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Bulk and surface spin-flop transitions in an antiferromagnetic XYZ chain

J. Karadamoglou* and N. Papanicolaou†

Department of Physics, University of Crete, and Research Center of Crete, Heraklion, Greece
~Received 29 April 1999!

Spin-flop transitions are studied within a spin-1
2 antiferromagneticXYZ chain immersed in a uniform bias

magnetic field. For a special choice of anisotropy the bulk spin-flop transition occurs at a critical fieldHb

characterized by the onset of ‘‘accidental’’ degeneracy in the energy spectrum that may indicate a hidden
symmetry. On an open chain the bulk transition is preceded by a surface spin-flop transition induced by a
surface magnon that turns soft at a new critical fieldHs,Hb , while an antiferromagnetic domain wall is
realized in the ground state as the bias field approachesHb . TheseT50 phase transitions could be observed
through electron-spin resonance on magnetic chains doped with nonmagnetic ions.@S0163-1829~99!01137-6#
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I. INTRODUCTION

Surface effects that could be observed in an antiferrom
net were theoretically predicted some time ago.1–3 However,
the subject was revived only recently with the experimen
observation of a surface spin-flop transition in an Fe
multilayer.4–6 The precise nature of the transition proved
be more intricate than originally envisaged but has b
clarified in a number of recent theoretical investigations.7–17

The advantage of a multilayer is that it can be modeled b
classical spin chain characterized by an isotropic excha
interaction and a single-ion quadratic anisotropy.

In view of this development we return to the problem
crystalline antiferromagnets which are more appropriat
described by quantum spin systems. Specifically, we int
to study spin-flop transitions for a spin-1

2 XYZmodel whose
Hamiltonian

W5 (
l 51

L21

~J1Sl
xSl 11

x 1J2Sl
ySl 11

y 1J3Sl
zSl 11

z !2H(
l 51

L

Sl
z

~1.1!

is defined on an open chain withL sites. Various quasi-one
dimensional magnets that are thought to be approximate
special cases of Eq.~1.1! have already been identified. Fu
thermore a statistically significant sample of free bounda
may be experimentally accessible18 through doping with
nonmagnetic ions which creates within the crystal open m
netic chains of varying length. Therefore, a theoretical stu
of surface effects is now more meaningful than ever.

In fact, theXYZ model has been the subject of an im
mense amount of theoretical work based on the Be
ansatz19 or any of its variants. In particular, recent activi
has concentrated on surface effects in the presense of bo
ary fields or other integrable impurities.20 However, the
model is not known to be completely integrable in the p
sense of the uniform bulk fieldH in Eq. ~1.1!, except in
special limits such as the U~1!-symmetricXXZ model (J1
5J2) in a field directed along the symmetry axis. Hence,
present work will proceed by a more direct analytical a
proach supported by numerical diagonalization.

Hamiltonian~1.1! is here restricted by the inequalities
PRB 600163-1829/99/60~13!/9477~12!/$15.00
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uJ1u<J2,J3 ~1.2!

and thus describes an antiferromagnetic chain in a fi
pointing along the easy axis. To set the stage for the stud
the quantum model we have carried out a class
calculation21 which revealed the existence of a surface sp
flop transition analogous to that encountered in multilaye
A peculiarity of the classical ground state is its independe
on the specific value ofJ1 , in the rangeuJ1u<J2 , a property
that is not sustained in the quantum model. But the rec
work of Kyriakidis and Loss22 on an unrelated subjec
~Bloch oscillations! suggested to us that the most classi
antiferromagnet is obtained by the special choice of the
change constants

2J15J2[1, J3[D.1, ~1.3!

which is consistent with inequalities~1.2!. If u andd denote
spin-up and spin-down states, the two fully polarized N´el
states

uNA&5ud,u,d,u,...&, uNB&5uu,d,u,d,...& ~1.4!

are then the two~degenerate! exact ground states when th
applied field is sufficiently weak.

Some special features of model~1.3! become apparent by
performing the familiar canonical transformation

Sl
x5Tl

x , Sl
y5~21! lTl

y , Sl
z5~21! lTl

z , ~1.5!

where the ‘‘pseudospin’’ variablesT l again satisfy the stan
dard spin commutation relations and map the Hamiltonian

W52 (
l 51

L21 FTl
xTl 11

x 1Tl
yTl 11

y 1DS Tl
zTl 11

z 2
1

4D G
2H(

l 51

L

~21! lTl
z , ~1.6!

which describes an easy-axis ‘‘ferromagnet’’ in a stagge
magnetic field. In Eq.~1.6! we have included a trivial addi
tive constant to provide a convenient normalization for t
energy eigenvalues.

It is clear from Eq.~1.6! that the model~1.3! is also en-
dowed with a U~1! symmetry because the total azimuth
pseudospin
9477 ©1999 The American Physical Society
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9478 PRB 60J. KARADAMOGLOU AND N. PAPANICOLAOU
t5(
l 51

L

Tl
z5(

l 51

L

~21! lSl
z ~1.7!

obviously commutes with the Hamiltonian and thus the H
bert space breaks up intoL11 sectors characterized by th
good quantum numbert5L/22l with l50,1, . . . ,L. Al-
though this observation will greatly simplify calculations, th
quantum numbert is not related to a simple physical obser
able. Instead we shall be interested in the total azimu
magnetization

M5(
l 51

L

Sl
z5(

l 51

L

~21! lTl
z , ~1.8!

which does not commute with the Hamiltonian and its e
pected values cannot be predicted by simple quantizat
One of our objectives in the following is to determine t
ground-state expectation valueM5M (D,H) as a function of
anisotropyD and applied fieldH.

Significant analytical progress can be made for the s
cific choice~1.3! which will serve as a prototype for furthe
consideration of the full range of models defined by inequ
ties ~1.2!. In Sec. II we provide a complete calculation
one-magnon excitations with or without open boundari
These results already suggest the occurrence of a bulk s
flop ~BSF! transition at a critical fieldHb , which is preceded
by a surface spin-flop~SSF! transition at a critical fieldHs
,Hb in the presence of open boundaries. The two types
transition are analyzed in Secs. III and IV. Antiferromagne
domain walls arise naturally in the description of the S
transition and are thus also discussed in Sec. IV. In Sec
we summarize some of our main conclusions, in addition
presenting some preliminary results for other quantum s
models in the range~1.2!. For clarity of presentation we
found it useful to restrict attention to an even chain (L
52N) in the main text, while the necessary modifications
the case on an odd chain (L52N11) are discussed in th
Appendix.

