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Coherent γ-ray optics

J.P. Hannon and G.T. Trammell

Physics Department, Rice University, Houston, TX 77005-1892, USA

With the advent of high brightness synchrotron radiation sources, an important new
field has been opened up involving coherent nuclear excitations induced by synchrotron
radiation pulses traversing a piece of matter. We review the theory of coherent resonant
γ-ray optics, including some of the interesting new phenomena which occur when systems
of nuclei are excited by synchrotron radiation pulses, such as the creation of nuclear exciton
states, superradiant and subradiant decay, spatially coherent quantum beats, and temporal
Pendellösung. We also discuss the relation between the nuclear exciton states and multi-
photon Dicke superradiance and γ-ray lasers, and comment on neutron phasors and neutron
superradiance in resonant neutron optics. The interesting features of coherent enhancement,
superradiant decay, and dynamical beats are discussed from the fundamental perspective of
the radiative normal modes of a system of nuclear resonators.

AMS subject classification: PACS numbers: 73.20.Hb, 31.50.+w, 79.20.Rf, 79.20.-m

1. Introduction

For most Mössbauer transitions, the γ-ray wavelength (λ0 ≈ 0.1–1.0 Å) is well
suited for diffraction experiments. Tuned to resonance, the scattering amplitude f is
proportional to λ0, and can be very large, ≈400r0 for the 14.4 keV 57Fe transition.
The linewidths are exceedingly sharp (≈10−9–10−6 eV), allowing the easy variation
of the phase and amplitude of the resonantly scattered wave by Doppler shifting, with
negligible variation of the nonresonant electronically scattered wave. Correspondingly,
the time response of the resonant nuclear scattering is very long, ≈10−9–10−6 s (com-
pared to ≈10−15 s for a 1 eV width atomic resonance, and ≈10−14 s for characteristic
crystal vibration times). The signal emitted by a “nuclear oscillator” over a duration of
τ ≈ 10−7 s has a longitudinal coherence length lc ≈ cτ ≈ 30 m, or a “quality factor”
Q ≈ 1012, the number of perfectly spaced radiation crests in the signal, comparable to
the highest precision optical lasers. In magnetic crystals, and in the presence of crystal
electric fields, there is hyperfine splitting of the nuclear resonances, and the amplitude
and polarization of the resonantly scattered photons are strongly dependent upon the
directions of the local fields. Mössbauer transitions also occur with well-defined multi-
polarity E1, M1, E2 (and in a few cases M1–E2), in contrast to the electronic response
of atoms which occurs as a hierarchy of multipole contributions E1 � E2 � M1,
etc. These unique features – large scattering amplitudes, the long scattering time, the
sharp variation with frequency near resonance, the sensitivity to crystalline electric
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and magnetic fields, and the well defined multipolarities – give rise to important appli-
cations for chemical and magnetic structure determinations, new possibilities for long
coherence length X-ray interferometry, time-resolved spectroscopy on the nanosecond
scale, and interesting optical effects such as strong Faraday-type effects and higher
multipole Borrmann effects.

Because of the low brightness of most radioactive Mössbauer sources, however,
until recently nearly all Mössbauer experiments involved only resonance absorption,
which, while valuable, does not exhibit to the fullest the interesting effects due to
coherence in the emission or scattering of γ-rays from a system of nuclei. This situation
has changed dramatically with the advent of high brightness synchrotron radiation
sources, and an active field of coherent γ-ray optics utilizing nuclear excitation by
synchrotron radiation pulses has emerged.

We review the theory of coherent resonant γ-ray optics, and discuss some of the
interesting new phenomena which occur when systems of nuclei are excited by syn-
chrotron radiation pulses, such as the creation of nuclear exciton states, superradiant
and subradiant decay, spatially coherent quantum beats, and temporal Pendellösung.
We also discuss the relation between the nuclear exciton states and multi-photon Dicke
superradiance and γ-ray lasers, and comment on neutron phasors and neutron super-
radiance in resonant neutron optics. In the final section, we discuss one of the most
unique and fundamental aspects of Mössbauer γ-ray optics – collective nuclear states
established by the radiative interaction between the nuclei.

2. Simple features of resonant γ-ray scattering

In this section we discuss some of the simple features of resonant nuclear scat-
tering, and make comparisons with atomic X-ray scattering.

2.1. Atomic scattering

The usual X-ray scattering from an atom consists of three contributions: the
direct A2 interaction, which gives the “free electron” Thomson scattering f0, and two
virtual excitation/deexcitation diagrams (with photon absorption preceding or following
emission), which give the “anomalous scattering” f ′ + if ′′,

fe =− Ze2

mec2F (θ) +
∑
n

λ̄0ΓR

(En −E0)− ~ω − iΓT/2
+
∑
n

λ̄0ΓR

(En −E0) + ~ω

= f0 +
(
f ′ + if ′′

)
. (2.1)

These contributions are indicated schematically in figure 1.
In the anomalous dispersion contribution, ΓR/~ is the rate for the radiative decay

ψn → ψ0, with ΓR proportional to the square of the electric dipole moment, ΓR ∝
|〈ψn|x|ψ0〉|2, and ΓT/~ is the total decay rate of the intermediate excited state ψn due
to all possible radiative and nonradiative decay processes (such as the Auger emission
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Figure 1. X-ray scattering contributions.

Figure 2. Cu K-edge.

process, in which the excitation energy of ψn is transferred via the Coulomb interaction
to an outer electron which is ejected into the continuum). Typically, ΓR ≈ 0.01–0.1 eV,
while ΓT ≈ 1–10 eV. (For simplicity, we have omitted the polarization dependence,
and a statistical/angular momentum factor ≈1. Also, λ0 is the resonance wavelength
and λ̄0 ≡ λ0

/
2π.)

The Thomson scattering f0 ≈ Zr0, where r0 = e2/mec
2 is the “classical elec-

tron radius”, while the resonant contribution to the anomalous scattering has a peak
amplitude ≈ λ̄0(ΓR/ΓT), which, as for any resonant scattering, is independent of r0,
and instead is determined entirely by the resonance wavelength λ0 and the branching
ratio ΓR/ΓT. Typically ΓR/ΓT ≈ 10−3–10−2, while λ̄0/r0 ≈ 5× 103 for 1 Å radia-
tion, so that the peak value of (f ′ + if ′′) ≈ 1 − 10r0 near an absorption edge. Since
there is a “continuum” of resonators above the absorption edge, rather than a sharp
resonance response, (f ′ + if ′′) exhibits a “distributed” resonance response, spread over
10–100 eV, such as the well-known Cu K-edge spectrum shown in figure 2.

2.2. Nuclear scattering

The scattering of a photon by a nucleus is determined by the same three diagrams,
where the A2 interaction is now for the protons of the nucleus, and the ψn are the
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virtual excited states of the nucleus, so again

fn = − Ze2

mpc2 +
∑
n

λ̄0Γγ
(En −E0)− ~ω − iΓ/2

+
∑
n

λ̄0Γγ
(En −E0) + ~ω

, (2.2)

where the first term is the nuclear Thomson scattering, the second term is the resonant
γ-ray scattering, and the third term is the nonresonant second order contribution. For
nuclear scattering, we use the notation ΓR ≡ Γγ and ΓT ≡ Γ.

Now, however, the relative magnitude of the three contributions and the nature
of the response are very different from the atomic scattering for two reasons: First, the
nuclear Thomson scattering involves the proton mass mp rather than the electron mass
me, and hence, is down by me

/
mp ≈ 1/2000, so the nuclear Thomson scattering is

typically ≈0.01r0 and can usually be ignored. Secondly, the nuclear resonances are
dramatically sharper than the atomic resonances, typically, Γ ≈ 10−8 eV (and Γγ ≈
10−9 eV) in contrast to ΓT ≈ 1–10 eV for atomic excited states. As a consequence,
there is no appreciable scattering from the nucleus unless the incident photon energy
is tuned to within a few widths Γ ≈ 10−8 eV of a nuclear resonance, in which case

fn ≈ λ̄0
Γγ
Γ

1
(x− i)

,

where x = [(En −E0)− ~ω]/(Γ/2) is the deviation from resonance in units of the
halfwidth. At resonance, the scattering amplitude peaks to

fn ≈ iλ̄0
Γγ
Γ

,

which can be very large. For the 14.4 keV 57Fe transition, Γγ/Γ ≈ 1/9, and |fn| ≈
440r0 at resonance!

Also, in contrast to the continuum distribution of oscillators above an atomic
absorption edge, the nuclear excited states ψn are separated by 10’s or 100’s of keV. As
a consequence, the nuclear scattering exhibits a strikingly simple Lorentzian response,
with f ′′n = λ̄0(Γγ/Γ)/(x2 + 1) peaking to λ̄0(Γγ/Γ) ≈ 440r0 at resonance, and f ′n =
λ̄0(Γγ/Γ)x/(x2 + 1) varying from +220r0 to −220r0 as ~ω is tuned from −Γ/2 →
+Γ/2 about resonance, as shown in figure 3.

The narrow linewidths (≈10−9–10−6 eV) allow the easy variation of the phase
and amplitude of the resonantly scattered wave by Doppler shifting, with negligible
variation of the electronic scattering amplitude fe.

Complementary to the exceedingly sharp frequency response, the time response of
the resonant nuclear scattering is very slow, τ ≈ 10−9–10−6 s (compared to ≈10−15 s
for a 1 eV width atomic resonance, and ≈10−14 s for characteristic crystal vibration
times). The signal emitted by a “nuclear oscillator” over a duration of τ ≈ 10−7 s
has a longitudinal coherence length lc = cτ ≈ 30 m, or a “quality factor” Q ≈ 1012,
the number of perfectly spaced radiation crests in the signal, comparable to that of the
highest precision optical lasers.
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Figure 3. Lorentzian response of 57Fe.

The striking difference in the sharpness of a nuclear γ-ray resonance compared
to an atomic X-ray resonance is primarily a size effect:

ΓR ∝
∣∣〈ψn|x|ψ0〉

∣∣2 ∝ (radius)2,

and thus,

ΓR(nucleus)
ΓR(atom)

≈
(
R(nucleus)
R(atom)

)2

≈ 10−8.

That is, the dipole moment for a nuclear transition is about four orders of magnitude
smaller than that for an atomic transition, leading to a radiative decay rate eight orders
of magnitude smaller.

In magnetic crystals, and in the presence of crystal electric fields, there is hy-
perfine splitting of the nuclear resonances, and the amplitude and polarization of the
resonantly scattered photons are strongly dependent upon the directions of the local
fields. Mössbauer transitions also occur with well-defined multipolarity E1, M1, E2
(and in a few cases, M1–E2), in contrast to the electronic response of atoms, which
occurs as a hierarchy of multipole contributions E1� E2� M1, etc.

The best known Mössbauer resonance is the 14.4 keV (λ0 = 0.86 Å) transi-
tion of 57Fe, indicated schematically in figure 4. This is an M1 transition from a
ground state j0 = 1/2 to an excited state j1 = 3/2. The lifetime of the excited
state is τ = ~/Γ = 141 ns. In a magnetic material the spin polarized 3d elec-
trons induce, via exchange, a net spin polarization of the s-electron density at the
nucleus, which, by the Fermi contact interaction, gives a strong magnetic field at
the nucleus, Bint ≈ 30–40 T, resulting in Zeeman splitting of the ground and ex-
cited levels, ∆E(mj) = −mjγjBint. In α-Fe, Bint = 32.2 T and jγj = 0.09µN and
−0.15µN (µN = nuclear magneton), respectively for the ground and excited states, so
the separation between levels is g0 = 39.7Γ for the ground state, and g1 = 22.4Γ for
the excited state. Since the transition is M1, the selection rule is ∆jz = 0,±1, and
there are six allowed transitions. In the presence of crystal fields, the coupling of the
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Figure 4. 57Fe Mössbauer transition.

Figure 5. Decay from an excited nucleus.

quadrupole moment of the nucleus in the state ψn to the electric field gradient (EFG)
gives an additional shift to the nuclear levels, typically on the order of 10–20Γ. The
coherent elastic scattering amplitude fn is then a superposition of six sharp resonance
contributions, the separation between the resonances being typically on the order of
20–40Γ.

In an excited state ψn, a nucleus will decay via radiative decay (at the rate Γγ/~),
or more likely, by internal conversion decay (at the rate Γα/~), which is the direct
analogue of Auger decay: the excitation energy of ψn is transferred via the Coulomb
interaction to an outer electron, which is ejected into the continuum, as indicated in
figure 5. The total decay width is Γ = Γγ + Γα. For the 14.4 keV level of 57Fe,
Γα/Γγ ≈ 8 so that an isolated excited nucleus is eight times more likely to give
up its energy via conversion. However, for a collection of nuclei, as we will discuss
in section 4.1, the probability for radiative decay can be greatly enhanced by spatial
coherence.
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2.3. Fast versus slow scattering

The effect of zero point motion and temperature motion of a scatterer bound
in a solid on the X-ray or γ-ray coherent elastic scattering amplitude f depends on
whether the collision time is short or long relative to the characteristic vibration time,
ω−1
m (≈10−14–10−13 s), of the scatterer about its mean position.

For nonresonant Thomson scattering, the A2 scattering is “instantaneous”, and
the scattering amplitude f0 will contain the factor exp[−i(kf − k0) · r], where r is the
position of the nucleus of the scatterer relative to its mean position. When averaged
over a Gibbs ensemble this gives the Debye–Waller factor

fD(θ) =
〈

exp
[
−i(kf − k0) · r

]〉
= exp

[
−1

2

〈[
(kf − k0) · r

]2〉]
. (2.3)

For resonant scattering, the coherent elastic scattering amplitude can be put in
the time-dependent representation [1],

fres =

(
Γγ
2ik

)∫ ∞
0

dt ei(ω−ω0)te−(Γ/2~)t〈e−ikf ·r(t)eik0·r(0)〉, (2.4)

where r(t) is the nuclear center of mass operator in the Heisenberg representation.
For resonant X-ray scattering, the characteristic scattering times are ~/Γ ≈

10−16–10−15 s and, hence, fast compared to ω−1
m . Then effectively t ≈ 0, which

gives the Debye–Waller factor〈
exp
[
−ikf · r(t ≈ 0)

]
exp
[
ik0 · r(0)

]〉
≈ fD(θ). (2.5)

On the other hand, for Mössbauer resonances, the scattering is very slow, ~/Γ ≈
10−9–10−6 s � ω−1

m , so that effectively t ≈ ∞ and the motions r(∞) and r(0) are
uncorrelated, giving the Lamb–Mössbauer factor〈

exp
[
−ikf · r(t ≈ ∞)

]
exp
[
ik0 · r(0)

]〉
≈
〈
exp
[
−ikf · r

]〉〈
exp[ik0 · r]

〉
= fM. (2.6)

Interesting cases of intermediate scattering times ≈ ω−1
m can occur for neutron

resonance scattering as discussed in section 5.

2.4. Polarization response of resonant scattering

The nonresonant Thomson scattering has a simple e∗f ·e0 polarization dependence,
so there is no orthogonal σ̂ ↔ π̂ scattering, and no sensitivity to local fields. On the
other hand, resonant X-ray and γ-ray scattering is generally sensitive to the directions
of the local fields (B and EFG axis) at the scatterer, and as a consequence, the scattering
necessarily has a strong tensor component in the polarization response (giving, e.g.,
strong orthogonal scattering).

For a pure QL multipole transition (2L – pole electric (Q = E) or magnetic
(Q = M) multipole; thus, E1 = electric dipole, etc.), with quantization axis zJ (for
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simplicity, we assume Jz is a good quantum number), the coherent elastic scattering
amplitude is [2–7] (see appendices A.1 and A.2)

fn(efkf; e0k0) = 4πλ̄
L∑

M=−L

[
e∗f ·Y

(q)
LM

(
k̂f
)
Y(q)
LM

(
k̂0
)∗ · e0

]
F (q)
LM , (2.7)

where

F (q)
LM =

fM

(2j0 + 1)
Γγ
Γ

j0∑
m0=−j0

C(j0Lj1;m0M )2

x(m0M )− i
. (2.8)

The Y(q)
LM with q = e or m are the vector spherical harmonics [8], x(m0M ) =

2 [E(j1;m0 +M )− E(j0;m0)−~ω]/Γ and fM is the Lamb–Mössbauer factor, m0 runs
over the (2j0 + 1) hyperfine levels of the ground state, and M gives the ∆Jz change
(m1 −m0). The scattering amplitude is a coherent superposition of resonances, such
as the six allowed transitions for 57Fe.

For a ∆Jz = M resonance line of a qL-multipole transition, the polarization
response

e∗f ·Y
(q)
LM

(
k̂f
)
Y(q)
LM

(
k̂0
)∗ · e0 (2.9)

is precisely the polarization response of a qL, ∆Jz = M classical oscillator. For
example, for an E1 transition, there are three types of oscillators: M = 0 which is a
linear electric dipole oscillation along the quantization axis zJ , M = +1 is a right-
hand circular oscillation about the +zJ axis, and M = −1 is a left-hand circular
oscillation about zJ . If the resonances are well separated (∆Ω� Γ), then there is
necessarily strong orthogonal scattering and a strong dependence on the direction of
the local fields (zJ ). For example (see figure 6), tuning in to an M = +1, E1 resonance,
regardless of the incident polarization (as long as e0 drives the oscillator), the scattered
radiation will be RH circular for kf in the direction +zJ , LH circular in the −zJ
direction, linear for kf ⊥ zJ , and elliptical for all other directions; and the whole
pattern will rotate with zJ if the direction of zJ is changed.

Figure 6. M = +1 electric dipole oscillator.



III-1.2 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics 135

The overall form of the polarization response is dictated by symmetry consider-
ations and can depend only on e0, k0, e∗f , kf and zJ since these are the only defined
directions of the scattering (in the absence of crystal fields). For an E1 transition, the
explicit Y(e)

1M expressions give the scattering amplitude [3]

fE1 = A0e∗f · e0 + iA1
(
e∗f × e0

)
· zJ +A2

(
e∗f · zJ

)
(e0 · zJ ), (2.10)

where factors A0, A1 and A2 are combinations of the F (e)
1M (see appendix A.2). But

the general form can be deduced entirely by symmetry arguments: the lowest order
E1 approximation is made by replacing exp(±ik · x)→ 1, and the resonant scattering
amplitude fE1 is then proportional to 〈ψ0|p ·e∗f |ψn〉〈ψn|p ·e0|ψ0〉. Thus, fE1 is a scalar
which is linear in the components of e0 and e∗f , and independent of k0 and kf . In the
absence of crystal fields, the only defined directions which enter into fE1 are e0, e∗f
and zJ , the direction of the quantization axis defined by the local moment of the
ion, as indicated in figure 7. Thus the distinct polarization responses possible are the
various scalar products which can be constructed from e0, e∗f and zJ , with e0 and e∗f
occurring linearly, and with zJ allowed to any order. These combinations are simply
e∗f · e0, i(e∗f × e0) · zJ and (e∗f · zJ )(e0 · zJ ). In the linear term, the factor i is required
for time-reversal invariance.

For a magnetic dipole transition (M1), similar arguments show that the same
form holds, but with the E-polarization vector e replaced by the B-polarization vector
b = k̂× e.

For an E2 transition, the scattering amplitude is linear in both e and k. Thus,
for E2 scattering the defined vectors are e0, k0, e∗f , kf and zJ . The scattering ampli-
tude fE2 is a scalar comprised of products of these vectors, with each term linear in
e0, k0, e∗f and kf , and containing zJ to any order [3–5].

The explicit expressions for the electronic and nuclear contributions fe and fn to
the elastic scattering amplitude are given in appendices A.1 and A.2 (for E1, M1, E2
and mixed M1–E2 nuclear transitions, assuming good Jz). The modifications of fn

when the electric field gradient (EFG) is noncoaxial with Bint are also discussed in
appendix A.2.

Figure 7. Scattering geometry.
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3. Dynamical theory of Mössbauer optics

3.1. Basic equations

The quantum theory of crystal optics is most conveniently developed using the
Green-function techniques of quantum electrodynamics [9].1 Using the simple intuitive
Feynman procedures, basic equations are obtained bearing a close formal relation to
those of classical optics [10].

For an incident photon [9]2

A0
µ(x) =

[
4π~c2

2ω0

]1/2

e0
µ exp(−iω0tx + ik0 · x), (3.1)

the induced current for coherent elastic scattering is

c−1Jµ(x) =

∫
d4yMµυ(x, y)A0

υ(y), (3.2)

where Mµυ(x, y) is the coherent elastic scattering operator

Mµυ(x, y) = Mµυ(x, y, tx − ty) = − i
~c2

〈
〈ϕ0|T

[
jµ(x)jυ(y)

]
|ϕ0〉

〉
. (3.3)

Here jµ(x) is the Heisenberg current operator, T is the time-ordering operator, ϕ0 is
the initial Heisenberg state vector for the system, and the outer brackets 〈· · ·〉 indicate
an ensemble average over the initial state of the system ϕ0.

The Feynman photon potential for the coherent elastic scattered wave3 is then

As
µ(z;ω) = c−1

∫
exp[i(k|z − x|)]
|z− x| Jµ(x,ω) dx,

=

∫ ∫
exp[i(k|z − x|)]
|z− x| Mµυ(x, y,ω)A0

υ(y,ω) dx dy, (3.4)

or in obvious matrix notation

As = δ+MA0. (3.5)

1 We make extensive use of the Feynman techniques and nomenclature as given in his book [9].
2 We use the four-vector conventions of [9]. x, y are four-vectors (ctx, x), (cty, y). Four-vector contrac-

tions are denoted as either kx = (ck4tx − k · x) or by repeated indices AµBµ = A4B4 − A · B. The
four-dimensional gradient operator used later is ∂µ = [(1/c)(∂/∂t),−∇].

3 As we have discussed in [10], at large distances from the source the “Feynman potential” is A⊥(x, t) =
〈0|Â⊥(x)|ψ(t)〉, where Â⊥(x) is the usual transverse vector potential operator at the point x, |ψ(t)〉
represents the electromagnetic field state vector at t, and |0〉 represents the vacuum state. More generally,
the “Feynman potential” is a photon Green’s function as discussed in [10, appendix A]. Our treatment
and nomenclature are designed to maintain a close correspondence with the conventional semiclassical
treatment of X-ray optics.
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Here the index ω indicates the Fourier transform. For coherent elastic scattering, the
final state of the system is unchanged, ϕf = ϕ0, and consequently, As is coherent with
the primary wave A0. The total Feynman potential at z is then

Aµ(z) = A0
µ(z) +As

µ(z). (3.6)

The Feynman potential may be used to compute the scattering cross-section in
the following manner: at large distances from the scatterer the expected energy flux is
given by

S =
c

2π
Re
(
E× B∗

)
, (3.7)

where E and B are computed from the potential Asµ(z) in the usual manner. The
quantum flux is (~ω)−1S. Dividing by the incident quantum flux, the coherent elastic
scattering cross-section is

dσ
dΩ

= lim
R→∞

R2|As
⊥(z;ω0)|2
|a0
⊥|2

. (3.8)

We have assumed an incident photon of well-defined energy ~ω0. However, if
the incident wave packet is a time varying signal,

A0
µ(z) =

∫
A0
µ(z,ω)e−iωtz dω, (3.9)

then the time-dependent coherent elastic scattered wave packet is

As
µ(z) =

∫
As
µ(z,ω)e−iωtz dω. (3.10)

For time-dependent scattering, the expected flux (probability/cm2/s) for a photon
at (z, t) is

n(z, t) =
ω0

2π~c
∣∣A⊥(z, t)

∣∣2, (3.11)

where ω0 is now the central resonance frequency of the Mössbauer transition, and the
frequency spectrum (probability/cm2/unit frequency interval) for a photon at (z,ω) is

n(z,ω) =
ω0

4π2~c
∣∣A⊥(z,ω)

∣∣2. (3.12)

As discussed in [10], for scattering from a single atom, the scattering matrix M
includes all internal processes involving virtual photon exchange, e.g., radiative re-
action, virtual internal conversion, virtual photoelectric and Auger absorption, etc.
When calculated exactly, M gives all contributions for the coherent elastic scattering
amplitude f for the atom.

Similarly, for scattering from a multiatom system, in addition to the complete
radiative processes for each atom, M now also includes all possible virtual photon
exchanges between atoms, and the resulting coherent elastic scattered wave As includes
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all possible single and multiple scattering processes which leave the final state of the
system unchanged, ϕf = ϕ0.

The basic problem for coherent X-ray and γ-ray optics is to obtain the coherent
elastic scattering operator M for the system. As discussed in the following section, the
scattering operator M can be developed in terms of single atom scattering operators
leading to simple multiple scattering equations which determine the coherent elastic
wave.

3.2. Multiple scattering equations

The scattering amplitude f for resonant X-ray or γ-ray optics gives strong tensor
scattering (e.g., σ ↔ π). The appropriate dynamical theory to handle this complication
has already been developed in connection with Mössbauer optics, and can be taken
over intact for resonant X-ray optics.

The multiple scattering equations for X-ray or γ-ray optics are developed in
terms of the scattering operators M j of the individual atoms. In terms of M j , the
coherent elastic scattering amplitude f j(kfef ; k0e0) for atom j to scatter an incident
|k0e0〉 photon into a |kfef〉 photon is given by (see [10])

f j(kf , ef ; k0, e0) = f je + f jn =
(
e∗f
)
µ
·M j

µυ(kf , k0;ω) · (e0)υ, (3.13)

including all atomic and nuclear scattering processes. For an arbitrary incident field Aj ,
M j determines the scattering response of the jth atom, i.e., the coupling to the inci-
dent wave, and the amplitude and polarization of the scattered photon. As noted, this
response can be quite complex, depending on the direction of incidence, the polariza-
tion and frequency of the incident photon, the direction and time-dependence of the
local fields, and the direction of the scattered photon.

For a system of scatterers, a simple set of multiple scattering equations determine
the coherent elastic wave (see [10])

Aµ(z,ω) = A0
µ(z,ω) +

∑
i

exp(ik|z− Ri|)
|z− Ri|

M i
µυ

(←
ki,
→
ki;ω

)
Aiυ(Ri,ω), (3.14)

where M i is the coherent elastic atomic scattering operator for atom i, and Ai is the
coherent elastic wave incident on atom i. Ai satisfies

Aiµ(Ri,ω) = A0
µ(Ri,ω) +

∑
j 6=i

exp(ik|Ri −Rj |)
|Ri − Rj|

M j
µυ

( ←
kj ,
→
kj;ω

)
Ajυ(Rj ,ω). (3.15)

Here
←
k j = i

←
∇j and

→
k j = −i

→
∇j , where the gradient is with respect to Rj , the

equilibrium position of atom j, and the gradients operate on the factors to the left or
right as indicated. In obvious matrix notation, these equations become

A = A0 +
∑
i

δ+
z,iM

iAi (3.16)
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and

Ai = A0 +
∑
j 6=i

δ+
ijM

jAj , (3.17)

where δ+
ij = exp(ikRij)/Rij . Equations (3.17) are a set of coupled equations which

determine the incident fields Ai, and then (3.16) gives the coherent elastic wave A
at (z,ω). Equation (3.17) simply says that the total field incident on the ith atom is
the primary field A0, plus the scattered waves emanating from all the other atoms j
under the inluence of the total fields Aj incident at those sites. Equation (3.16) then
gives the total field incident at r as the primary field A0(r, t) plus the scattered waves
emanating from all the atoms j under the inluence of the total fields Aj incident at
those sites.

Equations (3.16) and (3.17) are the basic optical equations for coherent X-ray
and γ-ray optics. These equations are identical in form to the semiclassical equations
used to develop the dynamical theory of X-ray diffraction (the important distinction
between the classical and quantum equations is that the quantum field equations are
complex, while the classical equations are real). Except for a small inaccuracy in
accounting for “mirror terms” [10, appendix B], eqs. (3.16) and (3.17) are the exact
single-quantum coherent scattering equations from a collection of scatterers.

Using these equations, the dynamical theory for X-ray or γ-ray optics has been de-
veloped using a generalized Darwin–Prins approach, which is applicable even to mono-
layer films [2,11–13]. An alternative generalized Laue development of Mössbauer
optics has been given by Afanas’ev and Kagan [14–16].4 In the following subsection
we review the Darwin–Prins approach.

The resulting optics is very rich because of the exceeding sharpness of the nuclear
resonances, the well defined multipolarity of the transitions, and the strong dependence
of the scattering on the directions of the local fields. There are strong magneto-
optical effects (Kerr, Faraday, etc.), and striking dynamical effects such as the strong
coherent enhancement of the radiative width Γγ → (Γc + Γ′γ), which occurs for Bragg
excitation, and, in the Laue geometry, the nuclear Borrmann effect, which involves
quite different modes of the radiation field than the X-ray Borrmann effect because
of the higher multipolarity of the nuclear resonators, and which has a much deeper
penetration depth because of the long scattering times (because the Lamb–Mössbauer
factor replaces the Debye–Waller factor in the scattering amplitude) [14,17].

3.3. Generalized Darwin–Prins dynamical theory

The multiple scattering equations which describe the interaction of a γ-ray with a
Mössbauer medium are given by eqs. (3.16) and (3.17). These equations are identical
in form to the semiclassical equations used to develop the dynamical theory of X-ray

4 The generalized Laue development is also given in [2, appendix D], starting from the basic multiple
scattering equations (3.16) and (3.17).
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Figure 8. (a) Schematic representation of the crystal geometry used in developing the dynamical theory
(dashed lines indicate crystal planes); (b) representation of open radiation channels for a plane layer;

(c) Bragg reflection; (d) Laue transmission.

diffraction,5 and as a consequence, much of the X-ray theory can be taken over directly.
However, it is necessary to generalize the X-ray theory to account for the very strong
polarization mixing which occurs in Mössbauer optics.

We will generally limit our discussion here to perfect single crystals (except for
the cases of critical reflection and transmission off-Bragg, where the expressions are
independent of crystal structure). The reflection and transmission coefficients depend
somewhat on the shape of the crystal, and, as in the usual X-ray development, we
take the form shown in figure 8: we assume that some set of infinite crystalline planes
is parallel to the surface, which we take as the xy plane, and that the crystal is of
finite thickness l in the z direction, l = Md, where M is the number of “planes”, and
d is the interplanar distance. The thickness of the layers is rather arbitrary, but they
must be sufficiently thin so that the Born approximation is good within the layer. We
generally assume a unit cell thickness (chemical or magnetic, whichever is larger). For
example, if there is a magnetic spiral axis θ̂ which is commensurate with the crystal
structure, it is convenient to use the magnetic unit cell, which contains the full spiral,
so that each “plane” of the crystal has the same internal field structure.

If a photon A0
µ(z, t) = a0

µ exp[i(k0 · z − ωt)] = A0
µ(z) exp(−iωt) is incident on

a plane layer (at z = 0), then in the Born approximation the coherent elastic photon
amplitude at R is given by6

Aµ(R) = A0
µ(R) +As

µ(R), (3.18)

5 For a discussion of the Darwin–Prins and Laue formulations of the dynamical theory of X-ray diffraction,
see [18].

6 An exact treatment of planar scattering, i.e., including multiple scattering within the plane, is given
in [11] and discussed in section 6. For most cases the planar self-action contribution is negligible.



III-1.2 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics 141

where As
µ(R) is the scattered wave,

As
µ(R) =

∑
s

iλ0n
′

sinφs
ei[gs|z|+(k0

xy+~τs)·R]Mµυ

(
−i
←
∇R, k0

)
a0
υ (3.19)

with

gs =

√
k2

0 −
(
k0
xy + ~τs

)2
, (3.20)

sinφs =
gs
k0

, (3.21)

and n′ is the planar density of unit cells (number/cm2). Mµυ is understood to be the
coherent scattering operator of the unit cell

Mµυ

(
k′, k

)
=
∑
ρ

[
M (ρ)
µυ

(
k′, k

)]
ce−i(k′−k)·~ρ. (3.22)

In deriving (3.19), we used the planar relation∑
j

eik|R−Rj |eik0
xy ·Rj

|R− Rj|
= i2πn′

∑
s

(1/gs)e
i[gs|z|+(k0

xy+~τs)·R]. (3.23)

The ~τs in eqs. (3.19) and (3.20) are the planar reciprocal lattice vectors for the unit
cells, and the sum is over all ~τs for which gs is real (the sum over the ~τs for which gs
is imaginary gives an exponentially damped contribution on the order of e−k0|z|/k0|z|).
The scattered photon amplitude is thus a superposition of a finite number of plane-
wave channels (s±) having wave vectors k(s±) = (k0

xy + ~τs,±gs). These channels
are symmetric about the scattering plane, i.e., for each forward scattered wave in the
k(s+) direction (the (s+) channel), there is a reflected wave in the k(s−) direction (the

(s−) channel) (see figure 8(b)). Finally, we note that the operator −i
←
∇R in eq. (3.19)

operates on the exponential plane-wave factor to the left of Mµυ , and is replaced by
the wave vector k(s+) = (k0

xy + ~τs, gs) if z > 0 (corresponding to forward scattering
k0 → k(s+)), and by k(s−) = (k0

xy + ~τs,−gs) if z < 0 (corresponding to reflection
k0 → k(s−)).

In a crystal of finite thickness, any wave of appreciable magnitude is built up
by constructive interference of the planar radiation channels. All the (open) planar
channels contribute to the general dynamical equations (eqs. (3.24), (3.34), (3.35)
below), but in the usual approximation, only constructively interfering channels need be
considered open for the crystal. Thus, there will generally only be one or two radiation
channels open in a crystal (off-Bragg, only the (0+) channel is open, for a single Bragg
reflection, the (0+) and a (1−) channel are open, and for Laue transmission, the (0+)
channel and a (1+) channel are open).

This approach to the problem follows the Darwin–Prins development of the dy-
namical X-ray diffraction. The alternative Laue formulation for γ-ray optics is dis-
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cussed in [14–16]. For a discussion of the Darwin–Prins and Laue formulations of the
dynamical theory of X-ray diffraction, see, for example, [18].

The generalization of the Darwin–Prins dynamical equations is straightforward:
denoting by A(m)

µ (k(s+)) the wave incident on the mth plane (from “above”) in the
(s+) channel, and similarly, by A(m)

µ (k(s−)) the wave incident on the mth plane (from
“below”) in the (s−) channel, then the waves incident from above on the mth plane
are related to the waves incident on the (m− 1)th plane as

A(m)
µ (k(s+)) = eigsd

[
A(m−1)
µ (k(s+))

+
iλ0nd

sinφs

∑
s′

∑
η=±

M (m−1)
µυ

(
k(s+), k(s′η)

)
A(m−1)
υ

(
k(s′η)

)]
, (3.24)

where d is the interplanar distance and n is the unit-cell density (cm−3). M (m−1)
µυ is

the unit-cell scattering operator of the (m − 1)th plane. We will generally limit our
considerations to uniform Mössbauer crystals (i.e., crystals with a uniform distribution
of Mössbauer atoms, and for which the unit-cell internal field structure is the same
throughout the crystal) for which the plane designation of the scattering operator can
be omitted. Equation (3.24) is an obvious result: the amplitude of a wave A(m)

µ (k(s+))
incident on the mth plane (from above) in the (s+) channel is equal to the amplitude
A(m−1)
µ (k(s+)) of such a wave incident on the (m − 1)th plane, plus the forward

scattering

i
λ0nd

sinφs
M (m−1)
µυ

(
k(s+), k(s+)

)
A(m−1)
υ

(
k(s+)

)
(3.25)

of this wave by the (m− 1)th plane, plus the amplitudes of all other channels incident
on the (m− 1)th plane scattered into the (s+) channel by this plane. These effects are
propagated to the mth plane by the phase factor eigsd.

Similarly, the waves incident on the mth plane from below are related to the
waves incident on the (m+ 1)th plane, with A(m)

µ (k(s−)) given by eq. (3.24) with the
replacements (s+)→ (s−), (m− 1)→ (m+ 1).

Denoting the first plane as the m = 0 plane, and the last plane as the m = M
plane (the total number of planes is M + 1), the general boundary conditions to be
satisfied are

A(m=0)
µ (k(s+)) = δs0a

0
µeik0·R0 , (3.26)

A(m=M )
µ (k(s−)) = 0. (3.27)

That is, the only wave incident from above on the first plane is A0
µ, and there are no

waves incident from below on the last plane.
It has already been implicitly assumed in deriving eq. (3.24) that k0d � 1,

which is well satisfied for Mössbauer frequencies. Thus, the longitudinal and scalar
components need not be considered and it is convenient to express eq. (3.24) in terms
of orthogonal transverse amplitudes.
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We define by e(sη)
x , e(sη)

y (η = + or −) any convenient orthogonal basis per-
pendicular to k(sη). In terms of this basis, the transverse part of A(m)

µ (k(sη)) is given
by

A(m)
µ (k(s+)) =

(
e(s+)
x T (s)

x,m + e(s+)
y T (s)

y,m

)
eik(s+)

xy ·Rm , (3.28)

A(m)
µ (k(s−)) =

(
e(s−)
x R(s)

x,m + e(s−)
y R(s)

y,m

)
eik(s−)

xy ·Rm , (3.29)

where

T (s)
x,m = e(s+)∗

x ·A(m)(k(s+))e
−ik(s+)

xy ·Rm ,

etc., so that T (s)
x,m gives the scalar amplitude of a photon |e(s+)

x , k(s+)〉 incident on the
mth layer from above, etc. We will denote the (s+) channels by the index t, and the
(s−) channels by r, and define the column vectors Ttm, Rr

m as

Ttm =

(
T (t)
x,m

T (t)
y,m

)
, (3.30)

Rr
m =

(
R(r)
x,m

R(r)
y,m

)
. (3.31)

The “planar” scattering matrix F̃ ss
′

(and f̃ ss
′
) (s, s′ = t or r) for scattering an (s′)

channel into an (s) channel is defined by

F̃ ss
′ ≡ d

sinφs
f̃ ss
′

=

(
F ss

′
xx F ss

′
xy

F ss
′

yx F ss
′

yy

)
, (3.32)

where

F ss
′

λλ′ ≡
d

sinφs
f ss
′

λλ′ =
d

sinφs
λ0nf

(
ks, esλ; ks′ , es

′
λ

)
, (3.33)

λ,λ′ = x or y, and where f (ks, esλ; ks′ , es
′
λ ) is the unit cell coherent elastic scattering

amplitude as given by eqs. (3.13) and (3.22). The planar scattering amplitudes F ss
′

are dimensionless, while the amplitudes f ss
′

have the dimensions of a linear mass
absorption coefficient, i.e., length−1.

In terms of these matrix quantities, the dynamical equations for Mössbauer optics
are given by the coupled equations

Ttm = eigtd
(

Ttm−1 + i
∑
t′

F̃ tt
′
Tt
′
m−1 + i

∑
r

F̃ trRr
m−1

)
, (3.34)

Rr
m = eigrd

(
Rr
m+1 + i

∑
r′

F̃ rr
′
Rr′
m+1 + i

∑
t

F̃ rtTtm+1

)
, (3.35)
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with the boundary conditions

Tt0 = δt0a0
(
k̂,ω

)
, (3.36)

Rr
M = 0. (3.37)

Equations (3.34), (3.35) are the generalization of the Darwin–Prins equations of
X-ray optics. These equations include not only the polarization mixing effects, but by
including the contribution of all (open) planar radiation channels, the scattering from
any set of Bragg planes can be computed.

3.4. General solution

For a uniform Mössbauer crystal it is straightforward to obtain a general solu-
tion from eqs. (3.34)–(3.37) for the amplitude and polarization of the reflected and
transmitted waves by making the substitutions

Ttm =
∑
k′

Ttk′e
imk′d ≡

∑
k′

(
T (t)
x,k′

T (t)
y,k′

)
eimk′d, (3.38)

Rr
m =

∑
k′

Rr
k′e

imk′d ≡
∑
k′

(
R(r)
x,k′

R(r)
y,k′

)
eimk′d. (3.39)

Substitution of (3.38), (3.39) into (3.34)–(3.37) gives[
e−i(gt−k′)d − 1

]
Ttk′ − i

∑
t′

F̃ tt
′
Tt
′
k′ − i

∑
r

F̃ trRr
k′ = 0, (3.40)

[
e−i(gr+k′)d − 1

]
Rr
k′ − i

∑
r′

F̃ rr
′
Rr′
k′ − i

∑
t

F̃ rtTtk′ = 0, (3.41)

and the boundary conditions∑
λ

∑
k′

T (t)
λ,k′e

(t)
λ = δt0a0

(
k̂0,ω0

)
, (3.42)∑

k′

R(r)
λ,k′e

ik′Md = 0. (3.43)

The dispersion equation to determine the allowed values of k′ is then

det
[
C̃
(
k′
)]

= 0, (3.44)
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where C̃(k′) is the coefficient matrix of eqs. (3.40) and (3.41),

C̃(k′) =


[(e−i(g0−k′)d − 1)Ĩ − iF̃ 00] −iF̃ 0t

−iF̃ t0 [(e−i(gt−k′)d − 1)Ĩ − iF̃ tt]
...

...

−iF̃ r0 −iF̃ rt
...

...
· −iF̃ 0r ·
· −iF̃ tr ·
·

... ·
· [(e−i(gr+k′)d − 1)Ĩ − iF̃ rr] ·
·

... ·

 . (3.45)

Here Ĩ is the 2×2 unit matrix and the F̃ ss
′

are the dimensionless planar scattering ma-
trices defined in eq. (3.33). C̃(k′) includes the (0+) channel, and all other transmission
channels (t) and reflection channels (r) that are open. If there are n open channels,
then eq. (3.44) gives 2n values of k′ (which are independent of the polarization basis
of representation). There are then 4n2 amplitudes T (t)

λ,k′ , R
(r)
λ,k′ to be determined from

the 4n2 linear relationships given by eqs. (3.40)–(3.43). In particular, for a given value
of k′, the 2n− 1 independent equations (3.40), (3.41) give the determinate solutions

T (t)
λ,k′ = Dt0

λx

(
k′
)
T (0)
x,k′ , R(r)

λ,k′ = Dr0
λx

(
k′
)
T (0)
x,k′ ,

in terms of T (0)
x,k′ . The 2n values of T (0)

x,k′ are then determined from the boundary
conditions (3.42), (3.43). The reflected and transmitted waves are then given by

Rr =
∑
λ

∑
k′

e(r)
λ R

(r)
λ,k′ , (3.46)

Tt =
∑
λ

∑
k′

eλ(t)T (t)
λ,k′e

ik′Md. (3.47)

Actually, eqs. (3.46) and (3.47) give Rr
0, the wave incident from below on the first

plane (m = 0), and TtM , the wave incident from above on the last plane (m = M ).
The exact reflected and transmitted waves Rr and Tt can then be calculated from
equations (3.34), (3.35) with the boundary conditions (3.36), (3.37):

Rr = Rr
0 + i

∑
r′

F̃ rr
′
Rr′

0 + iF̃ r0T0
0, (3.48)

Tt = TtM + i
∑
t′

F̃ tt
′
Tt
′
M . (3.49)

Usually, however, the scattering effects of a single plane can be neglected (unless we
are interested in the scattering from very thin films, say M ≈ 1–10), and it suffices to
use Rr = Rr

0 and Tt = TtM as given by eqs. (3.46) and (3.47).
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The reflection and transmission coefficients are then given by

Rr = g

∫
dω0 dΩk0

|Rr|2
I0

, T t = g

∫
dω0 dΩk0

|Tt|2
I0

, (3.50)

where

I0 =

∫
dω0 dΩk0

∣∣a0
(
ω0, k̂0

)∣∣2,

g = sinφs/ sin φ0 (figure 8(c,d)) is the Jacobian |Ωk0/Ωks)| for s = r or t, respectively,
and the integration range is taken sufficiently small that the relative variation of g
and ω0 is negligible.

