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Bulk and surface spin-flop transitions in an antiferromagnetic XYZ chain
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Spin-flop transitions are studied within a s;ii'r&ntiferromagnetiO(YZ chain immersed in a uniform bias
magnetic field. For a special choice of anisotropy the bulk spin-flop transition occurs at a criticaH field
characterized by the onset of “accidental” degeneracy in the energy spectrum that may indicate a hidden
symmetry. On an open chain the bulk transition is preceded by a surface spin-flop transition induced by a
surface magnon that turns soft at a new critical fielg<H,, while an antiferromagnetic domain wall is
realized in the ground state as the bias field approaklyesTheseT=0 phase transitions could be observed
through electron-spin resonance on magnetic chains doped with nonmagneti{Si@h63-18209)01137-4

. INTRODUCTION |31]=<3,<33 (1.2

gzgmd thus describes an antiferromagnetic chain in a field
pointing along the easy axis. To set the stage for the study of
the subject was revived only recently with the experimentaf€ guantum model we have carried out a classical
observation of a surface spin-flop transition in an Fe/cicalculatiort” which revealed the existence of a surface spin-
multilayer?~=® The precise nature of the transition proved toﬂOp transmon analogous_ to that encountt_argd In multilayers,
be more intricate than originally envisaged but has beel pecullarlty _of the classw_al ground state is its independence
clarified in a number of recent theoretical investigatignd.  On the specific value af, in the rangdJ;|<J, a property

The advantage of a multilayer is that it can be modeled by éhat is not sustained in the quantum model. But the recent

classical spin chain characterized by an isotropic exchang©TK of Kyriakidis and LosS’ on an unrelated subject
interaction and a single-ion quadratic anisotropy. Bloch oscillation$ suggested to us that the most classical

In view of this development we return to the problem of antiferromagnet is obtained by the special choice of the ex-
crystalline antiferromagnets which are more appropriately?ange constants

Surface effects that could be observed in an antiferroma
net were theoretically predicted some time agoHowever,

described t_>y guantum _s_pin systems. Specifically, we intend —3,=0,=1, J=A>1, (1.3
to study spin-flop transitions for a spinXYZ model whose
Hamiltonian which is consistent with inequalitig4..2). If u andd denote
spin-up and spin-down states, the two fully polarizeceNe
A—1 A states
W:; (1SS 1+ 3.8 y+1+Jss|ZS12+1)—H|§1 S INo)=|d,u,d,u,...), [Ng)=|ud,ud,..) (1.4

(1.7 are then the twddegenerateexact ground states when the
applied field is sufficiently weak.
is defined on an open chain with sites. Various quasi-one- Some special features of modél3) become apparent by
dimensional magnets that are thought to be approximated hyerforming the familiar canonical transformation
special cases of Eq1.1) have already been identified. Fur- . y Iy , I
thermore a statistically significant sample of free boundaries =T, §=(-DT, §=(-DT, (@Y
may be experimentally accessitilethrough doping with  \here the “pseudospin” variableF, again satisfy the stan-

nonmagnetic ions which creates within the crystal open magqard spin commutation relations and map the Hamiltonian to

netic chains of varying length. Therefore, a theoretical study R
-1

of surface effects is now more meaningful than ever. 1
In fact, the XYZ model has been the subject of an im- W=— 2 | T+ TV + A TITE - 2 }
mense amount of theoretical work based on the Bethe =t
ansat?® or any of its variants. In particular, recent activity A
has concentrated on surface effects in the presense of bound- - HZ (-1)'T7, (1.6

I=1

ary fields or other integrable impuritié%.However, the
model is not known to be completely integrable in the pre-which describes an easy-axis “ferromagnet” in a staggered
sense of the uniform bulk fielth in Eq. (1.1), except in  magnetic field. In Eq(1.6) we have included a trivial addi-
special limits such as the ()-symmetricXXZ model J;  tive constant to provide a convenient normalization for the
=J,) in a field directed along the symmetry axis. Hence, theenergy eigenvalues.
present work will proceed by a more direct analytical ap- It is clear from Eq.(1.6) that the mode[1.3) is also en-
proach supported by numerical diagonalization. dowed with a W1) symmetry because the total azimuthal
Hamiltonian(1.1) is here restricted by the inequalites  pseudospin
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A A where we have simplified the notation by asserting thas
=2, Ti=> (-1)'& (1.7 the state where;=—1/2 but all other's are equal to 1/2.
=1 =1 An explicit form of the eigenvalue equations is then given by

obviously commutes with the Hamiltonian and thus the Hil- 1

bert space breaks up intb+ 1 sectors characterized by the (A/2-H—E)C,;==C,,

good quantum number=A/2—\ with A=0,1,... A. Al- 2

though this observation will greatly simplify calculations, the

guantum number is not related to a simple physical observ- [A+(—1)H—E]C, =£(C| 1+Ci_y),
able. Instead we shall be interested in the total azimuthal 2

magnetization
1=23,...A-1, (2.2

A A
— Z__ _1)\/T2
M .le‘ Zl( b 18 (A/2+H—E)CA=%CA_1,

which does not commute with the Hamiltonian and its €X-and are valid on an open chain with sites. Here and

pected values cannot be predicted by simple quantizationy o ghout the main text we assume that the chain is even

One of our objectives in the following is to determine the(AzZN). We further introduce the sublattice variables

ground-state expectation valive=M (A ,H) as a function of

anisotropyA and applied fielcH. A,=Cy,_1, B,=C,,, n=12...N (2.3
Significant analytical progress can be made for the spe- . ,

cific choice (1.3 which will serve as a prototype for further N terms of which the linear systef@.2) reads

consideration of the full range of models defined by inequali-

ties (1.2). In Sec. Il we provide a complete calculation of (A/2—H—E)A1:E B,
one-magnon excitations with or without open boundaries. 2

