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Theory of coherent phenomena and fundamentals in
nuclear resonant scattering

Yu. Kagan

Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

We discuss the general theory of coherent phenomena in nuclear resonant interaction of
γ-quanta with crystals. The coherence is realized in collective excitation of the ensemble of
nuclei (nuclear exciton) with the conservation of phase memory and in the transformation
of a γ-quantum into a quasi-particle of Bloch type in a crystal. The collective character
of excitations causes a change in the resonant nuclear parameters and in the lifetime of the
excited state. This manifests itself in a speed-up of the decay in the forward direction in a
thin crystal and, on the contrary, a strong reduction of elastic scattering in a thick crystal.
The reconstruction of the wavefunction of an individual γ-quantum in scattering under Laue
or Bragg conditions leads to the suppression effect of inelastic incoherent channels. This
effect is discussed in detail. The analysis is based on a derived general system of equations
describing the resonant diffraction of γ-quanta in a crystal with an arbitrary relation between
the coherent and incoherent channels. This system is used to deduce the equations describing
the time-dependent nuclear resonant scattering of synchrotron radiation. We discuss the most
instructive experiments with revealing coherent phenomena.

Keywords: coherence, resonant diffraction, suppression effect, nuclear exciton, time-
dependent NRS, synchrotron radiation

1. Introduction

The Mössbauer effect [1–3] emerged as a phenomenon inherent in an individual
nucleus imbedded in a crystal. The ensemble of nuclei manifested itself simply as a
set of independent resonant centers. The discovery of this effect led to the appear-
ance of γ-quantum sources with an extremely sharp linewidth (∼10−9–10−6 eV) and
simultaneously of absorbers with the same sharpness in energy. Such parameters are
characteristic for low-lying nuclear isomer states and they are displayed during the
decay or excitation of a nucleus in a solid without emitting or absorbing phonons
(“recoilless transition”). It is essential that this energy scale is much smaller than any
other energetic parameter in a solid.

From the very beginning the unique small ratio of linewidth Γ to the energy Eγ of
γ-rays attracted attention to the possibility of realizing coherent effects in the ensemble
of Mössbauer nuclei.

At first sight it seems that collective coherent phenomena for γ-quanta with
a quantum energy above 10 keV should play a minor role under these conditions.
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A number of reasons could be responsible. First of all, it is well known that the
resonant interaction of a γ-quantum with a nucleus occurs via the formation of an
excited state. The typical magnitude for the lifetime τ0 of the Mössbauer excited
states is 10−5–10−9 s. This is enormously long compared with the intrinsic nuclear
times. In addition, τ0 is many orders of magnitude larger than the reciprocal Debye
frequency ω−1

D . This means that a nucleus experiences a great number of oscillations
between excitation and decay. In addition, most of the Mössbauer nuclei decay via
the inelastic (internal conversion) channel which dominates over the elastic one. It is
rather natural to assume that the decay of the excited nucleus under these conditions
should not correlate with the excitation process. In other words, loss of phase memory
should take place, at least, to an essential extent. Other crucial questions arise if we
consider the phase relation for different nuclei and its conservation in the process of
scattering γ-quanta. The problem is especially puzzling if one takes into account that
the wavelength of the γ-radiation is less than the interatomic distance and that a direct
interaction between the nuclei is practically absent.

However, in spite of all such circumstances one can find, at least, necessary
conditions for the preservation of the phase memory. First of all, it is necessary that
the environment and nuclear subsystem itself revert exactly to the initial quantum state
after an interaction event. In addition, an excited nucleus during its long lifetime
should not be subjected to a chaotic external perturbation. Under these conditions it
is very important that the absorption of a γ-quantum in a system of identical nuclei is
connected not with the excitation of one or another nucleus but with the excitation of
the system as a whole. In this case the coherence is realized both in the conservation of
the phase memory at an individual nucleus and in the strong correlation of the phases
between different nuclei. The excited state turns out to be delocalized and extended
over the system. As a result, we arrive at the notion of a collective nuclear excited
state or nuclear exciton. In the simple case the wavefunction of such a collective state
can be represented in the form

ψk =
1√
N

∑
ϕneikrn , (1.1)

where k is the wave vector of the incident quantum and ϕn is the wavefunction of
the excited state of the nth nucleus. It was predicted that the character of the elastic
decay and the lifetime of such a nuclear exciton can differ noticeably from the case of
an isolated nucleus [4–6] (see also [7]). Since the resonant scattering by the nuclear
system takes place via the formation of the collective excited state, the position and
elastic width Γγ of the resonance level can change significantly. It is interesting that
Γγ and τ−1 can increase as well as decrease (see [6]). The most instructive examples
are as follows: a noticeable enhancement of the γ-decay probability Γγ of a nuclear
exciton produced inside a thin slab [4,5] and, on the contrary, a reduction of the total
width when a γ-quantum travels through a thick crystal due to the disappearance of
the elastic width Γγ [6].
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The previous remarks imply the purely coherent γ-decay of a collective excited
state. If the ground state of the nuclei has spin I0 6= 0, the γ-decay can be accompanied
by the return of one nucleus from the ensemble to the ground state with another spin
projection with respect to the initial state. This is a typical incoherent scattering because
the site remains tagged in the system after the event. (We have the same when the decay
of the collective excited state occurs in the electronic conversion channel.) Another
violation of coherence is connected with the excitation of the phonon subsystem in
the process of γ-decay. Now the tag of the event is the change of the state of the
environment. These incoherent channels reduce the coherent reconstruction of the
nuclear parameters (see [8]) and the amplitude of coherent scattering. However, as
long as the Mössbauer effect remains, this amplitude keeps a finite value.

The conservation of coherence and its significant role in the general picture
of nuclear resonant scattering have already been revealed indirectly or directly soon
after the discovery by Mössbauer. Black and Moon [9] observed the interference be-
tween nuclear resonant and electronic potential scatterings by an individual atom (see
also [10]). Clearly, it is indirect evidence for the conservation of the long-term phase
memory since the electronic Rayleigh scattering is actually prompt. On the other hand,
Black and Duerdorth [11] have observed Bragg scattering by a crystal where the nu-
clear resonant scattering is dominant. This is unambiguous evidence for the strong
correlation between the phases of individual nuclei in a relatively large bulk. An ad-
ditional proof of the temporal coherence can be extracted from the experiments on
the time-delayed transmission of γ-quanta through a thin foil with Mössbauer resonant
nuclei [12,13].

Later, a remarkable experiment was performed to reveal the consequences of
the violation of coherence [14]. For this purpose, the authors measured the energy
distribution of Bragg-scattered γ-quanta. They proved that, in spite of an absolutely
negligible difference in energy, the γ-quanta, which were related to returning a nu-
cleus to other hyperfine (HF) sublevels of the ground state, did not experience Bragg
scattering at all. This is a clear manifestation of destroying space coherence.

The most intriguing aspects of the coherent phenomena in this field are connected
with the motion of γ-quanta in a thick crystal with strong resonant nuclear interaction.
The problem in this case cannot be reduced to a single act of absorption or emission.
Actually, the continuous transformation of the plane wave of an incident particle into a
superposition of Bloch-type states takes place. Owing to the strong collective coherent
scattering this occurs at a limited depth before absorption starts to play a serious role.

The further evolution of γ-quanta in this superposed state occurs at the back-
ground of the strong inelastic channels of conversion and the incoherent channels of
scattering. The description of the γ-quantum motion in a thick crystal for such con-
ditions, involving the specific features of the interaction with nuclei in the presence
of HF structure, requires the development of a general dynamical theory of resonant
diffraction. Such a general theory was developed in the work of Afanas’ev and Ka-
gan [15–18] (see also reviews [7,19]). An alternative derivation of the dynamical
equations was made in the work of Hannon and Trammell [20,21]. The central place
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in [15–18] was the prediction and detailed analysis of the suppression effect for nuclear
reactions in a crystal. The essence of the effect is associated with the fact that the
amplitude of any process after the appearance of the Bloch state is a sum of ampli-
tudes referring to each component of such a state. It is found that in Bragg and Laue
diffraction such states are realized in which the total amplitude of the formation of an
excited nucleus vanishes. As a result, the internal conversion channel and incoherent
scattering with the formation of an excited nucleus are suppressed. Thus, the strongly
absorbing crystal becomes transparent. It is remarkable that the temperature and the
oscillations of atoms do not break the effect.

The theoretical predictions induced an extensive development of the experimental
research. The suppression effect was discovered by Voitovetskii et al. [22] for Laue
diffraction in a single crystal of metallic tin and by Smirnov et al. [23] in a single
crystal of iron enriched in 57Fe. A detailed study of the effect with a purely nuclear
reflection in a single crystal of 57FeBO3 was performed by van Bürck et al. [24]. The
anomalous resonant nuclear Bragg diffraction [18], predicted within the framework of
the dynamical theory (see also [21]), was observed for the first time in the work of
van Bürck et al. [25]. References to numerous investigations performed before and
after the above work can be found in reviews [26,27]. Note that principal ideas such
as the acceleration of the forward γ-decay of the nuclear exciton and the suppression
of the elastic scattering channel in a thick single crystal have obtained experimental
evidence at this time [28,29].

A new stage of studying coherent phenomena by nuclear resonant scattering
(NRS) in crystals started after realizing the direct excitation of the Mössbauer tran-
sitions by synchrotron radiation (SR). The fruitful idea was to measure the delayed
emission after the pulsed SR irradiation of samples. The delayed emission, associated
with the resonant excitation of nuclei, forms in fact a source of Mössbauer radiation
(see also discussion in [30]). The unique merit of such a source is the possibility to
measure the temporal picture of scattering. An attempt of observing retarded emission
with purely nuclear reflection from a crystal was published by Chechin et al. [31]. The
comprehensive experiment which became the starting point for the development of this
field has been performed by Gerdau et al. [32]. The time-dependent dynamical theory
of the nuclear resonant scattering of SR by crystals was developed in [33]. To a great
extent it uses the results [15,17–19] obtained for the stationary case. The analysis of
the coherent collective phenomena under nonstationary conditions led, in particular,
to the prediction of the anomalous time behaviour for the Bragg diffraction changing
drastically with the deviation from the exact Bragg angle and for the radiation trans-
mitted through the crystal under resonant nuclear scattering. The experiments studying
Bragg [34] and forward [35,36] (also [37]) scattering of the SR radiation have revealed
all the qualitative features of the coherent temporal picture. The specific feature for
the temporal evolution of the delayed emission is the manifestation of the interference
between components related to scattering with the excitation of various HF transitions.
The theory of the quantum beats originating from the interference was considered first
by Trammell and Hannon [39] (see also [40]).
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The quantum beats have been observed experimentally for the first time by Gerdau
et al. [41]. In the wake of displaying the main coherent phenomena of the SR-crystal
interaction a great number of papers, where various aspects of coherence are revealed,
have been published. References to these papers can be found in reviews, e.g., [42,43].

2. Change of resonant nuclear parameters

In order to demonstrate how the collective character of excitations in the nu-
clear system leads to a variation of the resonant nuclear parameters, we consider the
scattering for a one-dimensional rigid regular chain of identical atoms. Without loss
of generality and for simplification we consider the resonant scattering of particles
experiencing s-scattering by an individual nucleus of zero spin in the ground state.
In this case the general expression for the wavefunction of a particle can be written
as

ψ(r) = eikr +
∑
m

Am
exp(ik|r − rm|)
|r− rm|

. (2.1)

The coefficients Am may be determined by using the fact that the logarithmic derivative
of the function χ = |r− rm|ψ(r) is

γ0 =
1 + ikf
f

(2.2)

for |r− rm| → 0 and arbitrary m. Here f is the scattering amplitude of an individual
atom. This results in a set of algebraic equations∑

m

gpmAm = −e−ikrp ,

(2.3)

gpm =
exp(ik|rp − rm|)
|rp − rm|

, m 6= p, gmm = ik − γ0.