II. BULK AND SURFACE MAGNONS

The eigenstates of the Hamiltonian~1.6! are linear super-
positions of states of the formut1 ,t2 ,...,tL& where thet l ’s
take the values 1/2 or21/2 in any combination that pre
serves their sumt. The Néel states~1.4! are mapped to two
completely polarized ‘‘ferromagnetic’’ states, witht5
6L/2, which are exact eigenstates, with energyE50, for
any value of the applied field. It is also clear that these
the two degenerate ground states at vanishing field. The
question is then to determine the field region over which
polarized states persist as the ground states of the syste

One is thus lead to study excitations, the simplest po
bilities being one-magnon modes witht5L/221 or 2L/2
11. It is sufficient to consider only the former case, info
mation about the latter being inferred by extending the fi
region to both positive and negative values ofH. The one-
magnon eigenvalue problem reads

Wuc&5Euc&, uc&5(
l 51

L

Cl u l &, ~2.1!
-

al

-
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where we have simplified the notation by asserting thatul& is
the state wheret l521/2 but all othert’s are equal to 1/2.
An explicit form of the eigenvalue equations is then given

~D/22H2E!C15
1

2
C2 ,

@D1~21! lH2E#Cl5
1

2
~Cl 111Cl 21!,

l 52,3, . . . ,L21, ~2.2!

~D/21H2E!CL5
1

2
CL21 ,

and are valid on an open chain withL sites. Here and
throughout the main text we assume that the chain is e
(L52N). We further introduce the sublattice variables

An5C2n21 , Bn5C2n , n51,2, . . . ,N ~2.3!

in terms of which the linear system~2.2! reads

~D/22H2E!A15
1

2
B1 ,

~D2H2E!An5
1

2
~Bn211Bn!, n52,3, . . . ,N,

~D1H2E!Bn5
1

2
~An1An11!, n51,2, . . . ,N21,

~2.4!

~D/21H2E!BN5
1

2
AN .

It is instructive to consider in parallel a cyclic or period
chain with the same number of sites, in order to establis
simple reference case which will enable us to better appr
ate surface effects that may arise on an open chain. The
and fourth equations in Eq.~2.4! are absent on a cyclic chain
and the remaining two equations are valid for alln
51,2, . . . ,N. It is then a straightforward matter to elimina
Bn to obtain the equivalent system

Bn5
1

2

An1An11

D1H2E
,

@~D2E!22H2#An5
1

4
~2An1An111An21!, ~2.5!

whose solution isAn5eikn, where k52pn/N with n
50,1, . . . ,N21 is a sublattice crystal momentum, provide
that the energy is given by

E5D6AH21cos2~k/2!. ~2.6!

Viewed as functions of the applied field the energy eigenv
ues are contained within the two shaded regions of Fig. 1
their distribution becomes increasingly dense in the b
limit N→`. The shaded regions are bounded from abo
and below by the two curvesE5D6AH211 and display a
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PRB 60 9479BULK AND SURFACE SPIN-FLOP TRANSITIONS IN . . .
middle gap extended between the curvesE5D6H. The
lowest gap closes (E50) at H56Hb where

Hb5AD221 ~2.7!

is a critical field of special importance in the following. Th
preceding derivation already indicates that the simple N´el
states~1.4! can no longer be the ground states for field valu
outside the interval@2Hb ,Hb#. Further analysis of the cy
clic chain given in Sec. III will establish thatHb provides the
critical boundary of the BSF transition.

We now return to the main theme and examine the po
bility of one-magnon surface modes on an open chain. S
tion of the linear system~2.4! is complicated by the appea
ance of the two distinct equations at the outer laye
However, the essential new ingredients can be obtained
lytically on a semi-infinite chain. The fourth equation in E
~2.4! may then be ignored and the third may again be use
eliminate Bn as in Eq. ~2.5!. The first two equations are
written as

~D/22H2E!~D1H2E!A15
1

4
~A11A2!,

~2.8!

@~D2E!22H2#An5
1

4
~2An1An111An21!,

wheren52,3, . . . ,̀ . A surface mode is described by a sp
cial solution of the form

An5jn, Bn5
1

2

11j

D1H2E
jn ~2.9!

supplemented by the requirementuju,1 which guarantees
that the state decay exponentially away from the bound
Equations~2.8! reduce to

~D/22H2E!~D1H2E!5
1

4
~11j!,

~2.10!

~D2E!22H25
1

4
~21j11/j!,

FIG. 1. Field dependence of the one-magnon spectrum for
specific anisotropyD51.5.
s

i-
u-

.
a-

to

-

y.

and should be viewed as a system of two algebraic equat
for the unknownsj andE. Detailed examination of the root
that satisfy the conditionuju,1 yields two distinct surface
modes which we discuss in turn.

The most interesting surface mode is given by the r
j5j1 andE5E1 with

j15
1

2D2 @A~D214DH21!214D22~D214DH21!#,

E15D2AH21
1

4
~21j111/j1!, ~2.11!

and its energy labeled as curve 1 in Fig. 1 lies below
one-magnon continuum. This curve emanates from the c
tinuum at the characteristic field2H0 with

H05
D221

2D
~2.12!

and persists in the field regionH.2H0 . The parameterj1
is equal to unity at2H0 but lies in the interval 0,j1,1 for
H.2H0 . This surface state exists as a distinct gap mo
below the continuum even at vanishing field (H50) where
j151/D2 andE15(D221)/2D.

A second root satisfying the conditionuju,1 is given by
j5j2 andE5E2 with

j252
1

2D2 @A~D214DH21!214D21~D214DH21!#,

E25H D2AH21
1

4
~21j211/j2! 2H0,H,0,

D1AH21
1

4
~21j211/j2! H,2H0.

~2.13!