The coherent elastic wave scattered into the ks-channel is linear in the incident
photon potential a0 (= a0e0) and can always be expressed in the general form

S
(
ω; k̂s, k̂0; e0

)
= S̃

(
ω; k̂s, k̂0

)
a0, (3.51)

where S = Rr or Tt for reflection or transmission channels, respectively. The compo-
nents of the 2× 2 scattering matrix S̃ (= R̃ or T̃ ), which directly relates the coherent
elastic wave scattered into the ks-channel to the incident photon a0, can be extracted
directly from the solutions for Rr and Tt.

The internal field in the crystal can be expressed as a superposition of radiation
eigenwave contributions,

A(r) =
∑
k′

Ak′(r), (3.52)

where the k′ eigenwave contribution is

Ak′(r) = eik′z
[∑

t

Ttk′e
i(kt)xy·r +

∑
r

Rr
k′e

i(kr)xy·r
]
. (3.53)

In certain cases it is convenient to solve in terms of eigenwaves, e.g., off-Bragg
(section 3.5), Laue (section 3.8), and multibeam Borrmann (section 3.9).

3.5. Off-Bragg

Off-Bragg, to a very good approximation, we only need consider the (0+) chan-
nel open. This channel only involves forward scattering amplitudes, and the optical
solutions are thus valid for a noncrystalline medium as well as for a crystal. A com-
plicating, but interesting feature of γ-ray optics is the presence of strong optical activ-
ity, which gives strong polarization mixing (i.e., orthogonal scattering êx ↔ êy) and
Faraday-type effects [10,13,19,20].
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3.5.1. Eigenwaves
Keeping only the (0+) channel in (3.40) and taking

ei(k′−g0)d = 1 +
ifηd

sin φ0
, (3.54)

the eigenpolarizations and indices of refraction are determined by the eigenvalue equa-
tion (

fxx fxy
fyx fyy

)(
Tx,k′

Ty,k′

)
= fη

(
Tx,k′

Ty,k′

)
, (3.55)

where fxx, fyy, etc. are the planar forward-scattering amplitudes defined by (3.33) and
again we have used ex, ey to denote any two orthogonal polarizations perpendicular
to k0; fab (a, b = x or y) is related to the unit-cell coherent forward scattering amplitude
by

fba(k,ω) = λn
∑
ρ

f (ρ)(eb, k; ea, k), (3.56)

where n is the unit-cell density, the sum is over the unit cell, and f (ρ)(eb, k; ea, k) is
the coherent elastic scattering amplitude of atom ρ for scattering an |ea, k〉 photon into
an |eb, k〉 photon.

From (3.55) we obtain (for η = 1 or 2)

fη =
1
2

Tr
(
f̃
)

+ (−1)(η+1)
{[

1
2

Tr
(
f̃
)]2

− det
(
f̃
)}1/2

=
1
2

(fxx + fyy) + (−1)(η+1)
[

1
4

(fxx − fyy)2 + fxyfyx

]1/2

, (3.57)

where the square root is taken to have a positive imaginary part. The corresponding
eigenpolarizations eη are given by7

eη
(
k̂,ω

)
= K(η,x)

[
ex +

(fη − fxx)
fxy

ey

]
, (3.58)

where

K(η,x) =

[
1 +

∣∣∣∣ (fη − fxx)
fxy

∣∣∣∣2]−1/2

. (3.59)

7 There are, of course, a number of alternative forms for eη which are obtained by using the determinant
equation (3.55), i.e., (fxx − fη)(fyy − fη) − fxyfyx = 0, and by modifying the factor K(η,x). In
particular, we can interchange all x and y subscripts in (3.58) and (3.59). In going from one basis to
another, over-all phase factors are absorbed into K(η,x).
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From (3.54) we see that k′ηd = g0d+fηd/ sin φ0 + O(fηd)2, so the eη eigenwave
propagates in the medium (to first order) as exp(inηk0 · r), with the complex index of
refraction given by

nη = 1 + λ̄0fη. (3.60)

We note that since the scattering matrix in (3.55) is, generally, non-Hermitian [2,
19], the eigenwaves eη are, generally, nonorthogonal. Only in limiting cases will the
eigenwaves be strictly orthogonal: well-isolated resonances (splitting large compared
to Γ); unsplit resonances (splitting small compared to Γ); or otherwise, if Jz is a good
quantum number, and k̂0 · ẑJ = 0,±1. Although it is not immediately obvious, it can
be verified that eη and fη are invariant with respect to the choice of orthogonal basis
ex, ey , as they must be.

3.5.2. Transmission through a Mössbauer film
The polarization and intensity of the coherent elastic wave transmitted through a

Mössbauer medium are easily obtained using the eigenwaves eη. The polarization and
amplitude of the (k̂,ω) component of the incident photon we write as

a0
(
k̂,ω

)
= a0x

(
k̂,ω

)
ex
(
k̂
)

+ a0y
(
k̂,ω

)
ey
(
k̂
)

=

(
a0x

a0y

)
, (3.61)

where ex(k̂) and ey(k̂) are an orthogonal polarization basis perpendicular to the mo-
mentum vector k of the incident photon.

Expressing ex and ey in terms of the eigenwaves e1 and e2 by inverting (3.58),
the (k̂,ω) component of the wave transmitted through a Mössbauer film of normal
thickness l is then given by

T
(
k̂,ω

)
= T̃

(
k̂,ω; l

)
a0
(
k̂,ω

)
, (3.62)

where the 2× 2 transmission matrix is given by

T̃
(
k̂,ω; l

)
=

(
Txx Txy
Tyx Tyy

)

=


1
2

[
e(+) + e(−)

(
fxx − fyy
f1 − f2

)]
e(−)

(
fxy

f1 − f2

)
e(−)

(
fyx

f1 − f2

)
1
2

[
e(+) − e(−)

(
fxx − fyy
f1 − f2

)]
 .(3.63)

Here

e(±)
(
k̂,ω; l

)
=
(
eif1l‖ ± eif2l‖

)
eig0l, (3.64)

where l‖ = l/ sin φ0 is the thickness along the direction of propagation.
The intensity of the transmitted packet is then given by

I =

∫
dω dΩk

∣∣T (k̂,ω
)∣∣2. (3.65)
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If the incident packet is unpolarized or partially polarized, one can use the density
matrix formalism discussed in [13].

The transmitted wave T(k̂,ω) is a superposition of eigenwaves e1 and e2. Since
the indices of refraction of the two waves are different, i.e.,

n1 − n2 = 2λ̄

[
1
4

(fxx − fyy)2 + fxyfyx

]1/2

, (3.66)

there are Faraday effects involved in the transmission through a Mössbauer medium.
The real part of n1 − n2 gives the usual Faraday rotation effect, while the imaginary
part gives a “selective absorption” effect. Since the electronic scattering gives essen-
tially no contribution to (3.66) (assuming the Mössbauer resonance frequency is far
from any X-ray absorption edges of the atom), n1 − n2 depends upon the nuclear
scattering amplitude and is primarily imaginary at resonance, while the real part dom-
inates off-resonance. Thus, at resonance the Faraday effect in Mössbauer optics is
primarily one of selective absorption. That is, if the resonances are well separated
and if the incident frequency (packet) is within a few widths of a resonance, so that
I(f1) � I(f2), the e1 eigenwave is damped out much more rapidly. For such a case,
the thickness l of the polarizing medium can be chosen sufficiently thick that almost
all of the e1 wave is absorbed, but still sufficiently thin that the e2 wave is only slightly
attenuated, and the transmitted wave is nearly e2 polarized. If the incident frequency
is adjusted off-resonance (within a few Γ), the real part of n1− n2 dominates and the
optical activity is primarily Faraday rotation.

3.5.3. Blume–Kistner approach
An alternative approach to treating off-Bragg transmission is to convert the finite

difference equation (3.34) to a differential equation. This is essentially the approach
of Blume and Kistner [19]. With only the (0+) channel open, (3.34) is

T(0)
m = eig0d

[
1 + iF̃ 00]T(0)

m−1. (3.67)

Treating the interplanar separation d as an infinitesimal (i.e., d→ dz, md→ z, T(0)
m →

T(z), and F̃ 00 → dzf̃/ sin φ0), and taking normal incidence for simplicity (i.e., φ0 =
π/2 so sinφ0 = 1, g0 = k0 and l‖ = l), eq. (3.67) becomes the differential equation

dT(z)
dz

= ik0ñT(z), (3.68)

where ñ = [1+ λ̄0f̃ ] is the 2×2 index of refraction operator, defined in (3.60), which,
combined with the boundary condition (3.36), gives the solution for the transmitted
wave amplitude

T
(
k̂,ω

)
= T(z = l) = T̃

(
k̂,ω; l

)
a0
(
k̂,ω

)
, (3.69)

where the 2× 2 transmission matrix is now given by

T̃
(
k̂,ω; l

)
= exp

(
ik0ñl

)
= exp

[
i
(
k0 + f̃

)
l
]
. (3.70)
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Expressing the 2×2 planar scattering matrix f̃ in terms of the Pauli matrices, i.e., f̃ =
a+b ·~σ, and making use of the operator identity exp(ib ·~σz) = cos(bz)+ i(b̂ ·~σ) sin(bz),
T̃ (k̂,ω; l) can be expressed as

T̃
(
k̂,ω; l

)
= ei(k0+a)l[ cos(bl) + i

(
b̂ · ~σ

)
sin(bl)

]
, (3.71)

where

a =
1
2

(fxx + fyy), bx =
1
2

(fxy + fyx), by =
i
2

(fxy − fyx), bz =
i
2

(fxx − fyy),

(3.72)
and

b =
√

b · b =

√
1
4

(fxx − fyy)2 + fxyfyx, b̂ · ~σ =
1
b

(
bz bx − iby

bx + iby −bz

)
.

Noting that b = (f1 − f2)/2 and that exp[i(k0 + a)l] cos(bl) = e(+)(k̂,ω; l)/2 and
exp[i(k0 + a)l] sin(bl) = −ie(−)(k̂,ω; l)/2 (assuming normal incidence), it is easy to
verify the equivalence of the two expressions (3.63) and (3.71) for the transmission
matrix T̃ (k̂,ω; l).

3.6. Bragg

For a single-Bragg reflection from a Mössbauer crystal, two channels are open:
the t0 = (0+) channel and a “reflection” channel r (Bragg case, shown in figure 8(c)),
or a “transmission” channel t (Laue case, shown in figure 8(d)). In this section we
consider the Bragg case.

The general dynamical equations (3.40), (3.41) now contain only the two ampli-
tudes T0

k′ and Rr
k′ ,

C̃
(
k′
)(T0

k′

Rr
k′

)
= 0, (3.73)

where the coefficient matrix C̃(k′) is now the 4× 4 matrix,

C̃
(
k′
)

=

(
(e−i(g0−k′)d − 1)Ĩ − iF̃ 00 −iF̃ 0r

−iF̃ r0 [(e−i(gr+k′)d − 1)Ĩ − iF̃ rr

)
. (3.74)

The dispersion equation (3.44) is now of the fourth order, and except for a few special
cases, there is no simple analytical solution. Of course, the numerical solution is easily
obtained, as outlined in section 3.4.

The special cases occur when the 2×2 forward scattering matrices F̃ 00 and F̃ rr,
and the reflection matrices F̃ r0 and F̃ 0r can be simultaneously diagonalized with an
appropriate choice of orthogonal polarization bases e(0)

λ and e(r)
λ′ (λ and λ′ = x, y).

Three important cases where this is possible are the following:
1. In the “isotropic limit” (magnetically disordered state for which the splittings

are negligible compared to Γ, e.g., 57Fe in stainless steel), the polarization response of
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the resonant Mössbauer scattering amplitude, given by eqs. (A.47)–(A.49) of appen-
dix A.2 for E1, M1, and E2 nuclear transitions, respectively, is that of a free classi-
cal oscillator of the corresponding multipolarity. For example, for an E1 resonance,
fE1 ∝ ê∗f · ê0, which is the response of a free electric dipole oscillator: the incident ê0

polarized E field drives the oscillator with an acceleration a ∝ ê0 exp(−iωt), and the
emitted radiation in the k̂f direction is proportional to the transverse projection a⊥ of
the acceleration relative to the k̂f direction.

For the “isotropic limit”, we also assume that the resonance energy of the
Mössbauer transition is far removed from any atomic absorption edges, so that the
electronic contribution to the scattering amplitude has the simple limiting form of
eq. (A.13), i.e., fe ∝ ê∗f · ê0. We make this same assumption for the other two special
cases discussed below.

For Bragg scattering from a crystal of isotropic scatterers, there is no orthogonal
scattering between the σ and π polarizations (σ̂0 = σ̂r is the unit vector lying parallel
to kr × k0, while π̂s (s = 0, r) lies in the (kr, k0) scattering plane and perpendicular
to ks, with the convention that (π̂s, σ̂s, ks) forms a right-hand coordinate system).
That is, in the isotropic limit, π polarization scatters only into π polarization (both
for forward scattering 0 → 0, r → r and for reflections 0 ↔ r), and σ polarization
scatters only into σ polarization. With the x, y polarization basis perpendicular to
ks taken as (e(s)

x , e(s)
y ) = (π̂s, σ̂s), there is no polarization mixing x ↔ y, and the

four coupled linear equations of eq. (3.73) separate into two sets of 2 × 2 coupled
linear equations, one set containing only the x amplitudes and the second only the
y amplitudes.

2. A second special case occurs when Jz is conserved, and the quantization
axis ẑJ (direction of the internal magnetic field and symmetry axis of the quadrupole
field) at each Mössbauer nucleus is perpendicular to the scattering plane (kr, k0).

Each hyperfine split resonance is now a good ∆Jz transition. As discussed in
section 2.4, for elastic scattering, the polarization response of a pure qL multipole
transition with ∆Jz = M is precisely that of a qL, ∆Jz = M classical oscillator,
with symmetry axis along the quantization axis ẑJ (which is perpendicular to the
scattering plane (kr, k0)). In this situation, there is no polarization mixing x ↔ y if
the polarization basis is again taken as (e(s)

x , e(s)
y ) = (π̂s, σ̂s).

For example, for an E1 resonance, the ∆Jz = ±1 resonances correspond to
right(+) and left(−) hand-side circularly polarized electric dipole oscillations about
+ẑJ , while ∆Jz = 0 resonances correspond to linear oscillation along ±ẑJ . With
ẑJ ⊥ (kr, k0), incident π̂0 polarized radiation couples only to the ∆Jz = ±1 oscillators,
which emit π̂f polarized radiation in the (kr, k0) plane, and incident σ̂ radiation couples
only to the ∆Jz = 0 oscillators, which emit σ̂ polarized radiation in the (kr, k0)
plane.

3. A third interesting special case where it is possible to simultaneously diago-
nalize the scattering matrices is for a pure magnetic reflection from a simple antifer-
romagnet, under the conditions that Jz is conserved, and that the quantization axis ẑJ
at each Mössbauer nucleus lies in the (kr, k0) scattering plane.
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This is a more complex situation because for forward scattering (0→ 0 or r → r)
π̂ polarized radiation scatters only into π̂, and σ̂ scatters only into σ̂, but for reflection
(0↔ r), π̂ scatters into σ̂, and σ̂ scatters into π̂.

To see this, consider the simple case of an E1 Mössbauer transition (fE1 =
A0e∗f · e0 + iA1(e∗f × e0) · ẑJ + A2(e∗f · ẑJ )(e0 · ẑJ )), with two atoms (±ẑJ ) in the
magnetic unit cell. The unit cell forward scattering amplitude is then proportional to
2A0e∗f · e0 + 2A2(e∗f · ẑJ )(e0 · ẑJ ) (plus an electronic contribution proportional to e∗f · e0,
assuming the resonance energy is far removed from any atomic absorption edges),
while for a pure magnetic reflection, the unit cell reflection amplitude is proportional
to 2A1(e∗f ×e0) · ẑJ (for a pure magnetic reflection, the electronic contribution vanishes,
as do the resonant terms of fE1 which contain even powers of ẑJ ). With ẑJ in the
(kr, k0) scattering plane, ẑJ ·σ̂ = 0, and it is easy to verify that the polarization response
for forward scattering and reflection from the unit cell is that discussed above.

Because for forward scattering the polarization state (π̂ or σ̂) is conserved, while
reflection changes the state (π̂ → σ̂ or σ̂ → π̂), it follows that if we take the x, y basis
vectors for the (0+) and (r) channels as (e(0)

x , e(0)
y ) = (π̂0, σ̂) and (e(r)

x , e(r)
y ) = (σ̂,−π̂r),

there is no polarization mixing x↔ y.
For all cases where there is no polarization mixing x↔ y, the four coupled linear

equations of (3.73) separate into two sets of 2 × 2 coupled linear equations, one set
containing only the x amplitudes and the other only the y amplitudes. There is then a
simple analytical solution for the reflected and transmitted waves:

If the incident radiation is near a Bragg angle for a reflection channel r = (1−)
as shown in figure 8(c), then

(g0 + g1)d = 2nπ + 2δ. (3.75)

We note that with g0 and g1 given by eq. (3.20), eq. (3.75) defines δ in terms of the
angle of incidence φ0 and, for asymmetric reflections, the x, y orientation of k0. For
a symmetric reflection (r = (0−)), δ = k0d cos φ0δφ, where φ0 is now understood to
be the exact Bragg angle, and δφ is the deviation of the incidence angle from exact
Bragg.

The dispersion equation then gives two values of k′λ (λ = x, y),

k′λ =
g0d− δ + αλ ± βλ

d
, (3.76)

where

αλ =
1
2

(
F 00
λλ − F 11

λλ

)
, (3.77)

βλ =
√
η2
λ − F 01

λλF
10
λλ, Imβλ > 0, (3.78)

ηλ = δ +
1
2

(
F 00
λλ + F 11

λλ

)
, (3.79)

and where the F ss
′

λλ are the planar scattering amplitudes defined by eq. (3.33).
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The reflected wave in the k1 channel is then given by

R(1)(δ,ω) = R̃
(
ω; k̂1, k̂0;M

)
a0
(
k̂0,ω

)
, (3.80)

where the 2× 2 reflection matrix R̃ is diagonal,(
R̃
(
ω; k̂1, k̂0;M

))
λλ

= imλF
10
λλ (3.81)

with mλ given by

mλ =
i

ηλ + iβλ cot(Mβλ)
. (3.82)

Here (M + 1) is the number of layers. As noted before in eqs. (3.46) and (3.48),
Rλ(δ,ω) is strictly the wave incident from below on the first plane (m = 0).

For thick crystals (such that Im(Mβλ)� 1), mλ ≈ i/(ηλ + βλ), and

Rλ(δ,ω) ≈ − F 10
λλ

ηλ + βλ
e(0)∗
λ · a0

(
ω, k̂

)
, (3.83)

which is the usual Darwin thick-crystal expression.8 In the opposite limit of thin films
(and very near Bragg), such that |Mβλ| � 1, then mλ ≈M/(1 − iMηλ), and

Rλ(δ,ω) ≈ iMF 10
λλ

1− iMηλ
e(0)∗
λ · a0

(
ω, k̂

)
. (3.84)

The transmitted wave in the k0 channel is given by

T(0)(δ,ω) = T̃
(
ω; k̂0, k̂0;M

)
a0
(
k̂0,ω

)
, (3.85)

where the diagonal 2× 2 transmission matrix T̃ is(
T̃
(
ω; k̂0, k̂0;M

))
λλ

= Q−1
λ exp

[
iM (αλ + βλ + g0d− δ)

]
. (3.86)

Here

Qλ =
ηλ + βλ

2βλ

[
1− ei2Mβλ

ηλ − βλ
ηλ + βλ

+ imλ(ηλ − βλ)
(
1− ei2Mβλ

)]
. (3.87)

The denominator Qλ has simple limiting forms for thick and thin crystals: Qλ = 1
for thick films, and Qλ = [1− iM (ηλ − βλ)] for thin films.

3.6.1. Coherent enhancement
One of the most interesting features of resonant γ-ray optics is the phenomenon

of “coherent enhancement” near a Bragg excitation – under proper conditions, a strong
enhancement of the coherent radiative width occurs, due to a constructive collective
interaction between the nuclei interacting through the resonant radiation field [11]. The

8 In comparing with the standard results, e.g., [18, p. 428], note that the |γm|, |γ0| factors which appear
in the X-ray results for asymmetrical reflections are the same as the sinφ(s) factors which are included
in the F ss

′
λλ .
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integrated intensity of the reflected wave then maximizes near resonance, in optimum
cases approaching 100% reflectivity, and also the transmitted intensity, although min-
imizing near resonance, is generally much greater than the off-Bragg intensity. (This
occurs because the transmitted wave depends primarily on the eiMβλ factor in (3.86),
and βλ, which depends on the square root of the difference between 1

4(F 00
λλ + F 11

λλ)2

and F 01
λλF

10
λλ, generally has a much smaller imaginary part than F 00

λλ, which determines
the off-Bragg transmission.)

The optimum conditions are to have a highly enriched crystal in which the res-
onant nuclear contribution to the coherent elastic scattering amplitude strongly dom-
inates the nonresonant electronic contribution; to have a symmetric Bragg reflection
(i.e., the r = (0−) channel) so that F 11

λλ = F 00
λλ and F 10

λλ = F 01
λλ; and to have a situation

where the resonant nuclear scattering is isotropic in the (k0, k1) scattering plane, so
that F 10

λλ = F 00
λλ for the nuclear scattering. These conditions optimize the radiative

coupling between the contributing planes.
To illustrate coherent enhancement, we consider the particularly simple case of an

“isotropic” M1 Mössbauer transition and a simple cubic lattice containing a fraction C
of the resonant nuclei. We assume incident π̂-polarized radiation (the incident B field,
which couples to the M1 transition, is then σ̂-polarized and the scattering is isotropic
in the (k0, k1) scattering plane), and a symmetric Bragg reflection. For this case we
have (with e(s)

x = π̂(s) for s = 0, 1)

F 00
xx =F 11

xx = Fn + Fe,
(3.88)

F 10
xx =F 01

xx = Fn + re cos(2φ0),

where 2φ0 is the scattering angle (φ0 is the angle of incidence with respect to the xy
planes), and

Fn =
λnd

sinφ0
fn =

λnd

sinφ0

1
2
λ̄CfM

2J1 + 1
2J0 + 1

Γγ
Γ

1
[x(J0,J1)− i]

,

Fe =
λnd

sinφ0
fe(0) =

λnd

sinφ0

(
−Zr0 + i

σe

4πλ̄

)
, (3.89)

re =
λnd

sinφ0
fe(2φ0) =

λnd

sinφ0

(
−F (2φ0)r0 + i

σe

4πλ̄

)
,

where x(J0,J1) = [E(J1)−E(J0)−~ω]/(Γ/2). Fe and re in (3.89) should, of course,
be the coherent average of the Mössbauer and non-Mössbauer atoms. For a numerical
estimate we take a thin iron crystal with M ≈ 104 plane layers, containing 65% 57Fe.
Then for ex = π̂ polarized resonant radiation incident at Bragg (with C/ sin φ0 = 1),
we have T ≈ 0.04, R ≈ 0.67; while off-Bragg, T ≈ 2×10−4 and R ≈ 2×10−7. Thus,
at Bragg, the reflectivity is increased by six orders of magnitude, and the transmitted
intensity, although still small, is increased by two orders of magnitude compared to
off-Bragg.

This enhancement of the coherent scattered radiation can be viewed as due to
an enhancement of the partial width Γc for coherent scattering. For a highly enriched
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crystal for which we can neglect Fe and re with respect to Fn near resonance, we have,
in the thin-crystal limit of eq. (3.84),

Rx(ω, δ) ≈ 1
1− iMδ

i(Γc/2)
[ω0 − ω − i(Γ/2)− (iΓc/2)/(1 − iMδ)

, (3.90)

where the partial width for spatially coherent scattering is

Γc = 2πnλ̄2l‖(k0)Γcoh. (3.91)

Here Γcoh = [fMC(2j1 + 1)Γγ/(4j0 + 2)] and l‖(k0) = Md/ sin φ0 is the thickness
of the crystal in the direction of k0. (Strictly, the total width Γ = Γγ + Γα in the
denominator of (3.90) should be Γ′γ + Γα, where Γ′γ is the partial width for spatially
incoherent radiative decay and Γα is the partial width for internal conversion decay.)

Thus, the effect of the coherent interaction is to enhance the resonance width
to Γ′,

Γ′ = Γ′γ + Γα +
Γc

1 + (Mδ)2 = Γ′γ + Γα + Γc at exact Bragg (δ = 0), (3.92)

and additionally to shift the resonance frequency about Bragg,

ω′0 = ω0 + ∆ωc(δ) = ω0 +
Mδ

1 + (Mδ)2

Γc

2
. (3.93)

The enhancement of Γc is proportional to the number of layers of the crystal,
and for sufficiently thick crystals, typically M ≈ 103 − 104 layers, Γc will exceed
(Γ′γ + Γα) and coherent decay will dominate incoherent decay.

3.6.2. Nuclear excitons, superradiance and coherent enhancement
That radiative coupling can radically alter the radiative decay rate of an excited

system relative to that of an isolated atom is well known [11,21–25]. Following [11],
consider two identical nuclei with nondegenerate ground states a1 and a2 and excited
states b1 and b2. Because of the radiative coupling between the nuclei, the exponentially
decaying states (normal modes) are not b1a2 or a1b2, but rather the symmetric and
antisymmetric combinations (b1a2 ± a1b2)/

√
2. If Γγ is the partial width for radiative

decay from either nucleus alone, the radiative decay rates of these two modes are

Γ± =
1
2

Γγ|1± exp(ik · R)|2 = Γγ
(

1± sin kR
kR

)
, (3.94)

where k is the wave vector of the emitted radiation, and R is the relative displacement
between the two nuclei. For kR � 1, we have Γ+ ≈ 2Γγ and Γ− ≈ 0. In this
limit, the symmetric mode has an enhanced decay rate while the antisymmetric mode
becomes nonradiative. We call the phenomenon that a collective state of a system has
a radiative decay rate larger than that of a single nucleus “superradiance”. If the decay
rate is smaller than that of a single nucleus, the mode is “subradiant”.
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This behavior is easy to understand classically. The symmetric mode corresponds
to two oscillators oscillating together in-phase, which, for kR� 1, doubles the dipole
moment. The radiation fields are doubled and the radiation power is increased to four
times that of a single oscillator. Since the total mechanical energy εT is also doubled,
the decay rate for the system is −(dεT/dt)/εT = 2Γγ . In contrast, in the antisymmetric
mode, the oscillators move 180◦ out of phase and the radiation fields from the two
oscillators interfere destructively, giving a very weak (electric quadrupole) radiative
decay.

In addition to the altered decay rates, the normal modes also exhibit shifted
resonance frequencies. For the two-nuclei system, the resonance shifts are (averaged
over the direction R̂)

∆ω± ≈ ∓Γγ
cos(kR)
kR

, (3.95)

which will give large resonance shifts for kR� 1, with the symmetric mode oscillating
at the lower frequency.

For a crystal of resonant nuclei, the effects can be much more pronounced. As
a first approximation, the wave functions for the exponentially decaying excited states
(normal modes) in a crystal might be expected to be of the form of Bloch waves,

∣∣ψe(q)
〉

=
1√
N

N∑
l=1

eiq·Rl |el〉
∣∣G0(l)

〉
, (3.96)

where |el〉|G0(l)〉 represents the state in which the lth nucleus is excited while all other
nuclei remain in their ground states, Rl is the position of the lth nucleus and q is the
Bloch vector. The partial width for the radiative decay of this “qth mode” is (in the
Golden Rule approximation)

Γc(q) =
Γγ

4πN

∫
dΩ(n)

∣∣∣∣∣
N∑
l=1

exp
[
−i(k− q) ·Rl

]∣∣∣∣∣
2

, (3.97)

where k = (ω0/c)n is the wave vector of the outgoing radiation (ω0 is the resonance
frequency of the nuclei). Most states |ψe(q)〉 are subradiant, with Γc(q) on the order
of Γγ/N . However, if for some specific emission direction n, the condition k− q = τ
holds, where τ is a reciprocal vector of the crystal lattice, then the mode |ψe(q)〉 will
have a highly directional coherent decay about the q + τ direction at an enhanced
decay rate

Γc = πnλ̄2l‖(q + τ )Γγ , (3.98)

where l‖(q + τ ) is the thickness of the crystal in the direction of (q + τ ) and n is
the number of nuclei per unit volume. We will give a more detailed discussion of this
result in section 4.1.4. For λ = 1 Å, n = 0.1 Å−3, we get a decay rate Γc = Γγ for a
crystal with a thickness of only 100 Å. Thus, in such a superradiant mode, if a crystal
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is sufficiently thick, the coherent decay rate will dominate the incoherent radiative
decay rate Γγ and the the decay rate due to internal conversion Γα.

Now, in fact, the Bloch waves |ψe(q)〉 are generally not the true radiative normal
modes in a crystal. As discussed in [11] and shown in section 6, the proper forms of
the eigenmodes for a parallel sided crystal have a sine or cosine modulation (coming
in from the crystal faces) with a complex wave vector. Generally, the Bloch state
|ψe(q)〉 is a superposition of these radiative eigenmodes, which have a spread of
eigenfrequencies and decay rates. The important exception is the case in which |q| =
ω0/c and q satisfies a Bragg condition q · τ = (1/2)τ 2, where τ is a reciprocal
lattice vector which is perpendicular to the parallel faces. In this case, |ψe(q)〉 is a
superradiant eigenmode, radiating at the natural resonance frequency ω0, and decaying
at an enhanced decay rate including the contributions from coherent decay into both
the q and q + τ directions,

Γc(q) = πnλ̄2[l‖(q) + l‖(q + τ )
]
Γγ. (3.99)

An important general result is that the eigenmodes are not Hermitian orthogonal,
and, as a consequence, the decay of a general superposition state depends upon
the spread of mode eigenfrequencies as well as the individual eigenmode decay
rates.

This issue is of considerable current interest because it is now possible to create
spatially coherent single exciton nuclear states |ψe(k0)〉 of the Bloch form by illu-
minating crystals containing resonant Mössbauer nuclei (e.g., 57Fe) with synchrotron
radiation pulses [26–28]. The resulting state has k0 = (ω0/c)n0, where ω0 is the
resonance frequency and n0 is the incidence direction of the synchrotron pulse. By
proper choice of n0, k0 will satisfy a Bragg condition and the state |ψe(k0)〉 becomes a
superradiant eigenmode decaying into the k0 and k0 + τ directions. For k0 off-Bragg,
|ψe(k0)〉 is a superposition of various normal modes of different eigenfrequencies and
decay rates. Nevertheless, as we will discuss in section 4.1.4, such a state still has an
initial superradiant decay into the “forward” k0 direction, with Γc given by eq. (3.98)
with τ = 0.

The normal mode breakup gives a different perspective on the scattering of
external resonant radiation at Bragg and the coherent enhancement effect given in
eqs. (3.90)–(3.93): the intermediate excited states in the scattering process are now
the collective normal mode exciton states, and at exact Bragg (δ = 0) for a sym-
metric Bragg reflection, the phasing is such that only the superradiant eigenmode
state |ψe(q = k0)〉 is excited, with resonance occurring at the natural resonance fre-
quency ω0, and with the coherent decay rate Γc given by eq. (3.99) (which agrees
with eq. (3.91), noting that for the symmetric Bragg reflection l‖(k0 + τ ) = l‖(k0)).
Rocking off-Bragg, in addition to the superradiant eigenmode, various other normal
mode states are virtually excited, the weighted resonance energy is shifted from ω0,
and the effective width is decreased.
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3.6.3. Thick crystal reflectivity curves
A qualitative insight into the dependence of the integrated reflected resonance

scattering on the beam collimation, the rocking angle, the frequency, and the enrich-
ment C of Mössbauer atoms is obtained by examining the angular dependence of the
reflectivity curves |Rλ(δ,ω)|2 for different incidence frequencies ω. In figures 9(a)
and (b) we plot |Rλ(δ,ω)|2 as a function of δ for a symmetric Bragg reflection from a
thick crystal of 57Fe in stainless steel, with enrichment concentrations C = 0.02, 0.65,
respectively, and with φ0 = 10◦. The incident polarization is ex = π̂. Rx(δ,ω) is
then given by eq. (3.83), with the planar scattering amplitudes given by eqs. (3.88)
and (3.89).

The curves labeled x =∞ are the purely electronic scattering curves. As is well
known, the reflected intensity for this case has a region of near total reflection for
δ ∝ −<(Fe ± re), where Fe and re are given by eq. (3.89).

In figure 9(a), the crystal has a weak concentration of Mössbauer atoms, C =
0.02. For this case, Fn ≈ 1.1×10−4(x−i)−1 while Fe ≈ −6.1×10−4 +i2.0×10−5 and
re ≈ −3.3× 10−4 + i2.0× 10−5. Thus, even at resonance, the dominant contributions
to the coherent scattering amplitudes are the real parts of Fe and re, and the region
of maximum scattering is still contained within the region δ ∝ −<(Fe ± re). As the
frequency of the incident radiation nears the resonance frequency, Fn is primarily
imaginary and acts as an absorptive contribution to Fe and re. As shown in figure 9(a),
the intensity within the maximum scattering region is strongly decreased, and it is clear
that the integrated intensity will exhibit a minimum in the resonance region.

In figure 9(b), C is taken as 0.65, for which Fn ≈ 3.5×10−3(x−i)−1, and Fn gives
the dominant contribution to the scattering amplitudes near resonance. For this case the
region of strong scattering is greatly broadened near resonance, with a maximum spread
on the order of |Fn|ω=ω0 . This broadening of the scattering region can lead to a strong
maximum for the integrated intensity. Of course, within the region δ ∝ −<(Fe ± re),

Figure 9. Thick crystal reflectivity curves for 57Fe stainless steel with enrichments (a) C = 0.02, and
(b) C = 0.65.
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|Rx(δ,ω)|2 as a function of frequency again strongly decreases near resonance, so if
the incident beam is collimated to this region, a minimum will occur (for the case being
considered, this corresponds to an angular collimation ≈4 × 10−4 rad). Qualitatively
then, the reflected wave will maximize near resonance if the rms spread 〈δ〉 satisfies
〈δ〉 > |Fn|ω=ω0 > |re|, i.e., the most favorable conditions for a maximum are for
highly enriched crystals, large scattering angles, and collimation spread larger than the
region δ ∝ −<(Fe ± re).

Finally, we note that polarization is important. For example, in the simple case
considered above, for incident ey = σ̂ polarization, Ry(δ,ω) is given by eq. (3.83)
with the planar scattering amplitudes

F 00
yy =F 11

yy = Fn + Fe,
(3.100)

F 10
yy =F 01

yy = Fn cos(2φ0) + re.

An interesting point is that the reflected intensity will always minimize near resonance
for a Bragg angle of φ0 = 45◦. This occurs because cos(2φ0) = 0, so that the numerator
of Ry(δ,ω) only contains re and is frequency independent, while the denominator
contains Fn and maximizes at resonance. This is analogous to the Brewster angle
effect in optics, but modified by the multipolarity of the scattering: for φ0 = 45◦ and
incident ey = σ̂, the magnetic dipoles respond to the incident π̂0 polarized B field,
and hence oscillate in the direction of the reflected wave and do not contribute to the
scattered field. Thus, the scattered wave is produced entirely by the electrons, which
do strongly scatter the incident σ̂-polarized E field. However, the reflected wave from
a layer will interact with the magnetic dipoles in upper layers, and this interaction
dissipates energy from the reflected wave.

3.7. Grazing incidence

For grazing incidence reflection, there are again two channels open: the t0 = (0+)
channel and the symmetric reflection channel r = (0−). Grazing incidence reflection
is, in fact, a special case of Bragg reflection with Bragg angle φB = 0.

If the incident photon is near grazing incidence with respect to the xy planes,
the four scattering matrices F̃ s

′s (s′, s = 0, r) in eq. (3.74) can be taken equal to the
forward scattering matrix F̃ 00 to order φ (where φ is the angle of grazing incidence).
In this approximation, the matrices can all be simultaneously diagonalized, and the
equations separate into two sets of Darwin–Prins equations, as in the special Bragg
cases considered in section 3.6. Furthermore, since only F̃ 00 enters, the diagonalizing
bases are the off-Bragg nonorthogonal eigenwaves eη(k̂,ω) given by eq. (3.58). Since
only forward scattering amplitudes are involved, the optical solutions are valid for
noncrystalline films as well as for crystals. The equivalence of this “two-wave” dy-
namical theory approach and the “one-wave” index of refraction approach is discussed
in [29, appendix A].
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The Bragg reflection solutions of section 3.6 can then be used, with appropriate
modifications for the nonorthogonality of the bases. For an incident e0 = eη(k̂0,ω)
photon, the reflected wave is given by eq. (3.83), which after some manipulation
becomes

R
(
k̂r,ω

)
=Rηeη

(
k̂r,ω

)
, (3.101)

Rη =
1− (1 + 2λ̄fη/φ2)1/2

1 + (1 + 2λ̄fη/φ2)1/2
, (3.102)

where fη is given by eq. (3.57). For the special cases for which the eigenbases are
orthogonal, the reflected wave for an incident photon of arbitrary polarization is given
by

R
(
k̂r,ω

)
=
∑
η=1,2

(
e∗η · e0

)
Rηeη. (3.103)

For the general case where the eη are nonorthogonal, the development follows the
off-Bragg treatment, and the reflected wave is given by

R
(
k̂r ,ω

)
= R̃

(
k̂r, k̂0,ω

)
a0
(
k̂0,ω

)
, (3.104)

where the incident wave a0 is taken as a two-component column vector as in eq. (3.61),
and the 2× 2 reflection matrix is given by

R̃
(
k̂r , k̂0,ω

)
=

(
Rxx Rxy
Ryx Ryy

)

=


1
2

(
R(+) +R(−)

fxx − fyy
f1 − f2

)
R(−)

fxy
f1 − f2

R(−)
fyx

f1 − f2

1
2

(
R(+) −R(−)

fxx − fyy
f1 − f2

)
 ,

(3.105)

where

R(±) = R1 ±R2. (3.106)

Here fη and Rη (η = 1, 2) are given by eqs. (3.57) and (3.102).
In figure 10(a) we plot |R(k̂r,ω)|2 as a function of φ for for several different

frequencies about a resonance. Here we consider only a single resonance so that
fn = f0/(x − i) with x = 2(Eres − ~ω)/Γ, and for f0 we use the factors appropriate
for grazing incidence of right-circular-polarized radiation in near resonance with the
m0 = +1/2 ↔ m1 = +3/2 resonance of 57Fe with B ‖ k0. Off resonance there is a
region of near total reflection for φ < φc = [−2λ̄<(fη)]1/2 ≈ 3.8 × 10−3 rad. In the
resonance region, the scattering amplitude fη becomes primarily imaginary, and there
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Figure 10. (a) |R(ω,φ)|2 vs. φ for reflection from a resonant 57Fe mirror for several different frequencies.
The crosses indicate the angles φc(ω). The X-ray critical angle is φc = 3.8 mrad. (b) φc(ω) vs. ∆/Γ =

(~ω − Eres)/Γ. The scale is mrad, and the dotted line indicates the X-ray critical angle φc.

is no well-defined critical angle. Nevertheless, a rough characterization of the curves
is given by the “frequency-dependent critical angle” φc(ω),

φc(ω) = max
{√∣∣2λ̄<(fη)

∣∣, √2λ̄=(fη)
}
.

In figure 10(a) the positions of φc(ω) are indicated by crosses. The region φ < φc(ω) is
a region of strong scattering for a wave of frequency ω. In figure 10(b) we plot φc(ω)
for the same resonance. φc(ω) is enhanced on the high-frequency side of the resonance,
where the nuclear contribution to the index of refraction interferes constructively with
the electronic contribution, and the angular region of strong reflection is much broader
than far off resonance (φc). Correspondingly, there is a minimum for φc(ω) on the low-
frequency side of the resonance, where the nuclear scattering interferes destructively
with the electronic scattering, and the angular region of strong scattering is much
smaller than φc.

From figure 10(a) it is clear that if the beam is incident below the electronic φc,
then as a function of frequency the reflected intensity will exhibit a sharp minimum
on the low-frequency side of the resonance (where φc(ω) minimizes). Similarly, if
φ > φc, the reflected intensity will have a sharp maximum on the high-frequency side
of the resonance.

In figures 11(a) and (b) we plot |R(ω,φ)|2 vs. ω for grazing-incidence reflection
from 57Fe at angles φ = 3.0 and 4.4 mrad, which lie below and above the electronic
critical angle φc = 3.8 mrad. Here the magnetic field at the nucleus lies in the plane
of the film and perpendicular to k0, so the eigenpolarizations are the linear basis π̂, σ̂.
The solid lines give the response to incident σ̂. The two M = 0 transitions couple
only to π̂ radiation, and the four M = ±1 transitions couple only to σ̂ radiation.
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Figure 11. (a) |R(ω,φ)|2 vs. ω for reflection from a resonant 57Fe mirror for (a) B ⊥ k0, φ = 3.0 mrad,
and (b) φ = 4.4 mrad. The solid line gives the response for incident σ̂ polarization, the dashed line
for incident π̂. In (c), B ‖ k0, φ = 4.4 mrad. The solid line is for incident e(+1), the dashed line for

incident e(−1).