These results already suggest the occurrence of a bulk spin-

flop (BSF) transition at a critical fieldH,, which is preceded (A—H- E)An=1(Bn L+B.), n=23,...N,

by a surface spin-flogSSH transition at a critical fieldH¢ 2
<H, in the presence of open boundaries. The two types of
transition are analyzed in Secs. Il and IV. Antiferromagnetic 1

domain walls arise naturally in the description of the SSF (ATH=E)Ba=5(An+Aq), n=12,... N-1,
transition and are thus also discussed in Sec. IV. In Sec. V (2.4

we summarize some of our main conclusions, in addition to

presenting some preliminary results for other quantum spin 1

models in the rang€l1.2). For clarity of presentation we (A/2+H_E)BN:§AN-

found it useful to restrict attention to an even chaif (

=2N) in the main text, while the necessary modifications for It is instructive to consider in parallel a cyclic or periodic
the case on an odd chaih E2N+1) are discussed in the chain with the same number of sites, in order to establish a

Appendix. simple reference case which will enable us to better appreci-
ate surface effects that may arise on an open chain. The first
1. BULK AND SURFACE MAGNONS and fourth equations in E@2.4) are absent on a cyclic chain,
and the remaining two equations are valid for all
The eigenstates of the Hamiltonigh6) are linear super- =12 ... N. Itis then a straightforward matter to eliminate

positions of states of the forfry, 7,,...,7,) where ther’s B, to obtain the equivalent system

take the values 1/2 o+1/2 in any combination that pre-

serves their sum. The Neel stateg1.4) are mapped to two 1A +A

completely polarized “ferromagnetic” states, withr= Bn:i A+H-—E’

+ A/2, which are exact eigenstates, with eneky 0, for

any value of the applied field. It is also clear that these are 1

the two degenerate ground states at vanishing field. The first [(A—E)*— HZ]AnZZ(ZAn+An+1+An—1)! (2.5

question is then to determine the field region over which the

polarized states persist as the ground states of the systemwhose solution isA,=€'*", where k=27v/N with »
One is thus lead to study excitations, the simplest possi=0,1, ... N—1 is a sublattice crystal momentum, provided

bilities being one-magnon modes witt= A/2—1 or —A/2  that the energy is given by

+1. It is sufficient to consider only the former case, infor-

mation about the latter being inferred by extending the field E=A=*JH?+cos(k/2). (2.6)

region to both positive and negative valuestof The one-

magnon eigenvalue problem reads Viewed as functions of the applied field the energy eigenval-

ues are contained within the two shaded regions of Fig. 1 and
A their distribution becomes increasingly dense in the bulk
_ _ limit N—«. The shaded regions are bounded from above
W|y)=E| ), =2, G, 2.1 X
[V=Ely). 0 21 i @3 and below by the two curveE=A =+ H?+1 and display a
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and should be viewed as a system of two algebraic equations
for the unknownst andE. Detailed examination of the roots
that satisfy the conditioné|<1 yields two distinct surface
modes which we discuss in turn.

The most interesting surface mode is given by the root
&=¢, andE=E, with

1
glzm[\/(A2+4AH—1)2+4A2—(A2+ 4AH-1)],

E;=A-— \/H2+%(2+§1+1/§1), (2.11

-H, -H, 0 H, H, and its energy labeled as curve 1 in Fig. 1 lies below the
H one-magnon continuum. This curve emanates from the con-

tinuum at the characteristic field Hg with
FIG. 1. Field dependence of the one-magnon spectrum for the

specific anisotropyA =1.5. A%-1
HOZT (213
middle gap extended between the cunEes A*=H. The
lowest gap closesH=0) atH=*H, where and persists in the field regidd> —H,. The parameteg;
is equal to unity at- H but lies in the interval 8¢, <1 for
H,=vVA°—1 (2.7 H>—H,. This surface state exists as a distinct gap mode

. . ) o _ ) below the continuum even at vanishing field € 0) where
is a critical field of special importance in the following. The ¢ —1/A2 andE,=(A2—1)/2A.

preceding derivation already indicates that the simpleINe A second root satisfying the conditigs| <1 is given by
stateg1.4) can no longer be the ground states for field valuesgz & andE=E, with
outside the interval —H,,H,]. Further analysis of the cy-
clic chain given in Sec. Il will establish that,, provides the 1
critical boundary of the BSF transition. &=~ 5l V(A+4AH-1)+4A%+ (A% +4AH-1)],
We now return to the main theme and examine the possi-
bility of one-magnon surface modes on an open chain. Solu- 1
tion of the linear systeni2.4) is complicated by the appear- A— \/H2+ — (24 &+ 1/¢y) —Hy<H<O,
ance of the two distinct equations at the outer layers. 4
However, the essential new ingredients can be obtained ana-
lytically on a semi-infinite chain. The fourth equation in Eq.

2:
1
A+ \/H2+ 72+ &+ 1E)  H<—Ho.