The two branches inE2 join smoothly at2H0 and their
union is labeled as curve 2 in Fig. 1. Therefore, the sec
root describes a surface mode with energy in the middle
of the magnon continuum. The parameterj2 lies in the in-
terval 21,j2,0 and thus the middle-gap mode deca
away from the boundary in an oscillatory manner.

To complete the description of Fig. 1 we must now re
oncile the preceding analytical results on a semi-infin
chain with those obtained by numerical diagonalization
the linear system~2.2! or ~2.4! on a finite open chain. Fo
any givenL52N the majority of eigenvalues fall within the
shaded regions of Fig. 1, but a finite number of eigenval
occur outside the continuum for each fieldH. Also note that
a dublication of gap modes should be expected on an o
chain because surface states can now be formed near e
one of the two free ends. Indeed, in addition to confirmi
the gap modes 1 and 2 predicted on a semi-infinite chain,
numerical diagonalization also yields the two mirror mod
18 and 28 shown in Fig. 1.

The energies of the gap modes calculated analytically
a semi-infinite chain withD51.5 agree with the numerica
results to several significant figures forL510 while the
agreement improves rapidly with increasingL or D. Hence
the numerical simulations described in Secs. III and IV

e
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chains of modest size are expected to provide a reliable p
ture for most values ofD of practical interest.

The most important conclusion derived from the on
magnon calculation becomes apparent by simple inspect
of Fig. 1. The surface modes in the lower gap are degener
with the Néel states at the critical fields6Hs . The fieldHs
is computed from the conditionE150 whereE1 is given by
Eq. ~2.11!. A straightforward calculation shows that

Hs5
1

4D
@A~D221!~9D221!2~D221!#. ~2.14!

Outside the interval@2Hs ,Hs# the Néel states cease to be
the lowest-energy states. Therefore, the BSF transition
ticipated to occur at the critical fieldHb of Eq. ~2.7! is pre-
ceded on an open chain by a SSF transition atHs,Hb . The
critical fields Hs and Hb coincide with those found in the
classical calculation21 except for an overall factor of 2 which
originates in the normalization of the classical spin to unit
The curvesH5Hs(D) and H5Hb(D) provide the main
critical boundaries in theT50 phase diagram provisionally
shown in Fig. 2 and further analyzed in Secs. III and IV.

The surface magnon that drives the SSF transition in t
present quantum model is the analog of the Mills-Saslo
mode2 which was derived semiclassically in a model wit
single-ion anisotropy and played an important role in th
theory of classical multilayers.17 Interestingly, the currently
calculated ratioHb /Hs approaches the value& in the iso-
tropic limit D→11, in agreement with the corresponding
ratio in the limit of vanishing single-ion anisotropy.2 In the
opposite limit,D→`, Hb /Hs approaches 2 which may also
be deduced from an elementary analysis of the Ising cha

III. BULK SPIN-FLOP TRANSITION

In this section we focus on a cyclic chain with an eve
number of sites and examine in greater detail the BSF tra
sition at the critical fieldHb of Eq. ~2.7! suggested by the
one-magnon calculation. In a curious turn of events, the
cent work of Alcaraz, Salinas, and Wrezinski23 on an open

FIG. 2. TheT50 phase diagram for the quantum model~1.3!.
The bulk and surface critical boundariesHb andHs are given ana-
lytically by Eqs. ~2.7! and ~2.14!, and the domain-wall boundary
Hw was obtained numerically as described in Sec. IV.
c-

-
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te
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e
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spin chain in the presence of suitable boundary fields pro
to be very instructive for the current work on a cyclic cha
in a bulk bias fieldH.

We may also invoke the cluster argument of Bader a
Schilling24 on a cyclic chain noting that the Hamiltonian ma
then be written as a sum of cell Hamiltonians, namely

W5(
l 51

L

Wl ,

Wl52FTl
xTl 11

x 1Tl
yTl 11

y 1DS Tl
zTl 11

z 2
1

4D G
2

1

2
H~21! l~Tl

z2Tl 11
z !, ~3.1!

and thus the ground-state energyE0 satisfies the inequality

1

2
L~E11E2!<E0 , ~3.2!

where E6 are the ground-state energies of the two-s
Hamiltonians

W652FT1
xT2

x1T1
yT2

y1DS T1
zT2

z2
1

4D G6
1

2
H~T1

z2T2
z!.

~3.3!

The eigenvalues of bothW1 andW2 are given by

1

2
~D1AH211!, 0, 0,

1

2
~D2AH211!, ~3.4!

where the first eigenvalue is always positive and the fou
one may be positive or negative depending on the fi
strengthH. Therefore, inequality~3.2! is written as

L minF0,
1

2
~D2AH211!G<E0<0, ~3.5!

and has been supplemented byE0<0 which follows from
the fact that the polarized states are eigenstates of the c
plete Hamiltonian with vanishing energy for any value of t
applied field. An immediate consequence of Eq.~3.5! is that
the true ground-state energy vanishes when2Hb<H<Hb ,
whereHb is precisely the critical field~2.7!, and thus coin-
cides with the energy of the polarized states.

The preceding result strengthens the conclusion that
BSF transition occurs at the critical fieldHb but a more
detailed argument is required to determine the precise na
of the transition. The work of Sec. II already established t
the lowest-energy state in the one-magnon sector beco
degenerate with the polarized states atHb . We shall further
show that the lowest-energy states of all multimagnon s
tors become degenerate at the same critical field, in ana
with a similar result in the model of Ref. 23. WhenH5Hb it
is convenient to introduce the parametrization

D5
1

2 S q1
1

qD , H5
1

2 S q2
1

qD , ~3.6!

whereD.1 andq5D1AD221.1.
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To motivate the demonstration we return to the on
magnon calculation and specifically consider the lowe
energy state atHb obtained by settingk50 andE50 in Eqs.
~2.5! and ~2.6! to yield An51 and Bn51/q for all n
51,2, . . . ,N. In the notation of Eq.~2.1! this special one-
magnon state reads

Cl5q21/2~21! l
, ~3.7!

where we have also included an overall normalization fac
Aq.