Neglecting edge effects in a sufficiently long chain the solution of eq. (2.3) can be
written

Am = Aeikzzm , zm = am. (2.4)

The z axis lies along the chain.
In the case of pure resonant scattering

f = − 1
2k

Γel

E −E0 + (iΓ)/2
,

where Γel and Γ are the elastic and total width, respectively. Then, substituting eq. (2.4)
into eq. (2.3), we find

A = − 1
2k

Γel

E −E0 + (iΓ)/2 +R
, R =

Γel

2k

∑
m6=p

gmpe
ikz (zp−zm). (2.5)
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The series in eq. (2.5) can be summed. As a result, we arrive at the following
expressions for the variation ∆Γ of the elastic width and shift ∆E of the resonant
level:

∆Γ = 2 ImR =
πΓel

ak

(
1−

{
a(k + kz)

2π

}
−
{
a(k − kz)

2π

})
,

(2.6)

∆E =−ReR =
Γel

ak
ln

[
2

∣∣∣∣ sin

(
a(k + kz)

2

)
sin

(
a(k − kz)

2π

)∣∣∣∣].
Here {x} is the fractional part of x defined as the difference between x and the en-
tier of x. It follows from eq. (2.6) that the elastic width can increase as well as
decrease, depending on the magnitude of k and on the direction of the incident beam
with respect to the chain. This interesting circumstance is a direct consequence of
the collective character of the excited state appearing in the scattering at the stage
of the primary absorption of a particle. To verify it, let us consider the proba-
bility of the elastic decay of a collective excitation described by the wavefunction
eq. (1.1):

Wel =
2π
~N

∫
|M |2

∣∣∣∣∑
m

ei(k−k′)rm

∣∣∣∣2δ(E0 −Ek′)
d3k′

(2π)3 . (2.7)

Here M is the matrix element corresponding to the transition of an individual nu-
cleus from the excited state to the ground state with the emission of a primary parti-
cle.

In the case of the one-dimensional chain it is convenient to rewrite the phase
volume d3k

′
as

d3k′ = 2πk′
dk′

dEk′
dEk′dk

′
z .

Then the integration in eq. (2.7) is straightforward. As a result, we find

Wel = W (0)
el F ,

F =
1

2kN

∫
dk′z

sin2 ((kz − k′z)aN/2)
sin2 ((kz − k′z)a/2)

= 1 +
π

ak

(
1−

{
a(k + kz)

2π

}
−
{
a(k − kz)

2π

})
, (2.8)

where W (0)
el is the probability of the elastic decay of an individual nucleus.

Comparing eq. (2.8) with eq. (2.6), we see that the variation of the elastic width
is connected unambiguously with the decay of the collective excitation extended over
the chain.

One can readily check that the inelastic decay of the collective excitation, which
is accompanied inevitably by a change of the ground state of one of the atoms, is
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realized with the same probability as for an individual atom. This also leads to a
variation of the relation between elastic and inelastic scattering cross-sections.

Let us consider a chain of finite size. For a distance large compared with the
size of the chain, the wavefunction eq. (2.1) can be rewritten as

Ψ(r) ≈ eikr +A

(∑
m

ei(kz−k′z)zm

)
eikr

r
.

Here k′z is the component of the wave vector of the scattered particles in the direction
of the chain.

This expression allows us to write down the differential scattering cross-section
per atom. Using eq. (2.5), we have

dσel =
1

4k2

Γ2
el

(E −E′0)2 + Γ′2/4
1
N

∣∣∣∣∑
m

ei(kz−k′z)zm

∣∣∣∣2 dΩk′ ,

(2.9)
E′0 =E0 + ∆E and Γ′ = Γ + ∆Γ.

Taking into account that dΩk′ = 2πk−1dk′z , we can reduce the calculation of the total
cross-section of elastic scattering to the same integral as for deriving eq. (2.7). As a
result, taking into account eq. (2.6) we find

σel =
π

k2

ΓelΓ′el

(E −E′0)2 + Γ′2/4
with Γ′el = Γel + ∆Γ. (2.10)

The cross-section σin, related to the inelastic decay channel, is determined by the
same formula eq. (2.10), replacing Γ′el by the inelastic part Γin of the width. The ratio
of both cross-sections

σel

σin
=

Γ′el

Γin
(2.11)

can be either larger or smaller than the corresponding value of an individual atom.
The collective character of excitations results in the shift ∆E of the resonant

level. From eq. (2.6) it follows that the shift may have a large value and both signs.
It is worthwhile to note that more drastic changes both for the variation of the

resonant nuclear parameters and for the role of the collective character of the excitations
are disclosed in the course of analyzing the scattering in a two-dimensional lattice
(see [6]).

3. Change of resonant nuclear parameters in a thick crystal. Suppression of
elastic scattering

The picture of resonant interaction in a three-dimensional crystal differs essen-
tially from the case considered above. This is connected mainly with the fact that the
amplitude of the primary wave will have different magnitudes at nuclei of different
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crystal planes, decreasing along k. This gives rise to difficulties in determining the
explicit form of the solution, especially if the crystal size l is comparable with the
thickness of the transition layer, that is, if l|f |/v0k < 1, v0 being the volume of the
unit cell.

In the opposite limiting case l|f |/v0k � 1, however, the problem is simplified
because we can ignore the transition layer in the thick crystal and take into account
the incident wave effectively only in the boundary condition. We will consider the
latter case below.

Let us return to the general expression eq. (2.1). We seek the coefficients Am in
the form

Am = Aeiκrm , (3.1)

where κ is a complex vector. Then we obtain after identical transformations

ψ(r) = eikr + 2iA
∑
m

eiκrm sin k|r− rm|
|r− rm|

+A
∑
m

eiκrm exp(−ik|r− rm|)
|r− rm|

. (3.2)

With the relation

sin k|r− rm|
|r− rm|

=
k

4π

∫
exp

[
ik′(r− rm)

]
dΩk′

the second term in eq. (3.2) is then written as

A
ik
2π

∫
eik′r

(∑
m

exp
[
i
(
κ−k′

)
rm
])

dΩk′ . (3.3)

Here we represent the vector k in the form

κ = k + q (3.4)

and consider for simplicity the case when the flux is normally incident on the surface
of the crystal, that is, q‖k. Since the interaction with each crystal plane is assumed to
be weak (|f | � a), we get

|q| � 2π
a
.

In this case the sum in (3.3) can be replaced by an integral in the standard fashion.
As a result, we find, assuming henceforth that there is no Bragg scattering,

∑
m

exp
[
i
(
κ−k′

)
rm
]
≈ (2π)2

v0
δ
(
k′x
)
δ
(
k′y
) i
kz − k′z + qz

. (3.5)

Here the z axis is directed along k.
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The presence of two δ-functions in eq. (3.5) and the involvement of the condition
k′ = k lead to the equalities k′z = kz and k′ = k. Then, substituting eq. (3.5) into (3.3)
and involving the result of eq. (3.2), we readily obtain

ψ(r) = eikr −A 2π
v0kq

eikr +Aeiκr
(∑

m

eiκ(rm−r) exp(−ik|r− rm|)
|r− rm|

)
. (3.6)

The expression in brackets is a periodic function. Owing to the factor exp(iκr) the last
term in eq. (3.6) as a whole decreases continuously as the crystal thickness (Im q > 0)
increases. It is clear that the second term should cancel the first in a sufficiently thick
crystal, that is,

A
2π
v0kq

= 1, (3.7)

and

ψ(r) = Aeiκr
(∑

m

eiκ(rm−r) exp(−ik|r − rm|)
|r− rm|

)
≡ AeiκrΦ(r). (3.8)

The relation (3.7) determines in fact the constant A of the solution eq. (3.1). The
condition (2.2) on each nucleus makes it possible to determine the equation for q by
using eq. (3.8).

Omitting the details of calculation [6], we give the final result for q:

q=− π
v0

1
k2

Γel

E −E′0 + iΓin/2
with E′0 = E0 −

Γel

2k
D, (3.9)

D=
4π
v0

[∑
K 6=0

1
(k + K)2 − k2 −

v0

(2π)3

∫
d3q1

q2
1

]
. (3.10)

Here K is the reciprocal lattice vector. The second term in the brackets cancels the
divergence of the first term.

The imaginary part of q is connected with the total cross-section σt per nucleus
via the relation Im q = 1

2nσt = (1/2v0)σt. Hence,

σt =
π

k2

ΓelΓin

(E −E′0)2 + Γ2
in/4

. (3.11)

Expressions (3.11) and (3.9) show a remarkable result. In a thick crystal the width of
the resonant level is completely independent of the elastic width Γel. This is a typical
coherent phenomenon. From the physical point of view the phenomenon is due to
the fact that the particle in a thick crystal becomes a quasiparticle as a result of the
collective interaction. However, in a regular crystal the momentum (more accurately,
quasimomentum) of a quasiparticle is conserved. This means that the particle is not
subjected to scattering and the elastic decay of the collective excited state takes place
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strictly in the direction of incidence of a particle. In the course of deriving Γel one
assumes implicitly that the decay may occur in any direction.

Analyzing the result of eqs. (3.7)–(3.11), we see again how the coherent collective
effects change the nuclear parameters in thick crystals.

So far, considering the role of the coherent effects, we have ignored the incoherent
channels of scattering. The presence of the latter reduces the scale of the variation
of the nuclear parameters. The most pronounced channels are spin incoherence and
incoherence due to excitation of the phonon system with resonant scattering. A detailed
analysis of the problem is given in [8]. It is found for all cases that the variation of
the resonant width in a thick crystal with involvement of incoherent channels can be
represented as

∆Γ = −Γelξϕ (T ) η. (3.12)

Here ξ is the spin incoherence factor. In the case of an unsplit HF structure

ξ =
(2I + 1)

(2I0 + 1)(2l + 1)
, (3.13)

where I0 and I are the spins of the ground and excited states of a nucleus and l is the
multipolarity of the γ-transition. (For resonant scattering of particles of spin s = 1/2,
the quantity l in eq. (3.13) should be replaced by 1/2.) In the case of a resolved HF
structure the spin factor ξ takes a different value for each transition. So, for 57Fe with
I0 = 1/2 and I = 3/2 , magnetic dipole (±1/2 → ±3/2) transitions have a spin
factor of ξ = 1 since during the decay of the excited state the nucleus can return only
to the initial state. For a transition of the (1/2→ ±1/2) type, the spin factor is ξ < 1
because the excited nucleus may return to any of two levels of the ground state.

The temperature factor ϕ(T ) is due to excitation of phonons. For T � ΘD, ΘD

being the Debye temperature, the temperature factor is close to the probability ampli-
tude of the Mössbauer effect, i.e., to the recoilless transition probability at the excitation
of a nucleus. The isotopic incoherence factor η is equal to the relative concentration
of the resonant isotope.

Provided all these incoherent factors are close to unity, we have ∆Γ ≈ −Γel,
corresponding exactly to the above-mentioned effect of suppressing the elastic part of
scattering in a thick perfect crystal.

The effect of suppression of the elastic scattering channel has been observed
experimentally for the first time by Smirnov and Shvyd’ko [29]. The authors observed
the scattered emission in the direction normal to the beam of resonant quanta travelling
across a nearly ideal single crystal 57FeBO3. The well-resolved HF structure gives an
opportunity to measure the intensity of scattering with the energy of the incident
radiation corresponding to the (±1/2→ ±3/2) and (±1/2→ ∓1/2) transitions. The
authors have found that the scattering is significantly smaller in the first case compared
with the second transitions whereas the inverse is true in absorption. The drastic
reduction of resonant scattering into off Bragg directions in the first case, where the
spin-incoherent scattering is forbidden, is striking evidence for the suppression of the
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elastic scattering channel when the proper scattering is associated with the incoherent
processes alone.

4. Speed-up of nuclear de-excitation in a thin crystal

A specific feature of the resonant interaction with nuclei having anomalously
long-lived isomeric states is the possibility to measure the time behaviour of the decay
of the excited states. Due to this there is also a unique possibility for separation from
the primary beam and measuring forward scattering.

Unlike the preceding section, let us consider a thin crystal of thickness l satisfying
the condition

1
v0
σtl < 1. (4.1)

Here σt is the total scattering cross-section for a single nucleus. In this case the
absorption of a single γ-quantum gives rise to a collective state with practically the
same excitation amplitudes of all atoms. Thus, a bulk nuclear exciton appears with
a wavefunction of the same structure as eq. (1.1). Note that we do not have such
a situation in a thick crystal since the wavefunction falls off far from the entrance
surface.