The strongest polarization coupling is that of π̂ polarization to the linear M = 0
oscillators (|π̂ · Ŷ(m)

10 (k̂0)|2 = 1, while |σ̂ · Ŷ(m)
1±1(k̂0)|2 = 1/2). The Clebsch–Gordan

coefficients are C2 = 2/3 for the two M = 0 transitions, C2 = 1 or 1/3 for the
two M = +1 transitions (the strongest is the +1/2↔ +3/2 transition), and similarly
C2 = 1 or 1/3 for the two M = −1 transitions. For this geometry, the strongest
oscillator strengths then occur for the M = 0 transitions (C2|π̂ · Ŷ(m)

10 |2 = 2/3, while
C2|σ̂·Ŷ(m)

1±1|2 = 1/2 or 1/6), and we see in figure 11(b) that the strongest effects (higher
peak reflectivities and broader widths) occur near these resonances. In agreement with
our earlier discussion, for φ < φc, a sharp minimum occurs on the low-frequency side
of each resonance, while for φ > φc a sharp maximum occurs on the high-frequency
side of each resonance.
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In figure 11(c) we give the corresponding results for φ = 4.4 mrad with B
parallel to k0, for which the eigenpolarizations are the circular basis e(±1). Now the
solid line gives the response for e(+1) radiation, and the dashed line for e(−1) radiation.
In this geometry the M = +1 transitions couple only to e(+1) radiation, the M = −1
transitions couple only to e(−1) radiation, and the M = 0 transitions are unexcited. The
polarization coupling is now maximal, |e∗(±1) · Ŷ

(m)
1±1|2 = 1, and the oscillator strengths

are C2|e∗(±1) · Ŷ
(m)
1±1|2 = 1 or 1/3. We note that in this geometry the oscillator strengths

for the two strong M = ±1 transitions (±1/2↔ ±3/2, for which C2 = 1) are stronger
than those of the M = 0 transitions with B ⊥ k0, and, in fact, this geometry gives
the maximum possible oscillator strength in the case of hyperfine splitting. The only
stronger coupling is for the unsplit case, for which the oscillator strength is increased
from 1 to 4/3.

An important extension of these considerations is grazing incidence reflec-
tion from multilayer media of resonant and nonresonant films, discussed by
Röhlsberger [30] and Chumakov et al. [31] (in this issue), and in [29,32,33]. Thin-film
interference techniques are of fundamental importance in modern optics. In the optical
region, thin dielectric films are used to produce antireflection coatings, broad and nar-
row bandpass frequency filters, polarizers, dichroic mirrors for color-selective beam
splitting, and multilayer high-reflectance dielectric mirrors. Many of these techniques
have been extended to the UV and X-ray regions. For γ-ray optics, the important
point is that if one or more of the films are highly enriched Mössbauer films, the index
of refraction for near resonant radiation differs strongly from the index of refraction
far off resonance, and as a consequence it is possible to use thin-film interference
techniques to strongly suppress the off-resonance grazing incidence reflectivity while
maintaining a very “bright” reflection for near resonance radiation, offering an “ul-
tranarrow” bandpass filter for synchrotron radiation. By using different combinations
of films and substrates, the response can be tailored to give narrow bandpass widths
∆ω ≈ Γ and correspondingly long delayed scattering times to optimize time filter-
ing, or at the other extreme, to produce filters of very broad resonance width with
∆ω ≈ 100Γ, which would be ideal for a high resolution X-ray source [32,33].

3.8. Laue

For a Laue-case Bragg reflection from a Mössbauer crystal, the two open channels
are the t0 = (0+) incidence channel, and a “transmission” channel t1 = (1+), as shown
in figure 8(d).

In parallel to the Bragg case, the general dynamical equations (3.40), (3.41) now
contain only the two amplitudes T0

k′ and T1
k′ ,

C̃
(
k′
)(T0

k′

T1
k′

)
= 0, (3.107)
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where the coefficient matrix C̃(k′) is now the 4× 4 matrix

C̃
(
k′
)

=

((
e−i(g0−k′)d − 1

)
Ĩ − iF̃ 00 −iF̃ 01

−iF̃ 10
(
e−i(g1−k′)d − 1

)
Ĩ − iF̃ 11

)
. (3.108)

As in the Bragg case, the dispersion equation (3.44) is again of fourth order and,
except for a few special cases, there is no simple analytical solution, but the numerical
solution is easily obtained, as outlined in section 3.4.

The special cases again occur when the 2 × 2 forward scattering matrices F̃ 00

and F̃ 11, and the reflection matrices F̃ 10 and F̃ 01 can be simultaneously diagonalized
with an appropriate choice of orthogonal polarization bases e(0)

λ and e(1)
λ′ (λ and λ′ =

x, y). For these special cases, there is no polarization mixing x↔ y, the four coupled
linear equations of (3.107) separate into two sets of 2 × 2 coupled linear equations,
and the resulting transmission matrices are diagonal.

If the incident radiation is near a Bragg angle for a transmission channel t = (1+),
as shown in figure 8(d), then

(g0 − g1)d = 2nπ + 2δ, (3.109)

and the dispersion equation then gives (λ = x, y)

k′λ = (g0d− δ + αλ ± βλ)/d, (3.110)

where, for the Laue case,

αλ =
1
2

(
F 00
λλ + F 11

λλ

)
, (3.111)

βλ =
√
ν2
λ + F 01

λλF
10
λλ, (3.112)

νλ = δ +
1
2

(
F 00
λλ − F 11

λλ

)
. (3.113)

The square root is again taken so that =(βλ) > 0.
The transmitted waves in the k0 and k1 channels are then given by

T(0)(δ,ω) = T̃
(
ω; k̂0, k̂0; l

)
a0
(
k̂0,ω

)
, (3.114)

T(1)(δ,ω) = T̃
(
ω; k̂1, k̂0; l

)
a0
(
k̂0,ω), (3.115)

where the 2× 2 transmission matrices T̃ are diagonal,(
T̃
(
ω; k̂0, k̂0; l

))
λλ

=

(
cosMβλ + iνλ

sinMβλ
βλ

)
eiM (αλ+g0d−δ), (3.116)

(
T̃
(
ω; k̂1, k̂0; l

))
λλ

=

(
iF 10
λλ

sinMβλ
βλ

)
eiM (αλ+g0d−δ). (3.117)

From eqs. (3.116) and (3.117), we see that for a thin crystal, very near Bragg, T (1)
λ ≈

iMF 10
λλ and T (0)

λ ≈ (1 + iMαλ). As a function of frequency, the k1 wave in this
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case will exhibit a maximum in the region of constructive interference between the
electronic and nuclear scattering, while the k0 wave exhibits a weak minimum.

For a thick crystal the dominant contributions to T (1)
λ and T (0)

λ come from the
exponential term depending on the difference between αλ and βλ, i.e.,

T (1)
λ (δ,ω)≈−1

2
e(0)∗
λ · a0

F 10
λλ

βλ
eiM (αλ−βλ+g0d−δ),

(3.118)

T (0)
λ (δ,ω)≈ 1

2
e(0)∗
λ · a0

(
1− νλ

βλ

)
eiM (αλ−βλ+g0d−δ).

The exponent in (3.118) determines the Laue penetration depth lλ for the radiation
field,

lλ(δ) = d
[
=(αλ − βλ)

]−1
. (3.119)

Since the imaginary part of αλ − βλ will generally maximize in the resonance region,
it is clear that, as a function of frequency, both the k0 and k1 waves will exhibit
a minimum in the resonance region for a thick crystal (and it is only for the thin-
film limit that a maximum will occur). Nevertheless, because the penetration depth
depends on the difference between αλ and βλ, the transmitted intensity for the Laue
case is greater than for the off-Bragg case, and for certain high symmetry situations in
simple crystals, it is possible to strongly suppress either the nonresonant photoelectric
absorption (X-ray Borrmann effect), or the resonant internal conversion absorption
(γ-ray suppression effect).

3.8.1. X-ray Borrmann effect
For a symmetric Laue reflection for which the scattering planes are perpendicular

to the crystal surface, φ1 = φ0 and F 11
λλ = F 00

λλ. If, furthermore, there is only one atom
per unit cell, then F 01

λλ = F 10
λλ. Under these conditions, at exact Bragg (δ = 0), the

penetration depth for e(0)
λ incident radiation is

lλ(δ = 0) = d
[
=
(
F 00
λλ − F 10

λλ

)]−1
. (3.120)

If the frequency of the radiation is large compared to any of the atomic absorption
edge frequencies, the coherent elastic X-ray scattering amplitude is given to good
approximation by the isotropic limit, eq. (A.13). When this holds, the imaginary part
of F 10

λλ differs from the imaginary part of F 00
λλ by two factors: the Debye–Waller factor

fD(θ) and the polarization factor e∗f · e0, which is 1 for σ̂ polarization and cos(θ) for
π̂ polarization. The Laue penetration depths are then

lσ(δ = 0) =
2 cos(θ/2)

nσe

1
1− fD(θ)

,
(3.121)

lπ(δ = 0) =
2 cos(θ/2)

nσe

1
1− cos(θ)fD(θ)

.
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For σ̂ polarization, the Laue penetration depth is greatly enhanced over the off-Bragg
penetration depth,

lOB =
2 cos(θ/2)

nσe
, (3.122)

the enhancement being

lσ
lOB

=
[
1− fD(θ)

]−1 ≈ 1
2 sin2(θ/2)

λ̄2

〈x2〉 =
1

2m2π2

d2
B

〈x2〉 , (3.123)

where x is the displacement of an atom from its equilibrium position due to zero
point and thermal motion, and where, in the last expression, we have used the Bragg
condition ksinθ = mπ/dB, where dB is the interplanar distance for the particular set
of Bragg planes. For π̂ polarization, the enhancement is

lπ
lOB

=
[
1− cos(θ)fD(θ)

]−1 ≈
[
2 sin2(θ/2)

]−1
. (3.124)

For an iron lattice at liquid-He temperature, and θ = 20◦, the lσ enhancement is
≈2.2 × 102, and the lπ enhancement is ≈17.

The deep penetration of the σ̂ polarization occurs because for this polarization
the radiation field establishes a standing wave pattern in the crystal with nodes at the
lattice sites, greatly reducing the photoabsorption.

When the difference between the wave vectors k0 and k1 of two plane waves in
the crystal is very nearly equal to a reciprocal lattice vector ~τ , as shown in figure 12(a),
the waves satisfy the Bragg condition for reflection from the set of planes associated
with ~τ and will be strongly reflected one into the other. Neither the wave in k0 nor that
in k1 by itself constitutes an eigenwave of the radiation field in the crystal; rather, the
eigenwaves are linear combinations of the waves in these two channels. There are two
linearly independent polarization vectors associated with each beam in the mode, π̂ and
σ̂, and thus there are four eigenmodes associated with each two-beam Laue reflection.
When the Bragg condition is satisfied exactly, the wave field of these eigenmodes
within the crystal consists of traveling waves along the direction of propagation (along
k0 + k1) and standing waves perpendicular to that direction.

At exact Bragg (δ = 0) for a symmetric Laue reflection, incident σ̂-polarized
radiation is a superposition of two eigenmodes:

E0σ̂0eik0·r =
1√
2

(
E|2σ〉2 + E|1σ〉2

)
, (3.125)

where the eigenmodes are

E|2σ〉2 =
E0√

2

(
σ̂0eik0·r + σ̂1eik1·r) =

E0√
2

eikz cos(θ/2)2iŷ sin

(
mπx

dB

)
, (3.126)

E|1σ〉2 =
E0√

2

(
σ̂0eik0·r − σ̂1eik1·r) =

E0√
2

eikz cos(θ/2)2ŷ cos

(
mπx

dB

)
. (3.127)
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Figure 12. (a) Structure of the two-beam symmetric σ̂ eigenmode |2σ〉2, corresponding to the reciprocal
lattice vector ~τ , where the relative phase of the two beams is that which occurs at an atomic site. The
lower figure shows a projection of the mode onto the plane perpendicular to the symmetry axis ẑ of
the mode. (b) Standing-wave fields produced within the crystal in mode |2σ〉2. The solid vertical lines

through the lattice points denote planes of nodal E.

Here we have used the geometry shown in figure 12 (and figure 14 in the next sec-
tion).

In figure 12(b) we plot the standing waves of E|2σ〉2 and its associated magnetic
field B|2σ〉2 ,

B|2σ〉2 =
E0√

2

(
−π̂0eik0·r − π̂1eik1·r)

=
−E0√

2
eikz cos(θ/2)

[
2ix̂ cos

(
θ

2

)
sin

(
mπx

dB

)
− 2ẑ sin

(
θ

2

)
cos

(
mπx

dB

)]
.

(3.128)

Note that, in this mode, the equilibrium position of each atom in the crystal lies within
a nodal plane of the electric field. In contrast, for the E|1σ〉2 mode, eq. (3.127), each
atom is in an antinode of the electric field.

At typical X-ray energies, photoabsorption is predominantly electric dipole, so
the photoabsorption rate is proportional to the average squared electric field at the
atom, 〈|E|2〉. In the Borrmann mode (|2σ〉2), each atom lies in a region of low electric
field and the photoabsorption rate of this mode is reduced from the off-Bragg value of
µOB = nσe to a value

µ = geµOB = genσe, (3.129)

where, to first order,

ge
(
|2σ〉2

)
= 2k2 sin2(θ/2)

〈
x2〉. (3.130)
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The factor k2 sin2(θ/2)〈x2〉 is the product of the mean-square amplitude of oscillation
of the atom about its equilibrium position and the square of the x, y component of
each wave vector in the mode. This occurs because the atoms oscillate about their
equilibrium positions, and the electrons sample the nonzero electric field on either side
of the node. Comparing eqs. (3.130) and (3.123), we see that ge(|2σ〉2) = lOB/lσ;
ge(|2σ〉2) can be quite small (≈0.1–0.01), and radiation in the Borrmann mode will
penetrate 10–100 times further in a good crystal than will radiation off-Bragg in the
same material.

In contrast, the |1σ〉2 mode has an enhanced E-field at each site, giving

ge
(
|1σ〉2

)
= 2, (3.131)

and the two π̂ modes also have nonzero E-fields at the lattice sites, giving

ge
(
|2π〉2

)
= 2 sin2(θ/2), (3.132)

ge
(
|1π〉2

)
= 2 cos2(θ/2), (3.133)

and as a consequence, the penetration depths (= lOB/ge) of these modes are much less
than for the two-beam Borrmann mode |2σ〉2. The E and B standing waves of the
|2π〉2 mode are shown in figure 13.

Returning to eq. (3.125), incident σ̂ polarization is a superposition of E|2σ〉2
and E|1σ〉2 . Within the crystal, the E|1σ〉2 component is rapidly absorbed out, leaving
the E|2σ〉2 pattern deep in the crystal. The transmitted field at the bottom surface is
then E|2σ〉2 , which then divides into two equal amplitude channels k0 and k1, each
carrying 25% of the incident intensity (if l� lσ). This is just the solution for T (0)

σ and

Figure 13. (a) Structure of the two-beam symmetric π̂ eigenmode |2π〉2, corresponding to the reciprocal
lattice vector ~τ , where the relative phase of the two beams is that which occurs at an atomic site. The
lower figure shows a projection of the mode onto the plane perpendicular to the symmetry axis ẑ of
the mode. (b) Standing-wave fields produced within the crystal in mode |2π〉2. The solid vertical lines

through the lattice points denote planes of nodal B.
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T (1)
σ given by eq. (3.118) at exact Bragg, for the highly symmetric situation considered

here.

3.8.2. γ-ray suppression effect
For the resonant Mössbauer nuclei, the effect is even more striking: because the

resonant nuclear transitions take place over times much longer than crystal vibration
times (10−8 s or longer as compared to 10−13 s), in contrast to the electronic interac-
tions, which occur over a much shorter time period (≈10−16 s), it is possible for the
nuclei to effectively decouple from a two-beam Laue mode. Under these conditions,
there is a complete suppression of all elastic and inelastic resonant γ-ray processes,
and the nuclei become completely transparent to the mode. However, because the
multipolarity of the Mössbauer transition is generally M1 or higher, the suppression
effect mode will generally be different from the E1 Borrmann mode |2σ〉2. This effect
was first discussed by Afanas’ev and Kagan [14,34,35].

As for the X-ray Borrmann effect, the suppression effect is optimal in a simple
crystal with one atom per unit cell (so F 01

λλ = F 10
λλ for the “isotropic” limits) and for

a symmetric Laue reflection (so φ1 = φ0 and F 11
λλ = F 00

λλ). Then at exact Bragg
(δ = 0), the penetration depth lλ again depends inversely on =(F 00

λλ − F 10
λλ), as given

by eq. (3.120), but now the planar scattering amplitudes F contain both the nuclear
and electronic scattering amplitudes, F = nλd(fe +fn)/ sin φ0. Assuming the simplest
situation of an unsplit Mössbauer line, the nuclear scattering amplitudes fn are given
by the isotropic limits given in eqs. (A.47)–(A.49) for E1, M1 and E2 transitions,
respectively.

Because the resonant scattering is slow compared to crystal vibration times, the
nuclear scattering amplitude contains the Mössbauer phonon factor fM = exp(−k2〈x2〉)
for both k0 → k1 scattering and for forward scattering k0 → k0. Thus, in contrast
to the electronic scattering, which contains the Debye phonon factor fD(θ), F 10

λλ(n)
differs from F 00

λλ(n) only by the polarization factor of the nuclear scattering.
As a consequence, for the nuclear scattering it is possible to have a complete

equality of the 0 → 1 and the 0 → 0 scattering amplitudes, F 10
λλ(n) = F 00

λλ(n). When
this occurs, the nuclei become completely transparent to the deeply penetrating Laue
mode – i.e., there is a complete suppression of all resonant nuclear scattering and
absorption in this mode. The penetration depth of the suppression effect mode (SE
mode) is determined entirely by photoabsorption, lλ = d/=(F 00

λλ(e)− F 10
λλ(e)).

If the Mössbauer transition is E1 (e.g., the 6.25 keV transition of 181Ta or the
25.7 keV transition of 161Dy), then fn ∝ e∗f · e0 for an unsplit line, just as for fe in
the isotropic limit. Then for incident σ̂0 radiation, F 10

σσ(n) = F 00
σσ(n), and the deeply

penetrating SE mode is just the Borrmann |2σ〉2 mode with nodes of the E field at the
lattice sites, with penetration depth given by eq. (3.121). The other two-beam Laue
modes (|1σ〉2, |2π〉2, |1π〉2), which all have antinodes of E at the nuclei, are strongly
absorbed at resonance.

Most Mössbauer transitions, however, are M1 or E2. For an M1 Mössbauer
transition, for an unsplit line, fn ∝ b∗f · b0, where b = (k̂ × e) is the magnetic
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polarization vector of the radiation field. Thus, an M1 transition responds to the
b vector of the radiation field just as an E1 transition responds to the e vector. As a
consequence, it is for e = π̂ radiation (for which b = σ̂), that the SE condition holds,
i.e., F 10

ππ(n) = F 00
ππ(n). The penetration depth lπ is strongly limited by photoabsorption,

however, as given by eq. (3.123).
The effective decoupling of the π̂ polarization from the M1 nuclear resonance

occurs because for this polarization the radiation field is able to establish a standing
wave pattern in the crystal with nodes of the magnetic field at the lattice sites. At
exact Bragg (δ = 0) for a symmetric Laue reflection, incident π̂-polarized radiation is
a superposition of two eigenmodes,

E0π̂0eik0·r =
1√
2

(
E|2π〉2 + E|1π〉2

)
, (3.134)

in parallel to eq. (3.125). The structure of the |2π〉2 mode is shown in figure 13. Note
that in this mode, the equilibrium position of each atom in the crystal lies within a nodal
plane of the magnetic field, but in an antinode of the electric field. In the |1π〉2 mode,
there is a 180◦ phase change of the k1 wave, and the resulting standing wave patterns
are shifted by 90◦ from the |2π〉2 mode, so the |1π〉2 mode has antinodes of both E and
B at the lattice sites. Thus, at resonance, the |1π〉2 component of the incident radiation
is rapidly absorbed out by resonant nuclear absorption, leaving the |2π〉2 pattern deep
in the crystal. Resonant nuclear transitions take place over times much longer than
crystal vibration times (10−8 s or longer as compared to 10−13 s), in contrast to the
electronic interactions, which occur over a much shorter time period (≈10−16 s). The
coupling between the radiation mode and the nuclei is, thus, proportional to the square
of the average of the appropriate component of the field at the nucleus, in this case
|〈B〉|2 = 0, rather than the average of the square 〈|B|2〉 as one would expect for a fast
process [1].

Note that the M1 suppression effect mode |2π〉2 is not a Borrmann mode, since it
has a nonzero electric field at the equilibrium site of the atom and thus couples strongly
to the electrons. Conversely, the Borrmann mode |2σ〉2 will couple strongly to M1
Mössbauer nuclei, since, in this mode, each nucleus lies in a region of strong magnetic
field (see eq. (3.128) and figure 12(b)). This mode will couple to higher-multipole
transitions as well since the electric field gradient (EFG) and higher derivatives of the
field are also large at the oscillator. In general, it is not possible to obtain simultaneous
suppression of both the nuclear and electronic coupling in the two-beam case for
Mössbauer transitions of multipolarity M1 or higher in the absence of Zeeman splitting.
As we shall see in the next section, this is possible for multibeam modes.

For an unsplit E2 Mössbauer transition,

fn ∝
(
k̂f · k̂0

)(
e∗f · e0

)
+
(
k̂f · e0

)(
k̂0 · e∗f

)
.

Because fn depends on the directions of both the wave vector k̂ and of the polar-
ization e, the E2 scattering is anisotropic for both σ̂ and π̂ polarizations, F 10

σσ(n) =
F 00
σσ(n) cos(θ) and F 10

ππ(n) = F 00
ππ(n) cos(2θ), where θ is the scattering angle k0 → k1.
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The classical radiation pattern being produced by the “isotropic” E2 oscillator driven
by incident |k0e0〉 radiation is a fourfold E2 pattern, with lobes along ±e0 and
±k̂0. Thus, for incident σ̂0, which lies perpendicular to the (k0, k1) scattering plane,
F 10
σσ(n) = F 00

σσ(n) only for 180◦ backscattering, k1 = −k0; while for incident π̂0,
which lies in the (k0, k1) scattering plane, F 10

ππ(n) = F 00
ππ(n) for 90◦ scattering as well

as for 180◦ scattering. As a consequence, there is no suppression effect possible for
an unsplit E2 transition, except for the very special situation of a 90◦ Bragg angle, in
which case the SE condition holds for π̂ radiation, F 10

ππ(n) = F 00
ππ(n).

Higher multipoles will also exhibit anisotropic scattering in any scattering plane,
so in the absence of hyperfine splitting, there can be no two-beam suppression effect
for transitions of multipolarity E2 or higher, except for certain accidental situations
where a Bragg angle coincides with a scattering symmetry.

To this point we have assumed that there is no hyperfine splitting. If there
is hyperfine splitting, then it is possible to have a two-beam suppression effect for
selected ∆Jz nuclear transitions for any multipole order and it is also possible to
obtain a simultaneous suppression of both the electronic and nuclear coupling in the
two-beam case:

The simplest situation is to have the local quantization axis zJ of each nucleus
oriented parallel to the symmetry axis ẑ of the symmetric Laue channel (i.e., the sample
is ferromagnetically ordered in the ẑ direction). For this symmetrical arrangement, k0

and k1 each make a polar angle θ/2 relative to zJ (see figure 12), and the axial angles
φ0 and φ1 differ by π, so that exp[iM (φ1 − φ0)] = (−1)M . It then follows that the
couplings of the oscillator to the two channels are related by

e(1)
λ · Y

(q)
LM

(
k̂1
)

= (−1)Me(0)
λ ·Y

(q)
LM

(
k̂0
)
, (3.135)

for eλ = σ̂ or π̂ (see, e.g., the explicit Y(q)
LM expressions for E1, M1 and E2 given in

eqs. (A.22)–(A.24)). As a consequence, using the simple interference criteria discussed
in the following section, for even order transitions (∆Jz = 0,±2, . . .), there is no
coupling to either |1σ〉2 or |1π〉2; and for odd order transitions (∆Jz = ±1,±3, . . .),
there is no coupling to either the two-beam Borrmann mode |2σ〉2 or to the mode |2π〉2.

Thus, simultaneous SE and Borrmann effects occur for any well-isolated odd
order ∆Jz transition (symmetrically oriented as discussed above), for example, for
an M1 transition with ∆Jz = +1. From the semiclassical point of view, the B-field
standing wave of the |2σ〉2 mode is in the ẑ direction, as shown in figure 12, which is
orthogonal to the (x̂, ŷ)-oscillation plane of the M1, ∆Jz = +1 oscillator, so the |2σ〉2
mode does not couple to this nuclear transition. However, the mode does couple to
the ∆Jz = 0 components, so strong resonance absorption will occur if the frequency
is shifted to a ∆Jz = 0 resonance.

3.8.3. Interferometry, Borrmann and suppression
The photon mode established deep in the crystal by the scattering/absorption in

the upper layers (the |2σ〉2 mode for the Borrmann case, or the |2π〉2 mode for the
isotropic M1 suppression effect) is a coherent two-channel mode. This is exactly
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the situation produced in Bonse–Hart X-ray interferometry in the final plate of the
interferometer where the two beams are brought back together.

The suppression of absorption (and scattering) that occurs in the Borrmann and
SE effects is due to destructive interference between competing quantum processes.

Consider an atom which can be moved about the unit cell (for example, on the
lower surface of the crystal). Let its equilibrium position be r, with r = 0 a lattice
site (or extended lattice site on the lower surface). If the photon is in the |2σ〉2 state,
then the transition matrix element for K-shell photoabsorption is

〈Ψf |HI |Ψ0〉 ∝ 〈ψke |p · σ̂0|ψK〉
〈
χf
∣∣ei(k0−ke)·x∣∣χ0

〉
ei(k0−ke)·r

+ 〈ψke |p · σ̂1|ψK〉
〈
χf
∣∣ei(k1−ke)·x∣∣χ0

〉
ei(k1−ke)·r, (3.136)

where ke is the wave vector of the ejected photoelectron, and χ0 and χf denote the
initial and final crystal vibrational states. Since σ̂1 = −σ̂0, there will be destructive
interference between the two processes if the atom is located at a lattice site (r = 0),
while at an interstitial, the two absorption amplitudes interfere constructively. The
resulting total photoabsorption cross-section is then

σ = σe
[
1− fD(k1 − k0) cos(k1 − k0) · r

]
, (3.137)

where σe is the usual photoabsorption cross-section, and fD(k1 − k0) = fD(θ) is
the Debye phonon factor for photon scattering k0 → k1. Thus, at a lattice site,
photoabsorption is suppressed by the factor [1− fD(θ)] ≈ 2 sin2(θ/2)〈x2〉/λ̄2. For
an iron lattice at liquid-He temperature, with 14.4 keV radiation and θ = 20◦, the
suppression is ≈4.5× 10−3.

Scattering is also suppressed in the Borrmann effect. The scattering amplitude
for photon scattering |2σ〉2 → |k, e〉 from an atom located at a position r within the
unit cell is

〈k, e|f̃e(r)|2σ〉2 =
1√
2

[
fe(k, e; k0, σ̂0)ei(k0−k)·r + fe(k, e; k1, σ̂1)ei(k1−k)·r], (3.138)

which is the coherent superposition of the two scattering processes |k0, σ̂0〉 → |k, e〉
and |k1, σ̂1〉 → |k, e〉. These two contributions interfere destructively if the atom is
located at a lattice site (r = 0) and if fe is given by the isotropic limit (A.14), but the
cancelation is not as complete as for photoabsorption: in addition to having different
phonon factors as in eq. (3.136), the real parts also have different form factors, 〈n(Q0)〉
and 〈n(Q1)〉. The resulting cross-section for scattering is then suppressed by a factor
≈[1−

∫
〈n(Q0)〉〈n(Q1)〉 dΩk/

∫
〈n(Q0)〉2 dΩk], typically ≈10−1.

For the nuclear scattering and absorption processes, it is possible to have com-
plete suppression. This occurs for two reasons. First, the Mössbauer phonon fac-
tor fM = exp(−k2〈x2〉) replaces the Debye–Waller factor fD(Q) = exp(− 1

2Q
2〈x2〉).

The important point is that fM is essentially isotropic, while fD depends on the
momentum transfer and, hence, varies with the scattering angle θ. Secondly, there
is no Q-dependent form factor for nuclear scattering. Instead, the angular depen-
dence is determined entirely by the multipole pattern of the particular QLM os-
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cillator. Thus, for a properly oriented nuclear oscillator, it is possible to have
fn(k, e; k0, e0) = fn(k, e; k1, e1), and complete suppression can be achieved.

For resonant scattering or absorption, the transition amplitude has the general
form ∑

n

〈Ψf |HI |Ψn〉〈Ψn|HI (em)|Ψ0〉
[En −E0 − ~ω − iΓn/2]

, (3.139)

where HI(em) = −c−1
∫

dx jn(x) · A(x) is the electromagnetic interaction potential
for the nucleus, and HI is the appropriate interaction potential for the decay. If the
incident photon is in a coherent two-beam superposition state |mλ〉2 (m = 1 or 2,
λ = σ or π), then the photon absorption part of the resonant amplitude (3.139) has the
form 〈

0
∣∣HI (em)

∣∣mλ〉2 ∝ J
(q)
LM

[
Y(q)∗
LM

(
k̂0
)
· e(0)
λ + (−1)mY(q)∗

LM

(
k̂1
)
· e(1)
λ

]
, (3.140)

where we have assumed that the nuclear transition is a pure QLM multipole transi-
tion, and that the nucleus is located at a lattice site. Substituting (3.140) into (3.139),
the resonant transition amplitude becomes a coherent superposition of two compet-
ing amplitudes, arising from the incident photon being in the k0- or the k1-channel,
respectively. Complete destructive interference between these two amplitudes occurs
if [

Y(q)∗
LM

(
k̂0
)
· e(0)
λ + (−1)mY(q)∗

LM

(
k̂1
)
· e(1)
λ

]
= 0. (3.141)

If the local quantization axis zJ of each nucleus is oriented parallel to the symmetry
axis ẑ of the symmetric Laue channel (i.e., the sample is ferromagnetically ordered
in the ẑ-direction), then Y(q)∗

LM (k̂0) · e(0)
λ and Y(q)∗

LM (k̂1) · e(1)
λ are related by eq. (3.135),

leading to the following conclusions: for even order transitions (∆Jz = 0,±2, . . .),
there is a complete suppression of resonant scattering and absorption in both the
|1σ〉2 and the |1π〉2 modes; and for odd order transitions (∆Jz = ±1,±3, . . .), there is
complete suppression in the two-beam Borrmann mode |2σ〉2 and in the |2π〉2 mode.

Since the even and odd ∆Jz transitions couple to different sets of modes, it is
generally not possible to have an SE effect if there is no hyperfine splitting, except
for E1 or M1 transitions. For an unsplit E1 transition, if we take zJ parallel to ẑ as
above, the ∆Jz = 0 transitions correspond to a classical charge oscillating along the ẑ
axis and there is no coupling to σ̂-polarization. Thus the |2σ〉2 mode will not couple
to the ∆Jz = 0 transitions and, as discussed above, suppression holds for this mode
for the remaining ∆Jz = ±1 transitions. Similarly, for an unsplit M1 transition, the
SE effect holds for the |2π〉2 mode because the ∆Jz = 0 transitions will not couple to
π̂-polarization, and suppression holds for the ∆Jz = ±1 transitions in this mode.

3.8.4. Enhancement and suppression
The enhancement effect and the nuclear Borrmann effect are distinct effects, but

there is an aspect linking the two effects. In the Russian literature, the anomalous
transmission at Laue, and the near total reflection occurring at Bragg in a thick crystal,



174 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics III-1.2

are both considered aspects of a single effect, the “suppression of inelastic chan-
nels” [14,15]. We use the term “suppression effect” to mean specifically the nuclear
Borrmann effect.

For the nuclear Borrmann effect, which occurs in the symmetric Laue geometry,
there is a complete suppression of all elastic and inelastic resonant processes. This
is a quantum interference effect in which the photon is first put into a coherent two-
beam symmetric Laue state (the |2σ〉2 state for E1 Borrmann or the |2π〉2 state for
M1 Borrmann) by scattering and absorption from the atoms in the upper layers of the
crystal. Once the mode is established, which requires 50% absorption of the incident
|k0, e(0)

λ 〉 radiation, there is a complete suppression of all further resonant scattering or
absorption processes for a Mössbauer atom placed at a lattice site. This occurs because
there are two coherent amplitudes leading to any final state |Ψf〉 – either the absorbed
photon is incident in the |k0, e(0)

λ 〉 channel, or it is incident in the |k1, e(1)
λ 〉 channel –

and there is complete destructive interference between the two amplitudes.
The nuclear Borrmann effect is not a collective effect of coupled resonators.

Once the coherent photon state is established, suppression occurs equally well for
a single Mössbauer atom at a lattice site as for a collection of Mössbauer atoms at
different lattice sites. Furthermore, the resonators need play no role in establishing the
coherent two-beam photon state. For example, for E1 resonators, the |2σ〉2 mode can
be established by normal X-ray scattering and absorption in the upper layers, with the
Mössbauer isotope atoms only being introduced at depths on the order of the Borrmann
penetration depth, or at extended lattice sites on the exit surface.

The enhancement effect, on the other hand, is manifestly a collective effect
between the interacting resonators: when a crystal of Mössbauer atoms is excited
resonantly by an external monochromatic plane wave at a Bragg angle (in the Bragg
geometry), there is an enhancement of the partial width for emission via coherent decay
(Γc = 2πnλ̄2l‖(k0)) and a consequent suppression of the probability for incoherent
decay (Pγ′ = Γ′γ/(Γc + Γ′γ + Γα)), and of the probability for internal conversion decay
(Pα = Γα/(Γc + Γ′γ + Γα)). In the most ideal case, a single superradiant normal mode
of the system of nuclei is excited. Γc is proportional to the thickness of the crystal, so
for sufficiently thick crystals the probability for coherent decay approaches unity. From
the temporal standpoint, the time scales for the various decay modes are ~/Γc, ~/Γ′γ
and ~/Γα, respectively, so if the crystal is sufficiently thick that Γc � (Γ′γ + Γα), then
with high probability the excited state decays “quickly” by coherent emission, rather
than by the “slow” incoherent, inelastic decay processes.

This suppression of the inelastic processes which occurs at Bragg does have a
“standing wave” interference aspect, analogous to the X-ray Borrmann and nuclear
Borrmann effects: at exact Bragg, the excitation amplitudes of the nuclei are uniform
throughout the crystal, each reduced to 1/M (relative to “unity” in the incident plane
wave E0 alone). This occurs because in each layer, the wave Tm incident from above
and the wave Rm incident from below almost cancel, the total field at the plane being
reduced by 1/M . For example, for a system of E1 resonators, with the incident
field E0 being σ̂ polarized, Tm + Rm = ±(1/M )E0. (At the bottom layer, RM = 0
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and TM = ±(1/M )E0; at the top layer, T0 = E0 and R0 = −(1 − 1/M )E0.) Thus,
for thick crystals, the local field which each nucleus is subjected to is very nearly a
|2σ〉2 mode, which is the E1 Borrmann mode. (The propagation direction now lies
in the plane in the direction of (k0)xy , with “nodal” planes coinciding with the M
layers.) The probability of incoherent scattering or absorption from each nucleus is
then reduced by (1/M )2. But there is, of course, no suppression of the coherent elastic
scattering by the crystal: the amplitude for elastic scattering by each nucleus is reduced
by 1/M , but these amplitudes add coherently over the entire crystal, resulting in the
enhanced coherent decay rate Γc and near total reflection.

In the enhancement effect, there is a strong enhancement of coherent elastic
scattering, and correspondingly, a strong suppression of the inelastic processes; in the
nuclear Borrmann effect, there is a complete suppression of all processes, elastic as
well as inelastic.

For a system of resonators, there is a fundamental distinction between the Bragg
and Laue geometries: for Bragg excitation, a superradiant normal mode is excited,
while for Laue or off-Bragg excitation this is not the case. The normal modes of
decay for a crystal of parallel planes are necessarily Bragg geometry modes because
for a normal mode all planes must be mutually coupled – i.e., the upper planes must
communicate to lower planes (T -channels) and the lower planes must communicate
to the upper planes (R-channels). For the Laue case, and for off-Bragg, there is
only forward communication (T -channels). Radiative normal modes are discussed in
section 6.

When a crystal is excited by a synchrotron pulse rather than by a monochro-
matic plane wave, we also use the term “coherent enhancement” to describe the
superradiant decay of the resulting nuclear exciton |ψe(k0)〉, because this is again
a collective effect involving the same enhancement of the coherent decay rate,
Γc(k0) = m · πnλ̄2l‖(k0)Γγ , where k0 is the phasing vector (= (ω0/c)n0), and m
is the number of open channels. But there is an important difference now: the initial
decay is superradiant regardless of the orientation of k0 – i.e., whether k0 satisfies
Bragg-, off-Bragg-, or Laue-conditions. But the origin of the superradiance, and the
delayed decay (t > ~Γ−1

c ), is radically different depending on whether or not k0 satis-
fies the Bragg condition. In all cases, there is also a suppression of inelastic processes,
but this is now accomplished by the speedup of the coherent decay mode relative to the
unaltered decay rates into the inelastic modes (there is no standing wave interference
involved here). These aspects are discussed in section 6.

3.9. Multibeam Borrmann

In the two-beam Borrmann modes, the electric field is zero at the equilibrium
position of each atom in the crystal, but the magnetic field and higher derivatives of
the field (electric field gradient, magnetic field gradient, . . . ) are generally quite large
in the vicinity of the atoms. Other modes exist in which the magnetic field is zero at
each atomic site, but which have a large electric field near the atoms. Although there
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are no two-beam modes in which the electric and magnetic fields are simultaneously
zero at the atomic sites, there are multibeam modes, which occur when three or more
beams simultaneously satisfy the Bragg condition, which do have both the electric
and magnetic fields (or, in some cases, other higher-multipole derivatives of the field)
simultaneously zero at the lattice sites. Other multibeam Borrmann modes exist in
which the magnetic field (and other field derivatives) are enhanced near the vicinity
of the atoms. (We use the term “Borrmann mode” to refer to any mode in which the
electric field is zero at each atomic site in the crystal.)

As discussed by Hutton et al. [17], these properties of multibeam modes, coupled
with the well-defined multipolarity of Mössbauer transitions, lead to three particularly
interesting effects which occur at multibeam points of good single crystals containing
Mössbauer nuclei:

(1) Certain multibeam Borrmann modes exhibit suppressed coupling both to the elec-
trons and to the nuclei and will be anomalously transmitted at resonance, even
when the nuclear transition is of multipolarity M1 or higher and there is no Zee-
man splitting. Such simultaneous suppression is not possible in the usual two-beam
case.

(2) Other multibeam Borrmann modes exhibit particularly strong coupling to the nu-
clei, so that nuclear absorption is greatly enhanced.

(3) Excited Mössbauer nuclei located at lattice sites within a crystal will have en-
hanced emission into certain of these weakly attenuated multibeam Borrmann
modes (“anomalous emission”).

While these last two effects can also occur in the two-beam case, greater enhancements
are possible in multibeam modes, since the coupling is proportional to the number of
beams in the mode.

3.9.1. Multibeam modes
Multibeam modes of the radiation field occur when the Bragg condition is satisfied

simultaneously by three or more plane waves (beams) within the crystal. Except for
certain very special frequencies, all the reciprocal lattice vectors involved in such a
mode will be coplanar such that their endpoints lie on a circle. The wave vectors then
lie on the surface of a cone whose base is defined by this circle, as shown in figure 14.
The difference between any two of these vectors is then nearly equal to a reciprocal
lattice vector and the wave in each channel will, in general, be strongly reflected into
each of the others. For multibeam modes, we take θ to be the half-apex angle of the
cone, as shown in figure 14 (previously, θ was the scattering angle k0 → k1). Again,
there are two linearly independent polarization vectors associated with each beam, so
there are 2m eigenmodes associated with each m-beam point.

We restrict our consideration here to modes formed about high-symmetry axes.
In our analysis we assume a perfect crystal which contains resonant nuclei located at
lattice sites. Finally, we limit our discussion to that point in phase space where the
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Figure 14. General structure of a multibeam mode, showing the polarization basis chosen for each beam.
The σ̂’s lie in the plane containing the reciprocal lattice vectors (along φ̂(k) in the spherical coordinate
system (k̂, θ̂, φ̂), where now θ is the angle from the symmetry axis ẑ to the wave vector k), and the π̂’s
lie out of this plane, along the θ̂(k) direction. The figure on the right shows a projection of the mode onto
the plane perpendicular to ẑ. The four-beam case is shown, but similar modes exist for other numbers

of beams.

Bragg condition is satisfied exactly for all the reflections in the mode and we restrict
our attention to those modes whose structure is fully determined by the symmetry of
the crystal [36].

The symmetry of a mode is determined by the symmetry of the axis of the
reciprocal lattice about which it is formed. When there is no hyperfine splitting, the
symmetry group of a mode centered about an n-fold rotation axis of the reciprocal
lattice is the group of an n-sided regular polygon, that is, the group of rotations and
reflections which leave that polygon invariant. When there is Zeeman splitting, with
zJ parallel to the mode symmetry axis ẑ, reflections are no longer valid symmetry
operations and the group reduces to the group of rotations which leaves the n-sided
polygon invariant.

The set of eigenmodes associated with an m-beam case whose cone is centered
about an m-fold rotation axis of the reciprocal lattice will contain either two (if m
is odd) or four (if m is even) eigenmodes which are fully determined by symmetry,9

and as such will be identical to the corresponding eigenmodes in the X-ray case,
as determined by Joko and Fukuhara [37]. In complete analogy to the two-beam

9 The set of 2m basis vectors {|πs〉, |σs〉}, which spans the space of an m-beam mode, defines a regular
representation of the symmetry group Cmv . In such a case, the number of times each irreducible
representation appears among the eigenmodes is equal to the dimension of that representation (see,
e.g., L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon, Ox-
ford, 1965)). One-dimensional irreducible representations appear only once and the structure of the
eigenmodes to which they correspond is fully determined by symmetry. Cmv has either two (if m is
odd) or four (if m is even) such one-dimensional irreducible representations. Cmv (m > 2) also has
one or more two-dimensional irreducible representations. The modes to which they correspond are not
fully determined by symmetry and their structure thus depends upon the multipolarity of the nuclear
transition and the relative strength of the nuclear and electronic responses.
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Figure 15. Structure of the three- and four-beam |mσ〉m, |(m/2)σ〉m and |(m/2)π〉m Borrmann modes.
In each case, the excitation pattern shown is that which occurs at an atomic site.

results, these modes have either all σ̂ or all π̂ polarization channels excited with
equal amplitude. |mσ〉m and |mπ〉m have neighboring beams in phase so that they are
invariant under a rotation of 2π/m about the cone axis (the notation used for the modes
is that of Afanas’ev and Kohn [38]10). In contrast, |(m/2)σ〉m and |(m/2)π〉m have
neighboring beams π out of phase, so that they change sign under such a rotation [38].
|(m/2)σ〉m and |(m/2)π〉m exist only when m is even and are Borrmann modes for
m > 4, while |mσ〉m is always a Borrmann mode; |mπ〉m is never a Borrmann
mode. The structure of the three- and four-beam |mσ〉m, |(m/2)σ〉m, and |(m/2)π〉m
Borrmann modes are shown in figure 15.