We next consider the two-magnon eigenvalue problem

Wuc&5Euc&, uc&5 (
l 1, l 2

C~ l 1 ,l 2!u l 1 ,l 2&, ~3.8!

whereu l 1 ,l 2& is a state witht l 1
521/25t l 2

and all othert’s
equal to 1/2. On a cyclic chain the generic eigenvalue eq
tion is

$2D1@~21! l 11~21! l 2#H2E%C~ l 1 ,l 2!

5
1

2
@C~ l 111,l 2!1C~ l 121,l 2!1C~ l 1 ,l 211!

1C~ l 1 ,l 221!#, ~3.9!

and should be completed with the meeting condition19

DC~ l ,l 11!5
1

2
@C~ l ,l !1C~ l 11,l 11!#, ~3.10!

where one formally extends the definition ofC( l 1 ,l 2) to co-
inciding arguments (l 15 l 2) which are absent in Eq.~3.8!.
WhenD andH are given by Eq.~3.6! the wave function

C~ l 1 ,l 2!5q21/2@~21! l 11~21! l 2# ~3.11!

satisfies Eq.~3.9!, with E50, as well as the meeting cond
tion ~3.10!. We have thus obtained a special two-magn
eigenstate which is degenerate with both the one-mag
state~3.7! and the completely polarized states at the criti
field Hb .

These elementary results possess a simple generaliz
to an arbitrary sector. A set of exact eigenstates with van
ing energy is given by

uct&5(
$t%

q1/2( l 51
L

~21! lt lut1 ,t2 ,...,tL&, ~3.12!

where the sum extends over all configurations$t%
5(t1 ,t2 ,...,tL) which are consistent with a definite az
muthal pseudospin

t5(
l 51

L

t l5N,N21, . . . ,2N, ~3.13!

whereL52N. As a check of consistency one may apply E
~3.12! for t5N21 andN22 to recover the one- and two
magnon wave functions~3.7! and~3.11!. For other values of
t our basic result~3.12! can be established by a straightfo
ward generalization of the two-magnon calculation giv
above.
-
t-

r

a-

n
on
l

ion
h-

.

A numerical calculation of all eigenstates and eigenv
ues, for variousL<12, confirms that the ground states of a
sectors become degenerate at the critical field. Excited st
also exhibit some accidental degeneracy that cannot be
counted for by the U~1! symmetry. One is thus tempted t
conclude that the model acquires a larger symmetry at
critical point; perhaps analogous to the quantum-gro
Uq@SU~2!# symmetry of the model with boundary field
studied in Refs. 23, 25. We shall not pause to examine
possibility of a hidden symmetry in the present model b
cause the explicit result~3.12! proves to be sufficient to illu-
minate the nature of the BSF transition.

Thus the emerging qualitative picture is substantia
with an explicit calculation of the ground-state expectati
value of the total magnetizationM of Eq. ~1.8! which van-
ishes in the regionH,Hb but acquires finite values forH
.Hb . A sudden jump occurs at the critical field which ca
be calculated analytically on an even cyclic chain of a
size. The calculation is based on the important observa
that thet50 sector prevails aboveHb , in the sense that it
contains the unique absolute ground state forH.Hb . The
last statement is corroborated by numerical diagonaliza
on short chains of varying size. Therefore the magnetiza
jump at the critical field is given by

M5(
l 51

L

~21! l
^c0uTl

zuc0&

^c0uc0&
, ~3.14!

whereuc0& is the state~3.12! applied fort50. The special
structure of this state permits us to write

M5q
]

]q
ln^c0uc0& ~3.15!

and the problem reduces to the calculation of the no
^c0uc0&. A reasonable amount of combinatorics leads to

^c0uc0&5 (
n50

N F N!

~N2n!!n! G
2

qN22n ~3.16!

and

M5
1

^c0uc0&
(
n50

N

~N22n!F N!

~N2n!!n! G
2

qN22n.

~3.17!

It is also possible to provide an integral representation of
sums to obtain

m5
M

2N
5

1

2
AD221

I N21

I N
,

~3.18!

I N[
1

p E
0

p

~D1cosu!Ndu,

wherem is the average magnetization per site, a quantity t
is more appropriate for the discussion of the thermodyna
limit.

Analytical calculation of the magnetization forH.Hb is
impossible at present because thet50 ground state become
increasingly complex away from the critical point. We ha
thus resorted to numerical diagonalization on short cha
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Memory requirements restrict us to the rangeL<12 if we
wish to compute all eigenstates. However, we have been
to extend the range toL<22 for the calculation of the
ground-state energy via a Lanczos algorithm. The la
proved to be somewhat less reliable as well as time cons
ing in the calculation of the magnetization. Therefore,
Lanczos algorithm is used on chains withL<22 for the
investigation of those issues that depend exclusively on
ground-state energy. But results for the magnetization
limited to L<16, using either complete diagonalization
the Lanczos algorithm, or both. In all cases we provide
plicit estimates of finite-size effects which suggest that
derived overall picture is indeed reliable.

For instance, the average magnetization per sitem
5M /L calculated on a cyclic chain withD51.5 and L
510 is depicted by a dashed line in Fig. 3 and exhibit
sudden jump at the critical fieldHb51.118 033 99 given by
Eq. ~2.7!. The size of the jump was found equal tom
50.249 732 68, also in perfect agreement with the analyt
result~3.18! applied forD51.5 andN5L/255. Away from
the critical point the magnetization increases smoothly
achieve the saturated ferromagnetic valuem51/2 in the limit
H→`.

AlthoughHb is independent of chain size, the magnetiz
tion does depend onL52N for H>Hb . A good estimate of
its size dependence is obtained by taking advantage of
analytical result~3.18!. In the limit N→` the integral is
dominated by the maximum value of the integrand achie
at u50 to yield I N;(D11)N and

m5 lim
N→`

S M

2ND5
1

2
AD21

D11
. ~3.19!

Applied for D51.5 the above expression leads tom
50.223 606 80 which is overestimated by the value atL
510 quoted earlier by about 12%. More generally, the m

FIG. 3. Field dependence of the average magnetization per
m5M /L in the ground state of a chain withD51.5 andL510.
The dashed line corresponds to a cyclic chain and the solid lin
an open chain with the same number of sites. The inset focuse
the first step of the main figure and compares the total magne
tion M to the analytical prediction~4.4! depicted by open circles.
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netization at the critical field computed on chains withL
;10 does not differ from itsL→` limit by more than 13%,
for all D.1, and the agreement improves at largeD. It is
also likely that the thermodynamic limit forH.Hb could be
reached by extrapolation, but this is clearly an issue of
special urgency at this point.