Consider the decay of such an exciton, taking again for simplicity a rigid crystal
lattice and zero ground state spin. Then we can employ the general expression (2.7)
for determining the reemission probability of γ-quanta. For an arbitrary direction of k
with respect to the lattice, except those permitting Bragg scattering, the lattice sum
in eq. (2.7) allows only forward decay. If eq. (4.1) is supplemented by the condition
2π~c/l � Γ, which is usually weaker than eq. (4.1), the smearing of the integrand
eq. (2.7) in the momentum space proves to be larger than the real smearing of the
δ-function over energy. Taking this into account, we find [5]

Wel ≈W (0)
el

πl

k2v0
, l� a. (4.2)

Thus, we have an enhancement for the rate of the exciton γ-decay accompanied by
a sharp peak of the radiation pattern in the direction of the incident vector k. The
large enhancement, limited by eq. (4.1), is possible only for Γin � Γel. Note that the
requirement for the quality of a crystal is more moderate for the forward decay.

Provided the direction of the vector k satisfies the Bragg condition |k + K| ≈ k,
there arises an additional decay channel in the direction of the Bragg angle. In this
case the decay probability has the same magnitude (4.2) with the conservation of
condition (4.1) [4,5].

It should be emphasized that the decay speed-up effect is associated with the
excitation of the crystal as a whole. In a thick crystal, provided the condition opposite
to eq. (4.1) is fulfilled, such a situation does not exist. In reality, multiple rescattering
takes place inside a crystal. It is interesting, as we have seen in the preceding sec-
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tion, that the elastic width of a single nucleus reduces or even vanishes under these
conditions.

The speed-up of the forward decay after fast chopping of the γ-quantum beam has
been observed in the remarkable work of Shvyd’ko et al. [28]. The original shutter,
designed by this group and based on the re-alignment of the spin system with the
aid of a magnetic field in a 57FeBO3 crystal, allowed them to interrupt the primary
beam from a stationary Mössbauer source within 10 ns. (The lifetime of the excited
state of a 57Fe nucleus is τ0 = 140 ns.) After chopping the forward emission from a
crystal occurs effectively during a time significantly shorter than τ0. The observation
gives evidence for the collective character of exciting the nuclear system with the
conservation of coherent coupling between phases at individual nuclei. In parallel this
phenomenon was discovered and studied in experiments with SR [36]. The predicted
speed-up of the collective decay in the Bragg channel was observed in [55]. We will
return to the problem treated in this section when analyzing the interaction of the SR
with crystals.

5. Dynamical equations of the resonant diffraction

In this section we will derive the general dynamical equations describing the
propagation of γ-quanta inside a thick crystal under the condition of resonant diffraction
for an arbitrary scale of the conversion and incoherent channels.

Diffraction scattering is a purely elastic coherent process in which the quantum
mechanical state of a crystal remains the same. This allows us to use the classical
Maxwell equations for describing the electromagnetic field inside the crystal. The role
of inelastic and incoherent channels finds its reflection in the determination of the
current induced by the electromagnetic radiation in the crystal.

The Maxwell equation for the Fourier component E(k,ω) of the electromagnetic
field can be written as(

k2 − ω2

c2

)
E(k,ω)− k

(
kE(k,ω)

)
=

4π
c2 iωj(k,ω). (5.1)

The large times of the nucleus–radiation interaction correspond to purely elastic scat-
tering. Under these conditions the current j(k,ω) on the right-hand side of eq. (5.1)
represents the quantum mechanical average for the Fourier component of the nuclear
current density operator ĵ(k,ω) over the state of a crystal in the presence of the field
E(k,ω). First, we ignore the interaction with electrons. In the crystal

ĵ(k,ω) =
∑
n

e−ikrn ĵn(k,ω), (5.2)

where ĵ is the current density operator for a nucleus at site n, and rn is the coordinate
of its center of gravity.

To simplify, we assume Γin � Γel and neglect the variation of the resonant
parameters. As a gauge condition, let us set the scalar potential equal to zero. Then,
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within the framework of standard perturbation theory we have for the average value
of the current density in linear approximation for the field

ji(k,ω) =

∫
d3k′

(2π)3σ
il
ω

(
k, k′

)
El
(
k′,ω

)
, (5.3)

σilω =
i
ω

∑
n

∑
s

(ĵi∗n (k)e−ikrn)s0s(ĵ
l
n(k′)eik′rn)ss0

~ω −En(s0,s) + iΓ/2
. (5.4)

Here s0 and s characterize the states of the phonon spectrum and the nuclear quantum
numbers ζ0 and ζ are related to the initial and excited states, respectively. Thus,

En(s0, s) = En(ζ0,ζ) +
∑
β

~ωβ
(
nsβ − n

s0
β

)
, (5.5)

where En(ζ0,ζ) is the energy of the corresponding nuclear transition. The upper bar
in eq. (5.4) means averaging over the initial state.

Retaining index n for the numbers of the elementary cell, introducing index p
for the position of a nucleus in the elementary cell, and denoting the vibrational
displacement of a nucleus as up, we represent rn in the following form:

rn = Rn + ρp + up.

The current density operator and the energy of the transition have the index p in this
notation. Then, the summation over n is reduced to a lattice sum∑

n

ei(k′−k)Rn = η
(2π)3

v0

∑
k

δ
(
k′−k−K

)
, (5.6)

η being the relative concentration of the resonant isotope. The sum over the phonon
states in eq. (5.4) is given by∑

{ns}

(e−ikup){ns}{ns0 }(eik′up){ns0 }{ns}

~ω −Ep(ζ0,ζ)−
∑

β(nsβ − n
s0
β )~ωβ + iΓ/2

. (5.7)

The specific feature of the Mössbauer transition is the smallness of the width Γ of
excited states compared with the typical energies Θph of the phonon spectrum. The
condition Γ � Θph means that the term with {ns} = {ns0} is predominant in the
sum (5.7). The diagonal element (e−ikup){ns0}{ns0} is simply the probability amplitude
of the Mössbauer effect of the nucleus at site p:

fp(k) = exp

{
−1

2
Zp(k)

}
, Zp =

~
2M

∑
β

[kep(β)]2

ωβ

(
2n̄β + 1

)
. (5.8)

Here ep(β) is the polarization vector of the βth phonon mode. Eventually, we arrive at
an interesting result. In the case of narrow excited isomer states the amplitude σ

il

ω or
the elastic resonant scattering amplitude contains a product fp(k)fp(k′). The physical
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meaning lies in the following. Due to its long lifetime the nucleus is subjected to
an impact at absorption and to another absolutely independent one at reemission. For
the inverse relation Γ � Θph, we arrive at the single factor fp(k− k′), omitting the
phonon contribution in the denominator of eq. (5.7) and performing direct summation.
In this case the nucleus experiences only one impact determined by the difference
k− k′. This is the standard Debye–Waller factor typical for the resonant scattering of
neutrons and the usual potential scattering of X-rays.

Taking into account the results obtained, we find

σilω
(
k, k′

)
= (2π)3

∑
K

δ
(
k′ − k−K

)
σilω(k, k + K), (5.9)

σilω(k, k + K) =
iη
ωv0

1
2I0 + 1

∑
p,ζ0,ζ

eiKρp
(ĵi∗p (k))ζ0ζ(ĵ

l
p(k + K))ζζ0

~ω −Ep(ζ0,ζ) + iΓ/2

× fp(k)fp(k + K). (5.10)

In this expression the factor (2I0 +1)−1 originates from averaging over the initial states
of a nucleus.

Let us substitute eqs. (5.9) and (5.10) into the general relation for the current
density eq. (5.3). Inserting the expression derived on the right-hand side of eq. (5.1),
we obtain the complete set of equations for the electric field components. Then we
introduce the notation

kh = k0 + Kh, κ =
ω

c
(5.11)

and represent a set of equations in the compact form(
k2
h − κ2)Ei(kh)− kih

(
khE(kh)

)
= κ2

∑
h′

gilhh′E
l(kh′), (5.12)

gilhh′ = − 4πη
ω2v0

1
2I0 + 1

∑
p,ζ0,ζ

Ai∗h (p, ζ0, ζ)Alh′(p, ζ0, ζ)
~ω −Ep(ζ0, ζ) + iΓ/2

. (5.13)

In expression (5.13)

Ah(p, ζ0, ζ) = fp(kh)eikhρp
(̂
jp(kh)

)
ξ0ξ
. (5.14)

For simplicity the index ω is omitted after this.
Let us restrict ourselves to considering only E1 and M1 transitions. In these

cases the current density operator reduces to

ĵ(k) = iωd̂ (E1); ĵ(k) = ic
[
kµ̂
]

(M1). (5.15)

Here d̂ and µ̂ are the operators of the electric and magnetic dipole moments, respec-
tively. Introducing m0 and m for the spin projections of a nucleus in the ground
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and excited states onto the quantization axis n0, we find for the matrix element of
operator d̂:

(
d̂
)
m0m

= −i

(
3(2I + 1)Γel

4κ3

)1/2

(−1)q
(
I0 1 I
m0 q m

)
nq. (5.16)

The same formula is valid for the operator µ̂. In eq. (5.16) the matrix(
I0 1 I
m0 q m

)
is the standard 3j-symbol, q = m0−m, and n±1 = ∓(nx± iny), where nx and ny are
two vectors orthogonal to each other and to n0.

Equations (5.12)–(5.14) represent a full set in the dynamical theory of resonant
nuclear diffraction, describing the coherent coupling of the diffracted field components
E(kh) with the field E(k0) of the incident wave. The solution of this set governs the
field inside the crystal. We emphasize that the superposed field describes the state of
a single photon.

The coefficients (5.13) are in fact the amplitudes of the coherent elastic scattering
by a crystal. It is essential that these amplitudes always remain finite regardless of the
scale of the incoherent inelastic processes. However, the coherent coupling between
the field components becomes weaker. Usually Γin � Γel and the availability of the
conversion decay channel diminishes the coherent amplitude in the resonance by a
factor of Γel/Γin. The incoherence due to exciting the phonon system is associated
with the appearance of factors fp(kh) < 1 decreasing with temperature. The spin
incoherence is reflected in the factor (2I0 + 1).

Despite the resonant interaction the dimensionless coefficients gilhh′ prove to be
much smaller than unity. For a typical case, |gilhh′ | 6 10−3, i.e., the amplitudes only
for which

1
κ2

(
k2
h − κ2) 6 |g0h| (5.17)

will be noticeably different from zero.
In essence, this reduces the infinite set of equations (5.12) to a finite set for

the fields satisfying condition eq. (5.17). In principle, the other field components
can be determined in the framework of perturbation theory, resulting in a certain
renormalization of the coefficients gilhh′ . However, these corrections turn out to be
small and can be neglected henceforth.

The smallness of the coefficients gilhh′ also entails that the longitudinal field orig-
inating from scattering in a medium proves to be small. From eq. (5.12) we conclude
easily that the longitudinal component is |kEh| ∼ |g00||kh × Eh|. This allows us to
omit the second term on the left-hand side of eq. (5.1) and consider the field in a
crystal as completely transverse.
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For the experimental realization, the case when the Bragg condition (5.6) is
fulfilled only for a single wave of h = 1 is of highest interest. Thus, eq. (5.12)
simplifies strongly and is reduced, involving the above, to(

k2
0

κ2 − 1

)
Ei0 = gil00E

l
0 + gil01E

l
1,

(5.18)(
k2

1

κ2 − 1

)
Ei1 = gil10E

l
0 + gil11E

l
1.

Taking into account the transverse character of the field, we can choose two polarization
vectors orthogonal to kh and to each other for each wave:

Eh = E(1)
h e(1)

h +E(2)
h e(2)

h . (5.19)

So, using this relation, we rewrite eqs. (5.18) in a form convenient for further analy-
sis: (

k2
0

κ2 − 1

)
E(s)

0 =
∑
s′=1,2

gss
′

00 E
s′
0 +

∑
s′=1,2

gss
′

01 E
(s′)
1 ,

(5.20)(
k2

1

κ2 − 1

)
E(s)

1 =
∑
s′=1,2

gss
′

10 E
s′
0 +

∑
s′=1,2

gss
′

11 E
(s′)
1 ,

where

gss
′

hh′ =
∑
i,l

(
e(s)
h

)∗
i
gilhh′

(
e(s′)
h′
)
l
. (5.21)

As a result, we arrive at a set of four equations for the scalar amplitudes
E(s)
h .