(2.4) may then be ignored and the third may again be used to (2.13
eliminate B, as in Eq.(2.5. The first two equations are ) o )
written as The two branches irE, join smoothly at—H, and their

union is labeled as curve 2 in Fig. 1. Therefore, the second
1 root describes a surface mode with energy in the middle gap
(A/2—H—E)(A+H—E)A1=Z(A1+A2), of the magnon continuum. The parameggrlies in the in-
terval —1<¢,<0 and thus the middle-gap mode decays

1 (2.8 away from the boundary in an oscillatory manner.
[(A—E)2—H?]A, == (2A,+ A1 +A,_1), To complete the description of Fig. 1 we must now rec-
4 oncile the preceding analytical results on a semi-infinite
wheren=2.3, . .. s. A surface mode is described by a spe- chain with those obtained by numerical diagonalization of

the linear systen{2.2) or (2.4) on a finite open chain. For
any givenA =2N the majority of eigenvalues fall within the
1 1+¢ shaded regions of Fig. 1, but a finite number of eigenvalues
= —————¢&" (2.9 occur outside the continuum for each figld Also note that
2A+H-E a dublication of gap modes should be expected on an open
supplemented by the requiremeid{<1 which guarantees chain because surface states can now bt'a.formed near gither
that the state decay exponentially away from the boundar)Pne of the two free ends. Ir!deed, in addm_o_n _to_ conf|r_m|ng
Equations(2.8) reduce to the gap moo_les 1 ar_ld 2 predlcted_ ona sem|-|nf|n_|te chain, the
numerical diagonalization also yields the two mirror modes
1 1" and 2 shown in Fig. 1.
(AI2-H—-E)(A+H-E)= Z(1+ b)), The energies of the gap modes calculated analytically on
a semi-infinite chain witlA =1.5 agree with the numerical
(210 results to several significant figures far=10 while the
(2+ £+ 1¢) agreement improves rapidly with increasingor A. Hence
' the numerical simulations described in Secs. Ill and IV for

cial solution of the form

(A—E)*—H?=

N
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spin chain in the presence of suitable boundary fields proved
to be very instructive for the current work on a cyclic chain
in a bulk bias fieldH.

We may also invoke the cluster argument of Bader and
Schilling?® on a cyclic chain noting that the Hamiltonian may
then be written as a sum of cell Hamiltonians, namely

A
W=|Z W,
=1

TZ z _E
I h1+1 4

1
3 ~ SH=D)(TF=T7, ), 3.1

W= — TIXTf(+1+ T|yT|y+ 1A

and thus the ground-state eneffgy satisfies the inequalit
FIG. 2. TheT=0 phase diagram for the quantum model3). 9 gy q y

The bulk and surface critical boundaridg andHg are given ana- 1
lytically by Egs. (2.7) and (2.14), and the domain-wall boundary ~A(EL+E_)<E,, 3.2
H,, was obtained numerically as described in Sec. IV. 2

where E. are the ground-state energies of the two-spin

chains of modest size are expected to provide a reliable piqzlamiltonians

ture for most values oA of practical interest.

The most important conclusion derived from the one-
magnon calculation becomes apparent by simple inspection W, = —
of Fig. 1. The surface modes in the lower gap are degenerate
with the Neel states at the critical fields H. The fieldH,
is computed from the conditiof; =0 whereE, is given by  The eigenvalues of botW_. andW_ are given by
Eqg. (2.11). A straightforward calculation shows that

1 4 z
=S H(T-T).
(33

1
zTz_ —
TlTZ 4)

TIT3+TTY+A

1 1
§(A+ VH?+1), 0, O,E(A—\/H2+1), (3.9

where the first eigenvalue is always positive and the fourth
Outside the interval —Hg,H,] the Neel states cease to be one may be positive or negative depending on the field
the lowest-energy states. Therefore, the BSF transition arstrengthH. Therefore, inequality3.2) is written as
ticipated to occur at the critical field, of Eq. (2.7) is pre-
ceded on an open chain by a SSF transitiorlgtHy. The ) 1
critical fields Hg and H,, coincide with those found in the Amin 0,5 (A= VH+1) | <Eo=0, 3.9
classical calculatictt except for an overall factor of 2 which
originates in the normalization of the classical spin to unity.and has been supplemented By<0 which follows from
The curvesH=H(A) and H=H,(A) provide the main the fact that the polarized states are eigenstates of the com-
critical boundaries in th& =0 phase diagram provisionally plete Hamiltonian with vanishing energy for any value of the
shown in Fig. 2 and further analyzed in Secs. Ill and IV. applied field. An immediate consequence of E3}5) is that
The surface magnon that drives the SSF transition in thé&e true ground-state energy vanishes whed,<H<H,,
present quantum model is the analog of the Mills-SaslowwhereHy, is precisely the critical field2.7), and thus coin-
modée which was derived semiclassically in a model with cides with the energy of the polarized states.
single-ion anisotropy and played an important role in the The preceding result strengthens the conclusion that the
theory of classical multilayers. Interestingly, the currently BSF transition occurs at the critical field, but a more
calculated ratioH,/H¢ approaches the valu& in the iso- detailed argument is required to determine the precise nature
tropic limit A—17", in agreement with the corresponding of the transition. The work of Sec. Il already established that
ratio in the limit of vanishing single-ion anisotropyin the  the lowest-energy state in the one-magnon sector becomes
opposite limit,A—«, H,/H approaches 2 which may also degenerate with the polarized statesdgt We shall further
be deduced from an elementary analysis of the Ising chainshow that the lowest-energy states of all multimagnon sec-
tors become degenerate at the same critical field, in analogy
IIl. BULK SPIN-FLOP TRANSITION with a similar result in the model of Ref. 23. Wheh=H, it
is convenient to introduce the parametrization
In this section we focus on a cyclic chain with an even
number of sites and examine in greater detail the BSF tran- 1 ( g 1) 1

He= o VA DA D - (A2-1)]. (214

1
sition at the critical fieldH,, of Eq. (2.7) suggested by the A=3sla+ q)’ H=3l9- a)’ (3.6
one-magnon calculation. In a curious turn of events, the re-

cent work of Alcaraz, Salinas, and WrezirSkbn an open whereA>1 andgq=A+AZ—1>1.
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To motivate the demonstration we return to the one- A numerical calculation of all eigenstates and eigenval-
magnon calculation and specifically consider the lowestues, for various\ <12, confirms that the ground states of all
energy state afl,, obtained by setting=0 andE=0 in Egs.  sectors become degenerate at the critical field. Excited states
(2.5 and (2.6) to yield A,=1 and B,=1/q for all n also exhibit some accidental degeneracy that cannot be ac-
=1,2,...N. In the notation of Eq(2.1) this special one- counted for by the 1) symmetry. One is thus tempted to
magnon state reads conclude that the model acquires a larger symmetry at the

critical point; perhaps analogous to the quantum-group
c,:q*1’2(*1>', (3.7  UgSU@2)] symmetry of the model with boundary fields
) o studied in Refs. 23, 25. We shall not pause to examine the
where we have also included an overall normalization faCtObossibiIity of a hidden symmetry in the present model be-
Va. cause the explicit resu(B.12 proves to be sulfficient to illu-

We next consider the two-magnon eigenvalue problem minate the nature of the BSF transition.