3.9.2. Photoabsorption in the multibeam Borrmann modes
As for the two-beam Borrmann case, in the multibeam Borrmann modes each

atom lies in a region of low electric field and the photoabsorption rate is reduced to
µ = genσe, where the electronic coupling factors ge for these modes are, to first order,

ge =

{
m
2 k

2
〈
x2
〉

sin2 θ, |mσ〉m,
∣∣m

2 σ
〉
m

,
m
2 k

2
〈
x2
〉

cos2 θ sin2 θ,
∣∣m

2 π
〉
m

,
(3.142)

where θ is now the half-apex angle of the cone, as shown in figure 14. These modes
differ in symmetry from the two-beam Borrmann mode in that here each atom lies on

10 The subscript denotes the number of beams, the Greek letter denotes the polarization, while the first
number gives the symmetry of the mode.
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a nodal line of the electric field, rather than in a nodal plane. This accounts for the
additional factor 2 in eq. (3.130).11

3.9.3. Multipole coupling to the multibeam Borrmann modes
Multibeam modes couple only to particular ∆Jz components of multipole tran-

sition currents (where ∆Jz is the change of angular momentum about the symmetry
axis of the mode, which we take to be the ẑ axis). As a consequence of this and
certain polarization properties discussed below, multibeam modes couple only to par-
ticular electric multipole transitions of order L (EL) and particular magnetic multipole
transitions (ML). The rules for coupling the multibeam Borrmann modes considered
above to multipole currents may be summarized as follows:12

Mode Couples only to Couples to multipole

|mσ〉m ∆Jz = 0,±m,±2m, . . . ML: L > 1; EL: L > m
|(m/2)σ〉m, |(m/2)π〉m ∆Jz = ±m/2,±3m/2, . . . ML: L > m/2; EL: L > m/2

As discussed below, these results are an immediate consequence of the rotational
symmetries and polarization properties of the multibeam Borrmann modes and of the
multipole radiation fields emitted by the various ∆Jz transitions.

The radiation pattern of |mσ〉m is invariant under rotation by 2π/m about the
symmetry axis of the mode, while the amplitude of the radiation field emitted by a
∆Jz transition transforms as exp(i∆Jzφ). Hence, |mσ〉m can couple only to ∆Jz =
0,±m,±2m, . . . transitions. For magnetic multipole transitions (ML), |mσ〉m couples
to all orders (L) through the ∆Jz = 0 components. This is easy to see physically
since the circulating radiation pattern associated with these modes is polarized entirely
along σ̂ and, for example in the M1 case, corresponds exactly to that of a classical
magnetic dipole oscillating along the z axis. The radiation pattern associated with
∆Jz = 0 components of electric transitions, on the other hand, is polarized entirely
along π̂ and is thus everywhere orthogonal to the field in |mσ〉m. Thus, these modes
do not couple to any electric transition (EL) with L < m. For example, |3σ〉3 does
not couple to E1 or E2 transitions, but will couple to E3 transitions through their
∆Jz = ±3 components. Similarly, |4σ〉4 will couple to E4 transitions, but not to E1,
E2, or E3.

Similarly, the radiation patterns of |(m/2)σ〉m and |(m/2)π〉m change sign under
a rotation by 2π/m about the symmetry axis of the mode, so these modes couple only
to ∆Jz = ±m/2,±3m/2, . . . components of multipole currents, which have radiation

11 E1 polarization response goes as e∗1 · e2, so that to this order, |4σ〉4 and |2σ〉4 may be regarded as two
independent |2σ〉2 modes. Thus ge for these two modes must equal that for |2σ〉2, hence, the additional
factor 2 in eq. (3.130).

12 Other modes exist (see [17,37,38]) which couple to components of multipole currents other than ∆Jz =
0,±m/2,±m, . . . . For example, there exist four- and six-beam modes which couple only to ∆Jz =
±1,±(m + 1), . . . components, such as the |1σ, π〉4 mode discussed in [17]. Similarly, there are
six-beam modes which couple only to ∆Jz = ±2,±8, . . . components.
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patterns that go as exp[i(±m/2)φ] and exp[i(±3m/2)φ], . . . , respectively. Thus, |2σ〉4
and |2π〉4 couple to M2, E2, and higher multipole nuclear transitions, but do not couple
to M1 or E1. Similarly, |3σ〉6 and |3π〉6 couple to M3 and E3 transitions, but not to
M1, E1, M2, or E2.

A nuclear coupling factor gn may be defined in a manner exactly analogous to
that used to define ge in eqs. (3.129) and (3.142), so that the rate at which a mode is
absorbed by the nuclei is given by

µn = gnnσn, (3.143)

The nuclear coupling factor gn is given by

gn =
=(〈ψB|f̃n|ψB〉)
=(〈ψOB|f̃n|ψOB〉)

, (3.144)

where |ψB〉 is a multibeam eigenmode of the crystal such as those considered above,
consisting of a coherent superposition of single plane waves, |ki, e(i)

λ 〉, given by

|ψB〉 =
∑
iλ

ψiλ
∣∣ki, e(i)

λ

〉
, (3.145)

with ∑
iλ

|ψiλ|2 = 1. (3.146)

|ψOB〉 = |k, e〉 is a single plane wave off-Bragg. If there is no Zeeman splitting, then
〈ψOB|f̃n|ψOB〉 is independent of k̂ and e.

The gn’s for coupling the Borrmann modes described above to the first few
nuclear multipole transitions are given in table 1. The expression gn,M2 for |2σ〉2
differs from that for the other |mσ〉m modes because |2σ〉2 couples both to ∆Jz = 0
and to ∆Jz = ±2 components, which are allowed for M2 transitions, while the other
|mσ〉m modes couple only to ∆Jz = 0.

Table 1
gn’s for coupling Borrmann modes to good multipole nuclear transitions. Only the
first two or three nonzero coupling factors are shown in each case. The symbols
C and S used in the table refer to cos θ and sin θ, respectively. Note that since

these are Borrmann modes, none of them couple to E1 nuclear transitions.

Transition

Mode E1 M1 E2 M2 E3 M3

|2σ〉2 0 2S2 2S2 4S2C2

|mσ〉m 0 mS2 0 (3/2)mS2

|2σ〉4 0 0 4S2 4S2C2

|2π〉4 0 0 4S2C2 4S2

|3σ〉6 0 0 0 0 (45/8)S4 (45/8)S4C2

|3π〉6 0 0 0 0 (45/8)S4C2 (45/8)S4
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3.9.4. Multibeam Borrmann modes in γ-ray optics
These properties of multibeam modes, coupled with the well-defined multipolarity

of Mössbauer transitions, lead to three particularly interesting effects which occur at
multibeam points of good single crystals containing Mössbauer nuclei:

Simultaneous suppression of electronic and nuclear coupling. It follows immediately
from the simple coupling rules given above that certain multibeam Borrmann modes
do not couple to Mössbauer transitions of particular multipolarities (see table 1). Since
both the electric field and the multipole component of the electromagnetic field driving
the nuclear transition are zero at the equilibrium site of the atoms in such a mode, the
coupling to both the electrons and the nuclei will be suppressed, regardless of whether
or not there is Zeeman splitting of the nuclear transition. As noted before, this is not
possible in the two-beam case.

For example, in the |2σ〉4 Borrmann mode, there is no coupling to an M1
Mössbauer transition. This mode may be regarded as two independent |2σ〉2 modes,
rotated by 90◦ from each other and 180◦ out of phase. As a consequence, the nonzero
magnetic standing wave Bz of the |2σ〉2 mode, shown in figure 12, is canceled, so
the electric and magnetic fields are simultaneously zero at the lattice site in the |2σ〉4
Borrmann mode.

It is also interesting to note that for any |mσ〉m Borrmann mode with m > 3,
there is no coupling to an E2 Mössbauer transition. In contrast, in the two-beam case
there is no E2 suppression effect if there is no Zeeman splitting.

Enhanced nuclear absorption in multibeam Borrmann modes. While some Borrmann
modes do not couple to particular nuclear transitions, others have an enhanced coupling
and will be absorbed more strongly than will off-Bragg modes. While enhanced
absorption occurs in the two-beam case [12,13,39,41], much greater enhancements are
possible for multibeam modes.

For example, for an unsplit M1 transition, the coupling to the |mσ〉m Borrmann
mode is gn = m sin2 θ, directly proportional to the number of beams. This occurs
because the M1 multipole couples to the mode through the ∆Jz = 0 transition which
is driven by the Bz component of the incident radiation, and for the |mσ〉m mode,
the m separate contributions to Bz coming from the m beams of the mode all add
constructively at the lattice sites, leading to the m-fold enhancement of the resonant
cross-section (m rather than m2 because there is also a factor 1/

√
m in the normal-

ization of the photon state |mσ〉m).

Anomalous emission in multibeam Borrmann modes. It may be shown by applying
the reciprocity theorem that the factor gn, which gives the coupling between a radiation
mode and a nuclear absorber, also describes the coupling between that mode and a
nuclear emitter at the same site (section 3.10.2). Thus, |mσ〉m modes are fed by
M1 and higher-order magnetic multipole emitters, |3σ〉6 and |3π〉6 by E3 and higher,
etc. The fact that M1 and higher multipolarity excited nuclei can emit into certain of
these weakly attenuated Borrmann modes is responsible for the predicted “anomalous
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emission effect”, in which waves emerge from a crystal from sources located at lattice
sites deep within the crystal [13,17,39].

3.9.5. Multibeam Borrmann modes and crystalline γ-ray lasers
If a γ-ray laser can be achieved, it will necessarily have to rely upon the

Mössbauer effect [42], so that the resonant nuclei must reside in a cool solid. There
are important practical difficulties associated with pumping such a system while main-
taining the conditions necessary for an appreciable recoilless fraction [43]. If these
difficulties can be overcome, then there are significant advantages to be obtained by
using a single crystal [40,41,44,45,48].

Lasing requires that the gain from stimulated emission exceed the losses from
nonresonant absorption. The Schallow–Townes [46] steady-state lasing condition is
K > 0, where K is the net gain in intensity per unit length, which for a γ-ray laser is
given by

K = K0 − µe = σng
′
n∆n− σeg

′
en0. (3.147)

For simplicity, we have assumed no hyperfine splitting. According to the linearized
theory [47], the wave in the lasing mode will then amplify by eKl on traversing a
distance l through the crystal.

In eq. (3.147) n0 is the number density of atoms in the crystal, while σe is
the nonresonant atomic absorption cross-section, which for Mössbauer energies (10–
100 keV) will be almost entirely due to the electric dipole contribution to photoelectric
absorption, σn is the nuclear absorption-stimulated emission cross-section at exact
resonance, given by

σn =
2π λ̄2fM

(1 + α)(1 + a)
Γ1

Γ1 + Γ2
. (3.148)

Here α is the internal conversion coefficient, while (1 + a) represents the effects of
inhomogeneous broadening. Γ1 and Γ2 are the total widths of the upper and lower
lasing levels, respectively. ∆n = n1 − (g1/g2)n2 is the population-inversion density,
where n1 and n2 are the population densities in the upper and lower lasing levels,
while g1 = 2j1 + 1 and g2 = 2j2 + 1 are the spin degeneracy factors. g′e and g′n
describe the coupling of the electromagnetic field of the lasing mode to the atomic
electrons and the nuclear resonators, respectively, and are related to ge and gn as given
by eqs. (3.142) and (3.144) by

g′s =
gs

cos θ
, s = e or n. (3.149)

Here θ is the angle between the beams in the eigenmode and the direction of energy
propogation (i.e., the symmetry axis of the eigenmode, as noted in figure 14). The
factor 1/ cos θ gives the increase in path length of the radiation in the mode as compared
to a single plane wave traveling along the mode axis. In effect, the crystal consists
of a series of weakly reflecting mirrors so that it acts as an etalon at the Bragg
angles.
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Setting K = 0 in eq. (3.147) and solving for ∆n yields the threshold population-
inversion density ∆nt given by

∆nt =
ge

gn

σe

σn
n0. (3.150)

Equation (3.147) may thus be rewritten as

K = σn
gn

cos θ
(∆n− ∆nt). (3.151)

The threshold condition (3.150) favors minimizing the photoabsorption coupling
ge, hence Borrmann modes, and maximizing the coupling gn to the lasing nuclei,
hence the strongest anomalous emission mode (which will be the mode with the largest
number of beams). Thus, for a crystal containing M1 Mössbauer nuclei, the favored
lasing mode will be the |mσ〉m mode with maximum m.

Above threshold, the gain (3.151) is proportional to gn/ cos θ, which favors either
the anomalous emission mode with the largest number of beams, or the mode with
the largest cone angle θ, to maximize the etalon effect of the crystal. A number of
examples are discussed in [41,45,48].

Now in fact, as discussed in [44,45,48], once the population inversion has been
established to make a practical γ laser, the threshold for Dicke superradiance will
also have been surpassed. Since the time required to superradiate is much shorter
than the time required to lase, the system will predominantly de-excite by superra-
diant, rather than stimulated, emission. The same factors, gn/ge, that determine the
favored Borrmann lasing modes, however, will also determine the superradiant modes.
Thus, the advantages of using a crystalline sample apply whether the system lases or
superradiates.

3.10. Internal sources

When an emitting atom is located within a crystal, the emitted photon is diffracted
by the surrounding lattice and the radiation pattern outside the crystal exhibits a set
of light and dark Kossel cones, whose positions and intensities are determined by the
crystal structure. The theory of the Kossel effect for X-rays and its application to
crystal structure determinations have been discussed extensively in the literature (see,
e.g., [21, pp. 430–448]). The γ-ray emission problem has been discussed in detail by
the authors [12,13,49–52] and by Alexandrov and Kagan [16]. Of particular interest
are the anomalous emission effect, magnetic Kossel cones, and phase determination
using the holographic nature of the Kossel cones.

For γ-ray optics, the source can be a radioactive isotope, or alternatively, the
wave arising from incoherent scattering, e.g., nuclear spin-flip (Raman) scattering by
a Mössbauer atom or the isotope effect. For X-ray optics, the source is normally
fluorescence radiation following photoabsorption.

Historically, the internal-source problem for X-ray optics was first discussed by
von Laue by using the classical reciprocity theorem. A similar approach can be taken
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in Mössbauer optics, using a more general form of the theorem to treat the higher-
order multipolarity of the sources and the magnetic nature of the medium. However,
it is also straightforward to obtain a direct solution to the problem without recourse to
reciprocity. The direct solution adds considerable insight to the problem and is more
convenient for treating the anomalous emission effect, magneto-optical effects, and
polarization effects.

3.10.1. Direct solution
The spherical wave emanating from an emitting atom at Rj may be expressed as

a sum of plane waves in accordance with

exp(ik|R− Rj|)
|R− Rj |

= S1 + S2, (3.152)

where

S1 =
ik
2π

∫
+

exp
[
ik · (R− Rj)

]
dΩk (3.153)

and

S2 = k

∫ ∞
0

exp
(
−k|z − zj |τ

)
J0
(
k|~ρ− ~ρj

∣∣√1 + τ 2
)
dτ. (3.154)

In eq. (3.154) ~ρ is the component of R in the xy plane. In eq. (3.153) the integration
over the solid angles of the k vector is over the upper hemisphere kz > 0 if (z−zj) > 0,
and over the lower hemisphere kz < 0 if (z − zj) < 0. The contribution S1 to (3.152)
is a sum of plane waves k, whereas the contribution S2 is a sum of exponentially
damped waves as a function of |z − zj |.

In sections 3.5–3.9 we obtained the response of a crystal to plane waves incident
upon a crystal surface. These expressions can be used to immediately give the response
of the crystal to S1.

The contribution of S2 to the field in the crystal is, in fact, generally very small
except in the near zone, kR 6 1, of the radiating atom. For X-ray wavelengths this
means that it can be neglected relative to the radiation field, S1, except in computing the
scattering and absorption processes occurring within the radiating atom itself. These
intra-atomic processes determine the internal conversion width of the decaying nucleus,
and give rise to small (ξ ≈ 10−3) multipolarity dependent phase shifts of the waves
emitted by the atom, as discussed in appendix A.2.4.

In the radiation zone, keeping only S1 in eq. (3.152), the emitted radiation field
of a decaying atom located at Rj is

A0(R,ω; j) =
ik
2π

∫
+

exp
[
ik · (R− Rj)

]
Jf0
⊥ (−k,ω; j) dΩk. (3.155)
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Here Jf0
⊥ (−k,ω; j) is the component of the transition current at Rj perpendicular to k,

Jf0
⊥ (−k,ω; j) =

〈χf|e−ik·rj |χ0〉jf0
⊥ (−k)

ω +Ef + εf −E0 − ε0 + iΓ/2
, (3.156)

where the first factor gives the usual recoil factor, jf0(−k) = c−1
∫

dx〈φf |e−ik·xj(x)|φ0〉
is the Fourier transform of the current density of the atom Rj , and in the resonance
denominator E gives the internal state energy of the atom and ε gives the vibrational
state energy of the crystal.

The general multiple scattering equations are now given by eqs. (3.16) and (3.17),
with A0 now given by eq. (3.155). The propagation of each plane wave contribution
through the crystal can be obtained directly from our previous results.

If a wave vector k0 is incident on the mth layer, then, as discussed in section 3.3,
there will be waves ks± scattered from that layer,

ks± = ±gsẑ + k0xy + ~τs, (3.157)

with

gs =
√
k2

0 − (k0xy + ~τs)2. (3.158)

As before, the ~τs are planar reciprocal-lattice vectors, with ~τ0 ≡ 0.
Within a crystal, for each component k0, there will be additional waves traveling

between the crystal planes with all these wave vectors ksη (η = + or −), and waves
with wave vectors ks+ and ks− emerging from the top and bottom faces of the crystal,
respectively; but, as discussed in section 3.3, it is only when the Bragg condition is
nearly satisfied that a ksη wave will be built up by constructive interference to an
appreciable magnitude. The near Bragg condition is

ksη − k0 ≈ ~τs +
2πn
d
ẑ, (3.159)

or

gs − g0 ≈
2πn
d

(Laue case), (3.160)

gs + g0 ≈
2πn
d

(Bragg case). (3.161)

The right-hand side of (3.159) with ~τs a planar reciprocal-lattice vector is, of course,
a crystal reciprocal-lattice vector. If (3.159) is satisfied by a particular k0, then it is
satisfied by all the k0’s making the same angle with the reciprocal lattice vector as the
original k0. The k0’s and ksη’s then form a double cone, the Kossel cone, whose axis
is along the reciprocal-lattice vector. The Laue case holds for those points for which
(ksη)z and (k0)z are of the same sign, the Bragg case when they are of opposite sign.
In the Laue case the two waves arising from each other by internal Bragg reflections
will emerge from the crystal through the same surface (top or bottom), as shown in
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figure 16; while in the Bragg case they will emerge through opposite surfaces, as
shown in figure 17. A given Kossel cone can be purely Laue, purely Bragg, or both.

Equation (3.157) gives the wave vectors ksη(k0) of the various waves arising by
scattering if a given k0 is incident on the crystal. This relation can be inverted to give
ksη0 (k), representing the various incident waves which can give rise to a wave vector
k:

ksη0 (k) = η
√
k2 − (kxy − ~τs)2 ẑ + kxy − ~τs. (3.162)

In our case the “incident” wave is the spherical wave A0 given by (3.155). We
are interested in obtaining the wave emerging from the upper face of the crystal, which
is layer M using the emission geometry shown in figures 16 and 17 (ẑ is now “up”,

Figure 16. Schematic representation of a Laue emission channel. The wave fed directly into the k channel
by the source is indicated by the double line, and the wave reflected into the k channel from the k1 channel

which interferes with the direct wave is indicated by the single line.

Figure 17. Schematic representation of a Bragg emission channel. The wave fed directly into the
k channel by the source is indicated by the double line, and the wave reflected into the k channel from

the k1 channel which interferes with the direct wave is indicated by the single line.
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the emitting atom is located in layer mj , the bottom layer is m = 0, and the top layer
is m = M ). If we write this emergent wave as

AM (R) =
ik
2π

∫
kz>0

AM (k) exp
[
ik ·
(
R− zM ẑ

)]
dΩk, z > zM , (3.163)

then

AM (k) =
∑
s,η

D̃M
j

(
k, ksη0

(
k)
)
J⊥
(
−ksη0 (k),ω; j

)
, (3.164)

where we have used (3.155) for the source of the incident waves and the sum is over
those ~τs’s for which ksη0z is real (open channels). For large R (kR� 1),

AM (R) ∼ AM (k)
eikR

R
, (3.165)

where k = kR̂, so that the direction of observation R̂ determines the “channel” k = kR̂
at the top of the crystal which contributes to AM (R). The γ-ray flux may be obtained
by inserting these expressions for AM (R) into (3.12).

Equation (3.164) represents the wave AM (k) emerging from the crystal in the
“k channel” as resulting from the coherent “feeding” of the channels ksη0 (k) by the
source currents at Rj . The 2 × 2 matrix D̃M

j

(
k, ksη0 (k)

)
gives the amplitude of the

coherent wave in the k channel at layer M , which arises, due to scattering within the
medium, from the wave in the ksη0 channel at layer mj . The amplitude with which the
ksη0 channel is being fed at the mj layer is given by J⊥(−ksη0 (k),ω; j). The sum is over
all the open channels ksη0 that reflect into the k channel. As indicated, the propagation
matrix D̃M

j is a function of the frequency ω, the thickness of the crystal, the position at
which the photon is being emitted, which channel is being fed (i.e., the ksη0 channel),
and the final direction k. Now D̃M

j (k, ksη0 (k)) is negligible unless (3.159) is satisfied
(using k as the independent variable, (3.159) takes the form k−ksη0 ≈ ~τs + (2πn/d)ẑ,
similarly for (3.160) and (3.161)). In particular, the propagation matrix depends upon
whether the k channel satisfies the conditions for Laue, Bragg, off-Bragg, or grazing
emission.

Off-Bragg emission. For nearly all k’s (3.159) is satisfied only for s = 0, η = +, n =
0 for which k0+

0 (k) = k, and (3.164) becomes

AM (k) = D̃M
j (k, k)J⊥(−k,ω; j) (off-Bragg). (3.166)

D̃M
j (k, k) is simply the off-Bragg transmission matrix which propagates a photon from

the emission position Rj to the top surface of the crystal, i.e.,

D̃M
j (k, k) = T̃

(
k̂,ω; lj

)
, (3.167)

where T̃ (k̂,ω; lj) is given by eq. (3.63) with lj = zM − zj = (M −mj)d ≡Mjd.
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Laue emission. If k is near a Bragg angle for the Laue case, then k1(k) is given by
(eq. (3.162))

k1 =
√
k2 − (kxy − ~τ1)2 ẑ + kxy − ~τ1, (3.168)

where ~τ1 is some planar reciprocal lattice vector. The near-Laue condition (3.160)
becomes

(g − g1)d = 2πm+ 2δ, (3.169)

where g ≡ kz = (k2 − k2
xy)1/2 and δ is small (δ = 0 is the exact Bragg condition). In

terms of the deviation ∆φ = (φ − φB) of the rocking angle φ (≡ φ0) from the exact
Bragg angle φB, δ is given by δ = (kd sin θ)∆φ/2 sin φ1, where θ is the scattering
angle (figure 16).

If (3.168) and (3.169) are satisfied, we say that k and k1 are “Laue emission
channels”. In this case we have

AM (k) = D̃M
j (k, k)J⊥(−k,ω; j) + D̃M

j (k, k1)J⊥(−k1,ω; j) (Laue), (3.170)

and channel k at the top of the crystal is “fed” coherently by the waves emitted by the
atom at Rj into both the channel k and the channel k1. This is shown schematically
in figure 16. For k in the vicinity of a Laue channel, D̃M

j (k, k) and D̃M
j (k, k1) are

rapidly varying functions of k̂ and give rise to the appearance of the (Laue) Kossel
cones in these directions.

The Laue coherent wave propagation matrices D̃M
j are given in terms of the Laue

transmission matrices T̃ by (see [13])

D̃M
j (k, k) = T̃

(
ω; k̂, k̂; lj

)
e−ik·~ρj (3.171)

and

D̃M
j (k, k1) = T̃

(
ω; k̂, k̂1; lj

)∣∣∣∣sin φ0

sin φ1

∣∣∣∣e−ik1·~ρj , (3.172)

where lj = zM − zj = (M −mj)d ≡ Mjd is the depth below the surface where the
emitter is located, and ~ρj is the position of the emitter within the unit cell, taking the
origin as the lattice point of the unit cell in which the emitter is located.

The T̃ (ω; k̂, k̂; lj) and T̃ (ω; k̂, k̂1; lj) give the amplitude in the channel k at the top
of the crystal for unit amplitude waves incident at the layer mj + 1 in channels k and
k1, respectively. The factors exp[−ik · ~ρj] and exp[−ik1 · ~ρj] give the relative phases
of the contributions emerging at the top of the crystal in the k channel depending on
the position of the emitter within the unit cell. The factor sinφ0/ sin φ1 in (3.172) is
the Jacobian |dΩk1/dΩk| = |kz/k1z| = sinφ0/ sin φ1, which converts a k1 solid angle
into a k solid angle on reflection.

A general procedure for obtaining the T̃ matrices is given in section 3.8. In
the case of strong polarization mixing numerical procedures must be resorted to. For
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the cases of no polarization mixing, T̃ (ω; k̂, k̂; lj) and T̃ (ω; k̂, k̂1; lj) are given by
eqs. (3.116) and (3.117), respectively, with M replaced by Mj = (M −mj).

Bragg emission. For the Bragg channels, k is near a Bragg angle for some set of
crystal planes and the wave field is determined by the k channel and a reflection
channel k1 = −g1ẑ + kxy + ~τ1, which travels in the −ẑ direction, as indicated in
figure 17. The Bragg condition (3.161) is now

(g0 + g1)d = 2nπ + 2δ, (3.173)

where δ is again given by δ = (kd sin θ)∆φ/2 sinφ1, as in the Laue case.
For Bragg emission,

AM (k) = D̃M
j (k, k)J⊥(−k,ω; j) + D̃M

j (k, k1)J⊥(−k1,ω; j) (Bragg), (3.174)

and channel k at the top of the crystal is fed coherently by the waves emitted by the
atom at Rj into both the channel k and the channel k1, as shown schematically in
figure 17.

The D̃ matrices are now related to the Bragg transmission and reflection matrices
T̃ and R̃, and there is a new complication not present in the off-Bragg and Laue cases:
a wave k incident on layer mj + 1 can be transmitted directly to layer M in the
k channel by the Bragg transmission matrix T̃ (ω; k̂, k̂;M −mj). But also the k wave
can be reflected back into the k1 channel by the upper M − mj layers, and then
reflected back into the k channel before being transmitted to the upper surface. The
combined matrix for this process is

T̃
(
ω; k̂, k̂;M −mj

)
R̃
(
ω; k̂, k̂1;mj

)
R̃
(
ω; k̂1, k̂;M −mj

)
.

Or rather than a double reflection, there could be four reflections before transmission,
and so on. As a consequence,

D̃M
j (k, k) = T̃

(
ω; k̂, k̂;M −mj

)[
1− R̃

(
ω; k̂, k̂1;mj

)
R̃
(
ω; k̂1, k̂;M −mj

)]−1
e−ik·~ρj .
(3.175)

Similarly, a wave k1 incident on layer mj − 1 can be reflected into the k channel by
the lower mj layers, and then transmitted through the upper M −mj layers, with the
combined matrix being T̃ (ω; k̂, k̂;M − mj)R̃(ω; k̂, k̂1;mj). But again there can be
multiples of double reflections between the parts of the crystal above and below the
emitting atom at Rj , as discussed above. The resulting D̃ matrix is

D̃M
j (k, k1) = T̃

(
ω; k̂, k̂;M −mj

)[
1− R̃

(
ω; k̂, k̂1;mj

)
R̃
(
ω; k̂1, k̂;M −mj

)]−1

× R̃
(
ω; k̂, k̂1;mj

)∣∣∣∣sinφ0

sinφ1

∣∣∣∣e−ik1·~ρj . (3.176)

The Jacobian and phase factors have the same significance as in eqs. (3.171) and
(3.172).
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For the special cases of no polarization mixing, the T̃ and R̃ matrices are given
by eqs. (3.86) and (3.81), with M replaced by M −mj or mj , as appropriate. More
generally, the numerical procedure must be used.

3.10.2. Reciprocity
In X-ray optics, the problem of diffraction when the source lies within the crystal

was solved by von Laue [53] by using the classical reciprocity theorem. For X-ray
optics, the theorem can be stated as follows [18, pp. 430–448]: “If a source of radiation
and a point of observation are interchanged, the intensity, measured in terms of electric
displacement, is the same at the new place of observation as at the old.” This theorem
allows one to solve the emission problem in terms of the solutions to the external
source problem. As stated, however, the theorem only applies to E1 sources and a
nonmagnetic scattering medium, or more exactly, a medium which is unchanged by
time reversal.

The reciprocity theorem can, of course, also be applied in Mössbauer optics
to relate the internal source problem to that of an external source; but its statement
must be generalized somewhat to take into account the higher-order multipolarity of
Mössbauer sources, and the possibly strong magnetic effects in the scattering medium.
The general classical reciprocity theorem such as given by Landau [54] and utilized
in [16] is valid for arbitrary multipolarity of the sources and for an absorbing medium,
but it is not suitable for describing cases where magneto-optical effects occur, since
then the assumed symmetry of the dielectric tensor εik breaks down.

A more general theorem based on the supposed invariance of physical laws under
time reversal is derived in [12]. The resulting reciprocity relation for single photon
optics (eq. (46) of [12]) applies to arbitrary multipole currents, for photon propagation
through a dispersive medium with arbitrary magneto-optical effects, and is valid for
inelastic as well as elastic photon propagation. For the coherent elastic wave A(R,ω; j)
of frequency ω, which is propagated through the crystal to a distant point R following
an initial decay at Rj (either recoilless or with recoil), the theorem gives

A⊥(R,ω; j) = −eikR

R

∑
e0=x̂,ŷ

e0J
0′f ′
µ

(→
k j ,ω; j

)
A′µ(Rj ,ω; e0). (3.177)

Here x̂ and ŷ are any convenient orthogonal basis vectors perpendicular to k′ = −k =

−(ω/c)R̂;
→
k j = −i

→
∇j , where the gradient is with respect to Rj , the equilibrium

position of atom j, and the gradient operates on the factors to the right as indicated;
the current matrix element is the absorption process between the time reversed states,
|f ′〉 → |0′〉; and A′µ(Rj ,ω; e0) is the total coherent field at Rj due to an external plane
wave source e0 exp(ik′ · x) incident in the k′ direction on the time-reversed scattering
medium, which is the external source problem already solved.

To use (3.177) to determine the (k,ω) coherent wave at a distant point R fol-
lowing a decay |0〉 → |f〉 at Rj , one first calculates the coherent wave A′µ(Rj ,ω; e0)
at Rj caused by a plane wave of polarization e0 and frequency ω incident in the
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−k direction on the medium in which the B field at each site is reversed (while the
electric field gradient remains unchanged). The photon flux at R, given by inserting
expression (3.177) for A⊥(R,ω; j) into the photon flux eq. (3.12), is then proportional
to the excitation probability |J0′f ′

µ A′µ|2 for inducing the transition from the ground
state |f ′〉 = T |f〉 to the excited state |0′〉 = T |0〉 in the time reversed process. To
obtain the recoilless Mössbauer fraction, the transition is taken as recoilless, while for
the recoil fraction the transition is taken with recoil χf → χ0.

Using this procedure, we can treat the various cases discussed above. Although
the reciprocity approach is more cumbersome, it gives a useful insight into the emission
problem.

3.10.3. Anomalous emission, magneto-optical effects, holographic phase
determination
There are a number of interesting features of the internal source problem, among

which are the following:

“Anomalous emission effect” for Mössbauer optics. If a Mössbauer emitter of mul-
tipolarity M1 or higher is located at a lattice site deep in a crystal (at a depth greater
than the photoelectric absorption depth but less than the Borrmann penetration depth),
and if the absorption from the remaining crystal sites is primarily the E1 photoelectric
absorption, then a γ-ray emitted from the site into a Borrmann channel will emerge
from the crystal. On the other hand, for an E1 emitter, such emission is strongly
suppressed [13,39].

The effect is most easily seen using the reciprocity theorem, which states that the
amplitude of the radiation field produced at a distant point in a direction k̂ from the
crystal is proportional to the coupling of the atom to the radiation field produced inside
the crystal by a plane wave incident on the crystal in the direction −k̂. In the present
case the reciprocal problem is an external plane wave incident in a Borrmann channel,
as discussed in section 3.8.1, and the diffraction effects lead to nodes in the electric
field at regular lattice sites, and antinodes for the magnetic field and electric field
gradients at such sites (figure 12). Hence, there is no coupling to an E1 oscillator at
such a site, but strong coupling to an M1 or E2 oscillator, which, by reciprocity, implies
the anomalous emission effect stated above. Alternatively, the effect occurs because
the wave emitted directly into the k̂ direction by the source interferes constructively or
destructively with the wave which is Bragg reflected into the k̂ direction by the crystal
(figure 16), with the nature of the interference being determined by the multipolarity
and position of the source. As discussed in [13,39], the interference is constructive if
the source is M1 or higher, and located at a lattice site.

The polarization of the anomalous emission mode is parallel to the scattering
planes, and the emitted radiation is narrowly collimated with a collimation angle δθ
typically on the order of 10−4 rad. Thus, the effect is a natural source of polarized,
collimated radiation.
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The radiation field set up within the crystal by these deep crystal sources will
also have E-field nodes at lattice sites, and B-field and EFG antinodes at lattice sites.
Hence, this field can stimulate emission from similar emitters of multipolarity M1 or
higher located at lattice sites.

As discussed in [92,93,95] and section 3.9.4, the effect is potentially useful for
the construction of γ-ray lasers.

Magnetic Kossel cones. The Kossel pattern exhibits the crystal symmetry and affords
a sensitive measure of crystal parameters. In X-ray optics, Kossel pattern analysis has
been used to make precision determinations of lattice parameters and orientation, and to
determine the variation of the parameters with temperature and strain, the components
of the strain tensor, and the degree of crystal perfection [55]. In Mössbauer optics these
features are also present and a new phenomenon can occur: the Mössbauer scattering
is sensitive to the direction of the magnetic field and electric field gradient tensor at the
nucleus, and if the internal field “unit cell” is greater than the chemical unit cell, there
will appear extra Kossel cones (“magnetic Kossel cones”) exhibiting the structure of
the internal fields [13,39]. Thus, for example, analysis of the magnetic Kossel line
pattern of rare-earth Mössbauer metals and alloys will permit accurate determinations
of the spiral structures, and of their dependence on temperature and strain.

For example, if a magnetic crystal has a spiral axis ẑ with a spiral angle θ, there
will be Bragg or Laue channels k and k1 open when (k − k1 + n~θ) is equal to a
reciprocal lattice vector, where ~θ = (θ/ds)ẑ and ds is the interplanar distance along
the spiral axis ẑ. These lines will, of course, only appear if the internal fields are
strong enough to cause appreciable hyperfine splitting.

Faraday effects. The most interesting effects in off-Bragg emission are the magneto-
optical effects involved in the propagation of the photon through the surrounding
medium. The matrix D̃M

j (k, k) = T̃ (k̂,ω; lj) given by eq. (3.63) determines the prop-
agation of the emitted photon |J⊥(−k,ω; j)〉 through the medium. As discussed in
section 3.5, for a given frequency ω and direction of propagation k̂, there are two
eigenwaves eη(k̂,ω), η = 1, 2, which are generally nonorthogonal and have different
complex indices of refraction, nη = 1 + fη. This leads to Faraday and selective ab-
sorption effects, and as a consequence, for recoilless emission, the polarization state
of the photon emitted from the crystal will generally differ from the polarization state
at the source. The density matrix formalism for treating the polarization state of the
emitted photon is discussed in [13].

Holography and phase determination. The problem of determining the structure
of complex molecules by X-ray diffraction is greatly complicated by the fact that the
reflected intensity only gives the magnitude |Ah| of the unit-cell scattering factor and
not the phase φh.

The most widely used method to extract φh is to use controlled variation of
the structure factor, for example, by heavy atom replacement [56,57] or anomalous
scattering [58]. In these procedures, the unit cell scattering amplitude is changed
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from A0
h = −r0Fh, where r0 = e2/mc2 and Fh = |Fh|eiφh is the unit-cell structure

factor, to Ah = A0
h +A1

h, where A1
h is the added amplitude due to the extra scattering

(heavy atom, anomalous dispersion). Since the integrated reflected intensity is directly
proportional to |Ah|2 for small crystals, φh can be deduced from knowledge of A1

h and
measurement of |A0

h|2 and |A0
h +A1

h|2.
In [13,59–61] it was pointed out that internal source emission is a holographic

process, and offers a sensitive method to determine the structure factor phases φh
of the chemical unit cell (and in the Mössbauer case, also the phases φh′(B) for the
structure of the internal field unit cells): the interference of the direct wave emitted
in a given direction with that Bragg-reflected into this direction (figure 17) allows the
phase of the latter to be obtained from the intensity distribution within the Kossel line,
as in the holographic technique, where phase information is obtained by “beating” the
diffracted wave with a primary reference wave.

If the source is located at a lattice site Rj near the top surface of the crystal, then
the total amplitude of the wave traveling in the k̂ direction is (see [60])

∼ e−ik·Rj + eiφh e−ik1·RjD(∆θ/Wh), (3.178)

where Wh is the half-width of the total reflection region, and D(∆θ/Wh) is the usual
Darwin reflection amplitude. The cross term in the resulting intensity depends upon
the phase of the structure factor, allowing φh to be determined.

The holographic nature of internal source emission has more recently also
been pointed out by Szöke [62], and has been utilized to do surface hologra-
phy using photoelectron sources [63]. Furthermore, as pointed out by Timmermans
et al. [64–66], if the neighboring atoms have spins, then due to exchange scatter-
ing, there is a “spin hologram” contribution to the interference between the direct
and scattered electron waves which can be extracted to give the magnetic struc-
ture.

X-ray interferometry and phase determination. As just discussed, for the Kossel lines,
the total field A(R,ω; j) in the k̂ = R̂ direction, emitted by a source atom at the site Rj ,
is a superposition of the directly emitted wave k, and the wave Bragg-reflected from k1

into k by the crystal (figure 17 and eq. (3.178)). In the time reversed process, the total
field at the site Rj due to a plane wave of frequency ω incident in the −k̂ direction,
is a superposition of the direct wave (−k) and the wave Bragg-reflected (−k) to
(−k1) by the crystal. The superposition of the two waves produces an X-ray standing
wave pattern. By the reciprocity theorem eq. (3.177), the intensity |A(R,ω; j)|2 at R,
which gives the Kossel line profile, is directly proportional to the excitation probability
|J0′f ′
µ A′µ|2 for inducing the transition from the ground state |f ′〉 = T |f〉 to the excited

state |0′〉 = T |0〉 in the time reversed process. Thus, observing the fluorescence yield
of an atom due to the field in the standing wave created by rocking through a Bragg
peak is equivalent to observing the Kossel line intensity profile produced by the decay
of that same atom, and consequently has the same phase information, as pointed out
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by Hutton et al. [67] and Gog et al. [68]. X-ray holography using this technique has
recently been demonstrated [69,70].

4. Coherent excitation of nuclei by synchrotron radiation pulses

Because of the low brightness of most radioactive Mössbauer sources, until re-
cently nearly all Mössbauer experiments involved only resonance absorption, which,
while valuable, does not exhibit to the fullest the interesting effects due to coherence
in the emission or scattering of the γ-rays from the various nuclei in the sample. In
1974, however, Ruby [71] and Mössbauer [72] pointed out that the spectral brightness
in the then existing synchrotron radiation sources at, e.g., the 14.4 keV 57Fe reso-
nance line exceeded that of 100% 57Co radioactive sources. Since it was clear that
with the use of wigglers or undulators the synchrotron brightness could be very much
enhanced at the resonance lines, a number of groups undertook the quest of “filter-
ing” out the “Mössbauer slice” from the white synchrotron beam. The first dramatic
success was achieved by Gerdau et al. [73] in 1985, where filtering was first unam-
biguously achieved, and since that time there has been rapid progress and interest in
the field [74].13

It is now clear that an important new field has been opened up involving coherent
nuclear excitations induced by synchrotron radiation pulses traversing a piece of matter.
Several important new areas of application are:

Inelastic scattering studies. Until recently, inelastic neutron scattering has been the
primary method available for obtaining the low energy excitations (phonons, magnons,
etc.) in condensed matter. X-ray inelastic scattering was not useful for such experi-
ments because of poor energy resolution.

However, perfect Si crystal backscattering monochromators have been con-
structed at Brookhaven [75] and Hasylab [76], which have achieved resolutions of
∆E ≈ 5–7 meV for X-ray energies. The use of such monochromators to filter syn-
chrotron radiation and to measure energy gains or losses in the scattered beam will
furnish another and perhaps more powerful means to determine condensed matter ex-
citations.

To exceed the limit ∆E ≈ 1 meV obtainable by wavelength selecting mono-
chromators, one must use nuclear resonance filters (frequency or energy selecting
monochromators) where one can obtain submicrovolt resolution, ∆E < 10−6 eV at
E = 14.4 keV (for 57Fe filters), with a flux of the order of 105 photons/s/mm2 or
higher.

Resonant absorber Doppler shifting detectors capable of speeds up to ≈30 m/s
have now been developed, making possible inelastic measurements corresponding to
energy transfers of 10−5–1 meV [77]. This should furnish a good method for measuring

13 The current experimental situation using both synchrotron and conventional Mössbauer radiation sources
is reviewed elsewhere in this issue. For a review of earlier work, see [74].
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very slow relaxation and fluctuation processes (ν ≈ 107 s−1) in the critical region, and
faster processes up to ≈3× 1011 s−1 (1 meV).

There has been considerable recent progress in this field, as discussed in sec-
tion 5.1 of this paper, and by Chumakov and Rüffer [78].

Interferometry, metrology, holography. Filtered synchrotron radiation opens up quite
new possibilities in X-ray interferometry by utilizing the very long coherence length
of the radiation.

The usual Bonse–Hart interferometer [79] is a large single crystal of Si or Ge,
cut to have three parallel plates (“arms”), with a set of crystal planes running per-
pendicular to the faces of the plates. Set in a Laue transmission geometry, the first
plate separates the incident X-ray radiation into two components (the direct and Bragg
reflected beams), and Bragg reflection of the two beams in the second arm recombines
the beams at the third plate, which acts as an analyzer. It is then possible to insert a
very thin “transparent” wedge of material (several microns) into one of the paths to
give an index of refraction change of the optical path length. In principle, observation
of the interference pattern vs. wedge thickness can give an accurate determination of
the index of refraction, and can, for example, be used to make precision determinations
of the anomalous scattering near a K-shell absorption edge [80].

