Your access to PROLA is provided through the subscription of Central Research Institute
MyArticles: View Collection Help (Click on the to add an article.)
Phys. Rev. E 59, R1303R1306 (1999)
[Issue 2 February 1999 ]
[ Previous article | Next article | Issue 2 contents ]
View PDF (136 kB)
Dynamics of defect formation
- Esteban Moro1,2* and Grant Lythe1§
- 1Center for Nonlinear Studies, Los Alamos National Laboratory, MS B285, New Mexico 87544
- 2Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complicados, Universidad Carlos III de Madrid, E-28911 Leganés, Madrid, Spain
Received 2 September 1998A dynamic symmetry-breaking transition with noise and inertia is analyzed. Exact solution of the linearized equation that describes the critical region allows precise calculation (exponent and prefactor) of the number of defects produced as a function of the rate of increase of the critical parameter. The procedure is valid in both the overdamped and underdamped limits. In one space dimension, we perform quantitative comparison with numerical simulations of the nonlinear nonautonomous stochastic partial differential equation and report on signatures of underdamped dynamics.
©1999 The American Physical Society
URL: http://link.aps.org/abstract/PRE/v59/pR1303
DOI: 10.1103/PhysRevE.59.R1303
PACS: 02.50.Ey, 05.70.Fh, 64.60.-i
* Electronic address: emoro@math.uc3m.es
§ Electronic address: grant@lanl.gov
View PDF (136 kB)[ Previous article | Next article | Issue 2 contents ]
References
(Reference links marked with may require a separate subscription.)
- W. H. Zurek, Nature (London) 317, 505 (1985) [ADS][CAS][ INSPEC][SPIRES]; Acta Phys. Pol. B 24, 1301 (1993) [ INSPEC].
- P. C. Hendry et al., Nature (London) 315, 315 (1994) [ INSPEC]; P. C. Hendry et al., Physica B 210, 209 (1995) [ADS][ INSPEC]; C Bäuerle et al., Nature (London) 382, 332 (1996) [ INSPEC]; V. M. H. Ruutu et al., 382, 334 (1996) [CAS][ INSPEC][SPIRES]; A. J. Gill and T. W. B. Kibble, J. Phys. A 29, 4289 (1996) [ADS][CAS][ INSPEC]; G. Karra and R. J. Rivers, Phys. Lett. B 414, 28 (1997) [ADS][CAS][ INSPEC][SPIRES].
- M. E. Dodd et al., Phys. Rev. Lett. 81, 3703 (1998); G. Karra and R. J. Rivers, 81, 3707 (1998) [SPIRES].
- P. Mandel and T. Erneux, Phys. Rev. Lett. 53, 1818 (1984).
- C. van den Broeck and P. Mandel, Phys. Lett. A 122, 36 (1987) [ INSPEC].
- M. C. Torrent and M. San Miguel, Phys. Rev. A 38, 245 (1988).
- N. G. Stocks, R. Mannella, and P. V. E. McClintock, Phys. Rev. A 40, 5361 (1989).
- J. B. Swift, P. C. Hohenberg, and Guenter Ahlers, Phys. Rev. A 43, 6572 (1991).
- G. D. Lythe and M. R. E. Proctor, Phys. Rev. E 47, 3122 (1993).
- J. C. Celet, D. Dangoisse, P. Glorieux, G. Lythe, and T. Erneux, Phys. Rev. Lett. 81, 975 (1998).
- G. D. Lythe, Phys. Rev. E 53, R4271 (1996).
- P. Laguna and W. H. Zurek, Phys. Rev. Lett. 78, 2519 (1997) [SPIRES].
- P. Laguna and W. H. Zurek, e-print xxx.lanl.gov/list/hep-ph/9711411.
- Andrew Yates and W. H. Zurek, Phys. Rev. Lett. 80, 5477 (1998) [SPIRES].
- Jacek Dziarmaga, Phys. Rev. Lett. 81, 1551 (1998).
- G. D. Lythe, in Proceedings of the VIII Spanish Meeting on Statistical Physics FISES ’97, edited by J. A. Cuesta and A. Sanchez (Editorial del Ciemat, Madrid, 1997), pp. 55–62.
- K. Jansons and G. D. Lythe, J. Stat. Phys. 90, 227 (1998) [ INSPEC].
- K. Ito, J. Math. Kyoto Univ. 3-2, 207(1964); R. J. Adler, The Geometry of Random Fields (Wiley, New York, 1981).
- The solution of Eq. (5) is yT(k)=πε(2μ)-1/2{∫t0te-α(T-S)[Ai(T-κ2+α2)Bi(S-κ2+α2)-Bi(T-κ2+α2)Ai(S-κ2+α2)]dwS(k)};wS(k) is a Wiener process, Ai and Bi are Airy functions.
- R. Haberman, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 37, 69 (1979); G. J. M. Marée, 56, 889 (1996).
- The constants used in the calculations are Φ1=limopT0→-∞|T0|-1/2∫T0∞Ai2(S)dS=0.318… and Φ2=limopα→∞ α1/2e(4/3)α3∫-∞∞Ai2(S+α2)e2αSdS=(8π)-1/2.
- F. J. Alexander and S. Habib, Phys. Rev. Lett. 71, 955 (1993) [SPIRES]; G. Lythe and S. Habib (unpublished).
- N. D. Antunes and L. M. A. Bettencourt, Phys. Rev. D 55, 925 (1997) [SPIRES].
View PDF (136 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 2 contents ]
E-mail: prola@aps.org