− γ ∂g

∂t
−�2g = 0

�1 ≡ D +H

∂g

∂t
+ γ

∂f

∂t
+�1f = cos(�t)

�2 ≡ D0 +H.
(A4)

At large times, transients damp out exponentially and the terminal state is described by the
particular solution

f = A cos(�t) +B sin(�t) g = 0 cos(�t) +1 sin(�t) (A5)

where the dynamic susceptibilities are given by

A = �2(�1�2 −�2) + γ 2�1�
2

[�1�2 − (1 +γ 2)�2]2 + γ 2(�1 +�2)2�2

B = γ�[�2
2 + (1 +γ 2)�2]

[�1�2 − (1 +γ 2)�2]2 + γ 2(�1 +�2)2�2

0 = γ (�1 +�2)�
2

[�1�2 − (1 +γ 2)�2]2 + γ 2(�1 +�2)2�2

1 = �[(1 +γ 2)�2 −�1�2]

[�1�2 − (1 +γ 2)�2]2 + γ 2(�1 +�2)2�2
.

(A6)

For small values of the dissipation constant(γ � 1) resonance occurs at the characteristic
frequency� = √�1�2.

Thus the component of the moment along the easy axis undergoes a negligible second-order
modulation around its ground-state value,Mx = 1, whereas the projection of the moment on the
yz-plane is elliptically polarized. The length of the ellipse axes and their relative orientation in
theyz-plane are sensitive functions of frequency� and bias fieldH especially near resonance.
However, the picture simplifies substantially whenD0 is much larger than all other scales
involved. This limit may be studied either by starting from the exact susceptibilities (A6) or
by first implementing the truncated dynamics of section 2; as is done in the remainder of this
appendix.

Since an exchange constant is no longer present the rescaled variables of equations (2.9)
and (2.10) are redefined as

ρ =
√
D/D0

λ = γ /ρ
�0 =

√
DD0

h = H/D
τ = �0t

h⊥ = H⊥/D
(A7)

and we again introduce a fieldχ via θ = π/2− ρχ . In the limit of smallρ, the truncated
dynamics is governed by

χ = φ̇ φ̈ + λφ̇ + cosφ sinφ + h sinφ = h⊥ cos(ωτ) cosφ (A8)

where the dot stands for differentiation with respect toτ andω = �/�0 is the normalized
frequency. Accordingly the approximate moment is given by equation (2.15) restricted to a
single site.

Dynamic response is now based on the truncated equation (A8) which is solved to leading
order inh⊥ by φ ≈ uh⊥ whereu satisfies the linear equation

ü + λu̇ + (1 +h)u = cos(ωτ) (A9)

whose relevant particular solution is

u = α cos(ωτ) + β sin(ωτ)

α = 1 +h− ω2

(1 +h− ω2)2 + λ2ω2
β = λω

(1 +h− ω2)2 + λ2ω2
.

(A10)
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The projection of the moment on theyz-plane is then given by

My ≈ uh⊥ = [α cos(ωτ) + β sin(ωτ)]h⊥
Mz ≈ ρu̇h⊥ = ρω[β cos(ωτ)− α sin(ωτ)]h⊥

(A11)

and describes an ellipse whose major axis is now fixed along they-direction, and the minor axis
is relatively depressed. Hence the picture derived is consistent with the intuitive expectation
that out-of-plane fluctuations are small at largeD0. Furthermore, if we introduce the rescaled
variables (A7) in the exact susceptibilities (A6) and then take the limit of largeD0, the truncated
result (A10) is reproduced. We have also plotted the exact and the truncated susceptibilities and
found them to be graphically indistinguishable whenD0/D = 100. The agreement continues
to be satisfactory atD0/D = 10 and strongly influenced our decision to adopt the truncated
dynamics.
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