6. Solution of the diffraction problem. The suppression effect of inelastic
channels

Let a γ-quantum flux with wave vector κ be incident on a lamina-shaped crystal.
Refracted slightly due to |gss′00 | � 1 at the boundary, the flux propagates along the
crystal with a wave vector

k0 = κ+ δκn, (6.1)

where n is normal to the crystal surface

k0 = κ(1 + ε0), |ε0| � 1. (6.2)

Then

δ ≈ ε0/γ0, γ0 = cos Θ0; Θ0 = κ̂n. (6.3)
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The factors from the left-hand side of eq. (5.18) are (see eq. (5.11))

k2
0

κ2 − 1 = 2ε0,
k2

1

κ2 − 1 = 2ε0
γ1

γ0
+ α,

(6.4)
α =

K1(K1 + 2κ)
κ2 , γ1 = cos Θ1, Θ1 = k̂1n.

The quantity α, characterizing the deviation from the exact Bragg condition, is con-
nected with the deviation ∆Θ from the Bragg angle ΘB via the relation

α = 2 sin (2ΘB) ∆Θ. (6.5)

In order to make the consideration more transparent, we first treat a relatively frequent
situation when the tensor gss

′
hh′ in (5.21) can be reduced by choosing polarization vectors

to the following form:

gss
′

hh′ = g(s)
hh′δ

ss′ . (6.6)

In this case the set of equations (5.20) splits into two independent pairs of equations
for s = 1 and 2

2ε0E
(s)
0 = g(s)

00E
(s)
0 + g(s)

01E
(s)
1 ,

(2ε0/β + α)E(s)
1 = g(s)

10E
(s)
0 + g(s)

11E
(s)
1 , (6.7)

β = γ0/γ1.

The condition for the existence of a nontrivial solution for this set results in a quadratic
equation for ε0, the roots being

ε(m)
0s =

1
4

(
g(s)

00 + βg(s)
11 − βα

)
± 1

4

[(
g(s)

00 + βg(s)
11 − βα

)2
+ 4β

(
g(s)

00 α− ∆(s))]1/2
,

m = 1, 2, (6.8)

∆(s) = g(s)
00 g

(s)
11 − g

(s)
01 g

(s)
10 . (6.9)

The fields related to root m are denoted by E(s)
h (m).

Treating diffraction in Laue geometry, we have for the boundary conditions

E(s)
0 (1) +E(s)

0 (2) = E (s)
0 , E(s)

1 (1) +E(s)
1 (2) = 0. (6.10)

Here E (s)
0 is the amplitude of the electric field incident on the crystal.

Defining the relation between the field components in eq. (6.7), we find for the
wave field in the crystal, involving boundary conditions eq. (6.10) and eqs. (5.19),
(6.2), and (6.3)

E(s)(r) = E (s)
0 eiκr 1

2(ε(2)
0s − ε

(1)
0s )

{
eiκε(1)

0sx/γ0
[
e(s)

0

(
2ε(2)

0s − g
(s)
00

)
− e(s)

1 βg(s)
10 eiKr]

− eiκε(2)
0sx/γ0

[
e(s)

0

(
2ε(1)

0s − g
(s)
00

)
− e(s)

1 βg(s)
10 eiKr]} (6.11)

with x= nr.
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When the deviation from the Bragg angle is large, i.e., |α| � g(s)
hh′ , it follows

from eq. (6.9) that

ε(1)
0s ≈

1
2
g(s)

00 , ε(2)
0s ≈ −

1
2
βα.

In this case the amplitude of the reflected wave is about g(s)
10 /α and its role is insignif-

icant, and the expression for the electric field can be simplified to

E(s)(r) = e(s)
0 E

(s)
0 exp

(
iκr +

iκg(s)
00

2γ0
x

)
. (6.12)

Obviously, the decay of the field is associated with the imaginary part of g(s)
00 . On

the other hand, the reduction of the intensity is connected with the total scattering
cross-section σt via the standard exponential factor exp(−nσtx/γ0), where n is the
density of the scatterers. At last, according to the optical theorem, the imaginary part
of the scattering amplitude fsc for zero angle is related to σt via the relation

Im fsc(0) =
κ

4π
σt.

As a result, all three characteristics are coupled together by

Im g(s)
00 =

1
κ
nσ(0)

t f
2(k0) =

4πn
κ2 Im fsc(0). (6.13)

Here σ(0)
t is the total scattering cross-section for a fixed nucleus. Since fsc(0) and g00

are associated with purely elastic scattering, the probability of a recoilless transition
f 2(k0) appears in σt. For simplification, this probability is assumed to be the same
for ν resonant nuclei in the elementary cell. Treating the isolated resonant transition
of energy E0 and arbitrary degeneration, we conclude easily from eqs. (5.13), (5.14)
and (5.21) that the imaginary part of g(s)

00 is connected with the resonant denominator
alone. Then, using the known expression for the total cross-section

σ(0)
t =

π

k2

Γ′elΓ
(~ω −E0)2 + Γ2/4

, Γ′el = Γelζ , (6.14)

we find for g(s)
00 in the general case (n = ην/v0)

g(s)
00 = −2πην

v0κ3

Γ′el

~ω −E0 + iΓ/2
f 2(k0). (6.15)

Here ζ is the spin incoherence factor.
For each polarization, the field inside the crystal (eq. (6.11)) represents a super-

position of a pair of waves coupled coherently. However, the evolution of the waves
takes place in different ways. So, if

∆(s) = 0 (6.16)
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we have for the exact Bragg condition α = 0,

ε(1)
0s = 0, ε(2)

0s =
1
2

(
g(s)

00 + βg(s)
11

)
. (6.17)

Since the quantity Im ε(m)
0s governs the absorption coefficient of a crystal, it follows

from eq. (6.17) that one coherent pair is strongly absorbed in a resonant medium (for
β = 1, twice as large compared with a single wave) while the other pair propagates
in the crystal without absorption.

Condition (6.16) is relatively easy to realize. If a well-resolved HF structure exists
and the energy of the incident quanta is close to the energy of a single nondegenerate
transition Ep′(ζ ′0, ζ ′), this corresponds to the possibility of retaining only one term in
the sum of eq. (5.13). Let us choose the polarization vector e(2)

h in a direction normal
to the vectors Ah(p′, ζ ′0, ζ) in (5.14):

e(2)
h ·Ah

(
p′, ζ ′0, ζ

)
= 0.

It follows from eqs. (5.21) and (5.13) that γ-quanta polarized in this way do not
interact at all with the nuclei within the approximation considered. However, γ-quanta
of the e(1)

h = (kh × e(2)
h )/kh polarization interact strongly with the nuclear system. The

tensors gss
′

hh′ from eq. (5.21) differ from zero only for s = s′ = 1 and, correspondingly,
satisfy relation (6.6). Hence, all results of eqs. (6.7)–(6.11) are valid in this case. If
one comes back to eqs. (5.13) and (5.14), it is easy to see that relation (6.16) is fulfilled
identically.

Let us turn now to the opposite case, when HF splitting is absent. In this case
the summation over ζ0 and ζ in eq. (5.13) reduces to the determination of∑

ζ0

(
ĵip(kh)ĵlp(kh′)

)
ζ0ζ0

. (6.18)

Let us consider the case of an E1 transition. Since the current density operator
eq. (5.15) is independent of k, this sum is proportional to δil with the coefficient
determined straightforwardly by eq. (5.16). As a result, we find

gilhh′ = ghh′δ
il, (6.19)

ghh′ = − 2πη
κ3v0

2I + 1
2I0 + 1

Γel

~ω −E0 + iΓ/2

∑
p

eiKρpfp(kh)fp(kh′).

Let us introduce the polarization vectors e(σ)
h normal to the scattering plane and the vec-

tors e(π)
h = (kh × e(σ))/kh lying in the scattering plane. Taking into account eq. (6.18)

we find that in this case relation (6.6) is valid. For a single resonant nucleus in the
elementary cell or for the condition eiKρp = 1 and fp(kh) independent of h, we have
∆(σ) = 0 for the σ-polarization.
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In the case of an M1 transition, involving expression (5.15) for the current density
operator and calculating eq. (6.18), we find for tensor (5.13)

gilhh′ =
1
κ2

(
kih′k

l
h − δil(kh · kh′)

)
ghh′ , (6.20)

where ghh′ has the same magnitude as in eq. (6.19). It is easy in this case to trace
that condition (6.6) is satisfied and the σ- and π-polarizations prove to be independent.
Again, equality (6.16) is valid but now for the π-polarization.

Thus we see that, for a number of important cases, the set of four equations (5.20)
decouples into the two pairs of equations for different polarizations and that condi-
tion (6.16) is satisfied, at least, for one polarization at the same time.

Let us return to the general problem involving eqs. (6.16) and (6.17). We obtained
a unique result. In fact, for the resonant nuclear Bragg scattering of γ-quanta in the
crystal there appears a pair of superposed states which is not subjected to absorption
in spite of the presence of strong inelastic and incoherent channels. At the input the
incident plane wave is converted into a combination of two pairs of waves. One of
them is strongly absorbed in the crystal and, on the contrary, the other makes the
thick crystal transparent. This effect, called suppression of the inelastic channel, is
apparently the most striking phenomenon in the general problem of coherence with
nuclear resonant scattering (NRS).

For large thicknesses, at which there remains practically only one pair of super-
posed states in eq. (6.11), the electric field, taking into account the quantities E (m)

0s
from eq. (6.8) with α = 0, has the following form:

E(s)(r) = E (s)
0 eiκr β

g(s)
00 + βg(s)

11

[
e(s)

0 g(s)
11 − e(s)

1 g10eiKr]. (6.21)

In all cases considered above one has g(s)
hh′ ∼ f (kh)f (kh′). In an anisotropic crys-

tal one has g(s)
11 6= g(s)

10 for the general case. This means that, for the nuclear sites
where eiKr = 1, neither the electric field nor the magnetic field of the wave with
(kh×e(s)

h )/kh polarization vectors vanishes. For many cases, the vectors e(s)
0 and e(s)

1
are not collinear at all. If, e.g., for the E1 transition and internal magnetic field normal
to the scattering plane the quantity q = M −M0 = ±1 corresponds to the nondegen-
erated transition line, the electric field at the nucleus is circularly polarized (see details
in [19]).

Actually, the nature of the suppression effect is associated with the vanishing of
the total amplitude of formation of an excited nucleus in the pair superposed state. One
can see this straightforwardly by analyzing the case of the nondegenerate transition
line. The amplitude of formation of the excited nucleus is proportional to the product
of the field intensity at the nuclear site and the matrix element for the transition from
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the ground to the excited state. In correspondence with eqs. (6.20), (5.13) and (5.14)
we have the amplitude of formation of the excited state in the incident wave

F0 = C
g(s)

11

g(s)
00 + βg(s)

11

(
e(s)

0 ·A0
)
.

The corresponding amplitude in the diffracted wave is (eiKrn = 1)

F1 = −C g10

g(s)
00 + βg(s)

11

(
e(s)

1 · A1
)
.

According to eqs. (5.21) and (5.13), g(s)
hh′ ∼ (e(s)

h Ah)(e(s)
h′ Ah′). Hence, we have

F = F0 + F1 = 0. (6.22)

The same result is obtained straightforwardly from the consideration of the unsplit HF
structure for E1 and M1 transitions, and σ- and π-polarizations, respectively.

A nontrivial specific feature of the suppression effect is the fact that temperature
and vibration of the nuclei do not break it. This result has an interesting physical origin.
As noted, the width Γ of the resonant levels is extremely small compared with the
typical frequencies of the phonon spectrum. When absorbing γ-quanta by a nucleus in
the crystal, there occurs no simultaneous emission or absorption of phonons without
effective destruction of the resonant interaction. The absorption process, completely
elastic in phonons, corresponds to a very long time of ~/Γ for the interaction of a
γ-quantum with the nucleus. Eventually, a γ-quantum effectively “sees” the nuclei
at their mean positions, in other words, it “feels” a regular lattice. This results in
total suppression eq. (6.22) at an arbitrary temperature. On the contrary, provided
Γ� Θph as for the resonant scattering of neutrons, the interaction time with a nucleus
proves to be shorter than the typical oscillation period of nuclei. In this case a neutron
“sees” the instantaneous picture of the nuclear arrangement and, therefore, a disturbed
periodical symmetry. This results in breaking condition (6.22) and in conserving, at
least partially, the inelastic reaction channel. From a formal point of view this results
in the replacement of f (kh)f (kh′) by f (kh − kh′), and, inevitably in ∆(s) 6= 0, i.e., in
breaking down condition (6.16).