The analytical result~3.19! reveals yet another surprise
for it coincides with the magnetization obtained within th
classical calculation21 at the onset of the BSF phase which
described by a canted spin configuration. This curious f
could be investigated further by generalizing the spec
states~3.12! to arbitrary spins, also in analogy with a similar
calculation in the model of Ref. 23. One should then be a
to explicitly study the classical~large-s! limit on any finite
chain and eventually explain its coincidence with the qu
tum prediction~3.19! in the thermodynamic limit.

To summarize, theT50 phase diagram is rather simp
on a cyclic chain and consists of a single boundaryH
5Hb(D) given by Eq.~2.7!. To the left of this boundary the
ground state is purely antiferromagnetic~AF! and to the right
it may be called a bulk spin-flop~BSF! state which becomes
increasingly ferromagnetic~F!. No transition to a pure F
state occurs at any finite fieldH. Since a cyclic chain pre-
serves translation invariance, and thus provides a faith
representation of the bulk limit, we have in effect describ
the BSF transition on an infinite chain. The additional stru
ture shown to the left of the boundaryHb in the phase dia-
gram of Fig. 2 is due to surface effects that are analyzed
Sec. IV.

IV. SURFACE SPIN-FLOP TRANSITION

The numerical calculation described in Sec. III was su
sequently repeated on an open chain with the same sizL
510, and the result is depicted by a solid line in Fig. 3. T
magnetization is now seen to exhibit a sudden jump at a n
critical field Hs50.609 225 70 which is in excellent agree
ment with Eq.~2.14! applied forD51.5. This result is con-
sistent with the theoretical development of Sec. II which p
dicts that the one-magnon surface mode becomes the gr
state beyondHs . One may then use the analytical resu
obtained on a semi-infinite chain to actually predict the m
netization, at least for some nontrivial field region aboveHs .

The ground-state total magnetization again vanishes
H,Hs but is equal to

M5(
l 51

L

Ml , Ml5~21! l
^c1uTl

zuc1&

^c1uc1&
~4.1!

for H.Hs whereuc1& is now the state of the surface mod
in the lower gap of Fig. 1. Therefore, the norm of this state
given by

^c1uc1&5 (
n51

`

~ uAnu21uBnu2!

5@11~D22H22E1!2#
j1

2

12j1
2 , ~4.2!
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where An and Bn are taken from Eq.~2.9! applied for j
5j1 andE5E1 given by Eq.~2.11!. Accordingly the local
magnetizationMl is given by

M2n215
uAnu2

^c1uc1&
2

1

2
, M2n5

1

2
2

uBnu2

^c1uc1&
~4.3!

for odd and even sites, respectively, and the total magne
tion by

M5
12~D22H22E1!2

11~D22H22E1!2 . ~4.4!

It should be clear that the preceding results are valid also
H,Hs where the surface mode is not the ground state
particular,

M ~H50!5
D221

D211
~4.5!

is the total magnetization of the one-magnon surface sta
vanishing field. At the critical fieldHs , whereE150, Eq.
~4.4! yields

M ~H5Hs!5
12~D22Hs!

2

11~D22Hs!
2 , ~4.6!

which agrees with the jump observed atHs in Fig. 3 to eight
significant figures; as expected on the basis of our discus
of the size dependence of the surface modes in Sec. II.

Such an excellent agreement of the analytical predic
~4.4! with the finite-size results of Fig. 3 persists over a no
trivial field regionHs,H,Hw , as demonstrated in the ins
which focuses on the first step of the main figure. Clearl
new transition takes place atHw and the one-magnon surfac
mode ceases to be the ground state forH.Hw . One would
think that the SSF transition proceeds beyondHs by a cas-
cade of level crossings induced by multimagnon surf
modes. But the results of Fig. 3 clearly indicate that th
exists only one additional crossing at the critical fieldHw
'1.06,Hb for D51.5.

In order to appreciate the precise nature of the transi
at Hw we have examined the evolution of thelocal magne-
tizationMl with increasing bias field. Results forD51.5 and
L510 are shown in Fig. 4 for a selected set of field valu
using a more or less obvious notation. We begin with
first Néel stateuNA& of Eq. ~1.4! whose local magnetization
is depicted in theH50 entry of Fig. 4. The Ne´el state per-
sists as the absolute ground state until the field crosses
critical valueHs50.609 of Eq.~2.14!. Just aboveHs a sur-
face magnon is realized in the ground state, as shown in
H50.61 entry which may be reproduced to great precis
using the analytical prediction~4.3! obtained on a semi
infinite chain. With further increase of the applied field t
surface magnon slowly approaches a boundary Ising dom
wall of the type uududu. . . . However, a sudden chang
occurs at the critical fieldHw'1.06, as demonstrated in th
H51.07 entry where a bulk domain wall appears at the c
ter of the chain. This state is a slightly depleted version of
ideal Ising domain wall of the type . . .uduudu. . . , thanks
in part to the finite value ofD and to the applied field. The
tendency for inflation of the domain wall with increasin
a-
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field becomes apparent in theH51.12 entry, where the field
was chosen to be slightly greater than the bulk critical va
Hb51.118 of Eq. ~2.7!. It should be noted here that th
anticipated BSF transition is replaced on an open chain b
rapid but rounded crossover which becomes increasin
sharp with increasing chain size. The inflation of the dom
wall is more rampant at higher field values and the lo
magnetization approaches a nearly uniform ferromagn
configuration within the bulk, with some nonuniformity pe
sisting near the edges of the open chain; as is comple
apparent in the last,H52, entry of Fig. 4. However, com
plete ferromagnetic order is achieved only whenH→`.