A restriction here is that the coherence length of the radiation is lc ≈ 10−4 cm,
which means path length differences are restricted to ≈10−4 cm (the Bragg scattering
in the interferometer arms, or from a prior monochromatizing crystal, monochrom-
atizes the X-ray radiation to ≈ 0.1 eV, giving a coherence length of lc = ~c/Γ ≈
2 × 10−4 cm). Since the pathlength differences must be kept to less than lc to ob-
tain interference in the recombined beams, this effectively restricts us to transmission
elements (e.g., a transparent thin wedge) in one of the beams.

However, if filtered synchrotron radiation is used as the source, then Γ ≈ 10−8–
10−6 eV and the coherence length is lc ≈ 2 cm–20 m, and it would then be possible
to use a scattering element in a Bonse–Hart interferometer. For example, in place of
the transparent wedge, it would now be possible to insert two parallel cut grazing in-
cidence reflectors for surface studies, where now the optical path length is changed by
rotation of the reflectors. Another possibility would be to insert a multiple Bragg reflec-
tion etalon grating, used, for example, to make multiple passes through a monolayer.
A backscattering monochromater has been demonstrated by Shvyd’ko et al. [81].

It is also possible to do long coherence length interferometry with unmonochro-
matized synchrotron radiation pulses by utilizing the long coherence time response
of a resonance detector [82]. For example, a synchrotron radiation pulse of duration
∆t ≈ 0.1 ns sent through the two arms of an interferometer (e.g., Bonse–Hart, Michel-
son, . . . ) will emerge as two coherent sharp pulses, separated by a time ∆T ≈ L/c,
where L is the optical path difference between the two arms. If the pulses then impinge
on a film containing resonant Mössbauer nuclei, the nuclei are excited under the coher-
ent superposition of two sharp pulses, giving an excitation probability proportional to
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cos2(πL/λ0). This offers the interesting metrological possibility of measuring changes
of the length ∆L ≈ λ0 ≈ 1 Å for L’s up to lc ≈ 2 cm–20 m.

Structure determination. Another important application will be for the structure de-
termination of complex biomolecules. The problem of making structure determinations
by X-ray diffraction is greatly complicated by the fact that the reflected intensity only
gives the magnitude of the unit-cell scattering factor and not the phase. For this rea-
son, considerable effort has been devoted to devising methods for extracting phase
information.

To determine the phase, the usual method employed is impurity substitution, in
which one determines the phase of the unit cell scattering amplitude relative to the
phase of the wave scattered from a limited number of impurity sites. In practice this
is a tedious process, involving duplicate experiments on pure samples and impurity
doped samples.

An alternate, and very powerful method is offered by Mössbauer diffraction
[83,84]. In this case, one substitutes resonant 57Fe for 56Fe in the biomolecules to be
studied, leaving the electronic scattering unchanged.

Because of the exceedingly sharp resonance, it is then possible to vary the phase
and amplitude of the resonantly scattered wave by Doppler-shifting with negligible
variation in the nonresonant electronically scattered wave. Consequently, the inter-
ference between the waves is easily varied in a controlled manner. As discussed by
Black [83], and as demonstrated by Parak et al. [84], it is then possible to extract the
phase of the chemical structure factor of the unit cell relative to the structure factor
due to the resonant scattering at the Mössbauer sites. The problem is then reduced to
determining the relative positions of the Mössbauer atoms within the unit.

(A related technique for phase determination is to tune near a K-shell absorption
edge and use the frequency variation of the anomalous scattering f ′K + if ′′K over
eV-regions. However, this contribution is typically only several electrons even in the
immediate vicinity of a K shell, and more importantly, because of the continuum nature
of the intermediate states involved, there is no sharp dispersion variation across the K
edge. For example, the measurements of Materlik and Bonse [80] on Ni show that f ′K
varies from ≈−3 electrons at ω = ωK +150 eV, decreasing to ≈−7.5 electrons at ωK .
In contrast, the real part of the resonant nuclear scattering amplitude for 57Fe scatters
as +220 electrons for ω = ω0 − Γ/2~, and as −220 electrons for ω = ω0 + Γ/2~,
with Γ = 5× 10−9 eV.)

However, in practice, because of the high collimation required and the limited
brightness of natural sources, very long counting times are required (≈ several counts
per hour), making the Mössbauer experiments exceedingly difficult.

Filtered synchrotron radiation sources are ideal for such experiments, providing a
pre-collimated beam with a brightness ≈3–4 orders of magnitude greater than that pro-
vided by a natural source, making the Mössbauer technique applicable to the analysis
of significant biological molecules.
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Hyperfine splitting, isomer shifts, . . . by monitoring the quantum beats in the coherent
forward and Bragg scattering channels. Synchrotron radiation from a source oper-
ating in the single-bunch mode consists of sharp pulses of about 10−10 s duration
and about 10−6 s separation between pulses. Excited nuclear states of energy less
than ≈100 keV commonly have lifetimes in the range ~Γ−1 = 10−6–10−10 s. If the
pulse, monochromatized to perhaps 1 eV bandwidth at the nuclear transition, impinges
on a small crystal containing the resonant nuclei, then the electronically scattered
X-rays, photoelectrons, etc. will emerge promptly during the 10−10 s pulse, while
those processes involving nuclear excitation will be delayed a mean time Γ−1. There-
fore, by using a timed detector which can recover from the prompt pulse in a time short
compared to Γ−1, the resonant and nonresonant events can be separated temporally.

There are “quantum beats” in the coherently scattered radiation in the forward and
Bragg channels, arising from the interference between waves emitted from different
sites [26]. The essential feature is that the sharp synchrotron radiation pulse excites the
various nuclear excited state sublevels suddenly and coherently, which then “oscillate”
at their various natural frequencies, giving beats in subsequent decays. These beats
occur at frequencies

ΩB
(
n,m, ρ;n′,m′, ρ′

)
= ωnm(ρ)− ωn′m′

(
ρ′
)

(4.1)

corresponding to the difference frequencies of all allowed nuclear hyperfine transitions
ωnm(ρ) from all the different nuclear sites ρ, from which the hyperfine splittings of both
the excited and ground states may be found, as well as any energy shifts between nuclei
located in different chemical or magnetic sites. In contrast, the quantum beats occurring
in the usual time dependent perturbed angular correlation (TDPAC) measurements are
spatially incoherent, with the beats arising from the interference between transitions to
the same ground state. Thus, the beat frequencies give only the splittings of the excited
levels, with no information on ground state splittings or on shifts between different
sites.

The quantum beats in the coherent scattering give a very sensitive measure of the
hyperfine splittings and isomer shifts, which can be even more precise than the usual
Mössbauer absorption measurements because the quantum beats give a direct measure
of the energy differences, while the precision of the absorption measurements depends
on the precision of the velocity control.

An important practical point is that because of the pulsed nature of the synchrotron
radiation source, the quantum beats can be measured in the forward direction scattering
following the pulse excitation [85]. Since coherent forward scattering occurs for any
sample (crystalline, mosaic, amorphous), all normal Mössbauer experiments can be
carried out in the time domain.

4.1. Nuclear exciton states

There are two approaches for treating the interaction of a synchrotron pulse with a
system of nuclei. Because the temporal duration of the synchrotron pulse and its transit
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time across the system are short compared to the lifetime of the nuclear resonance,
the formation of the intermediate excited state and its subsequent decay can be treated
as two independent quantum-mechanical processes. Alternatively, the interaction can
be treated purely as a resonance scattering problem. The first approach brings out
interesting new physics: the creation of nuclear excitons with synchrotron radiation
pulses, and the nature of the subsequent exciton decay. The second approach, on the
other hand, gives the simplest method for obtaining the scattered signal. The time
dependent amplitude of the scattered signal is simply proportional to the Fourier trans-
form of the frequency dependent reflection and transmission amplitudes R̃(k̂1, k̂0;ω)
and T̃ (k̂1, k̂0;ω) already obtained for the various cases of off-Bragg, Bragg, Laue and
grazing incidence. In this subsection we discuss the exciton approach, and in the
following subsection 4.2 we outline the scattering approach.

From the pure physics standpoint, the nuclear exciton produced by the syn-
chrotron radiation pulse when it traverses a sample containing Mössbauer nuclei is a
new state of matter exhibiting interesting effects of coherence, notably:

• Speedup of the decay (relative to that of an isolated excited nucleus) resulting from
superradiance in the coherent channels (and a slowdown is also possible, resulting
from subradiance in some coherent decay channels).

• Quantum beats resulting from the interference of waves of different frequencies
from different nuclei, giving a time dependent spatially coherent decay rate, Γc(t),
varying periodically between superradiant and subradiant emission into the coherent
channels.

4.1.1. Nuclear exciton
The important new element in the synchrotron pulse experiment is that because

both the pulse duration and the transit time of the pulse across the crystal are short
compared to the excited state lifetime ~Γ−1, the pulse creates a collective nuclear
excited state |ψe(k0)〉 which is a spatially coherent superposition of the various excited
state hyperfine levels of all the nuclei in the crystal, with a spatial phasing wave
vector k0 [26,28]. The subsequent radiative decay is radically affected by coherence,
exhibiting both a speed-up due to “coherent enhancement” [2,10–13,25,26,28,32,86,87]
and a quantum beat modulation of the decay rate [26,28,32].

As discussed in [26], the resulting recoilless excitation just after the pulse tra-
verses the system is

∣∣ψe(k0)
〉

=
N∑
l=1

eik0·Rl
∑
nl

cnlml |elnl〉
∣∣G0(l)

〉
|χ0〉, (4.2)

where k0 = c−1ω0n0 (n0 is the direction of propagation of the incident pulse and ω0 is
the mean transition frequency for all the nuclei) and cnm is the amplitude for exciting
the nucleus at Rl from |glml〉 → |elnl〉, with no change in the vibrational state |χ0〉,
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and |G0(l)〉 indicates that all the other nuclei (l′ 6= l) are in their initial ground states
|gl′ml′〉. For a nuclear dipole transition (E1 or M1), cnm is given by

cnlml =
i
~
√
f〈elnl|~µ|glml〉 · Fω0, (4.3)

where ~µ is the nuclear dipole moment operator (E1 or M1), Fω0 is the resonant Fourier
component of the incident synchrotron pulse F(t) (F = E for E1 and F = B for M1),
and f is the Mössbauer factor.

|ψe(k0)〉 is a collective nuclear excited state, i.e., a spatially coherent superposi-
tion of the various excited state hyperfine levels of all the nuclei in the crystal. In each
contributing term, one nucleus is excited into one of its excited state hyperfine levels,
and all the remaining nuclei remain in their initial ground states. The relative spatial
phase is exp(ik0 · Rl). Hence, |ψe(k0)〉 is a single exciton collective state, with one
excitation distributed coherently over the entire system, with a spatial phasing wave
vector k0.

4.1.2. Radiative decay of the nuclear exciton
Because the temporal duration of the incident pulse is short compared to the

lifetime of the nuclear resonance, it is legitimate to regard the formation of the inter-
mediate excited state |ψe(k0)〉 and its subsequent decay as two independent quantum-
mechanical processes [88]. Consequently, we can use the general theory for γ emission
discussed in section 3.10.

The initial state of the crystal is now the exciton state |ψe(k0)〉 with one excitation
spread coherently over all the nuclei of the system. The photon potential Aµ(z) due
to a transition to a final crystal state |ψf〉 corresponding to all Mössbauer nuclei being
in their ground states is given by

Aµ(z) = c−1〈ψf |
∑
l

∫
d4xDµυ(z,x)Jυ(x, l)

∣∣ψe(k0)
〉
, (4.4)

where Jυ(x, l) is the source current of the lth nucleus and Dµυ(z,x) is the photon prop-
agator. If we neglect scattering, then Dµυ(z,x) is given by the free photon propagator
D(0)
µυ(z,x),

D(0)
µυ(z,x) = −4πgµυ

∫
e−ik(z−x)

k2 + iε
d4k. (4.5)

The source transition current Jυ(x, l) is given to good approximation by

Jµ(x, l) = eiH0txj(l)
µ (x)e−i(H0−Γ′/2)(tx−τl)1(tx − τl), (4.6)

where j(l)
µ (x) is the current-density operator for the atom l, Γ′ is the width of the

excited level, H0 is the Hamiltonian for the complete crystal with electromagnetic
interactions replaced by instantaneous Coulomb and magnetic interactions, and 1(t) is
the Heaviside step function (1(t < 0) = 0, 1(t > 0) = 1). In (4.6) it is assumed that
the excited nuclear state is produced at tx = τl. For a synchrotron pulse sweeping
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across a crystal in the direction n̂0, arriving at the origin at t = 0, the lth nucleus is
“turned on” at τl = c−1n̂0 ·Rl.

In the first Born approximation, the width Γ′ would simply be the excited state
width of an isolated nucleus, Γ′ = Γγ + Γα. But the effects of coherent decay will
radically effect Γ′ as we discuss below. For our purposes, it suffices to calculate
Γ′ in the second Born approximation, using the Fermi Golden Rule if there is no
hyperfine splitting (section 4.1.3), and the direct time dependent flux calculation if
there is hyperfine splitting (section 4.1.6). The exact treatment of the excited state
propagator for an initial exciton state |ψe(k0)〉 is discussed in section 6.

4.1.3. Spatially coherent and incoherent decay
The radiative decay of the exciton state∣∣ψe(k0)

〉
→ |ψf〉+ γk (4.7)

can be either spatially coherent, giving highly directional emission into the coherent
channels, or spatially incoherent, giving essentially isotropic emission into 4π sr.

Spatially coherent decay occurs when |ψe(k0)〉 makes a radiative transition to the
original ground state, i.e., |ψf〉 = |ψ0〉. For the decay |ψe(k0)〉 → |ψ0〉+γk, the photon
potential (for the elastic wave) becomes

Ael
⊥(R, t) =

1(t∗)
R

∑
l

Fl,ml
(
t∗
)
e−i(k−k0)·Rl , (4.8)

where k = c−1ω0R/R, t∗ = (t−R/c) is the retarded time, and the emission amplitude
from site Rl is

Fl,ml
(
t∗
)

=
√
f
∑
nl

〈glml|c−1
∫

dx j⊥(x)e−ik·x|elnl〉cnlmle−i(ωnlml−iΓ′/~)t. (4.9)

The coherent elastic wave, obtained by ensemble averaging over |ψ0〉, is then

A⊥(R, t) =
1(t∗)
R

∑
l

e−i(k−k0)·RlFc
(
t∗
)
, (4.10)

where the ensemble average emission amplitude Fc(t) is

Fc(t) =
C

(2j0 + 1)

∑
ml

Fl,ml(t), (4.11)

where C is the abundance of the resonant nuclear isotope. If there are several different
resonant sites ρ within the unit cell, the sum in eq. (4.10) is also carried out over ρ,
and Fc(t) will also depend on ρ.

Thus for spatially coherent decay |ψe(k0)〉 → |ψ0〉 + γk, the emitted wave is a
superposition of waves exp[−i(ωnlml − iΓ′)t] emanating from all the various sites Rl

which add up to give highly directional emission, with the intensity modulated by the
various difference frequencies.
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Viewed as a scattering process, as discussed in section 4.2, the system resonantly
scatters a photon |k0〉 in the incident synchrotron pulse to a final state |k〉, with the
nuclear system undergoing the transition |ψ0〉 → |ψe(k0)〉 → |ψ0〉, i.e.,

γk0 + |ψ0〉 →
∣∣ψe(k0)

〉
→ |ψ0〉+ γk. (4.12)

This is coherent elastic resonant scattering and corresponds to “multi-slit interference”:
it is impossible to tell at which nucleus the scattering took place, so the scattered wave
amplitude is then the sum of the individual scattered wave amplitudes from all the
nuclear sites, giving highly directional coherent scattering (as well as a weak diffuse
contribution due to the “isotope effect”).

If |ψf〉 6= |ψ0〉, the decay will be spatially incoherent (ignoring, for the moment,
spatially coherent decay with recoil). For single photon decay, |ψf〉 can differ from
|ψ0〉 only by the spin state of a single nucleus, e.g.,

|ψf〉 =
∣∣glm′l〉∣∣G0(l)

〉
m′l 6= ml. (4.13)

In this case the lth site is “tagged” by “spin flip”, and the emitted wave reduces to a
single contribution,

A⊥(R, t) =
1(t∗)
R

Fl,ml′
(
t∗
)
e−i(k−k0)·Rl . (4.14)

Thus, for spatially incoherent emission, Aµ(z) emanates from a single site Rl, giving
emission into 4π sr, with beat frequencies dependent only on the hyperfine splitting of
the excited state of the nucleus at Rl. Viewed as a scattering process, the scattering
definitely occurred at the lth nucleus, and the scattered wave amplitude only contains
this single contribution, giving essentially isotropic (diffuse) scattering.

Similarly, if |ψe(k0)〉 decays by internal conversion, then one of the atoms will
be tagged, now by the difference in the initial and final electronic states. As a conse-
quence, there can be no spatial coherence in internal conversion decay.

Finally, the exciton may decay with the emission of one or more phonons in
addition to the photon. Since the vibrational states are nonlocalized, this decay is
spatially coherent if there is no spin flip. However, because of the continuum of
phonon states, there is no coherent enhancement to these decay modes (the partial
width is essentially (1− f )Γγ).

4.1.4. Coherent enhancement and coherent speedup
For an isolated nucleus, the total width for the excited level is Γ = Γγ + Γα,

where Γγ is the partial width for radiative decay and Γα is the partial width for internal
conversion decay. For the synchrotron produced nuclear exciton state |ψe(k0)〉, the total
decay width is increased by the effect of spatially coherent radiative decay,

Γ→ Γ′ = Γc + Γ′γ + Γα, (4.15)

where Γ′γ is the partial width for spatially incoherent radiative decay and Γc is the
partial width for spatially coherent decay |ψe(k0)〉 → |ψ0〉+γk. If there is no hyperfine
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splitting of the nuclei, then Γc will be time independent and can be calculated by the
Fermi Golden Rule. For an E1 or M1 resonance,

Γc(k0) = ΓcohN
−1(4π)−1

∫
dΩ(n)

[
1−

(
n · ε̂0

)2]∣∣S(k− k0)
∣∣2, (4.16)

where the diffraction factor S(k− k0) is given by

S(k− k0) =
N∑
l=1

e−i(k−k0)·Rl . (4.17)

Here k0 = k0n0, k = k0n, ε̂0 is the “appropriate” polarization of the incident
synchrotron pulse (ε̂0 = e0 for E1, or ε̂0 = b0 = k̂0e0 for M1, respectively), and
Γcoh = fC(2j1 +1)Γγ/(4j0 +2), where f is the Mössbauer factor, C is the abundance
of the resonant nuclear isotope, and j0 and j1 are the spins of the nuclear ground and
excited states.

The classical analogue is a phased array of dipole oscillators, oscillating with
frequency ω0 in the ε̂0-direction, with the amplitude of the radiator at Rl phased as
exp(ik0 ·Rl). The differential radiation rate is then

d<(k0)
dΩ(n)

=
3
2

Γγ
~

(4π)−1[1− (n · ε̂0
)2]∣∣S(k− k0)

∣∣2. (4.18)

|S(k−k0)|2 gives the relative intensity, due to the interference among the various source
waves, of the radiation emitted in the k direction. The factor [1− (n · ε̂0)2] gives the
polarization dependence: each oscillator has an acceleration a ∝ ε̂0 exp(−iωt), and
the emitted radiation in the k direction is proportional to the transverse projection a⊥
of the acceleration relative to the k direction. Integrating over dΩ(n) gives the total
radiation rate for the system, <(k0). Comparing with eq. (4.16), the partial width
Γc(k0) for spatially coherent decay |ψe(k0)〉 → |ψ0〉+ γk corresponds to the classical
radiation rate per oscillator, <(k0)/N .

The relative intensity, |S(k−k0)|2, peaks to N2 in directions n where constructive
interference occurs for the wave amplitudes exp[−i(k− k0) ·Rl] emitted from all the
nuclei. Thus in the small solid angle about n0 for which (n− n0) · (Ri −Rj)� λ for
all interatomic distances, d<(k0)/dΩ(n) ≈ N2/4π. The contribution to <(k0) of this
“forward direction” coherent radiation is then

<(k0) ≈ Γcoh

~
N2

4π
∆Ω, (4.19)

where ∆Ω is the solid angle about n0 for which (n− n0) ·
(
Ri − Rj

)
< λ for

all Rij .
∆Ω depends strongly on the dimensionality and shape of the crystal. If the

radiators are uniformly distributed in a prism of dimensions l‖(k0), l(1)
⊥ (k0) and l(2)

⊥ (k0)

relative to the direction n0, with the convention that l(1)
⊥ (k0) > l(2)

⊥ (k0), and if l‖ and
l⊥ � λ, then there are three distinct cases:
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(i) (1-D crystal) ∆Ω ≈ (4λ/l‖) if l(1)
⊥ ≈ l

(2)
⊥ <

√
λl‖;

(ii) (2-D crystal) ∆Ω ≈ (4λ/l(1)
⊥ )(2

√
λ/l‖) if l(1)

⊥ ≈ l‖ and l(2)
⊥ <

√
λl‖; and

(iii) (3-D crystal) ∆Ω ≈ (λ/l⊥)2 if l(1)
⊥ ≈ l

(2)
⊥ >

√
λl‖.

In the opposite limit of long wavelengths, such that λ� l‖, l⊥ (0-D crystal), ∆Ω ≈ 4π.
Our main interest is in samples satisfying (iii), which is the usual situation, and we
restrict our attention here to this case. The other three cases are discussed briefly in
the following section.

For (iii) satisfied, we have

Γc(k0)
~

=
<(k0)
N

≈ Γcoh

~

(
N

4π

)(
λ

l⊥

)2

=
Γcoh

~
πnλ̄2l‖, (4.20)

where n = N/(l‖l
2
⊥) is the number of radiators per unit volume. Equation (4.20)

shows that there is a coherent enhancement of the radiation rate per atom <(k0)/N
proportional to the number of atoms in a squared wavelength of the material in the
thickness measured in the n0 direction. This is generally a very large number: if
we take λ ≈ 1 Å and n ≈ 0.1 Å−3, then πnλ̄2 ≈ 10−2 Å−1, so that a thickness
of only ≈100 Å will double the radiation rate of properly phased atoms, and even
for a very thin sample with l⊥ ≈ 1 µm, condition (iii) allows l‖ 6 1 cm, giving
enhancements of ≈106. However, the actual length l‖ over which coherence can occur
will be limited by scattering and absorption processes: for the 14.4 keV resonance
in 57Fe, photoabsorption limits the coherence length to l‖ ≈ 2 × 10−3 cm and the
enhancements to ≈103. A very nice demonstration of the linear dependence of Γc on
the thickness has been given by van Bürck et al. [89].

In addition to the enhancement due to coherence in the “forward” direction
n ≈ n0, in a crystal, a further enhancement occurs if k0 makes a Bragg angle with a
set of crystalline planes. Constructive interference then also occurs for those k (≡ kn)
lying in the small solid angle about the (k0 + τ ) direction (τ is a reciprocal-lattice
vector) such that [k− (k0 +τ )] ·Rij 6 2π for all Rij . For each open channel (k0 +τ ),
there will be a contribution [2,11,87]

Γ(τ )
c = Γcoh

[
1−

(
nτ · ε̂0

)2]
πnλ̄2l‖(k0 + τ ), (4.21)

where l‖(k0 + τ ) is the thickness of the crystal in the direction of (k0 + τ ), and nτ
is a unit vector in the direction of (k0 + τ ). While the forward enhancement (τ = 0)
is always present, each additional channel (k0 + τ ) only contributes for k0 within
the small angular region ∆φ 6 d/[m cos(φ0)l‖(k0 + τ )] around the Bragg angle φ0

(d = interplanar spacing, m = order of Bragg reflection).
Thus, if the incidence direction n0 is taken so that k0 satisfies the condition for a

symmetric Bragg reflection from a thin crystal of resonant nuclei M -layers thick, then
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there will be two coherent channels open, the reflection and transmission channels R
and T , and the partial width for coherent decay will be

Γc(k0) = Γ(T )
c + Γ(R)

c (δφ), (4.22)

where, for the coherent emission into the T -channel,

Γ(T )
c = πnλ̄2l‖(k0)Γcoh (4.23)

and for the coherent emission into the R-channel,

Γ(R)
c (δφ) = Γ(T )

c

[
1−

(
n1 · ε̂0

)2][sin2(Mδ)
(Mδ)2

]
. (4.24)

Here φ0 = φ0B + δφ is the incidence angle with respect to the crystal planes, φ0B is
the Bragg angle, d is the interplanar separation, and δ = kd cos(φ0B)δφ. We have also
assumed that the ∆φ-angular spread of the incident synchrotron pulse is small compared
to the Bragg width, ∆φ � ∆φB ≈ λ/(Md cos φ0B). If ∆φ > ∆φB, then Γ(R)

c (δφ) is
integrated over the angular distribution of the incident pulse intensity. If ε̂0 ⊥ n1, then
near Bragg (δφ � ∆φB), Γc doubles to 2Γ(T )

c , which agrees with the enhanced width
obtained in eq. (3.99) for excitation at Bragg by a near resonant monochromatic wave
of frequency ω. For a sufficiently thick crystal, typically M ≈ 103–104 layers, Γc will
exceed (Γ′γ + Γα), and coherent decay will dominate incoherent decay. The nuclear
exciton then de-excites at the speeded-up rate (Γc +Γ′γ +Γα)/~, primarily via coherent
radiative decay into either the R- or T -channel. This speed-up of coherent decay at
Bragg has been observed, e.g., in [90].

Because the forward scattering channel (τ = 0) is always open, an exciton
|ψe(k0)〉 created by a synchrotron radiation pulse is always superradiant (for a 3-D
crystal geometry), regardless of whether k0 satisfies a Bragg condition or not. However,
there is an important distinction between the Bragg- and off-Bragg cases. As discussed
in section 6, in simple situations the Bragg mode excitation is a true semi-stationary
state radiative eigenmode with an enhanced width (Γc + Γ′γ + Γα), while the off-
Bragg (or Laue) excitation is in fact a superposition of radiative eigenmodes of slightly
differing frequencies. In all cases, the initial decay rate of |ψe(k0)〉 is (Γc +Γ′γ+Γα)/~
(where Γc depends on the number of open channels, as discussed above), but the
character of the decay at delayed times � ~/(Γc + Γ′γ + Γα) is radically different,
depending on whether the exciton |ψe(k0)〉 is an eigenmode or not. In the case of an
eigenmode, the scattered signal (emission probability) has a pure exponential decay
∝ exp[−(Γc +Γ′γ+Γα)t/~)] at the enhanced decay rate. On the other hand, if |ψe(k0)〉
is a superposition of eigenmodes, the superradiant components die out quickly, leaving
a superposition of slowly damped components ≈ exp[−(Γ′γ + Γα)t/~)], with a spread
of eigenmode frequencies, producing a slowly decaying “ringing” signal at delayed
times. This delayed time behavior is discussed in sections 4.2 and 6.
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4.1.5. Γc in 0-, 1-, and 2-dimensions
As noted above, the solid angle ∆Ω of constructive interference depends strongly

on the dimensionality and shape of the crystal (relative to the direction of the phasing
vector k0).

For “end-fire” emission from a 1-dimensional shaped rod (l‖(k0)� l⊥(k0)2/λ),
the solid angle of constructive interference is ∆Ω ≈ (πλ/l‖). For a linear chain of N
atoms with an interatomic spacing d,

Rc(k0)
N

≈ λ

4d
Γcoh

~
. (4.25)

Thus, there is no appreciable enhancement for a one-dimensional array with λ 6 d.
For grazing “surface mode” emission from a 2-dimensional planar sample

l(1)
⊥ (k0) ≈ l‖(k0), l(2)

⊥ (k0)�
√
l‖(k0)

λ
,

and

∆Ω ≈ λ

l(1)
⊥
· 2
√
λ

l‖
.

For a square array of N = M2 atoms with an interatomic spacing d,

Rc(k0)
N

≈ 2π

(
λ̄

d

)2
√
l‖
λ

Γcoh

~
, (4.26)

where l‖ = Md. This result also holds for a planar crystal if the orientation of k0 is
such that a surface mode channel ks is just opened (rather than for k0 being a surface
mode). Thus for a planar sample and short wavelength resonance radiation λ 6 d,

there is an enhancement of coherent decay ∝
√
l‖/λ of the exciton |ψe(k0)〉 if the

phasing vector k0 just opens a surface mode for the plane.
In the opposite limit of long wavelegth resonances with λ � the dimensions of

the sample (0-dimensional crystal), there is constructive interference in all directions,
so ∆Ω = 4π and

Rc(k0)
N

= N
Γcoh

~
. (4.27)

Thus, for a 0-dimensional crystal Γc would be strongly enhanced, directly proportional
to the number of nuclei N . Of course this long wavelength situation will not be
realized for the Mössbauer transitions of interest to us, where always λ 6 d.

4.1.6. Spatially coherent quantum beats and temporal Pendellösung
If there is hyperfine splitting of the nuclear levels, or if there are shifts between

the levels of nuclei located in different chemical sites, there will be periodic construc-
tive/destructive interference between waves of different frequency emitted from the
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different sites. This results in a striking “quantum beat” modulation of the spatially
coherent decay rate,

Γc

~
→ Γc(t)

~
, (4.28)

varying periodically between “superradiant” and “subradiant” emission into the coher-
ent channels, with beat frequencies determined by the frequency differences among
the various transition resonances. Furthermore, if there are several coherent channels
open, the “superradiant” condition can oscillate between channels, giving a striking
temporal Pendellösung effect for the probability for photon decay.

The coherent elastic photon potential A⊥(R, t) for the spatially coherent decay
|ψe(k0)〉 → |ψ0〉+ γk is given by eqs. (4.9)–(4.11), where the decay width Γ′ is given
in the first Born approximation by Γ′ = Γ = Γγ + Γα, while in the second Born
approximation,

Γ′
(
t∗
)

=
1
t∗

∫ t∗

0

[
Γc(t) + Γ′γ + Γα

]
dt. (4.29)

Γc(t), Γ′γ and Γα give the various partial widths of |ψe(k0, t)〉 at time t, i.e.,

d
dt

〈
ψe(t)

∣∣ψe(t)
〉

= −1
~
[
Γc(t) + Γ′γ + Γα

]〈
ψe(t)

∣∣ψe(t)
〉
, (4.30)

so that within the spirit of this approximation, |ψe(t)〉 decays as〈
ψe(t)

∣∣ψe(t)
〉

= e−Γ′(t)t/~〈ψe(k0)
∣∣ψe(k0)

〉
, (4.31)

with Γ′(t) as given above.
The partial width Γc(t) for coherent emission is given by

Γc(t∗) =
R2
∫

dΩRnc(R, t)
〈ψe(t∗)|ψe(t∗)〉 , (4.32)

where the photon flux (probability/cm2/s) for spacially coherent emission is given by

nc(R, t) =

[
ω0

2π~c

]
·
∣∣A⊥(R, t)

∣∣2. (4.33)

If there is no hyperfine splitting, then Γc(t) = Γc, the enhanced coherent decay
width given by eq. (4.16). In the presence of splitting, A⊥(R, t) is a superposition of
waves of all the various resonance frequencies ωnm(ρ) of all the nuclei within each
unit cell, and there will be a “quantum beat” modulation of the coherent decay rate,
with Γc(t)/~ varying between a strongly enhanced peak decay rate and a strongly
suppressed minimum decay rate.

Because of the high directionality of |S(k − k0)|2, Γc(t) is the sum of the open
channel contributions,

Γc(t) =
∑
m

Γ(m)
c (t). (4.34)
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Γ(m)
c (t)/~ gives the instantaneous rate for radiative decay into the mth channel, so the

expected signal I (m)
c (t) in the channel (prob./s a photon is emitted into the channel) is

I (m)
c (t) =

Γ(m)
c (t)
~

·
〈
ψe(t)

∣∣ψe(t)
〉

=
Γ(m)

c (t)
~

· e−Γ′(t)t/~ ·
〈
ψe(k0)

∣∣ψe(k0)
〉
. (4.35)

For the spin flip and internal conversion incoherent decay modes, there is no
interference between waves from different sites, and at a particular site, the decay is∑
cnm|en〉 → |gm′〉, so the quantum beats only exhibit the splittings of the excited

levels. There is no information about the ground state splittings or of the energy shifts
between different sites. Because there is no spatial coherence, there is no enhancement
of the partial widths for incoherent decay, Γα + Γ′γ . Furthermore, Γα and the spin flip
contribution to Γ′γ are time-independent, in sharp contrast to Γc(t). The spatially
incoherent decay goes into all directions, and in any particular direction a quantum
beat modulation will be observed. But since the contributing waves arise from different
∆Jz-“oscillators”, there will be no net interference when integrated over dΩR. (There
will, however, be a time dependence in the contribution to Γ′γ , which arises from the
diffuse elastic scattering associated with the isotope effect. But this is only a small
contribution to the total width Γ′(t) so we will not consider it further.)

A striking example of the quantum beat modulation of the coherent rate due
to spatial coherence has been observed in the experiments on yttrium–iron–garnet
(YIG) [91]. In YIG there are two inequivalent sites, d1 and d2, with a shift ~ΩE ≈ 6Γ
between the resonance frequencies at the two sites arising from the different orien-
tation of the electric field gradient (EFG) relative to the internal hyperfine field Bint

at the two sites. There is also hyperfine splitting at each site, resulting in additional
higher frequency quantum beat modulations. But to simplify the discussion, we take
an idealized case with a single unsplit resonance at each site, with two inequivalent
sites ρd1 and ρd2 within each unit cell, and with a difference ΩE between the resonance
frequencies at the two sites.

With k0 set to satisfy the Bragg condition for a symmetric reflection from an
M -layer crystal, the partial width for coherent decay is Γc(t) = Γ(R)

c (t) + Γ(T )
c (t),

where for m = R,T ,

Γ(m)
c (t) = Γc · cos2 [(ΩEt− φm)/2

]
. (4.36)

Here φm gives the relative spatial phase of the d1 and d2 contributions for emission
into the mth channel,

φm = (km − k0) · (ρd1 − ρd2), (4.37)

and Γc gives the peak partial width for coherent emission into a single channel,

Γc = πnλ̄2l‖(k0)Γcoh. (4.38)

The crystal “planes” now have unit cell thickness, with a separation d between plane
centers, and n is the density of unit cells (/cm3). We have also assumed ε̂0 ⊥ (k0, k(0−))
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Figure 18. The probabilities/s for photon emission into the R- and T -channels (solid and dashed lines,
respectively) following a pulse excitation of an 57Fe enriched YIG crystal with k0 satisfying the condition

for an (0 0 2) Bragg reflection.

and an exact Bragg condition, so that [1 − (nR · ε̂0)2] · [sin(Mδ)/(Mδ)]2 = 1 for the
reflection channel.

Thus, the decay rate Γ(m)
c (t)/~ for coherent emission into each channel oscil-

lates between superradiant and subradiant peaks occurring at the quantum beat fre-
quency ΩE . Furthermore, if the relative spatial phase factor φm 6= 2nπ, then the
peak decay rates into the R- and T -channels occur at different times, with the time
separation being a direct measure of φm.

For the (0 0 2) Bragg reflection in YIG, φ(R) = π and φ(T ) = 0, so that the
instantaneous partial widths for emission into the R- and T -channels are 180◦ out of
phase,

Γ(R)
c (t) = Γc sin2(ΩEt/2), (4.39)

Γ(T )
c (t) = Γc cos2(ΩEt/2). (4.40)

Thus, for the (0 0 2) reflection, the total partial width Γc(t) for coherent decay is
independent of time,

Γc(t) = Γ(R)
c (t) + Γ(T )

c (t) = Γc, (4.41)

and the decay parameter Γ′(t) also becomes time-independent,

Γ′(t) = Γ′ = Γc + Γ′γ + Γα. (4.42)

The probabilities/s for photon emission into the R- and T -channels, eq. (4.35), are
then

I (R)
c (t) = e−Γ′t/~ sin2(ΩEt/2) · 1

~
[
Γc
〈
ψe(k0)

∣∣ψe(k0)
〉]

, (4.43)

I (T )
c (t) = e−Γ′t/~ cos2(ΩEt/2) · 1

~
[
Γc
〈
ψe(k0)

∣∣ψe(k0)
〉]
. (4.44)
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In the reflection channel R(0 0 2), there is thus an initial complete suppression of
the coherent decay, followed by a delayed enhanced probability for photon emission,
as shown in figure 18. The decay rate Γ(R)

c (t)/~ for coherent decay into R peaks at
odd multiples of π/ΩE ≈ 74 ns. Because the probability of excitation 〈ψe(t)|ψe(t)〉 is
decaying proportional to exp(−Γ′t/~), the observed signal I (R)

c (t) peaks at earlier times
tn = [(2n − 1)π/ΩE − ∆τ ], which are the positive time solutions of tan(ΩEt/2) =
~ΩE/Γ′. For Γ′ = 4Γ, as observed in the experiment in [91], ∆τ ≈ 32 ns, and the
first delayed peak occurs at t1 ≈ 42 ns. The enhanced total width Γ′ ≈ 4Γ is due to
coherent enhancement of the radiative width Γc ≈ 3Γ ≈ 30Γγ , a 30-fold enhancement
of the radiative decay rate. Equally remarkable is the initial complete suppression of
coherent decay into R, followed by a delayed peak probability after 42 ns. This is
in marked contrast to the radiative decay from an isolated nucleus, which follows an
exp(−Γt/~) dependence.

For the transmission channel, the relative spatial phase is φ(T ) = 0, giving initial
constructive interference, and the coherent emission into T(0 0 2) is 180◦ out of phase
with the emission into R(0 0 2). Thus, for the (0 0 2) Bragg reflection, the coherent
decay should exhibit a striking “temporal Pendellösung” effect, oscillating back and
forth between the T - and R-channels at frequency ΩE .

This behavior can be changed by changing the order of the Bragg reflection. For
example, for the (0 0 4)-Bragg reflection, the spatial phase factors are φ(R) = φ(T ) =
0 (mod 2π), so in this case the R- and T -channels beat in phase with a cos2(ΩEt/2)
dependence, with the partial width for coherent decay being

Γc(t) = Γ(R)
c (t) + Γ(T )

c (t) = 2Γc cos2(ΩEt/2). (4.45)

The decay parameter Γ′(t), eq. (4.29), is now also time-dependent,

Γ′(t) = Γα + Γ′γ + Γc

(
1 +

sin(ΩEt)
ΩEt

)
, (4.46)

and the probabilities/s for photon emission into the R- and T -channels are then

I (R)
c (t) = I (T )

c (t) = e−Γ′(t)t/~ cos2(ΩEt/2) · 1
~
[
Γc
〈
ψe(k0)

∣∣ψe(k0)
〉]
. (4.47)

Thus, for the (0 0 4) reflection, in contrast to the (0 0 2) reflection, Γc(t) is time-
dependent, with the probability for photon decay (into either channel) being initially
strongly enhanced, followed by complete suppression of coherent decay at a time
≈ π/ΩE ≈ 74 ns.

4.1.7. Nuclear exciton states, Dicke superradiance, and γ-lasers
Steady state grazing is very unpromising because it would involve maintain-

ing crystallinity during several natural lifetimes (≈10−9–10−6 s) while each atom is
discharging ≈104 eV energy. Therefore, to prevent excessive heating, the radiation
pulse must be emitted quickly, before the crystal is destroyed. Hence, “superradiance”
appears essential for gamma lasing [21,43,44].
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In the case of an initially inverted system, we find that multi-photon Dicke su-
perradiance will take place in the mode for which the single exciton state |ψe(k0)〉
discussed above has the maximum decay rate Γc(k0)/~:

For a long thin needle, with all N atoms initially excited, the initial decay rate
for emission into the end-fire mode [21] is Nγ/~, where γ = ΓγdΩ/4π is the partial
width for single atom decay into the end-fire mode, with ∆Ω = (λ/d)2 and d = needle
diameter. However, coherent emission into the mode enhances the rate for subsequent
emissions into the mode. According to Dicke [21], if p photons have already been
emitted into the mode, then the rate of emission of the next photon is

Rcoh(p+ 1) =
Γcoh

~
(p+ 1)(N − p), (4.48)

where

Γcoh(p+ 1) = (p+ 1)γ (4.49)

is the probability/s of radiating into the end-fire mode per excited atom. Thus,
Γcoh(p+ 1) exhibits a “coherent enhancement” over the single atom decay rate by
a factor of (p+ 1). The power ~ωRcoh(p+ 1) will maximize at p = N/2, giving

Rcoh(N/2) = (N/2)2γ, (4.50)

but Γcoh(p+ 1) continues to increase, reaching its maximum, Nγ (= πnλ̄2l‖Γγ =
Γc(k0), as discussed in section 4.1.4), at p = N −1, i.e., when only a single excitation
remains. Thus, the last state in the cascade, the single exciton state |ψe(k0)〉, is the
most superradiant (i.e., has the greatest decay rate per excited atom). Conversely, the
single exciton state (mode) |ψe(k0)〉 with the greatest decay rate Γc(k0)/~ will be the
favored superradiant decay mode for an initially inverted system. Thus by studying
the coherent enhancement of single exciton modes, in crystals as well as amorphous
samples, we get direct information regarding the development of superradiance in
an initially inverted system. As discussed in section 3.9, coherent multibeam modes
resulting from crystallinity have greater coherent enhancements than any single beam
modes and would in the case of an initially inverted crystal be the superradiant decay
modes.

The connection between Dicke superradiance and single exciton states is very
important because the coherent enhancement of single exciton modes is subject to
experimental investigation now. Thus, it is of interest to investigate, both theoretically
and experimentally, the optics of single exciton states induced in crystals by syn-
chrotron radiation pulses, not only because of the intrinsic interest in this new field of
optics, but also because the results will have a very important bearing on the possibility
of γ-ray lasing/superradiance. Of particular interest will be thin crystal excitations in
multibeam Bragg and Laue modes, as well as thick crystal excitations in multibeam
Borrmann modes [92–95].
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4.2. Coherent elastic scattering of synchrotron radiation pulses

The exciton approach brings out the interesting new physics involved in syn-
chrotron pulse excitation of Mössbauer nuclei. However, a much simpler method for
obtaining the scattered signal is to treat the interaction as a coherent elastic scattering
problem.

Synchrotron radiation is a very bright, white source of radiation with fluxes in
the 10 keV region ranging from 1012–1014 photons/s per eV per mrad of ∆y (see
figure 19). The radiation is highly collimated about the plane of the synchrotron, with
the divergence at 10 keV being ∆x ≈ 0.1–0.2 mrad, with about 90% of the intensity
associated with the component parallel to the plane of the orbit (ε̂y in figure 19). There
is also a stable periodic time structure, with the duration of each pulse being ≈10−10 s,
and the separation between pulses, depending on the electron bunching, being ≈10−6 s
for operation in the single bunch mode.