Thus the emerging qualitative picture is substantiated
_ _ with an explicit calculation of the ground-state expectation

W) =El). 1) |;2 Clulllnla, (39 value of the total magnetizatiom of Eq. (1.8) which van-

i , ) ishes in the regiomtH <H, but acquires finite values fdd
wherelly,I5) is a state withr = —1/2=7 and all other’s  —; A sudden jump occurs at the critical field which can
equal to 1/2. On a cyclic chain the generic eigenvalue equabe calculated analytically on an even cyclic chain of any

tion is size. The calculation is based on the important observation
| | that ther=0 sector prevails above,, in the sense that it
{2A+[(= 1)1+ (= 1)2JH-E}C(I1,12) contains the unique absolute ground stateHorH,. The
1 last statement is corroborated by numerical diagonalization
==[C(l;+1]5)+C(l,—21],)+C(l,l,+1) on short chains of varying size. Therefore the magnetization
2 jump at the critical field is given by
+C(I4,1,—1)], 3.9
()] 39 & el
and should be completed with the meeting conditlon M —Zl (-1 ol (3.14

1 where|,) is the statg(3.12 applied for7=0. The special
AC(LI+1)= E[C(l D+CU+1I+1)], (310 structure of this state permits us to write
where one formally extends the definition ©tl,,l,) to co- d
inciding argumentslg=1,) which are absent in Eq3.9). MZQ%'”(%W& (3.19

WhenA andH are given by Eq(3.6) the wave function )
and the problem reduces to the calculation of the norm

C(ly,l,)=q A1 +(-1'2 (3.11)  (%ol#o). A reasonable amount of combinatorics leads to

2
qN—2V (31@

satisfies Eq(3.9), with E=0, as well as the meeting condi- !

N
tion (3.10. We have thus obtained a special two-magnon <¢O|¢0>:V20 EDE
eigenstate which is degenerate with both the one-magnon

state(3.7) and the completely polarized states at the criticaland

field Hy.
N

These elementary results possess a simple generalization B S (N2 ' 2 N—2y
to an arbitrary sector. A set of exact eigenstates with vanish- a (ol o) 150 ( v) (N=p)!p! q :
ing energy is given by (3.17

A | It is also possible to provide an integral representation of the
|¢T>=§ qYZ= |7y 7). (312 sums to obtain

where the sum extends over all configuratiofs} M1
=(71,72,...,74) Which are consistent with a definite azi- KON~ 2 In '
muthal pseudospin (3.18

A INEEJ (A+coso)Nde,
7=> 7=N,N-1,...,—N, (3.13 7 Jo
wherepu is the average magnetization per site, a quantity that
whereA =2N. As a check of consistency one may apply Eq.is more appropriate for the discussion of the thermodynamic
(3.12 for r==N—1 andN—2 to recover the one- and two- limit.
magnon wave function&.7) and(3.11). For other values of Analytical calculation of the magnetization fét>H,, is
7 our basic resul{3.12 can be established by a straightfor- impossible at present because #e0 ground state becomes
ward generalization of the two-magnon calculation givenincreasingly complex away from the critical point. We have
above. thus resorted to numerical diagonalization on short chains.
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05 netization at the critical field computed on chains with
~10 does not differ from itg\ — limit by more than 13%,

for all A>1, and the agreement improves at ladyelt is
also likely that the thermodynamic limit féd >H,, could be
reached by extrapolation, but this is clearly an issue of no
special urgency at this point.

The analytical resul{3.19 reveals yet another surprise,
for it coincides with the magnetization obtained within the
] classical calculaticft at the onset of the BSF phase which is
described by a canted spin configuration. This curious fact
could be investigated further by generalizing the special
stateg3.12) to arbitrary spirs, also in analogy with a similar
calculation in the model of Ref. 23. One should then be able
to explicitly study the classicalarges) limit on any finite
chain and eventually explain its coincidence with the quan-
tum prediction(3.19 in the thermodynamic limit.

To summarize, th& =0 phase diagram is rather simple
) o ~on a cyclic chain and consists of a single boundéaty

FIG. 3: Field dependence of the average magnetization per site. Hp(A) given by Eq.(2.7). To the left of this boundary the
#=M/A in the ground state of a chain with=15 andA=10. o4 g state is purely antiferromagnetF) and to the right
The dashed line corresponds to a cyclic chain and the solid line tﬁ may be called a bulk spin-flofBSF) state which becomes
an open chain with the same number of sites. The inset focuses an . . -
the fﬁ'st step of the main figure and compares the total magnetizemcreasmgly ferromagneti¢F). No transition to a pure F

: i _— . . State occurs at any finite field. Since a cyclic chain pre-
tion M to the analytical predictiof4.4) depicted by open circles. . . . . .
' ytical predictiod.4) depi y open ¢ serves translation invariance, and thus provides a faithful

representation of the bulk limit, we have in effect described

the BSF transition on an infinite chain. The additional struc-
fire shown to the left of the boundaHh, in the phase dia-
ram of Fig. 2 is due to surface effects that are analyzed in
ec. IV.