Note that the spin incoherence does not violate the suppression effect either be-
cause the condition F = 0 (6.22) locks the γ-decay channel necessary for displaying
spin incoherence, i.e., the return of a nucleus into the ground state with another spin
projection. Also it is of no significance how the resonant isotope with η 6= 1 is dis-
tributed over the lattice sites provided the exact periodicity of the lattice is conserved.
Hence, the isotopic incoherence does not break the suppression effect either.

The presence of the inelastic and incoherent channels affects the collima-
tion conditions. Let us analyze a small deviation from the exact Bragg condition
α � |g01|, |g10|. The reduction of the intensity of the superposed state, for which
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the suppression effect takes place, is determined by the imaginary part Im ε(1)
0s (see

eq. (6.11)). Using eq. (6.8), we find

κl

γ0
Im ε(1)

0s = −κl
γ0

β3

2
Im

(
g(s)

00 g
(s)
11

(g(s)
00 + βg(s)

11 )3

)
α2 ≡ − α2

2α2
0

. (6.23)

It is easy to show that, for all cases, the larger the inelastic conversion width, i.e., the
ratio Γ/Γel and the spin I0 of the ground state, the smaller the quantity α0. Also, the
smaller the probability of the Mössbauer effect (f (kh)) and the smaller the concentra-
tion of the resonant isotope, the smaller the quantity α0.

Provided a divergent beam is incident on the crystal, we have for the integral
transmitted intensity, using eqs. (6.11), (6.23) and (6.5),

IT =
1

2 sin 2ΘB

∫
IT (α) dα = I (s)

0

√
π

2 sin 2ΘB

∣∣∣∣ βg(s)
11

g(s)
00 + βg(s)

11

∣∣∣∣2α0. (6.24)

We see that the transmission intensity in the presence of the suppression effect falls
off as 1/l1/2 with the thickness l of a crystal instead of the usual exponential decay.

In the general case, if eq. (6.6) is not valid, we should return to the general
system eq. (5.20) involving eq. (6.4). The uniform system of four linear equations has
a nontrivial solution, provided the corresponding determinant of fourth order vanishes.
The equation obtained has four roots ε(m)

0 . A coherent superposition of four waves
corresponds to every root. The incident plane wave is converted at the boundary into
a coherent ensemble of four such quartets related to the various roots ε(m)

0 . The field
inside the crystal is determined by the general expression (cf. eq. (6.11))

E(r) = eiκr
4∑

m=1

exp
(
iκε(m)

0 x/γ0
){ ∑

s=1,2

[
e(s)

0 E(s)
0 (m) + eiKre(s)

1 E(s)
1 (m)

]}
. (6.25)

The boundary conditions are imposed by the same eqs. (6.10) in which the left-hand
sides should have a sum of four fields corresponding to different m for each polariza-
tion s.

The suppression effect can occur when the condition

Im ε(m)
0 = 0 (6.26)

is realized at least for one of the roots. The corresponding coherent quartet will
propagate in the crystal without absorption. As before, the suppression effect supposes
vanishing total amplitude for the formation of excited nuclei by the waves involved in
the superposed quartet:

F =
∑

s,h=1,2

F (s)
h (m) = 0, F (s)

h (m) = E(s)
h (m)

(
e(s)
h ·Ah(ζ0, ζ , p)

)
. (6.27)

Such an equality should be fulfilled for all transitions and all nuclei in the elemen-
tary cell with energies close to the energy of the incident radiation. Let us consider
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eq. (6.27) as an equation for the four field components of a quartet m. Then it is clear
that, if the number of transition lines does not exceed three, eqs. (6.27) can always be
satisfied and a configuration for the fields of the quartet can be found which produces
the suppression effect.

It is worthwhile to note that the fields E(s)
h derived from the solution of eqs. (6.27)

are the solution of the initial system (5.20) for α = 0 and ε0 = 0. Really, provided
the condition (6.27) is fulfilled, we can check that the right-hand side of eqs. (5.20)
vanishes, taking into account eq. (5.21) and the multiplicative structure of the terms
forming tensor (5.13).

The quartet structure of the independent superposed states introduces a large
variety of HF structures and atomic configurations for which the suppression effect
takes place. A detailed analysis of a number of concrete cases is given in [19,44].
Note that in some cases the suppression effect occurs for both polarizations, i.e., for
the total incident radiation. In particular, the latter takes place if two transition lines
are within the range of the resonant interaction.

It is interesting to note that a phenomenon that resembles the suppression effect,
the so-called Borrmann effect [45], is known from X-ray physics. The Borrmann effect
is displayed by decreasing the photoelectric absorption for Laue diffraction. However,
both phenomema differ intrinsically from each other. The Borrmann effect requires the
electric field to vanish at the lattice sites. As has been shown, for the suppression effect
it is necessary that the amplitude for the formation of the excited nucleus vanishes,
neither the electric nor the magnetic field of γ-quanta at the nucleus need to be equal
to zero. For the Borrmann effect, there is always only a limited decrease of absorption
even in the case of a rigid lattice. The temperature and vibrations of atoms restore the
X-ray absorption. Naturally, the decay of intensity with transmission through a thick
crystal remains exponential. In these aspects the suppression effect, demonstrating
the total suppression of γ-quantum absorption, differs drastically from the Borrmann
effect.

So far, we have considered dynamical diffraction for purely nuclear scattering. In
fact, γ-quanta experience electronic scattering at the same time. Though this scattering
is weak compared to the resonant nuclear scattering, its role in diffraction may be
significant for a number of cases.

The coherent character of elastic electronic scattering, which is displayed, in
particular, in the interference of nuclear and electronic scattering, allows us to incor-
porate the interaction with electrons by introducing additional terms to the coefficients
in (5.13) of the dynamical system of equations (5.18)

χilhh′ = −δil 4πr0

κ2v0

∑
p

χp(kh − kh′)fp(kh − kh′)ei(kh−kh′ )ρp . (6.28)

Here χp(k) is the atomic structure factor involving a small imaginary part determined
by the photoelectric absorption process (see, e.g., [46]). In the absence of nuclear
scattering, the system of equations (5.18) with the coefficients in (6.28) has a super-
position of either only σ- or π-polarized waves as solutions. Provided the conditions
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are chosen so that eq. (6.6) is valid and the decoupled pairs of equations are deter-
mined for the σ- and π-polarizations, the electronic scattering does not recover the
nuclear absorption. This does take place for the E1 and M1 transitions in the general
case. Moreover, provided eiKρ = 1 and for the same values of factors fp(k) for all
resonant nuclei in the elementary cell, the suppression effect occurs in this case for
one of the polarizations for any character of the HF splitting (see details in [44]). If
one neglects the imaginary correction to χp(K) and makes the same assumptions, the
suppression effect is conserved completely for some finite magnitude of α, i.e., for
some deviation from the exact Bragg angle (see details in [7]). The absorption will
appear only at a significant thickness, the magnitude of which is determined by the
electronic absorption length.

7. Suppression effect of inelastic channels. Experimental results

The experimental study of coherent phenomena in the resonant interaction of
γ-quanta with the Mössbauer nucleus ensemble was concentrated for a relatively long
period on the discovery and investigation of the suppression effect. Here, a significant
problem is to grow high quality single crystals enriched in the resonant isotope. A large
amount of work has been performed and some of it will be described here, because of
its key role in the development of this field.

The suppression effect has been established for the first time in the work of
Voitovetskii et al. [22], while studying resonant Laue diffraction of γ-quanta in a thick
metal tin single crystal enriched in 119Sn to 88% ((µnuclt)res ≈ 640). The authors have
measured the intensity of the diffracted beam as a function of the incident γ-quantum
energy and compared it to the intensity of the transmitted radiation if the crystal is off
the Bragg position. A giant difference in the intensities was observed. The diffracted
Laue beam has incomparably smaller absorption near resonance where the absorption
is at a maximum in normal conditions. These results were a striking demonstration of
the suppression effect, and agreed well with the theoretical calculations.

In order to disclose the suppression effect, an original idea has been realized in
the work of Smirnov et al. [23]. The radiation incident onto the crystal has a resonant
energy distribution determined by the Mössbauer source. Under the usual conditions
with the penetration into the depth of a crystal, the closer to the resonance center the
stronger the absorption that takes place. As a result, in the thick crystal the transmitted
radiation loses its resonance structure, flattening within a noticeable energy range. The
idea consists of measuring the energy distribution of the diffracted Laue beam as it
leaves the crystal and comparing it with the energy distribution in the incident beam.
An iron single crystal, enriched to 85% by the 57Fe isotope, was used. For the first
time the authors found a remarkable effect. The resonance structure is conserved in
the diffracted beam whereas the radiation transmitted far from the Bragg direction has
practically no dispersion structure. In other words, this is a direct demonstration that
γ-quanta propagate almost without absorption under the conditions chosen according
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to the theoretical prediction for a vanishing amplitude of formation of the excited
nucleus.

The most precise measurements for discovering the suppression effect have been
undertaken by van Bürck et al. [24]. Purely nuclear Bragg reflection is used in a
perfect 57FeBO3 single crystal. The possibility of having pure nuclear reflections in
a crystal for reflections forbidden for electronic Bragg scattering is based on the spin
dependence of the scattering amplitude (in full analogy with neutron scattering). It
was first stated in [47] and confirmed experimentally in [48].

The antiferromagnetic structure of FeBO3 provides such a possibility. The most
significant moment of the work [24] is the use of an angle divergence of the pri-
mary beam equal to 4′′. This allowed the first measurement of the dependence of
the Laue transmitted beam in pure nuclear diffraction on the deviation from the exact
Bragg angle and its energy distribution after traversing the crystal. The measurements
demonstrate that the beam has an anomalous transmission through a strongly absorbing
thick crystal within a narrow range of scattering angles. In addition, the transmitted
beam conserves the resonant energy distribution of the incident beam. Such a combi-
nation gives direct evidence for the suppression effect.

In [49] an attempt was made to test one of the most interesting predictions of the
theory, namely, the independence of the suppression effect from the thermal vibrations
of a crystal, while the Bragg condition was fulfilled. The residual resonant absorption
and line shape are measured near the resonance center with pure nuclear scattering in
a 57FeBO3 single crystal. The high sensitivity in this region to a small violation of
the strict suppression allowed the authors to conclude that thermal vibrations do not
disturb the suppression effect, with a relatively high accuracy.

A special study of the suppression effect in strongly anisotropic Bragg scatter-
ing, when the amplitude of the diffracted wave is small compared with that of the
transmitted wave, has been performed in [50]. The authors have proved that, in the
absence of any effects requiring the equality of both amplitudes, e.g., the Borrmann
effect, the suppression effect takes place due to the vanishing amplitude of formation
of the excited nucleus in this anomalous configuration of the electromagnetic field.

To conclude this section, let us note that the theory [16,17] for suppressing the
inelastic channels of the reaction with the resonant nuclear scattering of neutrons has
been developed in parallel with the theory of the suppression effect for γ-quanta. The
effect has been observed experimentally in the measurements [51,52] of Shil’shtein
et al. studying the Laue diffraction of neutrons with an energy close to the known
λ0 ≈ 0.67 Å cadmium resonance in a strongly absorbing CdS crystal.

8. Resonant Bragg scattering of γ-quanta in crystals

In the previous sections we have considered resonant nuclear diffraction, assum-
ing Laue geometry and the corresponding picture of transmission of γ-quanta through
a crystal. In this section we will treat the reflection of resonant γ-quanta in a thick
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crystal for the case of a Bragg geometry, still assuming that the diffraction is practically
determined by a single vector K of the reciprocal lattice.

The motion of γ-quanta in a crystal is described, obviously, by the same system of
dynamical equations (5.20). Only the boundary conditions change, taking the following
form for a lamina-shaped crystal of thickness l:∑

m

E(s)
0 (m) = E (s)

0 ,
∑
m

E(s)
1 (m) exp

(
i
κ

γ0
ε(m)

0s l

)
= 0. (8.1)

The second boundary condition corresponds to the fact that the diffracted radiation
emerges from the crystal on the entrance side.