The picture was completed with a detailed examination
the pertinent level crossings. Thus we calculated the grou
state energies of all sectors~t5N,N21, . . . ,2N! as func-
tions of the applied fieldH at the given anisotropyD51.5.
The first transition occurs at the critical fieldHs where the
Néel stateuNA&, with t5N, is crossed by the one-magno
surface mode, witht5N21. For higher fields, multiple
level crossing take place among the lowest-energy state
the multimagnon sectorst5N22,N23, . . . , and arelikely
to play an important role in the low-temperature dynami
But most of these crossings are irrelevant for the determ
tion of the absolute ground state because the one-mag
surface mode is eventually overtaken only by the grou
state of thet50 sector which is an antiferromagnetic d
main wall located at the center of the open chain.

The last remark prompted us to examine the local mag
tization in the lowest-energy states of all sectors, ev
though most of these states do not become the abso
ground state for any field value. The result forL52N510 is
presented in Table I using a symbolic notation that is stric
appropriate only in the extreme Ising limitD→`. But the
essence of the derived picture at finiteD and 0,H&Hb is
well represented in Table I. Thus the ground state in e

FIG. 4. Snapshots of the local magnetizationMl on a chain with
D51.5 andL510, for a characteristic set of field values describ
in the text.
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sector ranges between the two pure Ne´el states of Eq.~1.4!
which correspond to the two extreme values of the azimu
pseudospint56N. For intermediate values oft5N2l,
with l51,2, . . . ,2N21, a domain wall is formed at a dis
tance equal tol lattice units from the left boundary of th
chain. Therefore, the good quantum numbert provides a
rigorous definition of the relative location of a domain wa
on an open chain, even at finiteD where the wall expands
and thus departs from its ideal Ising shape. Domain w
with opposite pseudospin6t are displayed symmetrically
about the center and carry the same energy. The least-en
state forH.Hw is at50 domain wall located at the cente
of the chain.

To rule out the possibility of an accident that might ha
occurred for the specific sizeL510 used so far, we repeate
the calculation forL512 and the results for the total mag
netization are shown in Fig. 5. Surprisingly, two instead
one additional level crossings may now be discerned:
first at Hw'1.06, which is virtually identical to the valu
obtained earlier forL510, and the second atHw8 '1.09
which indicates the existence of yet another critical fie
This interesting twist in the general picture is clarified by t

TABLE I. Symbolic illustration of the ground state in each se
tor on an open chain withL510.

t Pseudospin Spin M

5 uuuuuuuuuu dududududu 0
4 duuuuuuuuu uududududu 1
3 dduuuuuuuu uddudududu 0
2 ddduuuuuuu uduudududu 1
1 dddduuuuuu ududdududu 0
0 ddddduuuuu ududuududu 1
21 dddddduuuu udududdudu 0
22 ddddddduuu udududuudu 1
23 dddddddduu ududududdu 0
24 dddddddddu ududududuu 1
25 dddddddddd ududududud 0

FIG. 5. Same as Fig. 3 for a chain withL512. The inset now
focuses on a narrow region near the critical fieldHw to reveal the
existence of a secondary critical fieldHw8 .
al

ls

rgy
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results of the local magnetizationMl given in Fig. 6, in con-
junction with an obvious extension of Table I toL512.

At this point it is useful to address the last column
Table I which quotes the possible values of the total mag
tization of domain walls in the extreme Ising limit,M50 or
1. One may say that the two values correspond to dom
walls of dd or uu type, respectively. Although these value
are significantly modified at finiteD, they nevertheless sug
gest that a level crossing is more likely to be induced by auu
state whose~negative! Zeeman energy in a~positive! field H
is greater in absolute value. Thet50 domain wall at the
center of theL510 chain is indeed auu state. However,
when Table I is extended toL52N512, whereN56 is
even, thet50 domain wall becomes add state, whereasuu
domain walls that are closest to the center are those wit
561 and are likely to be energetically favorable.

Simple comparison of theH51.07 entries in Figs. 4 and 6
reveals that the same domain wall of theuu type appears in
both cases, but the wall in the second case is displaced
one lattice unit from the center of the chain. Since a b
domain wall is rather narrow for the specific anisotropyD
51.5 used so far, its energy is relatively insensitive to
precise location about the center even for short chains. T
explains why the transition observed forL512 occurs at
virtually the same critical fieldHw'1.06 found earlier for
L510, even though it now corresponds to a level crossing
the one-magnon mode by the ground state of thet51 sector.
However, thet50 ground state, which originates in add
domain wall at lower fields, ultimately becomes sufficien
frustrated to overtake thet51 sector at a new critical field
Hw8 '1.09, as demonstrated by theH51.10 entry of Fig. 6.

FIG. 6. Snapshots of the local magnetizationMl on a chain with
D51.5 andL512, for a characteristic set of field values describ
in the text.
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PRB 60 9485BULK AND SURFACE SPIN-FLOP TRANSITIONS IN . . .
The absolute ground state remains in thet50 sector forH
.Hw8 and is again rendered increasingly ferromagnetic in
limit H→`.

The foregoing analysis suggests that a transition int
domain-wall state is always present on an open chain
critical field Hw , and is merely decorated by a seconda
transition at a slightly higher fieldHw8 whenN in L52N is
even. This alternating pattern is confirmed by the calcula
total moment forL514 and 16 shown in Fig. 7, and b
further analysis of level crossings using the Lanczos al
rithm on chains withL<22. The main new critical fieldHw
quickly stabilizes to the size-independent valueHw
51.0625, forD51.5, which is distinct from the bulk critica
field Hb51.118 and thus clearly suggests the appearanc
a definite domain-wall~DW! phase inHw,H,Hb .

The picture just derived for the specific anisotropyD
51.5 is more or less sustained for a wide range of aniso
pies in the regionD*1.25. However, this simple pictur
becomes more involved as the anisotropy approaches the
tropic limit D→11. Already atD51.125 a cascade of leve
crossings are induced by the least-energy states of the se
t5N21,N23,N25, . . . at a sequence of critical fields

FIG. 7. The results of Figs. 3 and 5 now iterated on long
chains withL514 and 16 to establish the alternating pattern
scribed in the text.
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Hs ,Hw ,Hw8 , . . . which stabilize to size-independent value
The main SSF transition is still given by the crossing of t
t5N Néel state by thet5N21 surface magnon or bound
ary domain wall at the critical fieldHs of Eq. ~2.14!. But the
next transition atHw now corresponds to a crossing of th
t5N21 surface magnon by thet5N23 ground state
which is a uu-type domain wall located three lattice uni
away from the left end of the chain. Subsequent transition
a sequence of critical fieldsHw8 ,Hw9 ,... correspond to a se
quense of hoppings of the domain wall in steps of two latt
units until it arrives at the center of the chain. Once t
domain wall reaches the center, its future evolution is sim
to the one described earlier forD51.5.