A=15 A=10

0.0

Memory requirements restrict us to the ranye=12 if we

wish to compute all eigenstates. However, we have been ab

to extend the range ta\<22 for the calculation of the

ground-state energy via a Lanczos algorithm. The latte

proved to be somewhat less reliable as well as time consum-

ing in the calculation of the magnetization. Therefore, the

Lanczos algorithm is used on chains with=22 for the IV. SURFACE SPIN-FLOP TRANSITION

investigation of those issues that depend exclusively on the

ground_state energy. But results for the magnetization are The numerical calculation described in Sec. Ill was sub-

limited to A<16, using either complete diagonalization or Sequently repeated on an open chain with the same/size

the Lanczos algorithm, or both. In all cases we provide ex= 10, and the result is depicted by a solid line in Fig. 3. The

plicit estimates of finite-size effects which suggest that thenagnetization is now seen to exhibit a sudden jump at a new

derived overall picture is indeed reliable. critical field H,=0.609 22570 which is in excellent agree-
For instance, the average magnetization per $j1e ment with EQ(214) applied forA=1.5. This result is con-

=M/A calculated on a cyclic chain with=1.5 and A sistent with the theoretical development of Sec. Il which pre-

=10 is depicted by a dashed line in Fig. 3 and exhibits Aicts that the one-magnon surface mode becomes the ground

sudden jump at the critical field,=1.118 03399 given by State beyondHs. One may then use the analytical results

Eq. (2.7. The size of the jump was found equal jo  ©obtained on a semi-infinite chain to actually predict the mag-

=0.249 73268, also in perfect agreement with the analyticaetization, at least for some nontrivial field region abéie

result(3.18 applied forA=1.5 andN=A/2=5. Away from The grognd-state total magnetization again vanishes for

the critical point the magnetization increases smoothly td1<Hs but is equal to

achieve the saturated ferromagnetic value 1/2 in the limit

H-— o0, A

_ AlthoughHy is independent of chain size, the magnetiza— M=> M,, M=(-1)

tion does depend oh =2N for H=H,. A good estimate of =1

its size dependence is obtained by taking advantage of the

analytical result(3.18. In the limit N—o the integral is for H>Hg where|,) is now the state of the surface mode

dominated by the maximum value of the integrand achievegh the lower gap of Fig. 1. Therefore, the norm of this state is
at =0 to yield Iy~ (A+1)N and given by

I (3.19 -
2VAaT1 ' <</f1|¢1>=n§=)1 (|A2+ B,

Applied for A=1.5 the above expression leads o £2
=0.223606 80 which is overestimated by the valueAat =[1+(A—2H—2E1)2]—1, (4.2)
=10 quoted earlier by about 12%. More generally, the mag- 1-&

(1| T 1)

(gl ) 43

M
2N

pm=lim
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where A, and B, are taken from Eq(2.9) applied for ¢ H=0
= ¢, andE=E, given by Eq.(2.11). Accordingly the local | | | | |
magnetizatiorM, is given by l l l l l
A? 1 1 [By?
Mop 1= 7=, My=o— " (4.3 H=0.61
ey 20 M ey Y
for odd and even sites, respectively, and the total magnetiza- | | | |
tion by
H=1.07
1—(A—2H-2E,)?
T 1+(A-2H-2Ey)? @9 ! I I ! bl I I I ]
It should be clear that the preceding results are valid also for
H<H, where the surface mode is not the ground state. In H=112
particular, ] | S B | . I
i
2_
M(HZO)Zm (4.5 H=

is the total magnetization of the one-magnon surface state at I ] I I ] I I l I I
vanishing field. At the critical fieldHg, whereE;=0, Eq.

(4.4) yields
FIG. 4. Snapshots of the local magnetizatdpon a chain with
1—(A—2H,)? A=1.5 andA =10, for a characteristic set of field values described
M(H= = > ) i
(H=Hy) T+ (A—2H,)%" (4.6)  in the text.

which agrees with the jump observedHy in Fig. 3 to eight  field becomes apparent in the=1.12 entry, where the field
significant figures; as expected on the basis of our discussionas chosen to be slightly greater than the bulk critical value
of the size dependence of the surface modes in Sec. Il.  Hp=1.118 of Eq.(2.7). It should be noted here that the

Such an excellent agreement of the analytical predictioranticipated BSF transition is replaced on an open chain by a
(4.4) with the finite-size results of Fig. 3 persists over a non-rapid but rounded crossover which becomes increasingly
trivial field regionH,<H<H,,, as demonstrated in the inset sharp with increasing chain size. The inflation of the domain
which focuses on the first step of the main figure. Clearly avall is more rampant at higher field values and the local
new transition takes place Hit, and the one-magnon surface magnetization approaches a nearly uniform ferromagnetic
mode ceases to be the ground stateHorH,,. One would configuration within the bulk, with some nonuniformity per-
think that the SSF transition proceeds beydhdby a cas-  sisting near the edges of the open chain; as is completely
cade of level crossings induced by multimagnon surfacepparent in the lasti=2, entry of Fig. 4. However, com-
modes. But the results of Fig. 3 clearly indicate that thereplete ferromagnetic order is achieved only whén- .

exists only one additional crossing at the critical fielg, The picture was completed with a detailed examination of
~1.06<H, for A=1.5. the pertinent level crossings. Thus we calculated the ground-
In order to appreciate the precise nature of the transitiorstate energies of all sectots=N,N—1,...,—N) as func-

at H,, we have examined the evolution of thezal magne- tions of the applied fieldd at the given anisotropp =1.5.
tization M, with increasing bias field. Results far=1.5and The first transition occurs at the critical fields where the