Let us restrict ourselves by analyzing the cases for which condition (6.6) is valid.
Then, for each s = 1, 2 we have a root ε(1,2)

0s (eq. (6.8)) provided β < 0. For the
electric field in the crystal, we have for the general case, involving eq. (8.1),

E(s)(r) = E (s)
0

[
e(s)

0 ·E
(s)
0 (r) + e(s)

1 · e
iKr ·E(s)

1 (r)
]
, (8.2)

E(s)
0 (r) =

1
L

[(
2ε(1)

0s − g
(s)
00

)
exp
(
iz(2)
s x
)

−
(
2ε(2)

0s − g
(s)
00

)
exp
(
iz(1)
s x
)
ei(z(2)

s −z(1)
s )l],

E(s)
1 (r) =− 1

L
βg(s)

10

[
exp
(
iz(2)
s x
)
− exp

(
iz(1)
s x
)
ei(z(2)

s −z(1)
s )l], (8.3)

where

L =
(
2ε(1)

0s − g
(s)
00

)
−
(
2ε(2)

0s − g
(s)
00

)
ei(z(2)

s −z(1)
s )l, z(1,2)

s =
κ

γ0
ε(1,2)

0s . (8.4)

As before, x = n · r. Expressions (8.2) and (8.3) allow us to determine readily the
intensities of the reflected P (s)

1 and transmitted P (s)
0 γ-quantum beams:

P (s)
1

I (s)
0

= |β|
∣∣g(s)

10

∣∣2 1
|L|2

∣∣1− ei(z(2)
s −z(1)

s )l
∣∣2, (8.5)

P (s)
0

I (s)
0

= 4
1
|L|2

∣∣(ε(1)
0s − ε

(2)
0s

)
exp

(
iz(2)
s l
)∣∣2. (8.6)

Expressions (8.5) and (8.6) are valid for a crystal of arbitrary thickness. Let us consider
the case of a thick crystal when the condition

Im
(
z(2)
s − z(1)

s

)
l =

κl

γ0
Im
(
ε(2)

0s − ε
(1)
s

)
� 1 (8.7)

is fulfilled.
Hereafter we suppose that the upper index 2 refers to the root with the larger

imaginary part. Thus, in a sufficiently thick crystal the intensity of the transmitted
beam practically vanishes. Using the values of roots ε(1,2)

0s (eq. (6.8)) found before
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and taking the symmetrical reflection β = −1 with the usual relation g(s)
11 = g(s)

00 for
simplification of the analysis, we find for the reflected intensity

P (s)
1

I (s)
0

=
4|gs10|2

|(α − 2g(s)
00 )± [(α− 2g(s)

00 )2 − 4gs01g
s
10]1/2|2

. (8.8)

The sign in front of the root should be chosen so that the imaginary part of the root
will be negative.

If the relation between the amplitudes is such that condition (6.16) is valid, total
reflection takes place for α = 0:

P (s)
1

I (s)
0

= 1. (8.9)

Provided the interaction with electrons is involved and the most interesting cases of
purely nuclear scattering are considered, the components of tensor (6.28) differ from
zero only for h = h′. Thus,

g(s)
hh =

(
g(s)
hh

)
nucl + χ0, (8.10)

where according to eq. (6.28)

χ0 = −4πr0

κ2v0

∑
p

χp(0). (8.11)

Neglecting electronic absorption, we again obtain total reflection but for an angle

α0 = 2χ0 (8.12)

different from α = 0.
Let us turn to a more general case when scattering by electrons is allowed and the

reflected vectors of K are chosen so that the imaginary part of tensor (6.28) vanishes.
In addition, let the relations

g(s)
01 = g(s)

10 , Im g(s)
10 = Im g(s)

00 (8.13)

be valid, which are typical for a large number of cases, especially, for the E1 and M1
transitions. The direct analysis of eq. (8.8) again results in eq. (8.9), now at the angle

α0 = 2
(
Re g(s)

00 − Re g(s)
10

)
. (8.14)

Note that the result obtained occurs for an arbitrary relation between the amplitudes
of electronic and nuclear scattering.

The total reflection of the resonant Bragg scattering in a strongly absorbing crys-
tal is completely associated with the inelastic channel suppression effect. In contrast
to γ-quantum transmission in a Laue geometry when a certain coherent superposition
of waves conserves the field amplitudes, it follows from eq. (8.3) that the field com-
ponents decrease strongly deep in the crystal. However, the relation between E(s)

0 and
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E(s)
1 is conserved at an arbitrary depth and the amplitude of the formation of an ex-

cited nucleus vanishes (cf. eq. (8.3) for β = −1 and g00 = g11 with eq. (6.20) and
eq. (6.21)).

It is interesting that in the case of Laue diffraction one of the superposed states,
on the contrary, is absorbed strongly. Thus, in general only a part of the incident
radiation is transmitted anomalously through the thick crystal. Only for special cases
can the suppression effect be realized for both pairs of superposed states. In the case
of Bragg geometry, at least for a symmetrical reflection, the suppression effect can
be realized for the entire radiation, resulting in total reflection. Note that the picture
appearing in Bragg reflection is determined to a great extent by the coherent collective
character of the excitation of the nuclear system.

Analyzing a purely nuclear reflection, we find from eqs. (8.8) and (8.12) that the
intensity P (s)

1 (α0) does not depend on the deviation from resonance, all g(s)
hh′ having

the same resonance denominator. From a physical point of view, this is due to the fact
that the reduction of the nuclear scattering amplitude is compensated by the number of
crystal planes involved in reflection. The self-consistency is provided by the reduction
of the decay of the field components of eq. (8.3) with x since Im ε(r)

0s falls as g(s)
hh′

decreases.
Even a relatively weak violation of the suppression effect results in a very strong

reduction of the reflection intensity. A characteristic parameter of such a violation is
the deviation of the following relation from unity:

p(s) =
Im g(s)

10

Im g(s)
00

. (8.15)

This can obviously be seen from figure 1, where, neglecting electronic scattering, the
P (s)

1 /I (s)
0 vs. α/g0 dependence is given for three values of p(s) at ω = ω0. Here ω0

is the resonant-transition frequency and g0 = |g00 (ω = ω0)|. From figure 1 one can
also see the nontrivial peak-like behaviour of the angular dependence, demonstrating
a drastic reduction of P (s)

1 with increasing |α|. Such behaviour is a specific feature
of resonant nuclear Bragg diffraction. The analytical dependence for α/g0 � 1 and
p(s) = 1 is

P (s)
1

I (s)
0

= 1−
√

2|α|/g0. (8.16)

If ω 6= ω0, a strong asymmetry appears in the P (s)
1 (α)-dependence.

It should be noted that the case of the symmetrical β = −1 reflection is singled
out. Thus, for g(s)

11 = g(s)
00 eq. (6.8) for the roots has the simple form

ε(1,2)
0s =

1
4

{
α±

[
α2 − 4

(
g(s)

00 α− ∆(s))]1/2}
.

Provided eq. (6.16) is valid, i.e., ∆(s) = 0, we have for |α| � |g(s)
00 |

Im ε(1,2)
0s ∼ α1/2.
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Figure 1. (From [18].)

This means that, as α decreases, the field penetrates into larger depths xα ∼ α−1/2 and
a larger number of nuclei scatters with conservation of phase coherence. It is easy to
show that the amplitude of formation of an excited nucleus in the total field eq. (8.2)
is proportional to α1/2. This compensation leads to total reflection as α → 0. The
probability of incoherent processes, which occur independently for each of the nuclei
in a layer of about xα, will be proportional to α. Hence, the integral intensity of the
incoherent processes is proportional to xαα ∼ α1/2, resulting in eq. (8.16).

In figure 2 the integral intensity R(s) over all reflection angles is plotted as a
function of the dimensionless parameter V = 2~(ω − ω0)/Γ for various values of
p(s). The intensity R(s) is obtained by integrating distribution equation (8.8) with the
assumption g(s)

01 = g(s)
10 and using eq. (6.5)

R(s) =

∫
P (s)

1

I (s)
0

dα
2 sin 2ΘB

.

The curves in figure 2 demonstrate the strong broadening of the R(s)(V ) de-
pendence. This is a specific feature of the reflection from a thick crystal where the
reduction of the scattering amplitude for a single nucleus with increasing V is partially
compensated by the reflection from a larger depth. For |V | � 1,

R(s) ∼ 1
|V | ,

whereas for the thin crystal R(s) ∼ |V |−2 as for a single nucleus.
The description of a series of other specific features for resonant Bragg reflection,

in particular associated with the interference of nuclear and electronic scattering, can be
found in [18]. Note only that all initial results of eqs. (8.2)–(8.6) are valid for crystals
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Figure 2. (From [18].)

of arbitrary thickness l, in particular for thin crystals. In the latter case we refer to the
work of Hannon and Trammell [21] and also the early work of Trammell [4] devoted
specifically to nuclear Bragg scattering by a thin crystal.

A great number of papers has been devoted to the experimental study of resonant
nuclear scattering in Bragg geometry. The investigations have been performed over the
whole period of studying coherent phenomena, using stationary resonant γ-quantum
sources. However, real success in the study of the detailed features inherent in resonant
nuclear reflection has been achieved only when measurements [25,53–55] started with
an angular collimation of some seconds in combination with high time stability. Here
it is significant that the application of nearly perfect antiferromagnetic 57FeBO3 single
crystals allows the study of purely nuclear reflections.

The dependence of the reflection intensity on the deviation from the Bragg angle
at a strictly resonant energy of incident radiation was measured for the first time
in [25,54]. The peculiar shape of curves observed in these studies, namely, a sharp
peak at the Bragg position and broad wings, corresponds to the predictions of the theory.
It is essential that the measurements have been performed under the suppression effect,
i.e., when the ideal curve has a shape as p(s) = 1 in figure 1. In these cases and in [55],
an anomalously wide energy dependence of the reflection intensity has been observed
for a beam of γ-quanta incident at the Bragg angle with a narrow divergence. The
width is 20–30 natural linewidths.

The work in [54] demonstrates the increase of linewidth when the angular di-
vergence of the incident beam is brought down to 1′′. If there is a certain deviation
from the exact Bragg angle, the broadening is reduced [25]. All these results are
in good agreement with the predictions of the dynamical theory for a thick crystal.
In particular, the last result has a clear physical nature. The reduction of the scat-
tering amplitude of a single nucleus is now compensated significantly less with the
deviation from resonance, since coherent scattering in the phase for α 6= 0 occurs
at a limited depth. The larger the parameter α, the smaller the broadening should
be.
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Special effects were studied in order to measure the absolute value of the reflection
intensity. Due to weak mosaicity of the crystal and finite divergence of the incident
beam total reflection is not achieved. The measurements have demonstrated a very
large reflection: the ratio P (s)

1 /I0 reaches 35% in [53] and exceeds 40% in [54].

9. Anomalous small-angle diffusive scattering in crystals

As is known, X-ray Bragg scattering in crystals is accompanied by anomalous
diffusive scattering within a narrow range of angles near the diffraction maximum.
Here the differential cross-section of scattering behaves as 1/q2, where the vector
q = k′ − k1 = k′ − (k + K) corresponds to a small deviation of a diffracted X-ray
quantum from k1 (see, e.g., [56]). From the physical point of view this result is a
consequence of the fact that, due to the periodicity of the phonon spectrum in the
reciprocal lattice space for a regular crystal, it is always possible in Bragg scatter-
ing to excite phonons of extremely small frequencies with a transfer of noticeable
momentum ~K.

Though the excitation of low frequency phonons accompanying small-angle scat-
tering takes place, the proper cross-section is proportional to q2 and anomalous scat-
tering is absent. This is a common result for the scattering of any particles.

However, the picture changes drastically for resonant nuclear scattering of
Mössbauer γ-quanta. As we have already discussed, for Γ� Θph the nucleus acquires
a momentum ~k when absorbing a γ-quantum and a recoil momentum of (−~k′), un-
correlated with ~k, during γ-quantum emission. Hence, for resonant nuclear scattering
a unique phenomenon, namely, anomalous small-angle diffusive scattering, appears.
This phenomenon was predicted and analyzed in [57].

