APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Your access to PROLA is provided through the subscription of Central Research Institute

MyArticles: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. E 59, R1303–R1306 (1999)

[Issue 2 – February 1999 ]

Previous article | Next article | Issue 2 contents ]

Add to article collection View PDF (136 kB)


Dynamics of defect formation

Esteban Moro1,2* and Grant Lythe1§
1Center for Nonlinear Studies, Los Alamos National Laboratory, MS B285, New Mexico 87544
2Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complicados, Universidad Carlos III de Madrid, E-28911 Leganés, Madrid, Spain
Received 2 September 1998

A dynamic symmetry-breaking transition with noise and inertia is analyzed. Exact solution of the linearized equation that describes the critical region allows precise calculation (exponent and prefactor) of the number of defects produced as a function of the rate of increase of the critical parameter. The procedure is valid in both the overdamped and underdamped limits. In one space dimension, we perform quantitative comparison with numerical simulations of the nonlinear nonautonomous stochastic partial differential equation and report on signatures of underdamped dynamics.

©1999 The American Physical Society

URL: http://link.aps.org/abstract/PRE/v59/pR1303
DOI: 10.1103/PhysRevE.59.R1303
PACS: 02.50.Ey, 05.70.Fh, 64.60.-i


* Electronic address: emoro@math.uc3m.es
§ Electronic address: grant@lanl.gov

Add to article collection View PDF (136 kB)

Previous article | Next article | Issue 2 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. W. H. Zurek, Nature (London) 317, 505 (1985) [ADS][CAS][dot INSPEC][SPIRES]; Acta Phys. Pol. B 24, 1301 (1993) [dot INSPEC].
  2. P. C. Hendry et al., Nature (London) 315, 315 (1994) [dot INSPEC]; P. C. Hendry et al., Physica B 210, 209 (1995) [ADS][dot INSPEC]; C Bäuerle et al., Nature (London) 382, 332 (1996) [dot INSPEC]; V. M. H. Ruutu et al., 382, 334 (1996) [CAS][dot INSPEC][SPIRES]; A. J. Gill and T. W. B. Kibble, J. Phys. A 29, 4289 (1996) [ADS][CAS][dot INSPEC]; G. Karra and R. J. Rivers, Phys. Lett. B 414, 28 (1997) [ADS][CAS][dot INSPEC][SPIRES].
  3. M. E. Dodd et al., Phys. Rev. Lett. 81, 3703 (1998); G. Karra and R. J. Rivers, 81, 3707 (1998) [SPIRES].
  4. P. Mandel and T. Erneux, Phys. Rev. Lett. 53, 1818 (1984).
  5. C. van den Broeck and P. Mandel, Phys. Lett. A 122, 36 (1987) [dot INSPEC].
  6. M. C. Torrent and M. San Miguel, Phys. Rev. A 38, 245 (1988).
  7. N. G. Stocks, R. Mannella, and P. V. E. McClintock, Phys. Rev. A 40, 5361 (1989).
  8. J. B. Swift, P. C. Hohenberg, and Guenter Ahlers, Phys. Rev. A 43, 6572 (1991).
  9. G. D. Lythe and M. R. E. Proctor, Phys. Rev. E 47, 3122 (1993).
  10. J. C. Celet, D. Dangoisse, P. Glorieux, G. Lythe, and T. Erneux, Phys. Rev. Lett. 81, 975 (1998).
  11. G. D. Lythe, Phys. Rev. E 53, R4271 (1996).
  12. P. Laguna and W. H. Zurek, Phys. Rev. Lett. 78, 2519 (1997) [SPIRES].
  13. P. Laguna and W. H. Zurek, e-print xxx.lanl.gov/list/hep-ph/9711411.
  14. Andrew Yates and W. H. Zurek, Phys. Rev. Lett. 80, 5477 (1998) [SPIRES].
  15. Jacek Dziarmaga, Phys. Rev. Lett. 81, 1551 (1998).
  16. G. D. Lythe, in Proceedings of the VIII Spanish Meeting on Statistical Physics FISES ’97, edited by J. A. Cuesta and A. Sanchez (Editorial del Ciemat, Madrid, 1997), pp. 55–62.
  17. K. Jansons and G. D. Lythe, J. Stat. Phys. 90, 227 (1998) [dot INSPEC].
  18. K. Ito, J. Math. Kyoto Univ. 3-2, 207(1964); R. J. Adler, The Geometry of Random Fields (Wiley, New York, 1981).
  19. The solution of Eq. (5) is yT(k)=πε(2μ)-1/2{∫t0te-α(T-S)[Ai(T22)Bi(S22)-Bi(T22)Ai(S22)]dwS(k)};wS(k) is a Wiener process, Ai and Bi are Airy functions.
  20. R. Haberman, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 37, 69 (1979); G. J. M. Marée, 56, 889 (1996).
  21. The constants used in the calculations are Φ1=limopT0→-∞|T0|-1/2T0Ai2(S)dS=0.318… and Φ2=limopα→∞ α1/2e(4/3)α3∫-∞Ai2(S2)eSdS=(8π)-1/2.
  22. F. J. Alexander and S. Habib, Phys. Rev. Lett. 71, 955 (1993) [SPIRES]; G. Lythe and S. Habib (unpublished).
  23. N. D. Antunes and L. M. A. Bettencourt, Phys. Rev. D 55, 925 (1997) [SPIRES].


Add to article collection View PDF (136 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 2 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org