A =10 are shown in Fig. 4 for a selected set of field valuesNeel state|N,), with 7=N, is crossed by the one-magnon
using a more or less obvious notation. We begin with thesurface mode, withr=N—1. For higher fields, multiple
first Neel state|N,) of Eqg. (1.4) whose local magnetization level crossing take place among the lowest-energy states of
is depicted in thed =0 entry of Fig. 4. The Nel state per- the multimagnon sectors=N—2N-3, ..., and ardikely

sists as the absolute ground state until the field crosses the play an important role in the low-temperature dynamics.
critical valueH,=0.609 of Eq.(2.14). Just aboveH a sur-  But most of these crossings are irrelevant for the determina-
face magnon is realized in the ground state, as shown in thigon of the absolute ground state because the one-magnon
H=0.61 entry which may be reproduced to great precisiorsurface mode is eventually overtaken only by the ground
using the analytical predictioi4.3) obtained on a semi- state of ther=0 sector which is an antiferromagnetic do-
infinite chain. With further increase of the applied field the main wall located at the center of the open chain.

surface magnon slowly approaches a boundary Ising domain The last remark prompted us to examine the local magne-
wall of the typeuududu... . However, a sudden change tization in the lowest-energy states of all sectors, even
occurs at the critical fieldH,,~1.06, as demonstrated in the though most of these states do not become the absolute
H=1.07 entry where a bulk domain wall appears at the cenground state for any field value. The result for=2N=10 is

ter of the chain. This state is a slightly depleted version of apresented in Table | using a symbolic notation that is strictly
ideal Ising domain wall of the type . uduudu. .., thanks appropriate only in the extreme Ising limk—o. But the

in part to the finite value ofA and to the applied field. The essence of the derived picture at finiteand O<H=H, is
tendency for inflation of the domain wall with increasing well represented in Table I. Thus the ground state in each
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TABLE I. Symbolic illustration of the ground state in each sec- H=0
tor on an open chain withh=10. ] ] ] I I I
T Pseudospin Spin M l l l l l l
5 uuuuuuuuuu dududududu 0 H=0.61
4 duuuuuuuuu uududududu 1 1 T ] I ] I I
3 dduuuuuuuu uddudududu 0 l l l l l
2 ddduuuuuuu uduudududu 1
1 dddduuuuuu ududdududu 0 H=1.07
0 ddddduuuuu ududuududu 1 I T I I I I I
-1 dddddduuuu udududdudu 0 l T T l l
-2 ddddddduuu udududuudu 1
-3 dddddddduu ududududdu 0 Het 10
—4 dddddddddu ududududuu 1 .
-5 dddddddddd ududududud 0 | l I . || . I | [
sector ranges between the two pureeNstates of Eq(1.4) H=1.12
which correspond to the two extreme values of the azimuthal ] I T I ]
pseudospinr=*N. For intermediate values of=N-—A\, I N " I
with A=1,2,...,N-1, a domain wall is formed at a dis-

tance equal to\ lattice units from the left boundary of the
chain. Therefore, the good quantum numbeprovides a
rigorous definition of the relative location of a domain wall I A Y O I I I
on an open chain, even at finite where the wall expands
and thus departs from its ideal Ising shape. Domain walls
with opposite pseudospirt 7 are displayed symmetrically FIG. 6. Snapshots of the local magnetizatdpon a chain with
about the center and carry the same energy. The Ieast—eneré;f 1.5 andA =12, for a characteristic set of field values described
state forH>H,, is ar=0 domain wall located at the center N the text.

of the chain.

To rule out the possibility of an accident that might have
occurred for the specific siz&= 10 used so far, we repeated
the calculation forA =12 and the results for the total mag- Ta
netization are shown in Fig. 5. Surprisingly, two instead of
one additional level crossings may now be discerned: th

results of the local magnetizatiovi; given in Fig. 6, in con-
junction with an obvious extension of Table | fo=12.

At this point it is useful to address the last column of
ble | which quotes the possible values of the total magne-
tization of domain walls in the extreme Ising lim\j =0 or

! T . : 8. one may say that the two values correspond to domain
first _at mel._OG, which is virtually identical to 'Ehe value walls of dd or uu type, respectively. Although these values
obtained earlier forA =10, and the second &,~1.09 4o gignificantly modified at finitd, they nevertheless sug-
Wh_lch |nd|c§tes the gmstence of ye_t anot_her crlltlcal f'eld-gest that a level crossing is more likely to be induced byia
This interesting twist in the general picture is clarified by theg;ate whosénegativé Zeeman energy in éositive field H

is greater in absolute value. The=0 domain wall at the

_ center of theA=10 chain is indeed au state. However,
A=LS A=12 =T when Table | is extended td =2N=12, whereN=6 is
even, ther=0 domain wall becomes @d state, whereasu
domain walls that are closest to the center are those with
==+1 and are likely to be energetically favorable.

Simple comparison of thid = 1.07 entries in Figs. 4 and 6
reveals that the same domain wall of tinetype appears in
both cases, but the wall in the second case is displaced by
one lattice unit from the center of the chain. Since a bulk
domain wall is rather narrow for the specific anisotrapy
: =1.5 used so far, its energy is relatively insensitive to the
H, 1.10 precise location about the center even for short chains. This
explains why the transition observed far=12 occurs at
‘ virtually the same critical fieldH,,~1.06 found earlier for
A =10, even though it now corresponds to a level crossing of

H the one-magnon mode by the ground state ofthéd. sector.
However, ther=0 ground state, which originates indal

FIG. 5. Same as Fig. 3 for a chain with=12. The inset now domain wall at lower fields, ultimately becomes sufficiently
focuses on a narrow region near the critical fielg to reveal the  frustrated to overtake the=1 sector at a new critical field
existence of a secondary critical fiett, . H,,~1.09, as demonstrated by th=1.10 entry of Fig. 6.