As discussed in [26,32,86], each synchrotron pulse consists of many photons
emitted by the many electrons in the bunch incoherently, one with the other. The
pulse from a given electron has a duration ≈λc/c ≈ 10−19 s, or, if this radiation
is filtered to about 1 eV, the coherence time becomes Tc ≈ 10−15 s, which is still
generally very short compared to the response time I (s)

c (t) of the coherently scattered
signal (even with strong coherent enhancement, say Γc ≈ 100Γ, the response time ≈
(100Γ)−1 � 10−15 s). The duration of the entire pulse depends on the bunching of the
electrons and is typically ≈10−10 s. The scattered flux is then computed starting from
eqs. (3.9)–(3.11), where A0(t) represents a one-photon amplitude of duration on the

Figure 19. Schematic of scattering geometry.
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order of the coherence time Tc. Because Tc is very short compared to the scattering
response time, the time dependent amplitude of the coherent elastic scattered wave is
simply proportional to the Fourier transform of the frequency dependent reflection and
transmission amplitudes R̃(ω; k̂1, k̂0) and T̃ (ω; k̂1, k̂0) already obtained for the various
cases of off-Bragg, Bragg, Laue and grazing incidence:

The time-dependent coherent elastic photon flux which is scattered into the ks
channel following excitation of the crystal by a synchrotron pulse of polarization e0

incident at t0 = 0 is given by

I (s)(t,φ) =
[
2π~gI0p(φ)

]∣∣S(t; k̂s, k̂0; e0
)∣∣2, (4.51)

where S(t; k̂s, k̂0; e0) gives the amplitude response to a δ-function pulse,

S
(
t; k̂s, k̂0; e0

)
=

1
2π

∫ +∞

−∞
dωS

(
ω; k̂s, k̂0; e0

)
e−iωt. (4.52)

Here,

S
(
ω; k̂s, k̂0; e0

)
= S̃

(
ω; k̂s, k̂0

)
e0 (4.53)

is the wave coherent elastically scattered into the ks = (ω/c)k̂s channel when a wave
k0 = (ω/c)k̂0 is incident on the crystal with polarization e0. For a reflection channel kr,
S(ω; k̂r, k̂0; e0) is the reflected wave Rr; and for a transmission channel kt, S = Tt.
S(ω) is given in general by eq. (3.51), and for the special cases of off-Bragg, Bragg,
grazing incidence, and Laue, by eqs. (3.63), (3.81, 3.86), (3.105) and (3.114), (3.115),
respectively.

In (4.51), I0p(φ) is the number of photons/eV per mrad2 per synchrotron pulse
incident on the crystal at the rocking angle φ, with polarization e0 at frequency ω0;
and g = sinφs/ sin φ0 is the geometrical factor relating the cross-sectional areas of
the incident and scattered beams. For simplicity, we also assume that the crystal is
oriented so that the scattering plane (k0, ks) is perpendicular to the crystal surface.
The ∆y divergence is then maintained on scattering (see figure 19).

I(t,φ) dt dφ∆y then gives the expected number of photons scattered into the ks
channel between t and t + dt. If the duration of the incident synchrotron pulse is
appreciable compared to the response time of |S(t)|2, then the response must be folded
over the initial pulse shape P0(t),

I (s)(t,φ) = 2π~gI0p(φ)
∫

dt0
∣∣S(t− t0; k̂s, k̂0; e0)

∣∣2P0(t0). (4.54)

In most cases there is no simple analytical solution for S̃(t; k̂1, k̂0), but instead one
numerically computes the fast Fourier transform of S̃(ω; k̂1, k̂0), which is calculated
using the general procedure outlined in section 3.4. There are simple solutions in
several important limiting cases, however.
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4.2.1. Quantum beats in the Born approximation
In the first Born approximation,

S̃
(
ω; k̂1, k̂0

)
= MF̃ 10 = nλl‖(k1)f̃ (ω). (4.55)

Here F̃ 10 is the planar scattering amplitude as given in eq. (3.32) and M is the number
of layers. In the second line, l‖(k1) = Md/ sin φ1 is the thickness of the crystal in the
k1 direction, and

f̃ (ω) =
∑
ρ

[
f̃ (ρ)

e + f̃ (ρ)
n (ω)]e−i(k1−k0)·ρ (4.56)

is the 2×2 matrix for the unit cell scattering amplitude. The resonant nuclear scattering
amplitude f̃ (ρ)

n (ω) is a sum of Lorentzian resonances corresponding to the various
allowed transitions between the excited and ground state hyperfine levels at the unit
cell site ρ,

f̃ (ρ)
n (ω) =

∑
nm

f (ρ)
0 (nm; k̂1, k̂0)Γ/2

[~ω − ~ωnm(ρ) + iΓ/2]
. (4.57)

The transform S̃(t; k̂1, k̂0) is then a superposition of damped harmonic waves,

S̃
(
t; k̂1, k̂0

)
∝
∑
ρ

e−i(k1−k0)·ρ
∑
nm

f (ρ)
0 (nm; k̂1, k̂0)e−i[ωnm(ρ)−iΓ/2~]t, (4.58)

and, hence, the intensity |S(t)|2 is modulated at the various quantum beat frequencies

ΩB
(
n,m, ρ;n′,m′, ρ′

)
= ωnm(ρ)− ωn′m′

(
ρ′
)

(4.59)

corresponding to the difference frequencies of all allowed nuclear hyperfine transitions
ωnm(ρ) from all the different nuclear sites ρ, from which the hyperfine splittings of
both the excited and ground states may be found, as well as any energy shifts between
nuclei located in different chemical or magnetic sites.

The electronic contribution to f̃ (ω) gives a prompt time response which does
not interfere with the slowly decaying signal from the nuclear resonances. (The fre-
quency insensitive parts of fe yield a delta-function response, and the absorption edge
resonances with widths on the order eV give signals which decay out in ≈10−15 s.)

The first Born approximation will give an accurate description of the resonant
signal if the effects of coherent enhancement are small, i.e., if Γc 6 Γγ . Since
Γc ≈ πnλ̄2

0l‖fMΓγ , where n is the density of resonators and fM is the Mössbauer
factor, the crystallite dimensions must be l 6 4π/nfMλ̄

2
0, so typically a µm or less.

For optically thick samples, the interaction among the resonators can lead to additional
“dynamical beats” which must be subtracted from the quantum beat spectrum. The
dynamical beats are discussed below.
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4.2.2. Superradiant normal mode excitation at Bragg
For a symmetric Bragg reflection from a highly enriched thin film crystal of

unsplit M1 Mössbauer nuclei, and for incident e0 = π̂ radiation, S(ω; k̂1, k̂0; e0) =
R(ω, δ) is given by the simple Lorentzian form of eq. (3.90), with an enhanced width
Γ′(δ) = Γ′γ + Γα + Γc(δ) and shifted resonance ω′0(δ) = ω0 + ∆ωc(δ), as given by
eqs. (3.92) and (3.93). Here δ = k0d cos φ0δφ, where δφ is the rocking angle from
exact Bragg at resonance. The transform time signal R(t, δ) is then a damped harmonic
wave,

R(t, δ) ∝ exp
{
−i
[
ω′0(δ) − iΓ′(δ)/~

]
t
}
. (4.60)

At exact Bragg (δ = 0), the signal decays at the natural frequency ω0 of the nuclear
resonators, with the enhanced decay rate (Γ + Γc)/~, with the Bragg enhancement
being Γc = 2πλ̄2l‖(k0)Γcoh as given by eqs. (3.99) and (3.90). Rocking off Bragg, the
frequency is shifted above or below ω0, depending on the sign of δ, and the decay rate
decreases.

As discussed in section 3.6.2 and the appendix, the proper intermediate excited
states in the scattering process are the collective normal mode exciton states, and at
exact Bragg (δ = 0) for a symmetric Bragg reflection, the phasing is such that only
the superradiant eigenmode state |ψe(q = k0)〉 is excited, with resonance occurring at
the natural resonance frequency ω0, and with the coherent decay width Γc given by
eq. (3.99). Rocking off Bragg, in addition to the superradiant eigenmode, various other
normal mode states are virtually excited, the weighted resonance energy is shifted from
ω0, and the effective width is decreased.

At exact Bragg, the eigenmode decays symmetrically into the forward (k0+) and
reflected (k1−) channels.

4.2.3. Superradiance, dynamical beats, quantum beats and conversion electrons
off-Bragg
For off-Bragg transmission (or transmission through a noncrystalline film),

S̃(ω; k̂0, k̂0) = T̃ (ω; k̂0, k̂0) as given by eq. (3.63). If there is no hyperfine split-
ting, T̃ is diagonal for any basis vectors (ex, ey), and for any incident polarization the
transmitted amplitude is

T (ω) = exp[inλfel] exp
[
iΓc/(~ω0 − ~ω − iΓ/2)

]
, (4.61)

where Γc = πnλ̄2lΓcoh, the enhanced coherent scattering width of the exciton |ψe(k0)〉,
as given by eq. (4.20). Correct to terms of order l2 (Γ2

c), the resonance factor can be
expressed as a simple Lorentzian response, with enhanced total width (Γ + Γc),

exp

[
iΓc

ω0 − ω − iΓ/2

]
= 1 +

iΓc

(~ω0 − ~ω)− i(Γ + Γc)/2
+ O

(
l3
)
. (4.62)

This expression determines the short time behavior of the transform.
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The time response is then given by (see [86])

T (t) = −ie−i[ω0−iΓ/2~]tJ1
(√

4Γct/~
)√Γc

t
. (4.63)

Here we have dropped a prompt δ(t) contribution and we have suppressed the elec-
tronic damping factor exp(inλfel). For short times (t < 4~/Γc ≈ the first zero of
J1(
√

4Γct/~ )/
√
t ),

T (t) ≈ − iΓc

~
e−i[ω0−i(Γ+Γc)/2]t, (4.64)

which is just the transform of the Lorentzian response of eq. (4.62). For long times
(t > 4/Γc), using the asymptotic behavior J1(z) ∼

√
2/πz cos(z − 3π/4),

T (t) ≈ − iΓc

~
e−i[ω0−iΓ/2~]t 4

√
Γc

~t3
cos

(√
4Γct/~−

3π
4

)
. (4.65)

Thus, the delayed forward scattered signal following the creation of a nuclear exciton
|ψe(k0)〉 with k0 off-Bragg is

I (T )
c (t) =


(Γc/~)e−Γt/~[J1

(√
4Γct/~

)]2
/t,

≈(Γc/~)2e−(Γ+Γc)t/~, t < 4~/Γc,

≈
√

Γc/~t3e−Γt/~ cos2
(√

4Γct/~− 3π/4
)
, t > 4~/Γc.

(4.66)

In figure 20 we plot I (T )
c (t) vs. t for an 57Fe film with Γc = 4Γ. The natural

lifetime is Γ−1 = 141 ns. The solid line shows the exact transform, and the dashed
line gives the short time solution, exp[−(Γ + Γc)t/~]. Figure 20(a) gives a linear plot
over two natural lifetimes, and (b) gives a log plot over ten lifetimes. For comparison,

Figure 20. Off-Bragg time response.
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the dotted line in each figure gives the thin film Bragg response coherently scattered
into either the R- or T -channels, with l‖(k0) taken equal to the off-Bragg thickness l,

so that Γc(Bragg) = 2Γc, and I (R)
c = I (T )

c = exp[−(Γ + 2Γc)t/~].

Superradiance and dynamical beats. Looking at the linear plot, the interesting feature
is that the decay is superradiant, for the reasons discussed in section 4.1.4, with I (T )

c

closely following the simple superradiant decay, exp[−(Γ + Γc)t/~], over the effective
lifetime of the exciton. With high probability, the off-Bragg exciton |ψe(k0〉 decays
during this superradiant period.

For delayed times t > 4~/Γc, the decay of the off-Bragg exciton has a markedly
different character: the fall-off is now slow, ∝ exp(−Γt/~)/

√
t3, in contrast to the

initial superradiant decay exp[−(Γ + Γc)t/~], and there is the onset of dynamical
beats, ∝ cos2(

√
4Γct/~− 3π/4).

In contrast to this complex off-Bragg decay, the Bragg exciton |ψe(k0)〉 has a
simple exponential decay for all times, at the superradiant decay rate ~(Γ + 2Γc)−1, as
shown by the dotted lines in figures 20(a), (b).

From the normal mode approach, discussed in section 6, this very different behav-
ior of the off-Bragg and Bragg cases can be understood as follows: the exciton |ψe(k0)〉
created by the synchrotron pulse is a Bloch wave of the form given by eq. (3.96). How-
ever, the Bloch waves are generally not the true radiative normal modes in a crystal,
but instead, the proper forms of the eigenmodes for a parallel sided crystal have a sine
or cosine modulation (coming in from the crystal faces) with a complex wave vector.
Generally, the Bloch state |ψe(k0)〉 is a superposition of these radiative eigenmodes,
which have a spread of eigenfrequencies and decay rates. The important exception
is the case in which k0 satisfies a Bragg condition k0 · τ = (1/2)τ 2, where τ is a
reciprocal lattice vector which is perpendicular to the parallel faces (i.e., a symmetric
Bragg reflection). In this case, |ψe(k0)〉 is a superradiant eigenmode, radiating at the
natural resonance frequency ω0, with a simple exponential decay at an enhanced decay
width (Γ + Γc), including the contributions from coherent decay into both the k0 and
k0 + τ directions,

Γc(k0) = πnλ̄2[l‖(k0) + l‖(k0 + τ )
]
Γγ . (4.67)

When k0 is off Bragg, then |ψe(k0)〉 is a superposition of radiative eigenmodes.
An important general result, discussed in section 6, is that the eigenmodes are not Her-
mitian orthogonal. As a consequence, there will be interference effects between the
different modes in the evolution of the exciton expectation value, 〈ψe(k0; t)|ψe(k0; t)〉.
These interference effects lead to both the appearance of the dynamical beats, and
to a “dephasing” of the expectation value, which contributes both to the initial su-
perradiant decay, and to the weak 1/

√
t3 enhancement of the delayed decay of

〈ψe(k0; t)|ψe(k0; t)〉.
Correspondingly, the emitted wave packet A(z, t) is a superposition of waves of

the various normal mode frequencies, a spread of frequencies ≈ ± Γc/~ about ω0,
leading to initial superradiance, dynamical beats and a weakly enhanced long time
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decay of the emitted signal. For a simplified example, if the normal mode wave
contributions entered with equal amplitude over a frequency range ω0 ± Γc/~, and if
all modes decayed at the natural Γ, then the emitted signal would have dynamical beats
of frequency Γc/~ and a weakly enhanced long time decay |T (t)|2 ∝ exp(−Γt)/t2:

T (t) ∝
∫ +Γc/~

−Γc/~
dωe−i(ω0+ω−iΓ/2~)t =

2 sin(Γct/~)
t

e−i(ω0−iΓ/2~)t. (4.68)

This illustration is much too simple and does not give a proper description of the beats
or long time decay, and there is no initial superradiance. But as shown in section 6,
making the correct resolution of |ψe(k0)〉 into normal mode contributions, and using
the correct complex mode frequencies, the numerically calculated signal I (T )

c (t) is
essentially indistinguishable in form from the analytic transform eq. (4.66).

A simple alternative approach, which gives a different perspective to the problem,
is discussed in [96]: directly solve for the time dependent response of the dipoles in
each layer, acting under the transient radiation fields from all the other layers, following
the initial prompt pulse excitation. The initial phasing of the dipoles within each layer
is such that the layer will radiate equally into both the “forward” k0+ = k0 direction
and the “reflected” k0− direction.

Initially, the phasing between different planes is such that there will be construc-
tive interference in the forward direction k0 between radiation emitted from each plane
layer – so that “behind” the film (z > Md), the field amplitude is enhanced M -fold,
E(+)(z) = ME0, while at the (m+ 1)th layer inside the film, the forward propagating
wave is enhanced m times, E(+)(md) = mE0.

If k0 is off-Bragg, then there is no constructive interference in the reflected
k0− channel and the problem is an asymmetrical “one-way communication”: the mth
layer acts under the influence of the preceding (m − 1) “upstream” layers, but the
“downstream” (M−m) layers have essentially no effect on the mth layer. In particular,
there are no external forces acting on the first layer, and the dipoles in this layer decay
at their natural frequency ω0 and natural decay rate Γ (neglecting the small self action
of the plane on itself). In contrast, in the M th layer, the dipoles are driven by the
fields from all the preceding layers, and there are two consequences: the component
of the force which is 90◦ out-of-phase with the oscillator motion contributes to the
damping of the oscillator, while the in-phase component acts to change the oscillator’s
phase relative to the “upstream” oscillators, which act under weaker driving forces.
The phasing set by the synchrotron pulse is such that, initially, the radiative damping
forces add layer by layer, so that the initial decay rate varies from Γ/~ at the first
layer to (Γ + 2πnλ̄2l‖(k0)Γγ)/~ at the M th layer, with the average decay rate being
(Γ + πnλ̄2l‖(k0)Γγ)/~, which is the effective off-Bragg superradiant decay rate of
|ψe(k0)〉.

Due to the asymmetry of the forces, however, the “downstream” planes are even-
tually forced out-of-phase with the “upstream” planes, which results in both “dynamical
beats”, and a dephased exp(−Γt/~)/

√
t3 long time decay.
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If, on the other hand, k0 satisfies the symmetrical Bragg condition, then the
waves are constructive in both the k0+ and k0− directions, and the problem becomes
symmetrical: the driving forces on each oscillator are always equal, and normal mode
motion results, with superradiant decay Γc = 2πnλ̄2l‖(k0)Γγ , and natural frequency ω0.

A nice demonstration of the dynamical beats has been given by Kikuta [97].

Conversion electrons. As noted above, following the creation of an off-Bragg exciton
|ψe(k0)〉, there is a marked asymmetry in the subsequent decay rates across the film,
with the initial decay rates varying from Γ/~ at the first layer, to (Γ+2πnλ̄2l‖(k0)Γγ)/~
at the M th layer, with the average decay rate being (Γ + πnλ̄2l‖(k0)Γγ)/~, which is
the effective off-Bragg superradiant decay rate of |ψe(k0)〉. This asymmetry of the pla-
nar decay rates can easily be detected by observing the incoherent resonant processes
(conversion electrons, incoherently scattered gamma radiation, . . . ) occurring at dif-
ferent depths of the film. For example, conversion electrons emitted near the top
surface will emerge during the natural lifetime ~Γ−1, while conversion electrons emit-
ted near the exit surface will primarily emerge during the much shorter excitation time
~[Γ + 2πnλ̄2l‖(k0)Γγ]−1, and then there will be subsequent weak oscillations.

Quantum beats. In the case of hyperfine splitting, the quantum beats ΩB, which arise
from the wave interference between different frequency transitions, will be modulated
by the dynamical beats, which arise from the interaction between oscillators of the
same natural frequency, as discussed above.

In the presence of hyperfine splitting, the transmission matrix T̃ (ω; k̂0, k̂0),
eq. (3.63), is generally not diagonal, and there are strong Faraday type effects due
to the orthogonal scattering ex ↔ ey . There is generally no simple analytical trans-
form in this case, but T̃ (t; k̂0, k̂0) is easily computed using the fast Fourier transform
programs [85].

There are a few special cases where T̃ (ω; k̂0, k̂0) can be diagonalized: if Bint ⊥ k0

(e.g., a ferromagnetic or antiferromagnetic thin film with the magnetization lying in
the plane of the film), then the linear vectors ex ‖ Bint, ey ⊥ Bint are the basis vectors;
and if Bint ‖ k0, the basis vectors are the circular polarizations e±1. For these special
cases, the diagonal elements of the transmission matrix are (a = x, y)

Taa
(
ω; k̂0, k̂0

)
= exp(inλfaal)

= exp(inλfel) exp

{∑
m0M

iΓc(m0M ; a)
~ω0(m0M )− ~ω − iΓ/2

}
, (4.69)

where Γc(m0M ; a) = nλlf0(m0M ; a)Γγ , with

f0(m0M ; a) = 4πλ̄
CfM

(2j0 + 1)
Γγ
Γ
C2(j0Lj1;m0M )

∣∣e∗a ·Y(q)
LM

(
k̂0
)∣∣2. (4.70)

If there are several atoms per unit cell, as in the antiferromagnetic case, then n is the
unit cell density, and the f0 contributions must be summed over each site in the unit
cell.
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Figure 21. Off-Bragg quantum beat spectrum for a ferromagnetic 57Fe film, with Bint lying in the plane
of the film and perpendicular to the linear polarization e0 of the incident synchrotron pulse: (a) gives a

linear plot of I (T )
c (t), and (b) gives a log plot of the signal.

Even though T̃ (ω) is diagonal, Taa(ω) is a product of exponentials, one factor for
each contributing resonance, and there is no simple transform for T̃ (t). However, if
the quantum beat frequencies are large compared to the natural width, i.e., ΩB � Γ/~,
then correct to terms of order Γ/~ΩB,

Taa
(
t; k̂0, k̂0

)
≈ −i

∑
m0M

e−i[ω0(m0M )−iΓ/2~]tJ1
(√

4Γc(m0M ; a)t/~
)√Γc(m0M ; a)/~

t
. (4.71)

Here we have again dropped the prompt δ(t) contribution, and we have suppressed the
electronic damping factor exp(inλfel).

As an example, in figure 21 we show the quantum beat spectrum for a ferro-
magnetic 57Fe film, with magnetization lying in the plane of the film and perpendic-
ular to the linear polarization of the incident synchrotron pulse. In this case, only
the two M = 0 transitions are excited (the +1/2 ↔ +1/2 and −1/2 ↔ −1/2
transitions), which have equal oscillator strengths, and a quantum beat frequency
ΩB = ω(+1/2, 0) − ω(−1/2, 0) = 62.1Γ/~ between the two transitions. Equa-
tion (4.71) is then a good approximation, and the observed signal is

I (T )
c (t) ≈ Γc

~
cos2(ΩBt/2)e−Γt/~[J1

(√
4Γct/~

)]2
/t. (4.72)

In figure 21, we have taken the film thickness so that Γc = 4Γ, as was done in figure 20
for the single resonance. The solid line gives I (T )

c (t), as given by eq. (4.72), and the
rapid oscillations give the quantum beats, with the period being τ = 2π/ΩB = 14.3 ns.
The dotted curve gives the dynamical beat modulation e−Γt/~[J1(

√
4Γct/~)]2/(Γct/~),

produced by each of the transitions separately. The important feature to notice is that
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although the amplitude of the signal is modulated by the dynamical beat envelope,
the quantum beat spectrum can still easily be discerned. A nice demonstration of this
effect is given in [97].

If B is rotated, a very different quantum beat spectrum will be obtained. For
example, if B ‖ e0, then e0 couples to the four M = ±1 transitions (±1/2 ↔ ±3/2,
each with relative oscillator strength 1, and ±1/2↔ ∓1/2, each with relative oscillator
strength 1/3). The resulting quantum beat pattern is shown below for grazing incidence
reflection in figure 24(b).

4.2.4. Thick crystal pure nuclear Bragg reflection
Another important special case that has a simple analytical solution for the time

transform is for a pure nuclear Bragg reflection from a thick crystal, with an unsplit
(or well isolated) Mössbauer transition.

In a thick crystal, the initial excitation amplitude within the crystal exponentially
decreases ∝ exp(−nσez/2 sin φ0). The exciton produced, |ψe(k0)〉, is “asymmetrical”
and no longer a simple Bloch wave as given by eqs. (3.96) or (4.2), and |ψe(k0)〉 is no
longer a normal mode excitation even if k0 satisfies a symmetrical Bragg condition.
As a consequence, the coherently scattered signal no longer exhibits a pure exponential
decay ∝ exp[−(Γ + Γc)t/~], as for the thin crystal symmetric Bragg case, but instead
has a more complex behavior discussed below.

By pure nuclear reflection, we mean that the electronic scattering is strongly
suppressed, while the nuclear scattering contribution gives a strong reflection. One
method for obtaining such reflections is to produce pure nuclear Bragg reflections by
utilizing the unique features of the resonant nuclear scattering:

(1) The strength of the resonant scattering can greatly exceed that of the electronic
scattering, and the scattering is isotropic (except for the multipole pattern). For ex-
ample, an unsplit 57Fe nucleus scatters as 440 electrons at the 14.4 keV resonance,
while the electronic scattering is 26 electrons in the forward direction, dropping
off to 7.6 electrons at 90◦. Consequently, very pure nuclear Bragg reflections can
be obtained from crystalline thin films approximately several thousand angstroms
thick, which are optically thick for the resonant scattering but essentially transpar-
ent for the electronic scattering [98].

(2) The resonant scattering depends on the direction of the magnetic field and elec-
tric field gradient (EFG) at the nucleus, while the X-ray scattering is insensitive
to internal fields, so magnetic superlattice Bragg reflections are possible in anti-
ferromagnetic crystals [11,98–102]. EFG superlattice reflections have also been
observed [102,103].

(3) The nuclear transitions are multipole oscillators which (excluding unsplit E1 tran-
sitions) have a quite different polarization response than the electronic system,
which scatters essentially as an isotropic E1 oscillator. For a 90◦ scattering with
kf in the direction of the incident linear polarization e0, the electronic scattering
vanishes, while there will generally be strong resonant scattering, so very pure
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nuclear reflections can be obtained by 90◦ Bragg reflection of π̂-polarized incident
radiation [98].

(4) In complex systems with several atoms per unit cell, including 57Fe, pure nuclear
reflections can be obtained at special Bragg reflections where the unit-cell structure
factor “accidentally” vanishes due to destructive interference [104].

(5) Grazing incidence techniques can also be used to obtain pure nuclear reflections,
as discussed in the next section.

As a specific example, we consider a symmetric Bragg reflection from the (3 3 2)
planes of an 57Fe crystal, for which the Bragg scattering angle is θB = 89.46◦ for
14.4 keV radiation. In order to simplify the discussion, we assume no hyperfine split-
ting. If the crystal is oriented so that the linear polarization of the incident synchrotron
pulse corresponds to π̂-polarization for the scattering geometry, then the electronic scat-
tering is strongly suppressed, since k1 ‖ π̂0, while the M1 nuclear resonance, which
is driven by the σ̂-polarized magnetic field of the incident radiation pulse, scatters
very strongly in the (k0, k1) plane perpendicular to σ̂. Rπ(ω; k̂1, k̂0) is then given by
eqs. (3.83) and (3.88), with the simplification that cos(2φ0) = 0, so that the planar
reflection arises entirely from the nuclear scattering, i.e., F 10

xx = Fn in eq. (3.88).
For this special case there is a simple time transform14 [32,86],

R(t, δφ) = −ie−i[ω0+ωc(δφ)]te−Γt/2 J1[ωc(δφ)t]
t

, (4.73)

where the complex dynamical beat frequency ωc(δφ) is given by

ωc(δφ) ≡ ∆ωc(δφ) − iΓc(δφ)
2~

=
Γc/2~
Meδ + i

. (4.74)

Here Γc is given by

Γc = 2πnλ̄2l‖Γcoh, (4.75)

where

l‖ =
2
nσe
≡ 2le, (4.76)

and Meδ is given by

Meδ =
l‖ sinφ0

d
δ = k0le sin(2φ0)δφ. (4.77)

δφ is now measured from the actual Bragg (including the Thomson scattering index
of refraction effect). l‖ gives the thickness over which the initial excitation amplitude
decreases by 1/e, and Me gives the effective number of cooperating plane layers in
the exciton |ψe(k0)〉.

14 This result was presented by the authors at the Workshop on New Directions in Mössbauer Spectroscopy,
Argonne (July 1977); and, independently, by Yu. Kagan at the Moscow–Munich Mössbauer Workshop
(October 1977).



222 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics III-1.2

Just as for the thin crystal case given by eq. (3.99), Γc gives the enhanced partial
width for coherent decay into two open channels (at exact Bragg), but now with
the cooperation length l‖(k0) determined by the photoabsorption length le. However,
because |ψe(k0)〉 is not an eigenmode, (Γc + Γ)/~ only gives the initial decay rate. As
we will see below, the “long time” development is characterized by an exp(−Γt/~)/t3

fall-off, and, rocking slightly off exact Bragg, by the onset of dynamical beats.
There are two distinct δφ-regions to the response:
Very near exact Bragg such that Meδ < 1 (⇒ δφ < λ̄/le), then ωc is primarily

imaginary:

ωc(δφ) ≈ − iΓc

2~
. (4.78)

Then for short times t 6 2~/Γc, so that J1(ωct) ≈ ωct/4, there is a pure exponential
decay at the enhanced decay rate (Γc + Γ)/~,

I (R)
c

(
t < 2~/Γc, δφ < λ̄/le

)
∝ exp

[
−(Γc + Γ)t/~

]
. (4.79)

For long times t� 2~/Γc,

J1(ωct) ≈
√

2
πωct

cos

(
ωct−

3π
4

)
≈ i√

πωct
exp

(
Γct

2~

)
,

and the decay becomes nonexponential,

I (R)
c

(
t� 2~/Γc, δφ < λ̄/le

)
∝ exp(−Γt/~)

t3
. (4.80)

For Meδ > 1 (⇒ δφ > λ̄/le), ωc is primarily real, and now becomes independent
of the photoabsorption length le

ωc(δφ) ≈ Γc

2~Meδ
≈ 2πnλ̄3Γcoh

~δφ
. (4.81)

In this region, the initial decay is simply the natural decay exp(−Γt/~), while for
delayed times t > 1/ωc, the decay again goes as exp(−Γt/~)/t3, but now modulated
by dynamical beats of frequency ωc(δφ),

I (R)
c

(
t > 1/ωc, δφ > λ̄/le

)
∝ exp(−Γt/~)

t3
cos2

(
ωct−

3π
4

)
. (4.82)

In figure 22 we illustrate these results for the (3 3 2) 90◦ pure nuclear Bragg
reflection in 57Fe, with the simplifying assumption of no hyperfine splitting. For this
case, le ≈ 1.9 × 10−3 cm, giving Γc ≈ 338Γ (≈ a 3,000-fold enhancement over
Γγ). Figure 22(a) shows the strong superradiant decay which occurs during the first
few nanoseconds at exact Bragg δφ = 0, while figure 22(b) gives a log plot over two
natural lifetimes, and shows the delayed exp(−Γt/~)/t3 fall-off for δφ = 0, and the
dynamical beats ωc(δφ) for δφ = 0.01 and 0.02 mrad.
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Figure 22. Time response I (R)
c (t, δφ) for a pure nuclear Bragg reflection in a thick crystal of 57Fe:

(a) gives a linear plot of I (R)
c (t, δφ) at exact Bragg (δφ = 0), showing the superradiant decay which

occurs during the first few ns; (b) gives a log plot of the signal for δφ = 0, 0.01 and 0.02 mrad and
shows the delayed exp(−Γt/~)/t3 fall-off for δφ = 0, and the angle dependent dynamical beats for

δφ 6= 0.

Superradiant decay occurs only within the very narrow central region δφ <
λ̄/le ≈ 0.7× 10−6 rad. Outside of this central region, the most notable feature is the
dynamical beats, with the beat frequency ω(δφ) decreasing linearly with δφ as given by
eq. (4.81). For 57Fe, this gives a beat frequency of ωc ≈ 12Γ/~ for δφ = 0.01 mrad,
decreasing to ωc ≈ 1.2Γ/~ for δφ = 0.1 mrad. Because of the rapid variation of
ωc with δφ, the Bragg reflection dynamical beats will normally not be resolved: the
incident synchrotron pulse typically has an angular spread ∆φ ≈ 0.1 mrad, and the
dynamical beat modulation will “wash out”, 〈cos2(ωct− 3π/4)〉 ≈ 1/2. The observed
decay will then be exp(−Γt/~)/t3.

Just as in the off-Bragg case, it is the fact that the initial exciton |ψe(k0)〉 is
a superposition of radiative eigenmodes, which leads to the dynamical beats and the
weak 1/t3 enhancement of the long time decay.

4.2.5. Pure nuclear reflections at grazing incidence
An alternative method for producing pure nuclear reflections is to use grazing

incidence reflection from mirrors coated with antireflection films, in which either the
films or the substrate contain resonant Mössbauer nuclei [29,32,33]. The important
point is that the index of refraction for near resonant radiation differs strongly from
the index of refraction far off resonance, and as a consequence, it is possible to
use thin-film interference techniques to strongly suppress the off-resonance reflectiv-
ity while maintaining a very bright reflection for near resonance radiation. Typically,
nonresonant reflectivities can be suppressed to ≈10−4–10−3, while maintaining reso-
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nant reflectivities ≈70%. Furthermore, by using different combinations of films and
substrates, the response can be tailored to give narrow bandpass widths ∆ω ≈ Γ/~
and correspondingly long delayed scattering times to optimize time filtering, or at the
other extreme, to produce filters of very broad resonance width with ∆ω ≈ 100Γ/~,
which would be ideal for a high resolution X-ray source.

Because this is an index or refraction technique, no crystals are needed and the
system is free of the restrictions imposed by a crystalline Bragg condition. As a
consequence, the filter can accept the full beam divergence of the synchrotron, and the
system is stable against lattice parameter changes, such as might be caused by heating
or radiation damage. Furthermore, the films are relatively easy to fabricate, and the
techniques can be applied to a number of low-energy Mössbauer transitions.

The interesting features of the time response are again the quantum beats ΩB

which determine the various hyperfine splittings; and, for an isolated resonance, the
coherent speedup of the decay and the dynamical beats. Also, for multiple reflection
from a system of m parallel mirrors, there is a multiple-reflection delay to the scattering,
which can be a useful aid for time filtering.

As a specific example, we consider a resonant 57Fe mirror coated with an im-
pedance matched quarter-wave film of Te, for which the optimum parameters are
l1 ≈ 76 Å and φ0 = 4.4 mrad – i.e., the 57Fe mirror is coated with a 76 Å film of
Te, and the grazing incidence angle is set for φ0 = 4.4 mrad. The electronic reflec-
tivity is then suppressed to |Re|2 ≈ 9.4× 10−4, while the peak resonant reflectivity is
≈0.7 [32].

The filter system is then taken as a system of m parallel mirrors of 57Fe, each
coated with a quarter-wave film of Te. The internal magnetic fields B in the separate
mirrors will be assumed to be in parallel alignment.

For parallel alignment of the internal fields, the filter system has well-defined
eigenpolarizations eη(k̂0,ω), η = 1, 2, which are determined by the resonant 57Fe
medium as given explicitly by eq. (3.58). The eigenpolarizations are generally fre-
quency dependent and nonorthogonal, but for the special cases of B ‖ k0, or B ⊥ k0,
or if there is no hyperfine splitting, then the bases are orthogonal and frequency in-
dependent. In particular, if B ‖ k0, then the eigenpolarizations are the circularly
polarized vectors e(±1); while if B ⊥ k0, lying in the plane of the mirror, then the
eigenpolarizations are the linear vectors σ̂ and π̂.

For the particular cases of orthogonal eigenbases, I (R)
c (t,φ) simplifies to

I (R)
c (t,φ) = 2π~I0p(φ)

∑
η=1,2

∣∣R(m)
η (t,φ)

∣∣2 ∣∣e∗η · e0
∣∣2, (4.83)

where R(m)
η (t,φ) is now the Fourier transform of the eigenpolarization response

R(m)
η (ω,φ) of the m-mirror system. As discussed in [32], the effect of the impedance-

matched quarter-wave film is to effectively remove all electronic scattering, so that, to
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a very good approximation, R(m)
η (ω,φ) is a pure nuclear reflection,

R(m)
η (ω,φ) =

[
1− βn(η)
1 + βn(η)

]m
, (4.84)

where

βn(η) =

[
1 + nλ2fn(η)

π(φ2 − φ2
c + inλ̄σe)

]1/2

. (4.85)

Here φc = [−2λ̄<(fe)]1/2 ≈ 3.8 mrad is the X-ray grazing incidence critical angle for
the 57Fe substrate. The nuclear forward scattering amplitude fn(η) is a superposition
of oscillators,

fn(η) =
∑
m0M

f0(m0M ; η)
x(m0M )− i

, (4.86)

where

x(m0M ) =
2[E1(j1m0 +M )−E0(j0m0)− ~ω]

Γ
, (4.87)

and the oscillator strength of the m0M resonance for eη eigenpolarization is

f0(m0M ; η) =
2λ0fMC

2j0 + 1
Γγ
Γ
C2(j0Lj1;m0M )

∣∣e∗η · Y(q)
LM

(
k̂0
)∣∣2. (4.88)

Here the notation is that of appendix A.2.

Isolated resonance: Dynamical effects. For a well isolated resonance with transition
frequency ω(m0M ), we take

fn(η) =
f0(m0M ; η)
x(m0M )− i

(4.89)

in eq. (4.85). There is then a simple time transform [32]

R(m)
η (t,φ) = (−i)me−i[ω(m0M )+ωc(m0M )]te−Γt/2~mJm[ωc(m0M )t]

t
, (4.90)

where Jm is the mth-order cylindrical Bessel function and the complex dynamical beat
frequency is given by

ωc(m0M ;φ; η)≡∆ωc(m0M ;φ; η) − iΓc(m0M ;φ; η)
2~

=
πnλ̄2f0(m0M ; η)Γ
φ2 − φ2

c + inλ̄σe
. (4.91)

To emphasize the close connection between the grazing incidence and Bragg
cases, we rewrite ωc, in direct analogy to eq. (4.74), as

ωc ≡ ∆ωc(φ)− iΓc(φ)
2~

=
Γc/2~
Meδ′ + i

, (4.92)
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where now

Γc = 2πnλ̄lef0(m0M ; η)Γ (hyperfine splitting) (4.93)
= 2πnλ̄2leΓcoh (no hyperfine splitting). (4.94)

The effective cooperation length is again determined by photoabsorption, le = 1/nσe,
and Meδ

′ is now defined as Meδ
′ ≡ k0le(φ2 − φ2

c). For 57Fe coated with Te (φ =
4.4 mrad, φc = 3.8 mrad) with B ‖ k0, then ∆ωc(φ) ≈ 10Γ/~ and Γc(φ) ≈ 2.8Γ for
the strong M = ±1 resonances.

From eqs. (4.83) and (4.90) the time spectrum is then

I (R)
c (t,φ) ∝ e−(Γ+Γc)t/~ |mJm(ωct)|2

t2
. (4.95)

For short times t < m|ωc|−1, Jm(z) ≈ zm/(2mm!), so that

I (R)
c (t,φ) ∝ t2m−2e−(Γ+Γc)t/~. (4.96)

For t > m|ωc|−1, Jm(z) ∼
√

2/πz cos(z − π/4−mπ/2), giving

I (R)
c (t,φ) ∝ e−(Γ+Γc)t/~

t3
∣∣ cos(ωct− π/4−mπ/2)

∣∣2. (4.97)

For t� m~(Γc/2)−1, | cos(ωct)|2 ≈ exp(Γct/~)/4, and the long time decay becomes

I (R)
c (t,φ) ∝ e−Γt/~

t3
. (4.98)

For a single mirror, there is coherent enhancement of the initial decay,
∝ exp[−(Γ + Γc)t/~]. For intermediate times, the decay is additionally modulated
by dynamical beats, ∝ exp[−(Γ + Γc)t/~] cos2(∆ωct − 3π/4), while for long times,
there is a weakly enhanced exp(−Γt/~)/t3 decay. The dynamical beats and the weakly
enhanced long time decay have the same origin as for the off-Bragg and thick crystal
Bragg cases: the initial exciton |ψe(k0)〉 is a superposition of radiative eigenmodes,
but the eigenmodes are not Hermitian orthogonal (but instead are transpose orthogo-
nal), and as a consequence there is interference between the modes in the subsequent
excitation probability 〈ψe(k0; t)|ψe(k0; t)〉, leading to both dynamical beats and a long
time “dephasing” of the decay.

For multiple reflections, there is an inititial delay of the peak signal. Explicitly,
the signal goes as |Jm(ωct)/t|2 exp[−(Γ + Γc)t/~], which increases initially ∝t2m−2,
building up to a maximum at the delayed time tmax ≈ (m− 1)~/(Γ + Γc).

The nature of this delayed response from the multi-mirror system is the following:
since all mirrors are coated with anti-reflection films, only the first mirror sees the sharp
synchrotron pulse (“white” over several eV about resonance). Following the initial
pulse excitation, the first film sends out a long coherence length wave ∝ exp[−i(ω0 +
ωc− iΓ/2~)t]J1(ωct)/t. In the second film, the resonant absorption/re-emission of the
nearly monochromatic incident wave gives a delay in the response. Classically, the
near resonant incident wave must first build up the oscillations of the resonators in
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Figure 23. Time response log[I (R)
c (t,φ)] vs. t following excitation of an m-mirror system with a syn-

chrotron pulse for m = 1, 2 and 4. The resonant 57Fe mirrors are each coated with 76 Å of Te, so
φ = 4.4 mrad, and in all mirrors the internal fields are taken B ‖ k0. Here we only include the effects
of a single isolated resonance and in (a) use the parameters appropriate for the two strong M = ±1
resonances for which ωc ≈ (10 − i1.4)Γ/~; while in (b) we use the parameters appropriate for the two
weak M = ±1 resonances for which ωc ≈ (3.3 − i0.5)Γ/~. In both figures, the solid straight line at
the top is −Γt/~, indicating the natural decay of an isolated nucleus. In (a), the dotted straight line is

−(Γ + Γc)t/~, indicating the initial superradiant decay from a single mirror.

the second film before any appreciable radiation is sent out. Thus the initial response
from the compound system is zero, as given explicitly by the t2 dependence, and
since the resonators of the second film respond collectively with a resonance half-
width ≈ (Γ + Γc), the maximum response occurs after a delay ≈ ~/(Γ + Γc).

The features of enhanced decay, dynamical beats, and multiple-reflection delay
are illustrated in figure 23, which shows the results for a system of parallel 57Fe
mirrors (φc = 3.8 mrad), coated with a λ/4-antireflection film of Te (lTe = 76 Å, and
φ = 4.4 mrad), and in all mirrors the internal fields are taken B ‖ k0. The oscillating
lines give log[I (R)

c (t,φ)] vs. t for m = 1, 2 and 4 parallel mirrors. Here we only include
the effects of a single isolated resonance and in (a) use the parameters appropriate for
the two strong M = ±1 resonances for which ∆ωc ≈ 10Γ/~ and Γc ≈ 2.8Γ; while in
(b) we use the parameters appropriate for the two weak M = ±1 resonances for which
∆ωc ≈ 3.3Γ/~ and Γc ≈ 0.9Γ. The solid straight line at the top is −Γt/~, indicating
the natural decay of an isolated nucleus, and the dotted straight line is −(Γ + Γc)t/~,
indicating the initial superradiant decay from a single mirror.