The amplitude of coherent resonant γ-quantum scattering, when emitting or ab-
sorbing a phonon of wave vector q and number α of the branch can be represented
as

fqα
(
k, k′

)∼=−Γ′el

2k

∑
m

∑
{ns}

ei(k−k′)rm

× (eikum){n}{ns}(e−ik′um){ns}{n′}

~ωk −E0 +
∑

β ~ωβ(nsβ − nβ) + i(Γ/2)
. (9.1)

Here the state {n′} differs from {n} only by n′qα = nqα ± 1 for a single phonon.
In the case of purely elastic scattering, which we have considered so far, one has

{n′} = {n} and due to Γ� Θph one can retain only one term {ns} = {n} in a sum.
(See transformation from eqs. (5.7)–(5.10).) Taking into account the relation between
g00 and the amplitude of elastic scattering at zero angle (eq. (6.13)) and involving the
explicit form of g00 (eq. (6.15)), we have

Γ′el = Γelξ.
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Note that ξ = (2I + 1)/(2(2I0 + 1)) for the unresolved HF structure. In eq. (9.1) we
neglected the coefficient that is equal to unity when the distinction between k and k′

is small.
In the sum over {ns} in eq. (9.1) the terms with {ns} = {n} and {ns} = {n′}

prove to be essential. The other terms give a small contribution of about Γ/Θph to the
final result. The diagonal term in the nominator gives f (k) (eq. (5.8)) and a nondiagonal
term gives a factor f (k) multiplied by the matrix element of a single-phonon transition.
As a result, we find after a simple transformation

fqα
(
k, k′

)
=

iΓ′el

2k
f (k)f

(
k′
) (nq,α + 1/2 ± 1/2)1/2

(2MNω(q,α))1/2

{
k′ · e(q,α)

~ωk −E0 + iΓ/2

− ke(q,α)
~ωk −E0 ∓ ~ω(q,α) + iΓ/2

}∑
m

ei(k−k′∓q)rm . (9.2)

Here e(q,α) and nq,α are the phonon polarization vector and average occupation num-
bers, respectively. To simplify, we write expression (9.2) with the assumption of a
one-atom crystal, N being the number of atoms of mass M in the crystal.

It is interesting that the first term in the brackets in eq. (9.2) remains purely
resonant, and no phonon frequencies appear in the denominator. The term corresponds
to the emission or absorption of a phonon only at the stage of the γ-decay of the
excited nucleus.

It should be emphasized that eq. (9.2), at least within the accuracy of an insignif-
icant factor, is valid in the general case for the excitation of arbitrary phonons.

The lattice sum in eq. (9.2) results in the relation k′= k∓ q. For small-angle
scattering, where the vector q is small, the vector k′ in the first term in the brackets
and in f (k′) can be replaced by k. In addition, we assume kBT � ~ω(q,α) with
temperature T and Boltzmann factor kB. Then, going from the scattering amplitude
to the differential cross-section per nucleus, we find

dσ
dΩk′

=
η

4π
σt(ωk)

Γ′el

Γ
f 2(k)

T

2M

∑
±

∑
α

|ke(q,α)|2
(~ωk −E0 ∓ ~ω(q,α))2 + Γ2/4

, (9.3)

where σt is the total cross-section of scattering by a fixed nucleus (eq. (6.14)).
For phonons with small q, we have a sound spectrum ω(q,α) = cα(q/q)q. For

really achievable small angles, it is obvious that ~ω(q,α)� |~ωk−E0|, Γ. As we see,
for the resonant nuclear interaction anomalous small-angle diffusive scattering takes
place and

dσ
dΩk′

∼ 1
q2 . (9.4)

It follows from eq. (9.3) that the differential cross-section is large. It is interesting that
coherent one-phonon scattering, which does not keep a tag in the nuclear system, leads
to anomalous scattering. Coherence is displayed in the law of momentum conservation
in eq. (9.2), which determines the whole picture.
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Let us transform eq. (9.3) into the total cross-section, using dΩk′ = d2q/k2 due
to the large energy of γ-quanta. Then

σ = σt
Γ′el

Γ
f 2(k)

T

4M

∑
α

∫
dϕ
2π
|ne(ϕ,α)|2
c2
α(ϕ)

{
ln
~2c2

α(ϕ)q2
0

∆2 + Γ2/4
+

4∆
Γ

arctan
2∆
Γ

}
. (9.5)

Here ∆ = ~ωk − E0 and q0 is the wave vector of the order of the limiting phonon
vector and n = k/k. The integration in eq. (9.5) over angle ϕ is performed in the plane
normal to k. The large logarithm of about log(Θ2

ph/Γ2) in eq. (9.5) strongly enhances
the integral cross-section. The use of the Mössbauer effect allows us to separate in-
elastically scattered small-angle emission from purely resonant emission, transmitted
without scattering. For this purpose, it is sufficient to measure the reduction of the in-
tegral intensity in the resonant absorber as a function of its velocity. This discloses an
effective way for measuring the integral cross-section of anomalous diffusive forward
scattering.

Note that all results are referred to the thin crystal and the total intensity of
scattering should be determined by the product of eqs. (9.3)–(9.5) and the number
of resonant nuclei. Since ~ω(q,α) � Γ, the thickness of a crystal is limited by the
electronic absorption. This means that the size limit is increased by at least two orders
of magnitude, and so is the achievable limit of the intensity of scattering.

10. Nuclear resonant scattering of synchrotron radiation

The observation of the direct excitation of nuclei by SR has opened a completely
new area of studying coherent phenomena with resonant nuclear interactions in matter.
The solution of the problem which is paradoxical at first sight, namely, the isolation of
the resonant line of about 10−8 eV width from the continuous radiation spectrum of a
width of some 10 keV, is associated to a great extent with the features of Mössbauer
transitions in nuclei. For these transitions, a large lifetime τ0 of the excited states is
typical. At the same time the duration T of a single SR pulse is much smaller than τ0

and the time interval T1 between the pulses is larger or of the same order of magnitude
as τ0. This gives a principal opportunity to measure the delayed emission associated
with the decay of the excited nuclei after the SR pulse. The potential scattering of
almost all incident radiation occurs in fact instantaneously. This idea, formulated by
Ruby [30], was realized experimentally in a complete form by Gerdau et al. [32] who
started a wide field of research.

The isolation of retarded nuclear emission with a fixed instant of excitation en-
abled the unique possibility of introducing the time dimension into the study of coherent
phenomena. On the other hand, the use of coherent nuclear scattering should allow us
to realize the conditions for producing a pulsed source of Mössbauer radiation. It is
worthwhile to emphasize that the properties of SR are very suitable for both problems,
in particular the directional radiation, its small angular divergence in the plane normal
to the plane of the electronic orbit, and the pure polarization state.
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The solution of all the questions associated with SR-crystal interaction supposes
the development of a time-dependent theory of resonant nuclear scattering. For this
purpose, the results of the stationary theory of resonant nuclear diffraction, which
have been given in the preceding sections, can be used effectively. A theory for the
time domain was developed for the first time in [33] which we rely on in our further
considerations. To make all results clear, we restrict ourselves to the case of an unsplit
HF structure. As has been noted, in the presence of HF splitting, quantum beats
associated with the virtual excitation of several HF transitions at the same time appear
in the time structure of the scattered radiation. The theory of quantum beats has been
developed in [39,40] and interpreted in other reviews.

1. Let radiation with a frequency range ∆ω̃ run through the crystal during time T .
Then a single component of the field can be represented as

Eω̃(t) = Eω̃e−iω̃tΨ(t), (10.1)

where Ψ (t) is a function describing the shape of the radiation pulse.
Let us introduce the amplitude R(ω), relating the amplitudes of the scattered

E′(ω) and incident E (ω) waves:

E′(ω) = R(ω)E(ω). (10.2)

Finding the Fourier component of field (10.1) and using definition (10.2) for a time-
dependent wave field, we have

E′ω̃(t) = Eω̃
∫

dt′G
(
t− t′

)
e−iω̃t′Ψ

(
t′
)
, (10.3)

where

G(t) =

∫
dω
2π
R(ω)e−iωt. (10.4)

The function G(t) differs from zero only for t > 0, corresponding to the analyticity of
the function R(ω) in the upper half-plane with its continuation into the complex plane.

Let us calculate the intensity I(t) of the scattered radiation, involving the in-
equality ∆ω̃T � 1:

I(t) = 2π
I0

∆ω̃

∫ T

0
dt′
∣∣G(t− t′)∣∣2 ≈ 2π

I0T

∆ω̃
∣∣G(t)

∣∣2. (10.5)

The latter equality in eq. (10.5) assumes that the intensity is determined for t > T , I0T
being the total number of quanta in the pulse.

Thus, for solving time problems, it is necessary to know the function R(ω). For
the cases of interest to us, this function is determined in the preceding sections.
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2. Let us start by analyzing the transmission of radiation across a crystal of
an arbitrary thickness l far from the Bragg condition. Let the resonant frequency of
ω0 = E0/~ be within the range ∆ω̃. Then, according to eqs. (10.1), (10.2) and (6.12)

RT (ω) = exp(iκg00l/2γ0). (10.6)

Hereafter we omit the index s. It is convenient to rewrite the coefficient g00 (eq. (6.15))
as

g00 = − g0

V + i
+ χ0, V =

2~(ω − ω0)
Γ

. (10.7)

Here,

g0 =
1
κ
σresnf

2(k) (10.8)

and σres is the magnitude of the total cross-section (eq. (6.14)) at ω = ω0. In eq. (10.7)
electronic scattering is involved as determined by eq. (8.11) according to eq. (8.10).

Let us substitute eq. (10.6) into eq. (10.4). The corresponding integration can be
performed explicitly (see details in [33]). Eventually, we find

GT (t) = eiϕ
{
δ(t) − exp

(
−iω0t−

τ

2

)
ξ

τ0
·

J1
(
2
√
ξτ
)

√
ξτ

Θ(t)

}
, (10.9)

where

ξ =
g0κl

4γ0
, ϕ =

χ0κl

2γ0
, τ =

t

τ0
, τ0 =

~
Γ
. (10.10)

Here J1 is the Bessel function of first order.
The first term in the brackets of eq. (10.9) corresponds to a practically instant

transmission of the nonresonant part of the incident radiation. In the course of the
calculation the quantity δ(t = 0) should be understood as ∆ω̃/(2π).

The second term in the brackets of eq. (10.9) describes the retarded emission
of the radiation resonantly scattered forward. Naturally, the emission is determined
for t > 0, entailing the appearance of the usual step-like function Θ(t). In a thin
crystal, for ξ � 1 the ratio J1(2

√
ξt)/
√
ξτ is close to unity for t . τ0. The intensity

(eq. (10.5)) in this case has a typical ∼ l2 behaviour. One may estimate that there is a
certain acceleration of the decay as a result of the collective excitation in the nuclear
system. The picture changes significantly with the transition to a thick crystal. For
ξτ > 1, the oscillations of the intensity in time, determined by the behaviour of the
Bessel function, become pronounced. For ξτ � 1, expression (10.9) approaches the
asymptotic limit

GT (t) ≈ exp

(
iϕ− iω0t−

τ

2

)
ξ1/4

τ0τ 3/4π1/2
cos

(
2
√
ξτ − 3

4
π

)
. (10.11)

The specific time behaviour is connected completely with the coherent collective inter-
action of resonant photons with the nuclear system. The conservation and even weak
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growth of the intensity with the thickness is associated with the role of the frequency
wings of the resonance in a thick crystal. Note that the inequality ξ � ∆ω̃τ0 is implic-
itly assumed to be valid. At the same time, the number of quanta within the energy
range of about Γ around the resonance decreases with increasing τ due to absorption.

The time evolution of SR nuclear forward scattering has been observed for the
first time in Brookhaven [36,37]. This became possible when the authors drastically
reduced the energy width ∆ω̃ of the radiation incident on the sample. Practically all
specific features predicted by theory for the time domain behaviour of the transmitted
radiation in samples of various thicknesses have been observed by these experiments.
Good agreement with theory is shown in [38] where analogous measurements have
been performed very precisely. In the last study a well-resolved structure of quan-
tum beats is observed from two transitions as a fine structure in the Bessel modula-
tion.