0.5

0.0

o
[ (%]
w
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Hg,Hy,H,,, - . . which stabilize to size-independent values.
The main SSF transition is still given by the crossing of the
7=N Neel state by ther=N—1 surface magnon or bound-
ary domain wall at the critical fielth of Eq. (2.14). But the
next transition atH,, nhow corresponds to a crossing of the
7=N-—1 surface magnon by the=N-3 ground state
which is auutype domain wall located three lattice units
away from the left end of the chain. Subsequent transitions at
a sequence of critical fieldd,,Hy,,... correspond to a se-
quense of hoppings of the domain wall in steps of two lattice
units until it arrives at the center of the chain. Once the
domain wall reaches the center, its future evolution is similar
to the one described earlier far=1.5.

A completely satisfactory description is not possible on
the short chains used in the numerical calculations, because
the size of the relevant domain walls increases to lattice di-
mensions in the limih — 1" . However, the observed pattern
is sufficiently clear to provide unambiguous numerical evi-
0.5 dence for the new critical boundaky=H,,(A) which com-
pletes the phase diagram of Fig. 2. Although this basic phase
diagram does not reflect the fine structureHp<H<H,
alluded to in the preceding paragraphs, it certainly contains
all those elements that are likely to be important in practical
applications.

Thus the ground state is purely &leand the correspond-
ing phase is labeled as antiferromagnéié) for H<H,.

The regionH,<H<H,, is characterized by a ground state
which is a surface mode and is called a surface spin-flop
(SSH phase. The domain-walDW) phase extends in the
regionH,,<H<H, where a bulk domain wall is realized in
the ground state. Finally the regidt>H, corresponds to
the bulk spin-flop(BSH phase, studied in Sec. Ill, which
becomes increasingly ferromagneti€). This explains the
composite designatio(BSF, B in Fig. 2. The union of the
AF, SSF, and DW phases would become an extended AF

FIG. 7. The results of Figs. 3 and 5 now iterated on longerphase in the absence of free boundaries.
chains withA =14 and 16 to establish the alternating pattern de- The description of the phase diagram is completed with a
scribed in the text. comment on the thermodynamic limit. Although the critical

o boundaries reach size-independent values, for practically all
The absolute ground state remains in the0 sector forH A~ 1 pulk quantities such as the average magnetization per
>Hy, and is again rendered increasingly ferromagnetic in thejte ,,— M/A become relatively insignificant in the limit
limit H—co. —oo for H<H,. For example, in the SSF phase, the total

The foregoing analysis suggests that a transition into @agnetizatiorM is given analytically by Eq(4.4) and is of
domain-wall state is always present on an open chain at grder unity. Therefore, the average momgndecreases lin-
critical field H,,, and is merely decorated by a secondaryearly with 1/A, a fact that is progressively apparent in Figs.
transition at a slightly higher fielth;, whenNin A=2Nis 3 5 and 7 which depict results in the range<l9=<16.
even. This alternating pattern is confirmed by the calculated\evertheless surface effects are always present on open even
total moment forA=14 and 16 shown in Fig. 7, and by chains of any size and could be observed in a magnetic me-
further analysis of level crossings using the Lanczos algoterial that is sufficiently doped to produce a statistically sig-
rithm on chains withA <22. The main new critical fieltH,,  nificant number of such chains.
quickly stabilizes to the size-independent valug,,
=1.0625, forA=1.5, which is distinct from the bulk critical
field H,=1.118 and thus clearly suggests the appearance of
a definite domain-wal{DW) phase inH,<H<H,. The main advantage of the bulk and surface spin-flop

The picture just derived for the specific anisotropy transitions studied in this paper is that they are induced by a
=1.5 is more or less sustained for a wide range of anisotrouniform bias field which can be easily applied and tuned to
pies in the regionA=1.25. However, this simple picture any desired value. This situation should be contrasted with
becomes more involved as the anisotropy approaches the isthe case oboundaryfields™ that are generally difficult to
tropic limit A—17. Already atA=1.125 a cascade of level implement, especially in doped materials where open mag-
crossings are induced by the least-energy states of the sectarstic chains are produced within the crystal in a random
=N—-1N-3N-5,... at asequence of critical fields manner. It is thus conceivable that the current theoretical

0.5
A=15

0.0

A=1.5

0.0

V. CONCLUSION
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FIG. 8. Field dependence of the average magnetization per site ] o ]
u=M/A in the ground state of a model with,=0, J,=1, J, FIG. 9. Field dependence of the average magnetization per site
=15, andA =14. The dashed line corresponds to a cyclic chain®#=M/A in the ground state of th&XZ model J;=1=1J;, Js

and the solid line to an open chain with the same number of sites™ -5 With A=14. The dashed line corresponds to a cyclic chain
and the solid line to an open chain with the same number of sites.

work will eventually find an experimental realization analo- Note the transition to a pure F phase above the critical fi¢jd
gous to that obtained in classical Fe/Cr multilayts. =2.5.