Quantum beats. The dynamical beats are a collective effect occurring for each iso-
lated resonance. Whenever there is hyperfine splitting, the fundamentally more impor-
tant quantum beats ΩB(m0M ), arising from the interference between the waves emitted
by the various resonances, will be superimposed on the dynamical beat modulation.
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For eη eigenpolarization, the nuclear forward scattering amplitude fn(η) is a
superposition of contributing resonances, as given by eq. (4.86). There is then no
simple time transform of R(m)

η (ω,φ), but if the quantum beat frequencies are large
compared to the natural width, i.e., ΩB � Γ/~, then correct to terms of order Γ/~ΩB,

R(m)
η (t,φ) =

∑
m0M

(−i)m e−i[ω0(m0M )+ωc(m0M ;η)]t e−Γt/2~mJm[ωc(m0M ; η)t]
t

. (4.99)

Because the complex dynamical beat frequencies ωc(m0M ; η) appear in the time-
dependent exponential phase factor exp{−i[ω0(m0M ) +ωc(m0M ; η)]t} for each con-
tributing transition in R(m)

η (t,φ), then in the initial development, the dynamical beats
will shift the quantum beats,

Ω′B = ΩB + Ωc, (4.100)

where the dynamical beat shift is

Ωc
(
m0M ;m′0M

′; η
)

= ∆ωc(m0M ; η)− ∆ωc
(
m′0M

′; η
)
. (4.101)

However, at delayed times t > m~(Γc/2)−1, then exp(−iωc)Jm(ωct) ∼ exp(−π/4 −
mπ/2)/

√
2πωct, and the natural beat frequencies ΩB are obtained.

The quantum beat spectrum depends on which transitions contribute to each
eigenpolarization eη, and how the incident synchrotron polarization e0 couples to each
eigenpolarization. As a consequence, the quantum beat spectrum is strongly dependent
on the orientation of the B-field relative to k0 and e0.

As an example, let the incident synchrotron radiation be linearly polarized, and
take the mirror surfaces oriented parallel to e0, so that e0 = σ̂ for the scattering
geometry. Then, if B ‖ k0, the eigenpolarizations are the circular bases e(±1). Since
σ̂ = [e(+1) + e(−1)]/

√
2, the time spectrum is then

I (R)
c (t,φ) ∝ 1

2

[∣∣R(m)
(+1)(t,φ)

∣∣2 +
∣∣R(m)

(−1)(t,φ)
∣∣2]. (4.102)

For this orientation of B, e(+1) couples only to the M = +1 transitions, and e(−1) cou-
ples only to the M = −1 transitions. For 57Fe, there are two M = +1 transitions, and
two M = −1 transitions, and for pure Zeeman splitting, ∆E(M = +1) = ∆E(M =
−1) ≈ 62.1Γ. In this case, there is a single quantum beat frequency ΩB ≈ 62.1Γ/~ in
the spectrum. In figure 24(a) we show I (R)

c (t,φ) for a two-mirror system with B ‖ k0.
The “smearing” of the beats in the early development is due to the dynamical beat
shifts ∆Ωc(±1) ≈ ∓6.7Γ/~, which are in the opposite directions for two eigenwave
contributions to I (R)

c (t,φ).
If the internal field is rotated so that B ⊥ k0, with B lying in the plane of the film

(i.e., B ‖ σ̂), then the eigenpolarizations are the linear bases σ̂ and π̂. Since e0 = σ̂,
the time spectrum then becomes

I (R)
c (t,φ) ∝

∣∣R(m)
σ (t,φ)

∣∣2. (4.103)
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Figure 24. Time response I (R)
c (t, δφ) vs. t following excitation by a synchrotron radiation pulse for an

57Fe mirror system: two parallel mirrors coated with Te antireflection films. The rapid oscillations give
the quantum beats. In (a) the internal fields of the two films are oriented B ‖ k0, while in (b), B ‖ e0.

For this orientation of B, σ̂ couples to the four M = ±1 transitions of 57Fe. For pure
Zeeman splitting, this results in four distinct quantum beat frequencies ΩB: 106.9Γ/~
between the strong +1 and −1 transitions, 62.1Γ/~ between the two +1 transitions
or between the two −1 transitions, 44.8Γ/~ between the strong +1 and the weak −1
(or vice-versa), and 17.3Γ/~ between the weak −1 and the weak +1 transitions. The
resulting beat pattern is shown in figure 24(b). The dominant feature is the sharp ΩB =
106.9Γ/~ quantum beats due to the interference between the strongest two transitions,
±1/2 ↔ ±3/2. The irregular modulation of the peaks is due to the other quantum
beat contributions. The dramatic change between figures 24(a) and (b) illustrates the
sensitivity of the quantum beat spectrum to the directions of the hyperfine fields.

5. Resonant neutron optics

To this point we have been concerned with resonant X-ray and γ-ray optics, but
the general features are universal for any type of resonant scattering. There are a
number of neutron resonances with energies less than a few volts among the heavy
nuclei [105,106]. With the advent of neutron spallation sources giving high intensities
in the several eV region, it is now possible to use neutron resonance scattering for
condensed matter investigations. We comment briefly here on two interesting aspects
of resonant neutron optics.
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For a neutron of incident energy E, the resonance coherent elastic scattering
amplitude is

fres =
λ̄0Γn

ER −E − i(Γn + Γγ)/2
, (5.1)

where Γn is the partial width for the decay of the excited compound nucleus |(A+ 1)∗〉
to the ground state |A〉 with the emission of a neutron n (|fres| ≈ 16.6×10−12 cm), Γγ is
the partial width for |(A+1)∗〉 to decay to a lower energy state |(A+1)〉 with the emis-
sion of a photon, ER is the resonance energy for the transition n + |A〉 → |(A+ 1)∗〉,
and λ0 is the neutron wavelength at resonance. For simplicity, we have left out a
statistical factor (2j1 + 1)/(2j0 + 1).

Typically, the resonance energy ER ≈ 1 eV, so λ0 ≈ 0.3 Å. The resonances
have widths Γ = Γn + Γγ ≈ 10–100 meV, and the branching ratio Γn/Γγ ≈ 10−2–
10−1, so that at resonance |fres| ≈ 10−10–10−11 cm, which is 1–2 orders of magnitude
larger than the nonresonant (potential) scattering length, b ≈ 10−12 cm. For example,
for 119In, ER = 1.5 eV, Γγ = 72 meV, Γn = 3.3 meV, so at resonance |fres| ≈
16.6× 10−12 cm, while b = 0.4× 10−12 cm.

Thus, just as for resonant γ-ray scattering, two notable features of resonant neu-
tron scattering are that the scattering amplitudes near resonance are large compared
to the nonresonant (potential) amplitudes, and the phase of the amplitude increases
from 0 to π as one increases the energy of the incident neutron from well below the
resonance to well above it.

One simplicity of resonant neutron scattering is that this is a scalar wave, and
the scattering is primarily s-wave scattering, so there is no complex polarization or
angular dependence as for resonant X-ray or γ-ray scattering.

An important distinction is that the scattering time ~/Γ ≈ 10−14–10−13 s cor-
responds to medium collision times, in contrast to the fast X-ray scattering and the
very slow Mössbauer γ-ray scattering. That is, speaking roughly, during the residence
time (≈~/Γ) of the neutron in the compound nucleus, the nucleus (atom) executes
an appreciable fraction of a vibration period. As a consequence, for inelastic res-
onant neutron scattering, the differential scattering cross-section of a small sample,
rather than giving the van Hove S(Q,ω), gives W (k0, kf) [1,105], which only reduces
to S in the extremely fast collision limit. As an example, for incoherent scattering
S(Q,ω) → g(r, t), the self-correlation function of the scattering particles, while W
gives an integral over a higher order correlation function that gives information on the
path taken by the particle in moving a distance r in a time t.

Two interesting aspects of resonant neutron optics, which we briefly discuss, are
the determination of molecular motions with neutron phasors, and neutron superra-
diance. A discussion of the suppression effect in resonant neutron optics is given
in [107].
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5.1. Determining molecular motions

The structure determination of large biological molecules is advancing very
rapidly. But to understand the functioning of these molecules their motions must
be determined, ultimately at the individual atoms’ level, and there has been very little
progress in this very important field.

One might have hoped, with the advances in high resolution microscopy, that
in the near future these motions could be studied by focusing on a single molecule.
However, because of the effects of the various possible illuminating radiations, this
seems to be impossible at the atomic level of resolution (although X-ray microscopy
at the ≈25 Å resolution level and neutron holography at the ≈100 Å resolution level
remain open possibilities) [108]. This being the case, to determine the molecular mo-
tions at the atomic level we must prepare a macroscopic sample of identical molecules
(generally a crystal) and deduce the motions in the individual molecules by measuring
the radiation scattered by the ensemble.

In this case measurement of the inelastic differential scattering cross-section of a
small sample, d2σ/dΩ dω, gives S(Q,ω) [109]:

S(Q,ω) =

∫
eiQ·re−iωtg(r, t) dr dt, (5.2)

where ~Q and ~ω are the momentum and energy transferred to the sample in the
scattering process and

g(r, t) =

∫ 〈
ρ(r + x, t)ρ(x, 0)〉 dx, (5.3)

where ρ is the scattering density (electron density for X-ray scattering and the nuclear
scattering length density in the case of neutron scattering) and the angular brackets
indicate the ensemble average.

g(r, t) is the information on the sample which can be obtained from the scattering
experiments. The elastic scattering measurements give S(Q, 0)→ g(r,∞),

g(r,∞) =

∫ 〈
ρ(r + x)ρ(x)

〉
dx, (5.4)

the Patterson map of the molecule [110].
Except for the simplest molecules g(r,∞) cannot be solved to give the molecular

structure 〈ρ(r)〉 (phase of the structure factor problem in crystallography). g(r,∞) has
“peaks” at all the N (N − 1)+1 interatomic vectors of the N atom molecule. Roughly
it is the “N -ply” exposed image obtained by translating the molecule N times, bringing
in turn each atom to a fixed point and exposing an image. For small molecules, with
the knowledge of some chemistry, we can determine 〈ρ(r)〉 to within an enantiomorph
from g(r,∞), but when N2 becomes large it is very difficult to determine 〈ρ(r)〉 from
the Patterson map.

Similarly, g(r, t) is incapable of yielding the detailed structure and motion, the
dynamical structure, of any but the simplest systems. For example, while the eigen-
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values (frequencies) of the vibrational eigenmodes of a molecule can be determined
from inelastic scattering measurements, the eigenvectors, which give the amplitudes
and phases of the displacements of the individual atoms, are not determined.

This can be called the phase of the “dynamic structure factor” problem which
will become acute when we try to study experimentally the concerted motions in large
biomolecules. The methods of isomorphous replacement, heavy atom tagging, and
anomalous scattering used to solve the problem in the time averaged static structure
determinations can also be used to help in the dynamics determinations. There are
differences, however: isomorphous replacements may not change the static structure,
but may affect the motions appreciably. Also, X-ray scattering, so useful for static
structure determinations, cannot be used to measure low energy vibrational motions
until X-ray sources with energy resolution three or more orders of magnitude greater
than present monochromators can yield are available. Thus, it appears necessary to
rely on neutron scattering measurements, and the use of resonant neutron phasors may
furnish the best method for solving the problem.

The resonance scattering amplitudes of the low energy neutron resonances are
one to two orders of magnitude larger than nonresonance nuclear scattering amplitudes
so that the resonance–nonresonance interference term in the cross-section for neutron
scattering from a molecule containing a resonant atom is large. Furthermore, by varying
the incident neutron energy the phase and amplitude of the resonantly scattered wave
can be varied in a controlled manner. This makes it possible to determine [106,111]

gR(r, t) =

∫ 〈
ρ(r + x, t)R(x, 0)

〉
dx, (5.5)

where R(x) is the probability density of the resonant atom. gR(r, t) gives the posi-
tions and the motions of the N nonresonant atoms in the molecule relative to that of
the resonant atom, whereas g(r, t), as discussed above, just gives the time dependent
Patterson map. Put another way, the resonant atom serves as a reference wave phasor
which allows determination of the dynamic structure factor.

In summary, the determination of molecular motions is a very important chem-
ical problem, and the use of nuclear resonance phasors can serve to determine these
motions.

5.2. Neutron superradiance

As we discussed earlier, the decay of a system of γ-ray emitters is radically
affected by the spatial coherence of the emitters, and, for example, can be either
superradiant or subradiant, depending on the relative phases of the emitters.

Now in fact, if the initial coherent state corresponds to just a single excitation,
then the nature of the emitted particle (i.e., whether it is a boson or a fermion) plays
no role in determining the emission rate. Thus a spatially coherent system of neutron
emitters will exhibit the same features of superradiance or subradiance.

This is simply a consequence of the quantum superposition principle: to com-
pute the probability of a process, we add the amplitudes (with proper phases) of the
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various ways the process can take place, and take the absolute square of the sum of
the amplitudes. This leads, e.g., to the characteristic interference pattern for particles
traversing a two-slit apparatus, but also, as a consequence, the same coherence effects
that affect the decay rates of classical systems emitting classical waves (electric os-
cillators radiating electromagnetic waves, Helmholtz resonators radiating sound, etc.)
apply to particle emission (electron, neutron, photon, etc.) decay rates in quantum
systems [11,112,113].

For example, for two identical neutron emitters (nuclei) separated by a distance R,
the semistationary single exciton states are the symmetric (|+〉) and antisymmetric
(|−〉) combinations,

|±〉 =
1√
2

[
|e1〉|g2〉 ± |g1〉|e2〉

]
, (5.6)

where |el〉 = |(A + 1)∗l 〉 designates the excited state of the compound nucleus l, and
|gl〉 = |(A)l〉 designates the ground state of nucleus l. The corresponding decay widths
Γ(±) for neutron emission, |±〉 → |g1〉|g2〉+ n, are given by

Γ(±) ≈ Γn

(
1± sin(kR)

kR

)
, (5.7)

with eigenwidths E(±),

E(±) = ER ∓
Γn

2
cos(kR)
kR

. (5.8)

If kR � 1, then the symmetric mode decays at twice the rate of a single nucleus
(“superradiance”) while the antisymmetric mode decays very slowly (“subradiance”).
This corresponds classically to two electric dipoles oscillating together in phase (sym-
metric mode) or 180◦ out of phase (antisymmetric mode), which exhibits the same
superradiant or subradiant behavior when kR� 1.

Similarly, for a crystal of such neutron radiators, the single exciton state |ψe(q)〉,

∣∣ψe(q)
〉

=
N∑
l=1

eiq·Rl |el〉
∣∣G0(l)

〉
, (5.9)

will be superradiant or subradiant depending on the phasing vector q: if q = k0 =
(2π/λ0)n, where λ0 is the neutron resonance wavelength, then |ψe(k0)〉 emits a neutron
superradiantly at the coherently enhanced decay rate Γc(k0),

Γc(k0)/~ = πnλ̄2L‖(k0)Γn, (5.10)

with emission occurring in a narrow solid angle ∆Ω ≈ (λ0/L⊥)2 about k0 (where
L⊥ is the transverse dimension of the crystal ⊥ k0), while if |q| 6= |k0| the emission
is subradiant. If the phasing vector k0 should satisfy a Bragg condition for neutron
diffraction from the crystal, then there will be superradiant contributions Γc(k0 + τ )
for each open Bragg channel, just as for the γ-ray case.
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For resonant γ-ray optics, it is possible to create superradiant single exciton states
|ψe(k0)〉 using synchrotron radiation pulse excitation. There are, of course, no such
sources available for neutrons. However, the state |ψe(k0)〉 is excited virtually when
a nearly resonant neutron E ≈ ER is incident externally at a Bragg angle, and as
the incidence energy E is tuned through resonance, the width of the Bragg scattered
intensity will show an enhanced width (Γc + Γγ). This coherent enhancement of the
width has recently been observed by Hastings et al. [114].

For γ-ray emission, the superradiant single exciton state |ψe(k0)〉 is closely related
to multiphoton Dicke superradiance: the single exciton state |ψe(k0)〉 with the greatest
decay rate Γc(k0)/~, is the favored mode of decay for an initially inverted system.
Since there is single exciton superradiance for a system of neutron emitters just as for
a system of γ-ray emitters, is it possible to have multineutron Dicke superradiance?
The answer of course is no, because the Fermi statistics of the neutron prevents a
superradiant cascade of neutrons into the endfire mode.

6. Radiative normal modes

In this final section, we discuss one of the most unique and fundamental as-
pects of Mössbauer γ-ray optics – collective nuclear states established by the radiative
interaction between the nuclei.

Mössbauer γ-ray optics is rich and complex, with a variety of competing
processes – sharp resonant scattering from the various nuclear hyperfine transitions,
internal conversion absorption, Thomson scattering from the atomic electrons, pho-
toelectric absorption, resonant and nonresonant magnetic X-ray scattering, etc. The
most straightforward development of the coherent optics is in terms of the multiple
scattering equations (3.5) and (3.6), with the effects of all the various processes in-
corporated on an equal footing in the coherent elastic scattering amplitudes fj of each
atom.

Some of the most interesting features involve the collective effects of the inter-
actions between the nuclear oscillators, e.g., the “enhancement effect” at Bragg, and
the superradiant or subradiant decay of a nuclear exciton. Since these phenomena
only involve the nuclei, considerable insight can be gained by approaching the prob-
lem from a different point of view: solve directly for the radiative normal modes
(semi-stationary states) of the system of nuclei. The scattering of an external plane
wave k0 then involves virtual excitation of these modes as intermediate states; and the
decay of a nuclear exciton is a superposition of exponentially decaying semi-stationary
states.

In this section, we discuss the normal modes of decay of a system of identical
resonators. We give the effective Hamiltonian equation of motion which determines
the complex normal mode frequencies ωn and give simple sum rules which govern the
real and imaginary parts of ωn.

Because of retardation, the Hamiltonian is symmetric rather than Hermitian, and as
a consequence, the eigenmodes |ψn〉 satisfy a transpose orthogonality condition rather
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than Hermitian orthogonality. This has an important consequence in the decay of a
general superposition exciton state |ψe〉 =

∑
an|ψn〉, because interference between the

modes now leads to “dephasing” and to dynamical beats in the decay of the excitation
probability 〈ψe(t)|ψe(t)〉.

Of particular interest is the decay of an exciton |ψe(k0)〉 created by a synchrotron
pulse. We show that if k0 satisfies the symmetric Bragg condition, then a single
superradiant eigenmode is excited, and the subsequent decay is a simple enhanced
exponential decay. If k0 is off-Bragg, then |ψe(k0)〉 is a superposition of normal modes,
and the spread of frequencies and Hermitian-nonorthogonality play an important role
both in the initial superradiance and subsequent dynamical beats.

The development we give here follows [11,96,112,115].

6.1. Classical and quantum equations of motion

For a freely decaying system of identical classical electric dipole oscillators, each
oscillating in the x̂o direction, di(t) = exi(t)x̂o, the coupled equations of motion are15

mẍi +mΓẋi +mω2
0xi = ex̂o

∑
j 6=i

Eij(t), (6.1)

where Eij(t) = Ej(Ri, t) is the electric field at Ri due to dipole j (Eij(t) is assumed to
be uniform over the dimensions of the dipole, i.e., |xi| � λ). For normal mode motion,
each dipole oscillates as xj(t) = xj exp(−iωt), where ω is the complex frequency of
the mode. The field at R emitted by the jth oscillator is then

Ej(R, t) =
→
∇×

{
→
∇×

1
|R− Rj|

dj exp
[
i
(
k|R− Rj| − ωt

)]}
, (6.2)

where dj = exj x̂o. Equation (6.2) is valid for the “small source” approximation,
which requires that the dimension of the oscillator |xj | be much smaller than the
distance |R − Rj| and the wavelength λ. For “Mössbauer radiators”, λ ≈ 1 Å and
|xj | ≈ 10−4 Å, so the condition |xj | � λ is well satisfied, and (6.2) would be a good
approximation even for |R− Rj| ≈ 10−3 Å, well inside the atom.

Assuming normal mode oscillation, substituting (6.2) into (6.1), and linearizing
the resulting equations in ω by making the replacements ω2 −ω2

0 = (ω +ω0)(ω −ω0)
→ ≈2ω0(ω − ω0) and exp(ikRij ) → ≈ exp(ik0Rij), gives an effective Hamiltonian
equation of motion

h̃X = ωX, (6.3)

15 Γ is customarily a frequency in classical electrodynamics, while Γ is customarily an energy in quantum
electrodynamics (=~Γclassical). Since the factors of ~ are not germane to the discussion here, in this
section we suppress all factors of ~.
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where, for the classical system of oscillators, X is the N -component state vector

X =


x1

x2
...
xN

 , (6.4)

and the Hamiltonian is

hii =ω0 −
iΓ
2

, (6.5)

hij(i 6= j) =−Γγ
2
κij

eik0Rij

k0Rij
. (6.6)

In (6.6),

κij
eik0Rij

k0Rij
=

3

2k3
0

x̂o

{
→
∇
i
×
[
→
∇
i
× exp(ik0|Ri − Rj|)

|Ri − Rj |
x̂o

]}
, (6.7)

so that

κij ≈


3
2

[
3
(
nij · x̂o

)2 − 1
][ 1

(k0Rij)2 −
i

k0Rij

]
(near zone Rij � λ),

3
2

[
1−

(
nij · x̂o

)2]
(far zone Rij � λ).

(6.8)

Equation (6.3) is an eigenvalue equation, which determines the complex nor-
mal mode frequencies ωn (n = 1, . . . , N ) and the corresponding normal mode state
vectors Xn.

The corresponding quantum system is a system of nuclei with nondegenerate
ground states |al〉 (l = 1, . . . ,N ) and excited states |bl〉. The normal modes of decay
(semi-stationary states) are now nuclear exciton states:

X = |ψe〉 =
N∑
l=1

cl|bl〉|G0(l)〉 =


c1

c2

...

cN

 , (6.9)

where |bl〉|G0(l)〉 means that nucleus l is excited and all the remaining nuclei (l′ 6= l)
are in their ground states |al′〉.

An initially excited nucleus i will decay due to self-action (virtual radiative and
internal conversion emission/absorption, and “mirror terms” involving virtual photon
exchange with the other nuclei, as discussed in [12, appendix] and [2, appendix A]),
and, if initially unexcited, can be excited by photon exchange from an excited nucleus
j by the interaction c−2jµ(i) δ+

ij jµ(j) (see, e.g., [10, appendix B]). The equations of
motion are obtained by taking the Fourier transform of the decaying exciton G(t −
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t0)|ψe〉. The excited state propagator G(t − t0) is obtained using the Green function
approach of [2,10,12].

The resulting coupled quantum equations of motion, which determine the expo-
nentially decaying semi-stationary states Xn and the complex mode frequencies ωn,
are of the same general form as the classical equations,

h̃X = ωX, (6.10)

where now the state vector X is the nuclear exciton, as given by eq. (6.9), and again

hii =ω0 −
iΓ
2

, (6.11)

hij(i 6= j) =−Γγ
2
κij

eik0Rij

k0Rij
, (6.12)

but where now

κij
eik0Rij

k0Rij
= − 2

Γγ
jbaµ
(→

k
)exp(ik0Rij)

Rij
jabµ
(
−
←
k
)
. (6.13)

Here
→
k = −i

→
∇i and

←
k = i

←
∇i, where the gradient is with respect to Ri, the equilibrium

position of atom i, and the gradients operate on the factors to the right or left as
indicated. jbaµ (k) = c−1

∫
dx〈φb|eik·xjµ(x)|φa〉 is the Fourier transform of the nuclear

current density.
In the far field region, Rij � λ0, the longitudinal and scalar parts of the current–

current contraction drop out, and the expression simplifies to

κij
eik0Rij

k0Rij
=

2
Γγ

jba⊥
(→

k
)
· exp(ik0Rij)

Rij
jab⊥
(
−
←
k
)
, Rij � λ0. (6.14)

In this limit, the operators
→
k and

←
k can be replaced by kij = k0nij (but often it is

convenient to first take sums over sites j before applying the gradient operators).
To compare with the classical case, we take a system of “linear” E1 oscillators

(i.e., ∆Jz = 0), each with ground state |a〉 = |j0 = 0, m0 = 0〉 and excited state |a〉 =

|j1 = 1, m1 = 0〉, and local quantization axis ẑJ . Then jab⊥ (−kij) =
√
λ0ΓγY(e)

10 (nij),
with Y(e)

10 (nij) given by eq. (A.22), giving κij = (3/2)[1 − (nij · ẑJ )2], which agrees
with the classical far zone result of eq. (6.8).

6.2. Eigenmodes

For either the classical or quantum systems, the determinant equation

Det
[
h̃− ω1̃

]
= 0, (6.15)

where 1̃ is the N×N unity matrix, determines the complex frequencies for the normal
modes, ωm = ω′m− iΓm/2, m = 1, . . . ,N . δωm = ω′m−ω0 gives the frequency shift
of the mth normal mode from the natural resonance frequency of a single oscillator;
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and Γm gives the decay rate of the mode, which will generally be quite different from
the decay rate Γ of an isolated nucleus.

Substituting ωm for ω in the eigenvalue equation (6.10), and applying the trans-
pose normalization condition of eq. (6.17) below, determines the mth eigenmode

|ψm〉 =
N∑
l=1

cml |bl〉
∣∣G0(l)

〉
= Xm =


cm1
cm2
...

cmN

 . (6.16)

6.3. Orthogonality and sum rules

The Hamiltonian h̃ given by eqs. (6.5)–(6.7) or (6.7)–(6.13) is symmetric rather
than Hermitian – i.e., hji = hij . As a consequence, the eigenmodes will be transpose
orthogonal, rather than Hermitian orthogonal,〈

ψT
m

∣∣ψn〉 = XT
m ·Xn = δmn, (6.17)

where 〈ψT
m| = XT

m is the transpose state,

〈
ψT
m

∣∣ ≡ N∑
l=1

cml 〈bl|
〈
G0(l)

∣∣ = XT
m =

(
cm1 cm2 . . . cmN

)
. (6.18)

The Hamiltonian h̃ can be diagonalized by the similarity transformation,

U h̃U−1 = ω̃, (6.19)

where ω̃ is the diagonal eigenvalue matrix, ω̃mn = ωmδmn. The N×N transformation
matrix U is obtained from the eigenvectors Xm in the usual manner,

U =


XT

1

XT
2
...

XT
N

 . (6.20)

Because of the orthogonality condition (6.17), U−1 = UT. Since h̃Xm = ωmXm,
eq. (6.19) immediately follows.

Since similarity transformations leave the trace invariant, we have

Tr
(
h̃
)

= Tr
(
ω̃
)
, (6.21)

which gives ∑
m

ωm = N

(
ω0 −

iΓ
2

)
. (6.22)
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Taking the real and imaginary parts of eq. (6.22) gives the “sum rules” for the
eigenfrequency shifts and normal mode decay widths:∑

m

δωm =
∑
m

(
ω′m − ω0

)
= 0, (6.23)

and
1
N

∑
m

Γm = Γ. (6.24)

The frequency shift sum rule, eq. (6.23), shows that for some modes the frequencies
increase, while for others the frequencies decrease, such that the frequency shifts of
all modes average to zero. The decay width sum rule, eq. (6.24), shows that the total
decay widths of the various normal modes average to the decay width Γ = Γγ + Γα
of a single oscillator.

The decay width of the mth mode can be expressed as Γm = Γ(m)
c + Γ′γ + Γα,

where Γ(m)
c is the partial width for coherent radiative decay in mode m, and Γ′γ +

Γα gives the total width for spatially incoherent radiative and nonradiative decay.
Equation (6.24) can now be rewritten as a sum rule for the coherent decay widths,

1
N

∑
m

Γ(m)
c = Γγ − Γ′γ. (6.25)

For a classical system, and for a nondegenerate quantum system, Γ′γ = 0, and we
assume this in all subsequent discussions.

Thus, some modes will have Γ(m)
c < Γγ , while for some Γ(m)

c > Γγ , such that
the coherent radiative decay widths average to Γγ . For planar and crystalline arrays
of nuclei, there will be superradiant modes, for which Γ(m)

c � Γγ , and subradiant
modes, for which Γ(m)

c � Γγ .

6.4. Radiative decay of a normal mode

As a function of time, the mth mode develops as∣∣ψm(t− t0)
〉

= G(t− t0)|ψm〉 = 1(t− t0) e−iωm(t−t0)|ψm〉, (6.26)

and the (relative) probability of excitation decays exponentially,〈
ψm(t− t0)

∣∣ψm(t− t0)
〉

=
∣∣Xm(t− t0)

∣∣2 = e−Γm(t−t0)|Xm|2. (6.27)

In the normal mode approach, all multiple scattering interactions between the
resonators have been taken into account in the normal mode equation of motion,
eq. (6.10), and the photon emitted from the system to an external point (z, t) is then
simply a freely propagating photon, with no further multiple scattering,

A(m)
µ (z, t) = 〈ψ0|c−1

∫
dxδ+(z,x)jµ(x)G(tx − t0)|ψm〉. (6.28)
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Taking t0 = 0, z = R, and assuming R is large compared to the dimensions of the
system, gives

A(m)(R, t) =
∑
j

1

(
t− |R− Rj|

c

)
exp[−iωm (t− |R− Rj|/c)]

|R− Rj|
jab⊥
(
−
←
k
)
cmj

≈ 1
(
t∗
)

exp
(
−iωmt

∗)exp(ikmR)
R

jab⊥ (−km)
[
XT(−km) · Xm

]
. (6.29)

Here t∗ = (t − R/c) is the retarded time, km = (ω0 + δωm)/c, km = kmR̂, and we
have introduced the “phased vector” X(k), with jth component exp(ik · Rj), so that[

XT(−km) · Xm

]
=
∑
j

e−ikm·Rjcmj . (6.30)

Equation (6.28) is the quantum version of Huygens’ principle of classical optics:
given the actual motions xi(t) of a system of dipoles, the radiation field at any point
(z, t) is the superposition the freely propagating waves emanating from each source.

6.5. Radiative decay of a general exciton state

The N semi-stationary normal mode states |ψm〉 are a complete set of states for
a single excitation in the system. Within this manifold, the resolvent operator is

Ĩ =
∑
m

|ψm〉
〈
ψT
m

∣∣. (6.31)

Any single-exciton state |ψe〉 can then be resolved into normal mode states,

|ψe〉 =
∑
m

am|ψm〉, (6.32)

where the expansion coefficient is

am =
〈
ψT
m

∣∣ψe
〉
. (6.33)

As a function of time, |ψe〉 then develops as∣∣ψe(t)
〉

=
∑
m

ame−iωmt|ψm〉, (6.34)

and the photon potential for the emitted radiation is

A(R, t) =
∑
m

amA(m)(R, t), (6.35)

with the normal mode field A(m)(R, t) given by eq. (6.29).
The expected flux (probability/cm2/s) for finding a photon at (R, t) is then given

by (ω0/2π~c)|A(R, t)|2, eq. (3.11). For a system of classical oscillators, |A(R, t)|2 is
proportional to the expected energy flux, S = (c/4π)Re(E× B∗).
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Since the semi-stationary states |ψm〉 are transpose orthogonal, rather than Her-
mitian (i.e., generally 〈ψn|ψm〉 6= 0), there can be interference effects between the
modes in the decay of the excitation probability,〈

ψe(t)
∣∣ψe(t)

〉
=
∑
m,n

a∗namei(ω∗n−ωm)t〈ψn|ψm〉. (6.36)

These mode interference effects can lead to a “dephasing” of 〈ψe(t)|ψe(t)〉 and
to the emitted signal |A(R, t)|2. In the case of a synchrotron pulse exciton |ψe(k0)〉,
this dephasing effect contributes to the initial superradiant decay if k0 is off-Bragg.
These interference effects can also lead to dynamical beats in the emitted signal
|A(R, t)|2. When this occurs, 〈ψe(t)|ψe(t)〉 will “flatten out” (i.e., the rate of de-
cay d/dt 〈ψe(t)|ψe(t)〉 ≈ 0) whenever |A(R, t)|2 has a sharp minimum. In effect, the
excitation is momentarily “trapped” within the system.

6.6. Normal mode excitation by coherent elastic scattering

For coherent elastic scattering of an incident photon A0 by the system, the scat-
tered photon potential As is, in the notation of (3.5),

As = δ+MA0, (6.37)

where M is the coherent elastic scattering operator for the system. The basic problem
is to obtain M .

When treating Mössbauer γ-ray optics in its full complexity, the simplest proce-
dure is to develop M in terms of single atom scattering, which leads to the simple
multiple scattering eqs. (3.16) and (3.17), which determine the coherent elastic scat-
tered wave.

For a system of two level nuclei, however, we can use the normal mode approach
and calculate M directly for the system. The scattered wave is

As
µ(z, t) = 〈ψ0|− ic−2

∫
δ+(z−x)eiH0txJµ(x)G(tx− ty)Jυ(y)A0

υ(y)e−iH0tx dx dy|ψ0〉,
(6.38)

where Jµ(x) is the current density operator for the system and G(t) is the corrected
propagator for exciton states. Inserting the resolvent operator Ĩ =

∑
m |ψm〉〈ψT

m| to
the left of Jυ(y), the resulting scattered photon potential, at a point R far removed
from the system, is simply

As(R,ω) =
eikR

R

∑
m

〈ψ0|J⊥(−k)|ψm〉〈ψT
m|J(k0) · e0|ψ0〉

[ωm − ω]
a0

=
eikR

R

[
jab⊥ (−k)jba(k0) · e0 a0

]∑
m

{
[XT(−k) · Xm][XT

m ·X(k0)]
Qm(ω)

}
, (6.39)
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where the resonance response denominator for the mth mode is

Qm(ω) = [ωm − ω] = ω0 + δωm − ω − i
Γ(m)

c + Γα
2

. (6.40)

In the second line of (6.39), j(k) is the Fourier transform of the nuclear current density
operator for a single nucleus. X(k) is the notation introduced in eq. (6.29) for a “phased
vector”, with jth component exp(ik · Rj). The wave vector coupling of the incident
photon to the mth mode is then[

XT
m · X(k0)

]
=
∑
j

cje
ik0·Rj , (6.41)

and the coupling to the emitted photon k = ω/cR̂ is[
XT(−k) · Xm

]
=
∑
j

cje
−ik·Rj . (6.42)

From this perspective, the incident photon |k̂0,ω〉 scatters by the virtual
excitation/de-excitation of the exciton normal mode intermediate states |ψm〉, with
the usual resonant frequency response 1/[ωm − ω]. The photon interacts with the
system through the distributed system current Jµ(x), with the coupling to the system
determined both by the polarization coupling to the individual nuclei, j · e0, and by the
wave vector coupling to the mode, [XT

m · X(k0)]. The wave vector coupling changes
with the orientation of k0, and in some instances, such as in the enhancement effect at
Bragg, it is possible to have selective excitation of a normal mode in the scattering.

6.7. Two nuclei

For two nuclei, h̃ is 2 × 2, and the solution for the normal mode frequencies is
immediate:

ω(±) = ω0 − i
Γ
2
∓ Γγ

2
κ12eik0R12

k0R12
, (6.43)

so that the frequency shifts of the two modes are

δω(±) = ∓Γγ
2
κ12 cos(k0R12)

k0R12
, (6.44)

and the coherent decay widths for the two modes are

Γ(±)
c = Γγ

(
1± κ12 sin(k0R12)

k0R12

)
. (6.45)

The frequency shifts and coherent widths satisfy the sum rules δω(+) + δω(−) = 0, and
[Γ(+)

c + Γ(−)
c ]/2 = Γγ .
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The corresponding eigenvectors are the symmetric and antisymmetric states

X(±) =
1√
2

(
1
±1

)
. (6.46)

Since all vector components are real, X(±) are Hermitian orthogonal as well as transpose
orthogonal.

For k0R12 � 1, Γ+
c ≈ 2Γγ and Γ−c ≈ 0. In this limit, the symmetric mode

has an enhanced decay rate (superradiant), while the antisymmetric mode becomes
nonradiative (subradiant).

This behavior is easy to understand classically. The symmetric mode corresponds
to two oscillators oscillating together in-phase, which, for k0R12 � 1, doubles the
dipole moment. The radiation fields are doubled and the radiation power is increased
to four times that of a single oscillator. Since the total mechanical energy εT is also
doubled, the decay rate for the system is −(dεT/dt)/εT = 2Γγ . In contrast, in the
antisymmetric mode, the oscillators move 180◦ out of phase, and the radiation fields
from the two oscillators interfere destructively, giving a very weak (electric quadrupole)
radiative decay.

For coherent elastic scattering of an incident photon |k̂0,ω〉, As is given by (6.39),
with the wave vector coupling to the incident and scattered photons now given by[

XT
(±) ·X(k0)

]
=
[
eik0·R1 ± eik0·R2

]/√
2,

(6.47)[
XT(−k) ·X(±)

]
=
[
e−ik·R1 ± e−ik·R2

]/√
2.

We note, in particular, that the X(+) mode can be selectively excited by taking
k0 ⊥ R12, i.e., for this orientation, [XT

(−) ·X(k0)] = 0. For this case, the incident wave
drives the two oscillators in phase, which is the symmetric mode.

This solution for As, using the normal mode approach, agrees with the multiple
scattering solution worked out in [10, appendix B], as it should.

6.8. Planar array

For a planar array, we reverse the solution procedure, first obtaining the eigen-
modes Xq by symmetry, and then solving for ωq directly from the Hamiltonian equation
h̃Xq = ωqXq.

Two-dimensional translational symmetry dictates that the eigenmodes should be
2-D Bloch waves ∣∣ψe(q)

〉
= Xq =

1√
N

X(q), (6.48)

where, as before, X(q) is the phased vector with jth component exp(iq · Rj), and
the N 2-D vectors q uniformly fill the first Brillouin zone. For simplicity, taking a
square array with lattice spacing a, we have q = (2π/L)[nxx̂+nyŷ], with L =

√
N a,

and nx,ny ∝ −
√
N/2, . . . , +

√
N/2. Or, in a continuum limit, the q’s fill the first

Brillouin zone (−π/a 6 qx,y 6 π/a) with mode density ρ(q) = (L/2π)2.
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Now these state vectors are, in fact, Hermititian orthogonal rather than transpose
orthogonal,

X†q′ ·Xq = δq,q′ , (6.49)

or, in the continuum limit, X†q′ · Xq = (2π/L)2δ(q − q′). However, we will see that
the states Xq and X−q are degenerate, i.e., ω−q = ωq. Thus, we can take the standing
combinations [Xq ± X−q]/

√
2, which are transpose orthogonal. For most purposes,

however, it is convenient to use the traveling wave solutions Xq. The proper resolvent
operator is then Ĩ =

∑
q |Xq〉〈Xq|, rather than eq. (6.31).

Substituting Xq into the Hamiltonian equation, and carrying out the resulting
planar lattice sum as in (3.23), the complex mode frequency is

ωq = ω0 + δωq − i
Γα + Γ(q)

c

2
= ω0 − iΓα −

(
i
∑
s

βs − S
)

, (6.50)

where

βs(q) = − πn′

gs(q)

[
jbaµ (ks+)jabµ (−ks+) + jbaµ (ks−)jabµ (−ks−)

]
. (6.51)

Here,

ks±= q + ~τs ± gs(q)ẑ, (6.52)

gs(q) =
√
k2

0 −
(
q + ~τs)2, (6.53)

where the ~τs are the planar reciprocal lattice vectors, n′ = 1/a2 is the planar density
of the nuclei, and S indicates that the real part of the self-action (radiation reaction
of a single nucleus) is to be subtracted from i

∑
βs. The sum over ~τs breaks into

two regions: those ~τs for which gs(q) is real, which give open radiation channels to
the normal mode field A(q), given in eq. (6.57) below; and those ~τs for which gs(q)
is imaginary, gs(q) = i|gs(q)|, which give a nonradiative contribution to A(q). The
sum over all closed channels gives an exponentially damped contribution to A(q) on
the order of e−k0|z|/k0|z|. We denote the open channel sum as

∑
s<, and the closed

channel sum as
∑

s>.
The partial width for coherent elastic decay in mode q is then

Γ(q)
c =

∑
s<

Γ(q)
c (s), (6.54)

where the partial width for emission into the symmetric open channels ks+ and ks− is

Γ(q)
c (s) =

2πn′

gs(q)

[
jba⊥ (ks+) · jab⊥ (−ks+) + jba⊥ (ks−) · jab⊥ (−ks−)

]
. (6.55)

To compare with the classical case, we take a system of linear E1 oscillators (i.e.,
∆Jz = 0), each with ground state |a〉 = |j0 = 0, m0 = 0〉 and excited state |a〉 =
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|j1 = 1, m1 = 0〉, and local quantization axis ẑJ . If ẑJ lies in the plane of the nuclei
(the x, y plane), then

Γ(q)
c (s) = 2πn′λ̄2k

2
0 − ((~τs + q) · ẑJ )2

k0 gs(q)
Γcoh, (6.56)

where Γcoh = [(2j1 + 1)Γγ/(4j0 + 2) = (3/2)Γγ . This result agrees with the classical
treatment of [11].

The normal mode radiation field (Feynman photon potential) A(q), obtained from
eq. (6.29) by first carrying out the planar lattice sum before applying the gradient

operator
←
k = i

←
∇R, is given by

A(q)(R, t) = 1
(
t∗
)
e−iωqt∗ 1√

N

∑
s

i2πn′

gs(q)
eigs(q)|z|ei(q+~τs)·Rxy jab⊥

(
−
←
k
)
. (6.57)

This is a superposition of a finite number of open radiation channels, ks±, and a
nonradiative contribution from the closed channels on the order of e−k0|z|/k0|z|. The
open channels ks+ and ks− are a symmetric pair above and below the x, y plane, each
channel making an angle φs with the plane, where sinφs(q) = gs(q)/k0 (see figure 8).

The expected flux (probability/cm2/s) for finding a photon at (R, t) is (ω0/2π~c)
× |A(q)(R, t)|2 (eq. (3.11)). For the planar system, coherent emission goes into one of
a finite number of open channels ksη (η = ±). The cross-sectional area for the ksη
channel is L2 sin φs. Using just the ks± contributions to A(q)(R, t), the probability/s
that the state |ψe(q), t〉 de-excites by coherent γ-ray emission into either of the ks±
channels at time t is then given by

ρ(q,s)
c (t) = Γ(q)

c (s)e−(Γα+Γ′γ+Γ(q)
c )t, (6.58)

where Γ(q)
c (s) is the partial width for emission into the symmetric open channels ks±, as

given by (6.55), and Γ(q)
c =

∑
s Γ(q)

c (s) is the partial width for emission into all open
channels. Integrating (6.58) over t, the probability that |ψe(q)〉 decays by coherent
photon emission into the ks± channels is

P (q)
c (s) =

Γ(q)
c (s)

Γα + Γ′γ + Γ(q)
c

. (6.59)

For coherent elastic scattering of an incident photon A0(z, t) = a0e0 exp[i(k0 ×
z− ωt)], using eq. (6.38), the scattered wave is

As(R,ω) =
∑
s

iλ0n
′

sin φs
eigs(q)|z|ei(q+~τs)·Rxy jab⊥ (−

←
k )jba⊥ (k0) · e0a0

ω0 + δωq − ω − i(Γ(q)
c + Γα)/2

, (6.60)

where q = k0xy (reduced to the first Brillouin zone) in the denominator, and the
notation for gs and φs is now that of eq. (3.19), where the planar scattering was
treated in the Born approximation. Equation (6.60) gives the exact result for elastic
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scattering from a planar array of nuclei, including the planar self-action. We note that
the incident k0 selectively excites the q = k0xy planar normal mode.