A completely satisfactory description is not possible
the short chains used in the numerical calculations, beca
the size of the relevant domain walls increases to lattice
mensions in the limitD→11. However, the observed patter
is sufficiently clear to provide unambiguous numerical e
dence for the new critical boundaryH5Hw(D) which com-
pletes the phase diagram of Fig. 2. Although this basic ph
diagram does not reflect the fine structure inHw,H,Hb
alluded to in the preceding paragraphs, it certainly conta
all those elements that are likely to be important in practi
applications.

Thus the ground state is purely Ne´el and the correspond
ing phase is labeled as antiferromagnetic~AF! for H,Hs .
The regionHs,H,Hw is characterized by a ground sta
which is a surface mode and is called a surface spin-
~SSF! phase. The domain-wall~DW! phase extends in the
regionHw,H,Hb where a bulk domain wall is realized i
the ground state. Finally the regionH.Hb corresponds to
the bulk spin-flop~BSF! phase, studied in Sec. III, which
becomes increasingly ferromagnetic~F!. This explains the
composite designation~BSF, F! in Fig. 2. The union of the
AF, SSF, and DW phases would become an extended
phase in the absence of free boundaries.

The description of the phase diagram is completed wit
comment on the thermodynamic limit. Although the critic
boundaries reach size-independent values, for practically
D.1, bulk quantities such as the average magnetization
site m5M /L become relatively insignificant in the limitL
→` for H,Hb . For example, in the SSF phase, the to
magnetizationM is given analytically by Eq.~4.4! and is of
order unity. Therefore, the average momentm decreases lin-
early with 1/L, a fact that is progressively apparent in Fig
3, 5, and 7 which depict results in the range 10<L<16.
Nevertheless surface effects are always present on open
chains of any size and could be observed in a magnetic
terial that is sufficiently doped to produce a statistically s
nificant number of such chains.

V. CONCLUSION

The main advantage of the bulk and surface spin-fl
transitions studied in this paper is that they are induced b
uniform bias field which can be easily applied and tuned
any desired value. This situation should be contrasted w
the case ofboundaryfields23 that are generally difficult to
implement, especially in doped materials where open m
netic chains are produced within the crystal in a rand
manner. It is thus conceivable that the current theoret
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work will eventually find an experimental realization anal
gous to that obtained in classical Fe/Cr multilayers.4–6

Suppose that a quasi-one-dimensional magnetic mat
is found22 with exchange constants that are approximat
given by Eq.~1.3! after suitable normalization. Doping suc
a material with nonmagnetic ions18 would produce open
magnetic chains of varying size. Since the critical bounda
of Fig. 2 are practically independent of chain size, it wou
be possible to tune the applied field to the various region
the phase diagram and thus probe the predicted mag
phases. Electron-spin resonance at low temperature see
be an appropriate experimental tool, in analogy with re
nance experiments already performed6 and theoretically
discussed6,17 for classical Fe/Cr multilayers. A correspondin
study in the present quantum model would require expl
calculation of the relevant dynamic susceptibilities, an is
to which we hope to return in the future.

The prospects for experimental realization would be s
nificantly enhanced if the present theoretical work could
extended to the full range of models defined by inequali
~1.2!. For example, an interesting special case is the an
tropic XY model ~J150, J251, J35D.1!, or YZ model in
current notation, in the presence of an in-plane field app
along the easy axis. Analytical solution of this model do
not seem possible at nonvanishing field, and theoret
analysis is further complicated by the lack of a U~1! symme-
try. A preliminary numerical calculation of the ground-sta
total magnetization on a chain withL514 is shown in Fig.
8. While a trace of both a surface (Hs) and a bulk (Hb)
critical field is again present, the spin-flop transition ob
ously proceeds by multiple level crossings which are diffic
to study in detail by numerical simulations on short chains
notable feature of Fig. 8 is that ferromagnetic order at h
fields is now more robust.

The picture could again simplify in theXXZ model ~J1
515J2 , J35D.1! where a U~1! symmetry is restored
The effect of a uniform field pointing along the symmet
axis is simply a linear Zeeman shift of the zero-field ene
eigenvalues. The latter may, in principle, be obtained by
Bethe ansatz19 known to apply to both a cyclic and an ope

FIG. 8. Field dependence of the average magnetization per
m5M /L in the ground state of a model withJ150, J251, J3

51.5, andL514. The dashed line corresponds to a cyclic ch
and the solid line to an open chain with the same number of s
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chain,26 and the problem of spin-flop transitions amounts
studying the density of level crossings induced by the lin
Zeeman shift. In fact, theT50 phase diagram on an infinit
chain was studied by Johnson and McCoy27 and consists of
an AF phase forH,Hb , a BSF phase forHb,H,H f , and
a pure F phase forH.H f . If we setD[coshF the critical
field Hb is given by28

Hb5sinhF (
n52`

`
~21!n

coshnF

5sinhF
p

F (
n52`

`
1

coshF ~2n11!p2

2F G , ~5.1!

which differs significantly from Eq.~2.7! especially at weak
anisotropies~D→11 or F→0! where the field~5.1! van-
ishes exponentially. Furthermore, a transition to a pure
state now takes place above the critical field

H f5D11. ~5.2!

Comparison of the results for the total magnetizati
computed numerically on an open and a cyclic chain w
L514, shown in Fig. 9, again suggests a SSF transition
new critical field Hs,Hb . However, bothHb and Hs are
now size dependent and hence the results of Fig. 9 are
sufficient to establish the existence of a SSF transition.
trapolation of the relevant magnon gaps calculated on ch
with L<22 indicates a ratioHb /Hs that remains remarkably
close to its Ising value 2 for a wide range of strong anisot
pies in the regionD.2. Nevertheless extrapolation becom
problematic at weak anisotropies and thus a definite pre
tion near the isotropic limit is difficult to obtain numerically
It should be mentioned that a considerable amount of w
has been devoted to the study of theXXZ model in the pres-

ite

s.