Suppose that a quasi-one-dimensional magnetic material
is found”® with exchange constants that are approximatelychain?® and the problem of spin-flop transitions amounts to
given by Eq.(1.3 after suitable normalization. Doping such studying the density of level crossings induced by the linear
a material with nonmagnetic ioswould produce open Zeeman shift. In fact, th&=0 phase diagram on an infinite
magnetic chains of varying size. Since the critical boundarieghain was studied by Johnson and Mc€ognd consists of
of Fig. 2 are practically independent of chain size, it wouldan AF phase foH<H,, a BSF phase foH,<H<H;, and
be possible to tune the applied field to the various regions o& pure F phase fdd >H; . If we setA=cosh®d the critical
the phase diagram and thus probe the predicted magneffield H,, is given by®
phases. Electron-spin resonance at low temperature seems to
be an appropriate experimental tool, in analogy with reso- (="
nance experiments already perforfiednd theoretically Hp=sinh® E —_—
discussedi'’ for classical Fe/Cr multilayers. A corresponding n<== COSMNP
study in the present quantum model would require explicit %

. : o ; . ™ 1
calculation of the relevant dynamic susceptibilities, an issue =sinh® — >, 5
to which we hope to return in the future. n==o COS%(2n+1)7T

The prospects for experimental realization would be sig- 20
nificantly enhanced if the present theoretical work could be
extended to the full range of models defined by inequalitiegvhich differs significantly from Eq(2.7) especially at weak
(1.2). For example, an interesting special case is the aniscanisotropies;tA— 1" or ®—0) where the field(5.1) van-
tropic XY model (J;=0, J,=1, J3=A>1), or YZmodel in  ishes exponentially. Furthermore, a transition to a pure F
current notation, in the presence of an in-plane field applie@tate now takes place above the critical field
along the easy axis. Analytical solution of this model does
not seem possible at nonvanishing field, and theoretical Hi=A+1. (5.2
analysis is further complicated by the lack of &lJsymme-
try. A preliminary numerical calculation of the ground-state Comparison of the results for the total magnetization
total magnetization on a chain with=14 is shown in Fig. computed numerically on an open and a cyclic chain with
8. While a trace of both a surfacéd{) and a bulk Hy) A =14, shown in Fig. 9, again suggests a SSF transition at a
critical field is again present, the spin-flop transition obvi-new critical fieldHs<H,. However, bothH, and Hg are
ously proceeds by multiple level crossings which are difficulthow size dependent and hence the results of Fig. 9 are not
to study in detail by numerical simulations on short chains. Asufficient to establish the existence of a SSF transition. Ex-
notable feature of Fig. 8 is that ferromagnetic order at higttrapolation of the relevant magnon gaps calculated on chains
fields is now more robust. with A=<22 indicates a ratiél, /Hg that remains remarkably

The picture could again simplify in th¥XZ model (J;  close to its Ising value 2 for a wide range of strong anisotro-
=1=J,, J3=A>1) where a Wl) symmetry is restored. pies in the regiom\>2. Nevertheless extrapolation becomes
The effect of a uniform field pointing along the symmetry problematic at weak anisotropies and thus a definite predic-
axis is simply a linear Zeeman shift of the zero-field energytion near the isotropic limit is difficult to obtain numerically.
eigenvalues. The latter may, in principle, be obtained by thdt should be mentioned that a considerable amount of work
Bethe ansat? known to apply to both a cyclic and an open has been devoted to the study of %¥Z model in the pres-

: CRY
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ence of boundary field$;*® but the more direct questions 0.5
raised here in the presence of a uniform bulk field do not
seem to have been addressed. A=15 A=

To conclude, we note that interesting variations of the
main picture may occur for varioul;|<J,<J;. In this
respect, we recall that the classf¢ajround state is indepen-
dent of J; and thus combines features of the entire class o
guantum models in the above range. Therefore, although tr =
earlier classical calculations for single-{drand exchandgé
anisotropy provided extremely valuable motivation for the
present work, their detailed results cannot be readily applie:
to the study of the respective quantum models.
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APPENDIX: THE ODD CHAIN FIG. 10. Field dependence of the average magnetization per site

p#=M/A in the ground state of our standard mod&l3) with A
In a material that is randomly doped with nonmagnetic=1.5 on an open chain with an odd number of sites 15.
ions, approximately half of the produced open magnetic
chains are composed of an odd number of sitd&s=@N  picture that is fairly similar to that of Fig. 1, with the follow-
+1). Itis thus important to also examine the ground state oing notable difference. The gap mode 1 is now missing from
odd chains in the presence of a bias fieldThe two Nel  the spectrum, while mode' 1s duplicated. As a result there
states will be no SSF transition at the critical field. Instead an
odd open chain will proceed directly to a BSF transition
[Na)=|d,u,d.u,...d,u,d), which occurs by a cascade of successive level crossings in
INg) [t d ) (A1) the vicinity of the critical fieldH,, . This picture is similar but
B T not identical to the BSF transition on an even cyclic chain,
are again mapped by E¢L.5 to two completely polarized studied in Sec. lll, where all crossings take place at precisely
“ferromagnetic” states which are exact eigenstates of thehe same critical fieldd,. Putting it differently, the antici-
Hamiltonian (1.6) for any value of the applied field. How- pated hidden symmetry of an even cyclic chain at the critical
ever, degeneracy is now lifted by the bias field because thpoint is broken on an open chain.
states (A1) carry nonvanishing total magnetizatiod = The lack of a SSF transition on an odd chain becomes
¥ 1/2 and the corresponding energy eigenvalues are given Bpparent with an explicit calculation of the total magnetiza-
+H/2. Therefore, wheit is taken to be positivgNg) is the  tion for A=1.5 andA =15 shown in Fig. 10. At low field
unique ground state withl = 1/2. Similarly, wherH is nega-  values the total magnetization is given by=1/2, or u
tive, the unique ground state |,) with M=—1/2. For =1/2A, and coincides with that of the pure 8lestate]Ng).
definiteness, we assume that the bias field is positive, th&he BSF transition near the critical fiell, is also apparent
case ofH being completely analogous. in Fig. 10, whereas the chain is set on a more or less smooth
Our task is then to determine the critical field abovecourse toward ferromagnetic order fde>H, . Therefore, a
which a spin-flop transition may take place. Examination ofclear distinction between even and odd chains is present, in
the one-magnon spectrum around the stilg) leads to a  analogy with the situation in classical Fe/Cr multilay&tS.
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