3. Let us consider now the time problem for SR Bragg scattering, restricting
ourselves to an isolated nuclear resonance. We again suppose purely nuclear reflection
corresponding to polarization of the incident SR. In order to determine the reflection
amplitude R(ω), one can employ the results of section 8. Involving eqs. (8.2)–(8.4),
we readily obtain

RB(ω) = −βg10
1
L

(
1− ei(z(2)−z(1))l). (10.12)

Let us introduce notation analogous to eq. (10.7):

g10 = − g̃

V + i
, g01 = − g̃∗

V + i
. (10.13)

Transforming expression (10.12) and using the explicit form of L (eq. (8.4)) and roots
ε(1,2)

0 (eq. (6.8)) for the case of symmetrical β = −1 reflection, we find for a thick
crystal when the inequality Im(z(2) − z(1))l � 1 allows us to neglect the second term
in brackets in eq. (10.12),

RB(ω) = − g̃
g

s

τ0

1
ω − z0 + [(ω − z0)2 − (s/τ0)2]1/2

. (10.14)

Here

s =
g

α− 2χ0
, z0 = ω0 −

1
τ0

(
i
2

+
s

p

)
, p =

2g
g0 + g1

, g = |g̃|. (10.15)

We have used g11 written in the form (10.7), replacing g0 by g1 with the same defini-
tion (10.8) for the substitution of k→ k1 = k + K. Note that in the general case χ0

and s are complex quantities.
The factor p coincides with that of eq. (8.15) provided g1 = g0. Note that p 6 1

and, as we have seen, the condition p = 1 is necessary to realize the inelastic channel
suppression effect.
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Let us substitute eq. (10.14) into eq. (10.5). Putting the integration into the
complex ω plane and keeping in mind that the singularities of the function R(ω) lie
in the lower half-plane, we can derive an analytical expression for GB(t) (see details
in [33]):

GB(t) = i
g̃

g

1
τ0

exp

(
−iω0t−

τ

2

)
J1(sτ )
τ
· eisτ/pΘ(t). (10.16)

Here J1 is again the Bessel function of first order, however, now of a complex argument.
For several transitions allowed for the given HF structure and fixed polarization of
incident radiation, the function GB(t) contains a superposition of field components
of the scattered radiation with the same structure as eq. (10.16) but, naturally, with
different frequencies ω0. In this case the reflection intensity exhibits time oscillations
or quantum beats. To analyze the physical picture, it is sufficient to consider the
behaviour of the intensity related to a single transition.

At time t� T , using (10.16), we find

IB
α =

2π
τ0

Nα

∆ω̃τ0
e−τ
∣∣∣∣J1(sτ )

τ

∣∣∣∣2 exp

(
−2s′′τ

p

)
. (10.17)

Hereafter s = s′ + is′′ and the same for the other complex quantities. In eq. (10.17)
we introduced the index α characterizing the angle of incidence of the primary beam
according to eq. (6.4). The quantity Nα is the total number of quanta incident on the
crystal at this angle per pulse.

Note that an expression analogous to eq. (10.17) has been found later in the
course of the analysis of grazing-incidence reflection [58].

From the expression obtained we can readily conclude that there are two typical
times satisfying conditions

|s|τ1 = 1, s′′τ2 = 1.

It follows from eq. (10.15) that

τ1 =
t1
τ0

=
(
y2 + y2

0

)1/2
, τ2 =

t2
τ0

=
y2 + y2

0

y0
, (10.18)

where

y =
α− 2χ′0

g
, y0 =

2χ′′0
g
. (10.19)

For a crystal enriched in the resonant isotope, we have y0 � 1 and time t2 � τ0

associated with electronic absorption. The time t1 is practically always small compared
with t2, except for an extremely small deviation of |y| . 2y0 from the Bragg angle.
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Near the Bragg angle, when α < g, the time t1 is small compared with τ0.
However, for times t2 > t > t1 the time behaviour of the reflected intensity takes a
very specific form:

Iβα(t) ≈ 4
τ0

Nα

(∆ω̃τ0)
|y|e

−τ

τ 3 cos2
(
τ

|y| −
3π
4

)
. (10.20)

The collective character of excitation in the nuclear system accompanying the absorp-
tion of a single photon results in a drastic change of the decay law. The decay process
accelerates: the smaller the deviation |y| and, correspondingly, the time t1, the earlier
the process starts.

For y0 � |y| � 1, the time-integral flux of reflected quanta is

QB
α ≈

Nα

∆ω̃τ0

1
|y| . (10.21)

The number of quanta within an energy range of about Γ at resonance is close to
NαΓ/∆ω̃ = Nα/(∆ω̃τ0). The growth of QB

α with decreasing |y| is due to the enhance-
ment of the reflection for energy wings far from resonance. As has been discussed in
section 8, in a thick crystal the reduction of the scattering amplitude of a single nucleus
with deviation from resonance is compensated to a noticeable extent, as |y| decreases,
by the growth of the thickness of the layer effectively involved in the reflection. The
increased influence of the wings entails the reduction of the characteristic decay time
of the excited system.

As one approaches the exact Bragg condition shifted by the angle α0 (eq. (8.12))
when |y| becomes smaller than y1/2

0 , it is necessary to include the imaginary part of
the argument of the Bessel function in eq. (10.17). Now t2 < τ0 and the involve-
ment of electronic absorption becomes significant. In this limit the reflection intensity
(eq. (10.17)) becomes

IB
α (t) ≈ Nα

τ0(∆ωτ0)

(
y2 + y2

0

)1/2 e−τ

τ 3 exp

[
−2

(
1
p
− 1

)
τ

τ2

]
. (10.22)

For p = 1, i.e., fulfillment of the condition necessary for realizing the supression effect,
expressions (10.22) and (10.20) are close to each other, describing the whole interval
of time t > t1. If p < 1, for t > t2 the intensity is further reduced due to electronic
absorption.

Let us now turn to the case of the exact Bragg condition (y = 0). If eq. (10.22)
is integrated over time, the total flux of reflected quanta for p = 1 will be determined
by eq. (10.21) with y → y0. A huge intensity is now reflected for short times of the
order of magnitude of τ1 min = y0. If one puts formally χ′′0 = 0, the IB(t)-dependence
becomes a δ-function. In fact, at any finite t the quantity (10.17) or (10.22) vanishes
whereas (10.17) becomes infinite for t = 0. Thus, for the strict fulfilment of the
Bragg condition and neglecting electronic absorption, the retardation effect vanishes
and the reflection occurs instantaneously. This is a limiting manifestation of collective
excitation in the nuclear system. In an infinitely thick crystal the above takes place



III-1.1 Yu. Kagan / Theory of coherent phenomena in NRS 121

Figure 3. The time dependence of the intensity of the radiation Bragg-reflected from the thick crystal
with the dependence on the deviation parameter y from the Bragg condition. The values of y are stated

next to the curves. (From [33].)

for arbitrary p. For p = 1, when total suppression occurs at y = 0, the pulse is totally
reflected, as we have seen in the stationary problem.

For |y| � 1, i.e., for large deviations from the Bragg angle, we have τ1 � 1 and
find from eq. (10.17) for the whole time interval τ < τ1

IB
α (t) =

π

2τ0

Nα

(∆ω̃τ0)
1
y2 e−t/τ0 . (10.23)

The time delay has a classical character since the collective coherent effects play an
insignificant role. The change of character of the time delay of the reflected intensity
at various angular deviations from the Bragg condition is seen clearly in figure 3 where
the IB

α (t) dependence is plotted for various values of the dimensionless parameter |y|.
In a real situation the incident beam has a finite angular divergence ∆α around

the value α0 and, correspondingly, ∆y = ∆α/g. Integrating eq. (10.17) over α with
the assumption τ2 � τ > y0, we find the time behaviour of the reflection intensity at
∆y � 1:

ĪB(t) ≈ 1
3

16
τ0

Nres

∆y
e−τ

τ
, (10.24)

where

Nres =

∫
Nα dα

(∆ωτ0)
.

It is seen that decay acceleration and growth of the reflection intensity with small τ
are conserved for a large angular divergence.

Purely nuclear Bragg diffraction has been widely used for isolating the SR
Mössbauer component, starting from the pilot experiment of Gerdau’s group [32] (see,
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e.g., reviews [42,43]). The study of time and angle Bragg-scattered SR dependence
which is important for analyzing coherence was undertaken in [34,38,41,59]. Already
in [41], performed on a 57Fe-YIG single crystal, one can see the acceleration of the
decay. In [34] with the Bragg scattering by a 57FeBO3 single crystal, for the first time
decay acceleration at the Bragg incident angle was studied quantitatively. A noticeable
reduction of this acceleration when the incidence angle of the beam was shifted to
both sides from ΘB was observed. Later, the angular resolved time dependence was
studied in [59]. A unique experiment, measuring the time dependence of the reflection
intensity during the period of six (!) natural decay times was performed in Japan
[38]. All these experiments, in fact, have displayed the main specific features typi-
cal for the time behaviour of diffracted radiation as well as the principal theoretical
notions.

4. The possibility of using SR resonant nuclear scattering created an essen-
tial interest in designing pulse sources of Mössbauer radiation. The key feature is
the isolation of the resonant part of the spectral density from the reflected radiation.
Meanwhile, the collective character of exciting the nuclear system, the decay accel-
eration caused by this and, therefore, the broadening of the energy distribution of the
reflected radiation produce essential difficulties for realizing the conditions necessary
for conventional Mössbauer experiments.

To analyze this problem, we can investigate the transmission of the reflected
radiation through a thin resonant absorber containing the same Mössbauer nuclei.
Then the unified coherent system of Bragg scatterer and absorber is involved in the
process and at the output from the latter the amplitude of the field equals

G(t, ∆ω0) =

∫
dω
2π
RT∆ω0

(ω)RB(ω)e−iωt. (10.25)

Here RT∆ω0
is the forward reflection amplitude (10.6) when shifting the resonance

frequency in the absorber by ∆ω0 with respect to that of the Bragg reflector. All
coherently reflected radiation is assumed to be transmitted through an absorber.

For the analysis, it is convenient to transform eq. (10.25) to

G(t, ∆ω0) =

∫
dt′GT∆ω0

(
t− t′

)
GB(t′). (10.26)

A detailed consideration of the originating picture is given in [33]. We note only some
qualitative results.

(a) Provided the reflection occurs at a small deviation from the Bragg angle and
|y| � 1, the dependence on ∆ω0 proves to be weak. In other words, the resonant
structure is practically lost. The time delay in this case is connected only with the
absorber. This result can readily be understood if from the preceding analysis one
recalls the strong involvement of the far-energy wings of the incident radiation in
the reflection. Qualitatively, an improvement of the situation can be reached with
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Figure 4. Relative intensity of radiation which is transmitted after reflection through the thin absorber
with the resonance frequency displaced by ∆ω0 at various time moments t after the pulse transmission.
The values of t/τ0 are stated next to the curves. The angular divergence of radiation ∆y � 1, p = 1.

(From [33].)

Figure 5. Integral over time of the relative intensity with the exception of the finite time interval [0, t1]
for the system of a reflector and a thin absorber with the resonance frequency displaced by ∆ω0. The
values of t1/τ0 are stated next to the curves. The angular divergence of radiation ∆y � 1, p = 1.

(From [33].)

reflections from a relatively thin crystal. For |y| � 1, the field of the reflected
radiation acquires resonant structure, but the intensity falls off as 1/y2.

(b) If the incident beam has a wide angular distribution, the spectral properties of
the retarded radiation depend significantly on the time delay. This is clearly seen
in figure 4, where the dependence of the intensity at the absorber output on ∆ω0

demonstrates the appearance of a clear resonance structure if the delay time be-
comes comparable with τ0. For a time small compared with τ0, the resonant
structure of the radiation is practically absent.

(c) A possibility to perform conventional Mössbauer measurements arises from using
time-integral measurements excluding an initial time interval comparable to or,
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maybe, somewhat smaller, than τ0. This can straightforwardly be traced in figure 5
where the special distributions of the integral intensity for various values of the
excluded interval are given. Note that the omitted fraction of the intensity does
not essentially decrease the number of quanta in a resonant interval of about Γ.

11. Concluding remarks

In the present paper we have presented the main ideas and results of the theory
of coherent phenomena in resonant nuclear interaction of γ-quanta with crystals. The
limited frame of the paper does not allow us to include all interesting results in this
field. We only mention some of them.

– A detailed theory of γ-decay of nuclei in crystals containing the same nuclei in the
ground state has been developed in [60]. The theory is based on the results given
in sections 5 and 6 in accordance with the reciprocity theorem for absorbing media.

– There exists an interesting effect for the interference of the inelastic processes of
photoeffect and internal conversion accompanying the resonant γ-quantum absorp-
tion. The effect has been observed experimentally by Sauer et al. [61]. The theory
of the effect has been developed in [62–64].

– In connection with the analysis of γ-lasers exploiting the Mössbauer transition,
a number of ideas based on the coherent dynamics of γ-quanta in crystals has
appeared. One of them is based on inducing not a plane wave but a pair or
multiwave Bragg states in the crystal (see, e.g., [65,66]).

– Large interest has recently been attracted by the possibility of measuring the phonon
spectrum in crystals using nuclear resonant scattering of SR. In this connection
we should note that the direct generalization of the results of section 9 enables
the solution of the problem of finding the phonon dispersion law on the basis of
inelastic coherent scattering of SR.
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