FIG. 9. Field dependence of the average magnetization per
m5M /L in the ground state of theXXZ model J1515J2, J3

51.5 with L514. The dashed line corresponds to a cyclic ch
and the solid line to an open chain with the same number of s
Note the transition to a pure F phase above the critical fieldH f

52.5.
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PRB 60 9487BULK AND SURFACE SPIN-FLOP TRANSITIONS IN . . .
ence of boundary fields,29,30 but the more direct question
raised here in the presence of a uniform bulk field do
seem to have been addressed.

To conclude, we note that interesting variations of
main picture may occur for variousuJ1u<J2,J3 . In this
respect, we recall that the classical21 ground state is indepen
dent ofJ1 and thus combines features of the entire class
quantum models in the above range. Therefore, although
earlier classical calculations for single-ion14 and exchange21

anisotropy provided extremely valuable motivation for t
present work, their detailed results cannot be readily app
to the study of the respective quantum models.
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APPENDIX: THE ODD CHAIN

In a material that is randomly doped with nonmagne
ions, approximately half of the produced open magn
chains are composed of an odd number of sites (L52N
11). It is thus important to also examine the ground state
odd chains in the presence of a bias fieldH. The two Néel
states

uNA&5ud,u,d,u,...,d,u,d&,
~A1!

uNB&5uu,d,u,d,...,u,d,u&

are again mapped by Eq.~1.5! to two completely polarized
‘‘ferromagnetic’’ states which are exact eigenstates of
Hamiltonian ~1.6! for any value of the applied field. How
ever, degeneracy is now lifted by the bias field because
states ~A1! carry nonvanishing total magnetizationM5
71/2 and the corresponding energy eigenvalues are give
6H/2. Therefore, whenH is taken to be positive,uNB& is the
unique ground state withM51/2. Similarly, whenH is nega-
tive, the unique ground state isuNA& with M521/2. For
definiteness, we assume that the bias field is positive,
case ofH being completely analogous.

Our task is then to determine the critical field abo
which a spin-flop transition may take place. Examination
the one-magnon spectrum around the stateuNB& leads to a
D
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picture that is fairly similar to that of Fig. 1, with the follow
ing notable difference. The gap mode 1 is now missing fr
the spectrum, while mode 18 is duplicated. As a result ther
will be no SSF transition at the critical fieldHs . Instead an
odd open chain will proceed directly to a BSF transiti
which occurs by a cascade of successive level crossing
the vicinity of the critical fieldHb . This picture is similar but
not identical to the BSF transition on an even cyclic cha
studied in Sec. III, where all crossings take place at precis
the same critical fieldHb . Putting it differently, the antici-
pated hidden symmetry of an even cyclic chain at the criti
point is broken on an open chain.

The lack of a SSF transition on an odd chain becom
apparent with an explicit calculation of the total magnetiz
tion for D51.5 andL515 shown in Fig. 10. At low field
values the total magnetization is given byM51/2, or m
51/2L, and coincides with that of the pure Ne´el stateuNB&.
The BSF transition near the critical fieldHb is also apparent
in Fig. 10, whereas the chain is set on a more or less sm
course toward ferromagnetic order forH.Hb . Therefore, a
clear distinction between even and odd chains is presen
analogy with the situation in classical Fe/Cr multilayers.4,10

FIG. 10. Field dependence of the average magnetization per
m5M /L in the ground state of our standard model~1.3! with D
51.5 on an open chain with an odd number of sitesL515.
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8F. C. Nörtemann, R. L. Stamps, and R. E. Camley, Phys. Rev

47, 11 910~1993!.
.

,

B

9R. L. Stamps, R. E. Camley, F. C. No¨rtemann, and D. R. Tilley,
Phys. Rev. B48, 15 740~1993!.

10R. W. Wang and D. L. Mills, Phys. Rev. B50, 3931~1994!.
11L. Trallori, P. Politi, A. Rettori, M. G. Pini, and J. Villain, Phys.

Rev. Lett.72, 1925~1994!.
12L. Trallori, P. Politi, A. Rettori, M. G. Pini, and J. Villain, J.

Phys.: Condens. Matter7, L451 ~1995!.
13L. Trallori, Phys. Rev. B57, 5923~1998!.
14C. Micheletti, R. B. Griffiths, and J. Yeomans, J. Phys. A30,

L233 ~1997!.
15C. Micheletti, R. B. Griffiths, and J. Yeomans, Phys. Rev. B59,

6239 ~1999!.
16N. Papanicolaou, J. Phys.: Condens. Matter10, L131 ~1998!.
17N. Papanicolaou, J. Phys.: Condens. Matter11, 59 ~1999!.
18H. Asakawa, M. Matsuda, K. Minami, H. Yamazaki, and K. Ka



ev

G.

l.

9488 PRB 60J. KARADAMOGLOU AND N. PAPANICOLAOU
sumata, Phys. Rev. B57, 8285~1998!.
19M. Gaudin,La Fonction d’Onde de Bethe~Masson, Paris, 1983!.
20Zhan-Ning Hu, Phys. Lett. A250, 337 ~1998!.
21J. Karadamoglou and N. Papanicolaou, J. Phys. A32, 3275

~1999!.
22J. Kyriakidis and D. Loss, Phys. Rev. B58, 5568~1998!.
23F. C. Alcaraz, S. R. Salinas, and W. F. Wrezinski, Phys. R

Lett. 75, 930 ~1995!.
24H. P. Bader and R. Schilling, Phys. Rev. B19, 3556~1979!.
.

25V. Pasquier and H. Saleur, Nucl. Phys. B330, 523 ~1990!.
26F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and

R. W. Quispel, J. Phys. A20, 6397~1987!.
27J. D. Johnson and B. M. McCoy, Phys. Rev. A6, 1613

~1972!.
28J. D. Johnson and J. C. Bonner, Phys. Rev. B22, 251 ~1980!.
29M. Jimbo, R. Kedem, T. Kojima, H. Konno, and T. Miwa, Nuc

Phys. B441, 437 ~1995!.
30A. Kapustin and S. Skorik, J. Phys. A29, 1629~1996!.