Planar surface mode and total transmission. The most interesting feature of the
planar solution (6.60) is that total transmission can occur [11]. From (6.53) and (6.55),
we see that for well defined directions of k0, there will exist a ~τs′ such that gs′ = 0
and Γc(s′) = ∞. The coherent width for emission into the s′ channel is infinite and
the nuclear excitation amplitudes are identically zero. The scattered wave is a single
channel, parallel to the surface, with intensity equal to that of the incident wave, but
the ratio of the total energy of this wave to the incident energy is zero (because of
the sinφs′/ sinφ0 ratio of the cross-sectional areas). There is no forward scattering,
so the total transmitted wave is A0 and the layer becomes perfectly transparent to the
incident radiation. This phenomenon of surface mode channels in single layers, and
in M -layer crystals, is discussed further in [96].

Exact planar vs. Born approximation. In our development of the generalized Darwin–
Prins dynamical theory of X-ray and γ-ray optics, the scattering from each plane is
treated in the Born approximation, and then the planes are coupled through their
scattered radiation fields. The only approximation involved is the neglect of planar
self-action. This approximation is in fact very good, except for the special case when
a planar surface mode channel is just opened or just closed.

For a system of two level nuclei, we can use the exact planar result of eq. (6.60),
and give an exact Darwin–Prins development, as carried out in [11]. However, the only
difference between (6.60) and the Born approximation is the resonance denominator
Q(ω): for the Born approximation, Q(ω) = ω0 − ω − iΓ/2, while, with planar self-
action, Q(ω) = ω0 + δωq − ω − i(Γα + Γ(q)

c )/2, with q = k0xy.
Now from (6.56), Γ(q)

c (s) ≈ 2πn′Γcoh/ sin φs ≈ 2 × 10−2Γcoh/ sin φs, where we
have taken a ∼ 2.5 Å and λ ∼ 0.86 Å. Thus, φs < 10−2 rad may double the coherent
width (compared to an isolated nucleus), but since this is only a small fraction of the
total width, φs less than about 10−3 rad is required to double the total width. Similarly,
the frequency shift δωq will normally be a negligible fraction of Γγ . Thus, for most
orientations of k0, the Born approximation is quite accurate for treating the scattering
of a single plane.

6.9. M-layer crystal

For an M -layer crystal, the invariance of the system under x, y translations by
planar lattice vector displacements dictates that the normal modes will be 2-D Bloch
waves Xq in the x, y direction. Each plane layer sends out plane waves ks±(q) which
couple the layers together, and scatter into the same set of open channels. Since
there are M plane layers, there will be M different linear combinations of the planar
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solutions, giving M different normal modes within each q-manifold. Thus, the general
form of the normal mode states is

Xq,l = Zq,l ⊗ Xq, (6.61)

where Zq,l is an M -component vector

Zq,l =


c(q,l)

1

c(q,l)
2
...

c
(q,l)
M

 . (6.62)

The new index l (l = 1, 2, . . . ,M ) specifies the M different normal modes within each
q-manifold. In mode Xq,l, the exciton state is |ψq,l〉 =

∑
j c

q,l
j |bj〉|G0(j)〉, and if the

nucleus j lies in the mth layer, at the position Rj , then cq,l
j = c(q,l)

m exp(iq ·Rj)/
√
Nxy .

The Bloch wave states Xq factor out, and in the q-manifold, the Hamiltonian
equation reduces to an M ×M matrix equation

h̃(q)Zq,l = ωZq,l, (6.63)

where now

hnn =ω0 + δωq − i
Γα + Γ(q)

c

2
, (6.64)

hmn(m 6= n) =− i
2

∑
s

Γ(q)
c (s) exp

(
igs|n−m|d

)
. (6.65)

In (6.65), for the closed channel contributions (s>), Γ(q)
c (s)/2 = βs(q), as given

by (6.51).
The determinant equation, Det[h̃(q) − ω1̃] = 0, determines the complex fre-

quencies ωq,l = [ω′q,l − iΓq,l/2] = [ω0q + δωq,l − i(Γα + Γ(q,l)
c )/2] of the M normal

modes, l = 1, 2, . . . ,M . The sum rules (6.23) and (6.25) hold globally, and within
the q-manifold, we have the sum rules

M∑
l=1

δωq,l =
M∑
l=1

(
ω′q,l − ω0q

)
= 0 (6.66)

and

1
M

M∑
l=1

Γ(q,l)
c = Γ(q)

c =
∑
s<

Γ(q)
c (s). (6.67)

The Hamiltonian h̃(q) is again symmetric, rather than Hermitian, so the eigen-
vectors Zq,l satisfy the transpose orthogonality condition within the q-manifold,
ZT

q,l · Zq,l′ = δll′ . An exciton state |ψe〉 = Z(0), which lies in the q-manifold (such as
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state |ψe(k0)〉 created by a synchrotron pulse, which lies in the q = k0xy manifold),
will then develop in time as

Z(t) =
M∑
l=1

ale
−iωq,ltZq,l, (6.68)

where

al = ZT
q,l · Z(0). (6.69)

The field emitted by the crystal in the (q, l) normal mode is

A(q,l)(R, t) = e−iωq,lt
∑
s<

i2πn′

gs(q)
eiks+·R j⊥(−ks+) ZT

q,l · Z(−gs), z > (M − 1)d,

(6.70)

= e−iωq,lt
∑
s<

i2πn′

gs(q)
eiks−·R j⊥(−ks−) ZT

q,l · Z(gs), z < 0.

Here Z(±gs) is the M -component phased vector with mth component exp(±igsmd),
with m = 0, 1, . . . ,M − 1, so that ZT

q,l · Z(±gs) =
∑

m c
(q,l)
m exp(±igsmd). For an

initial exciton state |ψe〉 = Z(0), the subsequent emission field is a superposition of
normal mode fields,

A(R, t) =
M∑
l=1

alA
(q,l)(R, t), (6.71)

with al given by (6.69).

Symmetric two-wave approximation. We are particularly interested in the radiative
decay of nuclear exciton states |ψe(k0)〉 created by synchrotron pulses. Two important
cases are for k0 off-Bragg, and for k0 satisfying the condition for a symmetric Bragg
reflection. To treat these cases, it is sufficient to only include the coupling provided by
the k0+ and k0− channels, omitting the contributions of all other open channels ks±.
This is essentially the usual two-wave approximation made in the dynamical theory of
X-ray optics, restricting our attention to the symmetric case.

We take the scattering plane defined by k0+ and k0− to be the (z,x)-plane, so
that

q = qx̂ = k0 cosφ0x̂, (6.72)

g0 =
√
k2

0 − q2 = k0 sinφ0, (6.73)

k0±= q± g0ẑ. (6.74)

This is the geometry shown in figure 8.
We will furthermore assume maximum coupling of the radiation fields to the

nuclei. Assuming a linear ∆Jz = 0, E1 nuclear transition, the quantization axis ẑJ



III-1.2 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics 249

should lie in the σ̂ = ŷ direction, perpendicular to the scattering plane. The partial
width for coherent decay, eq. (6.56), then becomes

Γ(q)
c (0) =

2πn′λ̄2

sinφ0
Γcoh, (6.75)

and the sum rule (6.67) becomes

M∑
l=1

Γ(q,l)
c = MΓ(q)

c (0) = 2πnλ̄2l‖Γcoh, (6.76)

where n = 1/(a2d) is now the volume density of nuclei in the crystal, and l‖ =
Md/ sin φ0 is the thickness of the crystal in the k0± directions. We note the right-
hand side of (6.76) is precisely the superradiant decay width at Bragg as calculated by
the Fermi Golden Rule in eq. (4.22).

For any particular number of layers M , we can now solve the determinant equa-
tion Det[h̃(q) − ω1̃] = 0 for the M eigenfrequencies ωq,l, and then substitute ωq,l

into the eigenvalue equation h̃(q)Z(q,l) = ωq,lZ(q,l) to determine the eigenmodes Z(q,l).
However, there is a better procedure, in which we first deduce the general form of the
eigenstates, and then determine the eigenfrequencies.

We first rewrite the Hamiltonian equation (6.63) in component form,

Q0(ω)Z (q,l)
m =

i
2

Γ(q)
c (0)

M−1∑
n=0

Z (q,l)
n exp

(
ig0|n−m|d

)
, (6.77)

where Q0(ω) = ω0 − ω − iΓα. We then try a trial solution of the form

Zm = eik′dm ± eik′d(M−1−m) = Km ±KM−1−m, m = 0, 1, . . . ,M − 1, (6.78)

where k′ is a complex parameter yet to be determined, and in the second line, we have
introduced the notation K = exp(ik′d). We choose this form of trial solution based on
the physical thinking that there exist two propagating waves inside the crystal. The
eigenmodes are the stationary states formed by the superposition of the two waves,
similar to the standing waves on a beaded string. Noting that Km + KM−1−m =
2K(M−1)/2 cos[(M − 1 − 2m)k′d/2] and Km − KM−1−m = −2iK(M−1)/2 sin[(M −
1 − 2m)k′d/2], we call the “+” solutions “cosine solutions” and the “−” solutions
“sine solutions”.

Substituting (6.78) into (6.77) yields a consistency equation for Zm to be a
solution,

KM+1 − eig0dKM ±
(
1− eig0dK

)
= 0, (6.79)

and a dispersion equation,

Q0(ω) =
i
2

Γ(q)
c (0)

[
1

1−K exp(ig0d)
− 1

1−K exp(−ig0d)

]
. (6.80)



250 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics III-1.2

Figure 25. (a) Plot of the normal mode frequency shifts δωl as a function of g0d for an M = 3 layer
crystal. (b) The normal mode coherent decay widths Γ(l)

c vs. g0d. For both figures, the vertical scale is
in units of Γ(q)

c (0), the coherent decay width for a single plane; and g0d varies from 0 to π.

The consistency equation (6.79) constitutes two (M + 1)-order equations, with
the (+) equations giving the cosine solutions and the (−) equations giving the sine
solutions. There are then 2M + 2 solutions to (6.79). Two of these solutions are
“null” solutions, giving the null “mode” Z ≡ 0. The null solutions are K = 1, which
is always a solution to the (−) equation, and K = −1, which is a solution to the (+/−)
equation if M is (odd/even). The remaining 2M solutions are paired, with each pair
being an identical solution. If M is even, there are M/2 distinct cosine and sine
solutions; while if M is odd, there are (M + 1)/2 cosine solutions and (M −1)/2 sine
solutions. In either case, there are M distinct eigenmodes Zq,l for an M -layer crystal
in the q subspace, which we designate by the index l = 1, 2, . . . ,M . The eigenmode
frequency ωq,l is obtained from the dispersion equation (6.80), by substituting the
solution Kl of (6.79) which generates Zq,l into the right-hand side of (6.80).

The solutions Kl of (6.79) are functions of g0d, or equivalently, of the mode
angle φ0. Changing g0 changes the q-manifold, q = k0 cos φ0x̂. As a function of
g0d, the configuration of the mode Zq,l changes, as does the frequency shift of the
mode, δωq,l, and the partial width for coherent radiative decay, Γ(l)

c . As g0d varies
from 0 → π, k0 varies from a symmetric Bragg condition (φ0 = 0), to off-Bragg
(g0d = π/2), and back to the next higher order symmetric Bragg reflection (g0d = π).

In figure 25, we show the variation of the mode frequency shifts and coherent
radiative widths vs. g0d for the simplest nontrivial case of an M = 3 layer crystal. In
(a) we show the frequency shifts δωl of the three modes. The shifts satisfy the sum
rule

∑
l δωl = 0. We note in particular that at Bragg, the frequency shifts all vanish;

but off-Bragg, the frequencies are spread over a region ≈ 3Γ(q)
c (0) = 2πnλ̄2l‖Γcoh.

In (b) we show the coherent decay widths Γ(l)
c . The widths satisfy the sum rule∑

l Γ(l)
c = 3Γ(q)

c (0) = 2πλ̄2l‖Γcoh. The most interesting feature is that at Bragg, two of
the modes become nonradiative, and one mode becomes superradiant with the coherent
decay width being the full 3Γ(q)

c (0) of the sum rule. For this mode, all the planar fields
add in-phase, giving enhanced emission, while for the other two modes, the fields of
the three planes exactly cancel.
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• These are general features for any M : at Bragg, one mode becomes superradi-
ant, with enhanced coherent decay width Γc = 2nπλ̄2l‖Γcoh, and all other modes
are nonradiant. Off-Bragg, the widths are spread, consistent with the sum rule∑

l Γ(l)
c = 2πλ̄2l‖Γcoh, with a few modes being (weakly) superradiant, and most

modes subradiant. The frequency shifts satisfy the sum rule
∑

l δωl = 0, and at
Bragg, all frequency shifts are zero. Off-Bragg, there is a broad spread of frequen-
cies, with the total spread being ∆ω ≈ Γc = 2πλ̄2l‖Γcoh. The remarkable behavior
at Bragg is the essential point of the coherent enhancement effect at Bragg [11].

As a simple example, for M = 2 layers, the eigenmodes are the symmetric state
(with corresponding oscillators Rj in each plane oscillating in-phase), and the anti-
symmetric state (with corresponding oscillators 180◦ out-of-phase), in direct analogy
to two nuclei. At the g0d = π Bragg, the symmetric state is nonradiative: the self
field of each plane is exactly canceled by the field from the other plane, the radia-
tion reaction on each oscillator then vanishes, and the oscillators have free undamped
motion. Correspondingly, the emitted radiation fields from the two layers cancel and
the mode is nonradiative. For the antisymmetric mode, the fields add, so the radiation
reaction on each oscillator is doubled, and the mode decays superradiantly, at 2× the
rate of a single layer. For g0d = 2π, the roles are reversed – the symmetric mode is
superradiant and the antisymmetric mode is nonradiative.

6.10. Superradiance and dynamical beats in the decay of a nuclear exciton

Of particular interest is the decay of an exciton |ψe(k0)〉 created by a synchrotron
pulse. If k0 satisfies the symmetric Bragg condition, then a single superradiant eigen-
mode is excited, and the subsequent decay is a simple enhanced exponential decay. If
k0 is off-Bragg, then |ψe(k0)〉 is a superposition of normal modes, and the spread of
frequencies and Hermitian nonorthogonality play an important role both in the initial
superradiance and subsequent dynamical beats.

The exciton |ψe(k0)〉 created by a synchrotron pulse is a Bloch wave,∣∣ψe(k0)
〉

=
1√
N

∑
j

eik0·Rj
∣∣bj〉|G0(j)

〉
, (6.81)

where k0 = (ω0/c)n̂0, with ω0 = (Eb − Ea)/~, and n̂0 the direction of the incident
pulse. Hence, |ψe(k0)〉 lies in the q = k0xy manifold of eigenmodes of an M -layer
crystal. Factoring out the xy-Bloch states Xq, and suppressing the q index on all states
and eigenfrequencies, the initial exciton state is

∣∣ψe(k0)
〉

=
1√
M

Z(g0) =
1√
M


1

eig0d

...

eig0d(M−1)

 . (6.82)
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Expanding in terms of eigenmodes,

∣∣ψe(k0)
〉

=
M∑
l=1

alZl, (6.83)

where

al =
ZT
l · Z(g0)√
M

. (6.84)

The state then develops as

∣∣ψe(k0, t)
〉

=
M∑
l=1

e−iωltalZl, (6.85)

and the excitation probability decays as〈
ψe(k0, t)

∣∣ψe(k0, t)
〉

=
∑
l,l′

a∗l′ale
i(ωl′−ωl)tZ†l′ · Zl. (6.86)

The eigenmodes are transpose orthogonal rather than Hermitian orthogonal, so gener-
ally Z†l′ · Zl 6= 0, and there are interference effects between the modes in the decay of
〈ψe(k0, t)|ψe(k0, t)〉.

The radiation field (Feynman photon potential) emitted by the crystal in the state
|ψe(k0, t)〉 is

A(R, t) =
M∑
l=1

alA(l)(R, t), (6.87)

where al is given by (6.84), and, in the symmetric two-wave approximation, the field
of the lth normal mode is

A(l)(R, t) =−σ̂C i
2

Γ(q)
c (0) exp

[
i(k0+ ·R− ωlt)

]
ZT
l · Z(−g0), z > (M − 1)d,

(6.88)
=−σ̂C i

2
Γ(q)

c (0) exp
[
i(k0− ·R− ωlt)

]
ZT
l · Z(g0), z < 0.

Here σ̂ = ŷ is the polarization perpendicular to the (k0+, k0−) scattering plane, C =√
2/λ̄Γcoh, Γ(q)

c (0) is the partial width for coherent decay per plane, as given by (6.75),
and ZT

l · Z(±g0) =
∑

m Z
(l)
m exp(±ig0dm), m = 0, . . . ,M − 1.

In figure 26(a), we show the coherent photon signal |A(+)(t)|2 vs. t emitted by a
synchrotron pulse exciton |ψe(k0, t)〉 in the k0+ direction, for k0 on Bragg (g0d = π),
and for k0 off-Bragg (g0d = π/2), for an M = 3 layer crystal; and in (b) we show the
corresponding decay of the excitation probability 〈ψe(k0, t)|ψe(k0, t)〉. In these figures,
we have “turned off” the incoherent processes, i.e., have set Γα + Γ′γ = 0. The Bragg
decay has a simple exponential decay, both for |A(+)(t)|2 and for 〈ψe(k0, t)|ψe(k0, t)〉,
at the enhanced rate Γc = 2πnλ̄2l‖Γcoh. The off-Bragg is more complex: there is an
initial superradiant phase, decaying at half the Bragg rate, Γc/2, indicated by the dashed
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Figure 26. (a) The coherent photon signal log[|A(+)(t)|2] vs. t emitted by a synchrotron pulse exciton
|ψe(k0, t)〉 in the k0+ direction, for k0 on Bragg (g0d = π), and for k0 off-Bragg (g0d = π/2). We
have normalized the curves to unity at t = 0. The Bragg decay is superradiant, at the enhanced rate
Γc = 2πnλ̄2l‖Γcoh. The dashed line shows the initial off-Bragg superradiant decay at the enhanced rate
Γc = πnλ̄2l‖Γcoh. The number of crystal layers is M = 3. Time t is in units of [Γ(q)

c (0)]−1. (b) The
decay of the excitation probability log[〈ψe(k0, t)|ψe(k0, t)〉] vs. t for k0 on- and off-Bragg, for a 3-layer

crystal.

lines in (a) and (b). This is followed by a slowly decaying phase, in which the photon
signal |A(+)(t)|2 exhibits dynamical beats, periodically vanishing. Correspondingly,
〈ψe(k0, t)|ψe(k0, t)〉 “flattens out” (i.e., the rate of decay d/dt〈ψe(k0, t)|ψe(k0, t)〉 ≈ 0)
whenever |A(R, t)|2 has a sharp minimum. In effect, the excitation is momentarily
“trapped” within the system.

This periodic behavior in the decay of 〈ψe(k0, t)|ψe(k0, t)〉 off-Bragg is due to the
interference effects between the modes, which arise because the eigenmodes |ψm〉 are
transpose orthogonal, rather than Hermitian, as noted in eq. (6.36). This interference
also gives a “dephasing” effect due to the spread of frequencies, which plays a major
role in the initial superradiant decay of 〈ψe(k0, t)|ψe(k0, t)〉.

At Bragg, a single superradiant eigenmode is excited, and the decay of
〈ψe(k0, t)|ψe(k0, t)〉 is a simple exponential, at the enhanced rate Γc = 2πnλ̄2l‖Γcoh.

Correspondingly, for Bragg excitation, the photon emission field is an eigenmode
field, with the coherent photon signal having two equal strength channels, |A(+)(t)|2
and |A(−)(t)|2, in the k0+ and k0− directions, respectively. Carrying out the calculation
as in (6.58), the probability/s that the state |ψe(k0), t〉 de-excites by coherent γ-ray
emission into either the k0+ or the k0− channel at time t is given by

ρc(t) = Γce−(Γα+Γ′γ+Γc)t, (6.89)
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and integrating over t, the probability that |ψe(k0)〉 decays by coherent photon emission
is

Pc =
Γc

Γα + Γ′γ + Γc
. (6.90)

Off-Bragg, |ψe(k0)〉 is a superposition of normal modes, and correspondingly,
A(R, t) is a superposition of normal modes fields A(l)(R, t), as given by (6.87). The
combination of the modes, determined by the expansion coefficients al, is such that
initially |A(−)(t)|2 � |A(+)(t)|2 – i.e., the system is phased so that there is initial
constructive interference between the planar waves in the “forward” k0+ direction, but
destructive interference in the k0− direction. The decay is initially superradiant, but
at half the Bragg rate Γc/2 because the k0− decay channel is shut down. As can be
seen from figure 26(b), with about 80% probability, |ψe(k0)〉 de-excites during this
initial superradiant phase, so the probability for coherent decay into the k0+ channel
is, approximately,

Pc ≈
Γc/2

Γα + Γ′γ + Γc/2
. (6.91)

Following this initial superradiant phase, the off-Bragg signal decays slowly,
with the onset of “dynamical beats”. This is a natural consequence of adding wave
contributions spread over a frequency range ∆ω ≈ Γc. For example, if the normal
mode wave contributions entered with equal amplitude over a frequency range ω0 ±
Γc/2, and if all modes decayed at the natural Γ, then the emitted signal would have
dynamical beats of frequency Γc/2 and a weakly enhanced long time decay |A(+)(t)|2 ∝
exp(−Γt)/t2:

A(+)(t) ∝
∫ +Γc/2

−Γc/2
dωe−i(ω0+ω−iΓ/2)t =

2 sin(Γct/2)
t

e−i(ω0−iΓ/2)t. (6.92)

This example is much too simple, but it illustrates the beats and inverse power law
type decay which arise from Fourier synthesis of bands of frequencies.

Making the correct resolution of |ψe(k0)〉 into normal mode contributions,
and using the correct complex mode frequencies, the signal |A(+)(t)|2 is very
close in form to the dynamical theory off-Bragg transform solution, I (T )

c (t) =
exp(−Γt)[J1(

√
4Γct )]2/Γct. This is illustrated in figure 27(a), for an M = 10 layer

crystal, again with the incoherent processes turned off (Γα + Γ′γ = 0). The reason

for the discrepancy is twofold: I (T )
c (t) is a continuum approximation to a discrete

problem, and, more importantly, the off-Bragg dynamical theory treatment is a sin-
gle channel approximation which includes only forward scattering – i.e., only the
k0+ channel is kept. The normal mode solution correctly accounts for the “back cou-
pling” in the k0− channel. As a consequence, I (T )

c (t) is a poor approximation for a
thin crystal, but the agreement becomes progressively better the larger the number of
layers M .
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Figure 27. (a) Comparison of the exact normal mode solution (solid line) for |A(+)(t)|2 for an off-Bragg
exciton in an M = 10 layer crystal, and the approximate solution exp(−Γt)[J1(

√
4Γct)]2/Γct (dashed

line). (b) The asymmetric probability distribution within the crystal for an off-Bragg exciton |ψe(k0, t)〉:
the top solid line shows the relative probability |Z0(t)|2 that the top layer (m = 0) is excited at time t;
the bottom solid line, the relative probability |ZM−1(t)|2 that the bottom layer (m = M − 1) is excited
at t. The upper dashed line shows the free decay of a single plane. The lower dashed line shows the

excitation probability 〈ψe(k0, t)|ψe(k0, t)〉. Here M = 3.

In figure 27(b), we show another very interesting feature of the off-Bragg solu-
tion, the asymmetric probability distribution within the crystal for an off-Bragg exciton
|ψe(k0, t)〉. Here the top solid line shows the relative probability |Z0(t)|2 that the top
layer (m = 0) is excited at time t; the bottom solid line, the relative probability
|ZM−1(t)|2 that the bottom layer (m = M − 1) is excited at t. For a system of classi-
cal oscillators, the lines correspond to the total mechanical energy E(t) of oscillators in
these planes. The upper dashed line shows the decay of an isolated single plane. The
lower dashed line shows the excitation probability 〈ψe(k0, t)|ψe(k0, t)〉, as also shown
in figure 26(b). Here we have taken M = 3. The first layer initially decays like an
isolated single layer, but back reaction from the lower layers, although small, then
slows the decay. The last layer, on the other hand, initially decays superradiantly, at
the Bragg decay rate, Γc = 2πnλ̄2l‖Γcoh. Initially, the waves from all the “upstream”
layers add constructively to act on the last layer, just as at Bragg. (In the Bragg case,
each layer in the crystal sees the same enhanced field, and all layers decay superra-
diantly together.) As discussed in section 4.2.3, this marked asymmetry of the planar
decay rates across the film can easily be detected by observing the incoherent resonant
processes (conversion electrons, incoherently scattered γ-radiation, . . . ) occurring at
different depths of the film.



256 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics III-1.2

Acknowledgement

Partial support for this work has been provided by the National Science Foun-
dation under grant No. DMR-90-13058, and by the Welch Foundation under grant
C-1049.

Appendix A

A.1. Electronic scattering

For X-ray scattering from the atomic electrons, the coherent elastic scattering
amplitude (correct to second order in HI ) is given by [5,7,118]

fe = f0 + fm + fr, (A.1)

where f0 is the Thomson contribution, fm is the nonresonant magnetic scattering, and
fr is the resonance dispersion (or “anomalous”) scattering contribution.

The Thomson scattering contribution is given by

f0 = −r0fD(Q)
〈
n(Q)

〉
e∗f · e0, (A.2)

where Q = k0 − kf is the momentum transfer, fD is the Debye–Waller factor, and the
form factor 〈n(Q)〉 is the ensemble average of the Fourier transform of the electron
density, 〈

n(Q)
〉

=
∑

0

p0

〈
ψ0

∣∣∣∣∑
j

exp(iQ · rj)
∣∣∣∣ψ0

〉
, (A.3)

where p0(T ) gives the statistical probabilities for the various possible initial states |ψ0〉.
The nonresonant magnetic scattering contribution to the coherent elastic scattering

can be expressed as

fm = i
~ω0

mc2 r0fD(Q)

[
1
2

〈
L(Q)

〉
·A′′ +

〈
S(Q)

〉
· B
]

, (A.4)

where 〈S(Q)〉 and 〈L(Q)〉 are the ensemble averaged Fourier transforms of the spin
and orbital magnetization densities,〈

S(Q)
〉

=
∑

0

p0

〈
ψ0

∣∣∣∣∑
j

sj exp(iQ · rj)
∣∣∣∣ψ0

〉
, (A.5)

〈
L(Q)

〉
=

1
2

∑
0

p0

〈
ψ0

∣∣∣∣∑
j

[
f (Q · rj)lj + ljf (Q · rj)

]∣∣∣∣ψ0

〉
, (A.6)

where

f (x) = 2
∞∑
n=0

(ix)n

(n+ 2)n!
. (A.7)
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The polarization vectors are given by

B =
(
e∗f × e0

)
+
(
k̂f × e∗f

)(
k̂f · e0

)
−
(
k̂0 × e0

)(
k̂0 · e∗f

)
−
(
k̂f × e∗f

)
×
(
k̂0 × e0

)
, (A.8)

A′′ = A′ −
(
A′ · Q̂

)
Q̂, (A.9)

where

A′ = −4
(
e∗f × e0

)
sin2 θ, (A.10)

with θ the scattering angle.
Finally, the resonance dispersion contribution to the coherent elastic scattering

amplitude is

fr = 2πλ̄fD(Q)
∑

0

p0

∑
I

1
λI0

[
〈ψ0|J(−kf) · e∗f |I〉〈I|J(k0) · e0|ψ0〉

EI −E0 − ~ω − iΓI/2

− 〈ψ0|J(k0) · e0|I〉〈I|J(−kf ) · e∗f |ψ0〉
EI −E0 + ~ω

]
, (A.11)

where J(k) = c−1
∫

dx eik·xJ(x) is the Fourier transform of the current density operator
given by

J(k) · e =
e

mc

∑
j

e ·
[
pj + i~(sj × k)

]
exp(ik · rj). (A.12)

In all cases the appropriate phonon factor is the Debye–Waller factor. This is an im-
mediate result for all nonresonant contributions, but also holds to good approximation
for resonant X-ray scattering because the resonance widths ΓI , typically ≈eV, are large
compared to vibrational energies ε, typically ≈0.01 eV (hence, resonant X-ray scatter-
ing is a fast process, ~/ΓI ≈ 10−16 s, compared to vibrational times, ~/ε ≈ 10−14 s).

A.1.1. Isotropic limit
For many cases the Mössbauer frequency is large in comparison to the atomic

absorption edges. For example, for 57Fe, the Mössbauer resonance energy is ~ω =
14.4 keV, while the highest energy atomic edges are K = 7.1 keV, L1 = 0.85 keV,
L2 = 0.79 keV and L3 = 0.78 keV. In situations like this, where the frequency of
the radiation is large compared to any of the atomic absorption edge frequencies, the
dominant real contribution to the scattering amplitude f is the Thomson contribution f0,
and the dominant imaginary contribution comes from the photoelectric poles in the sum
over intermediate states in fr corresponding to photoemission of electrons from the
various shells. In this limit, the coherent elastic X-ray scattering amplitude is given to
good approximation by

fe = e∗f · e0fD(Q)

[
−
〈
n(Q)

〉
r0 + i

σe

4πλ̄

]
, (A.13)
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where σe(ω) is the photoelectric cross-section at the frequency ω, arising primarily
from the tightly bound K- and L-shell electrons (so the form factor for scattering is
near unity). In this approximation the polarization response is that of an isotropic
electric dipole oscillator and gives no polarization mixing.

For frequencies near an atomic absorption edge however, the response is generally
much more complex and interesting, with strong anisotropic scattering sensitive to the
directions of the local fields (B and EFG).

A.1.2. Multipole expansion for the resonance dispersion contribution fr

Near absorption edges, very large resonant enhancements to the magnetic sen-
sitive X-ray scattering occur, with amplitudes ranging from 0.1r0 to 100r0 [3,6,116].
This strongly enhanced “magnetic” X-ray scattering is actually electric multipole res-
onance scattering with the magnetic sensitivity arising from the effects of exchange
and spin–orbit correlation [3]. To treat these interesting cases, it is necessary to make
a multipole expansion of the currents in fr. The multipole development given here
carries over directly for the nuclear resonant scattering amplitudes.

The interaction current J(k) ·e, given by eq. (A.12), can be expanded in multipole
contributions following the standard treatments [8],

J(k) · e =
∑
q=e,m

∑
LM

J (q)
LMY(q)∗

LM

(
k̂
)
· e, (A.14)

where q = e or m designates an electric or magnetic multipole; L = 1, 2, . . . gives
the order of the multipole, and the azimuthal index M = −L,−L + 1, . . . ,L. The
multipole moment operator J (q)

LM for the QL multipole (Q = E or M) is a spherical
tensor operator of order L given by

J (e,m)
LM = − 4πiLkL

(2L+ 1)!!

√
L+ 1
L

Q(e,m)
LM . (A.15)

For an electric 2L-pole,

Q(e)
LM = ELM +ELM (s). (A.16)

EL and EL(s) denote, respectively, the charge and spin contributions of parity (−1)L,
leading to electric radiation, which to lowest order in r are given by

ELM =
∑
j

[
erLj YLM

(
r̂j
)]

, (A.17)

ELM (s) =
~ω
mc2

∑
j

{
elj
[
rLj YLM

(
r̂j
)]
· sj
L+ 1

}
. (A.18)
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For a magnetic 2L-pole,

Q(m)
LM ≡MLM = 2µB

∑
j

{
∇j
[
rLj YLM

(
r̂j
)]
·
[

lj
(L+ 1)

+ sj

]}
, (A.19)

where µB = e~/2mc is the Bohr magneton.
The vector spherical harmonics which enter eq. (A.14) are defined as

Y(e)
LM

(
k̂
)

=
1√

L(L+ 1)
∇kYLM

(
k̂
)
, (A.20)

Y(m)
LM

(
k̂
)

= k̂ ×∇kYLM
(
k̂
)
. (A.21)

For the spherical harmonics YLM we use the conventions of Rose [117]. For reference
we give the explicit forms of the vector spherical harmonics Y(q)

LM (k̂) for E1, M1, and
E2 transitions: for E1,

Y(e)
10 = −

√
3

8π
sin(θ)eθ, Y(e)

1±1 =

√
3

16π
e±iφ[∓ cos(θ)eθ − ieφ

]
. (A.22)

Here eθ and eφ are the usual spherical polar unit vectors, and θ and φ are the polar
and axial angles specifying the photon direction k, with the z axis coinciding with the
quantization axis zJ determined by the direction of the internal field at the nucleus.
For an M1 transition,

Y(m)
10 = i

√
3

8π
sin(θ)eφ, Y(m)

1±1 =

√
3

16π
e±iφ[eθ ± i cos(θ)eφ

]
, (A.23)

and for an E2 transition,

Y(e)
20 =−

√
15

32π
sin(2θ)eθ,

Y(e)
2±1 =

√
5

16π
e±iφ[∓ cos(2θ)eθ − i cos(θ)eφ

]
, (A.24)

Y(e)
2±2 =

√
5

16π
e±i2φ[(1/2) sin(2θ)eθ ± i sin(θ)eφ

]
.

The polarization dependence for the QL multipole of the current expansion (A.14) is
determined by the Lth rank spherical tensor,

T (q)
LM

(
e, k̂
)

= e∗ ·Y(q)
LM

(
k̂
)
, (A.25)

made up of the vectors e and k̂, and being linear in the components of e. For an EL
transition, this is expressed as products of the components of e and k̂ by

e∗ ·Y(e)
LM

(
k̂
)

=

√
4π(2L + 1)

3(L+ 1)

+1∑
µ=−1

C(1,L− 1,L;µ,M − µ,M)YL−1,M−µ
(
k̂
)
Y1µ(e).

(A.26)
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For an ML transition, the polarization factor is

e∗ ·Y(m)
LM

(
k̂
)

=

√
4π(2L+ 1)

3(L+ 1)

+1∑
µ=−1

C(1,L− 1,L;µ,M − µ,M )YL−1,M−µ
(
k̂
)
Y1µ(b),

(A.27)
where b = k̂×e is the B-vector of the radiation field. Alternatively, using the circularly
polarized bases eµ (µ = ±1) transverse to k̂, the polarization factors are given in terms
of the rotation matrices D(L)

µM by

e∗µ ·Y
(e)
LM

(
k̂
)

=

√
2L+ 1

8π
D(L)
µM

(
k̂
)
, (A.28)

e∗µ ·Y
(m)
LM

(
k̂
)

= (µ)

√
2L+ 1

8π
D(L)
µM

(
k̂
)
. (A.29)

Using the current multipole expansion, fr is then given by

fr = 4πλ̄
∑
q′L′M ′

∑
qLM

[
e∗f · Y

(q′)
L′M ′

(
k̂f
)][

Y(q)∗
LM (k̂0) · e0

]
F (q′q)
L′M ′;LM , (A.30)

where

F
(q′q)
L′M ′;LM = fD(Q)

∑
0

p0

∑
I

1
λI0

[〈ψ0|J (q′)†
L′M ′ |I〉〈I|J

(q)
LM |ψ0〉

EI −E0 − ~ω − iΓI/2

−
〈ψ0|J (q)

LM |I〉〈I|J
(q′)†
L′M ′ |ψ0〉

EI −E0 + ~ω

]
. (A.31)

This result is still a completely general expression for fr. An important point to note
is that the dependence on the photon polarizations e0 and e∗f and the photon directions

k̂0 and k̂f , given by the factor [e∗f ·Y
(q′)
L′M ′(k̂f)][Y

(q)
LM (k̂0) · e0], has now been separated

out from the current matrix elements and frequency response given by the factor
F (q′q)
L′M ′;LM . The polarization dependence gives an important “handle” for analyzing

scattering experiments.
In most situations, a near resonant transition is a pure multipole transition, so

q′ = q and L′ = L. Due to crystal field effects however (local symmetry, bonding
orbitals, . . . ), Jz is generally not conseved, and it is possible to have M ′ 6= M .

A.1.3. QL-multipole transition with M ′ = M
An important special case is coherent elastic scattering from a pure multipole

transition with M ′ = M . This will be the situation when crystal field effects can be
ignored, and even in the presence of crystal fields, this condition will often hold (e.g.,
E1 or M1 transitions in a cubic symmetry field). The resonance contribution is then

fQL = 4πλ̄
∑
qLM

[
e∗f ·Y

(q)
LM

(
k̂f
)][

Y(q)∗
LM

(
k̂0
)
· e0
]
F (q)
LM , (A.32)
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where F (q)
LM = F (qq)

LM ;LM as given by eq. (A.31), where now the sum over intermediate
states is just over the near resonant excited state sublevels.

As noted in section 2.4, the polarization response [e∗f · Y
(q)
LM (k̂f)Y

(q)
LM (k̂0)∗ · e0]

is precisely the polarization response of a qL, ∆Jz = M classical oscillator. Further-
more, the overall form of the polarization response is dictated by symmetry consider-
ations and can depend only on e0, k0, e∗f , kf and the local quantization axis zJ , since
these are the only defined directions in the scattering (in the absence of crystal fields).
For a QL transition, the explicit Y(q)

LM expressions give the scattering amplitude [3]

fQL =
2L∑
l=0

Al(ω)Pl
(
e∗f kf; e0k0; zJ

)
, (A.33)

where the polarization factors Pl contain zJ to the lth power, and the amplitudes Al
are combinations of the F (q)

LM .
For E1 transitions, the polarization factors are

Pl =


e∗f · e0, l = 0,

−i
(
e∗f × e0

)
· zJ , l = 1,(

e∗f · zJ
)
(e0 · zJ ), l = 2,

(A.34)

and the corresponding resonant amplitudes are

Al =
3

16π


F (e)

11 + F (e)
1−1, l = 0,

F (e)
11 − F

(e)
1−1, l = 1,

2F (e)
10 − F

(e)
11 − F

(e)
1−1, l = 2.

(A.35)

For a magnetic dipole transition (M1), the Pl are given by (A.34) with the
E-polarization vectors e replaced by the B-polarization vectors b = k̂× e, and the Al
are given by (A.35) with the F (e)

1M replaced by the F (m)
1M .

For an E2 transition, the polarization factors are

Pl =



(
k̂f · k̂0

)(
e∗f · e0

)
+
[
e0 ↔ k̂0

]
, l = 0,

−i
(
k̂f · k̂0

)(
e∗f × e0

)
· zJ +

[
e0 ↔ k̂0

]
+
[
e∗f ↔ k̂f

]
+
[
e0 ↔ k̂0, e∗f ↔ k̂f

]
, l = 1,(

k̂f · k̂0
)(

e∗f · zJ
)(

e0 · zJ
)

+
[
e0 ↔ k̂0

]
+
[
e∗f ↔ k̂f

]
+
[
e0 ↔ k̂0, e∗f ↔ k̂f

]
, l = 2,

−i
(
k̂f · zJ

)(
k̂0 · zJ

)(
e∗f × e0

)
· zJ +

[
e0 ↔ k̂0

]
+
[
e∗f ↔ k̂f

]
+
[
e0 ↔ k̂0, e∗f ↔ k̂f

]
, l = 3,(

k̂f · zJ
)(

k̂0 · zJ
)(

e∗f · zJ
)(

e0 · zJ
)
, l = 4.

(A.36)
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The corresponding resonant amplitudes are

Al =
5

16π



F (e)
22 + F (e)

2−2, l = 0,
1
2

(
F (e)

22 − F
(e)
2−2

)
, l = 1,(

F (e)
21 + F (e)

2−1

)
−
(
F (e)

22 + F (e)
2−2

)
, l = 2,

1
2

[
2
(
F (e)

21 − F
(e)
2−1

)
−
(
F (e)

22 − F
(e)
2−2

)]
, l = 3,

6F (e)
20 − 4

(
F (e)

21 + F (e)
2−1

)
+
(
F (e)

22 + F (e)
2−2

)
, l = 4.

(A.37)

In a spiral antiferromagnet, each order l > 0 will give rise to a distinct magnetic
satellite about the central Bragg peak [3]. The appearance of two harmonic satellites is
a characteristic signature of a dipole resonance (E1 or M1). The first order E1 harmonic
does not allow σ → σ scattering, while the first order M1 harmonic does not allow
π → π scattering. Quadrupole resonances (E2 or M2) will have four harmonics, and,
generally, allow all the possible combinations of σ → σ,π and π → π,σ scattering.

A.1.4. Effective spin-orbital operators and quasi-elastic resonant scattering
The expressions (A.33)–(A.37) are useful for determining the local magnetic

field direction, but are not in a useful form for relating the observed scattering cross-
sections to the expected moments 〈L〉, 〈S〉, . . . of the valence shell being probed. This
information is available though: As shown by Luo et al. [5,6], for the important case of
quasi-elastic scattering, if the “fast collision” approximation can be made, then indeed
there is a simple relation between the scattering and the spin-orbital moments. For a
pure EL transition, the scattering amplitude (A.30) becomes

fr = 4πλ̄
2L∑
k=0

k∑
q=−k

mkT
(k)∗
q

(
e∗f k̂fe0k̂0

)
EL

〈
ψf
∣∣M (k)

q (li, si)
∣∣ψ0
〉
, (A.38)

where the M (k)
q (li, si) are kth rank spin-orbital multipole moments depending only on

the li and si operators of the valence electrons for the valence shell involved in the
resonance, with each contribution M (k)

q (li, si) having a distinct polarization and wave
vector dependence T (k)∗

q (e∗f k̂fe0k̂0). The factor mk contains products of Clebsch–
Gordan coefficients, a squared radial matrix element for the transition involved, and a
complex resonance denominator. Thus, for an E1 transition, the scattering amplitude
operator contains up to quadrupole spin-orbital moments, and for an E2 transition up to
hexadecapole moments. The odd moments are odd under time reversal T and, hence,
purely magnetic, while the even-order moments are even under T , and include the
charge multipole moments (giving nonmagnetic Templeton effects).

“Quasi-elastic” resonant scattering means that after the scattering, the total num-
ber of valence electrons in the final state is the same as that of the initial state, but the
two states may have different quantum numbers (e.g., different L,S,J , . . .). Quasi-
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elastic resonant scattering includes elastic scattering (|ψf〉 = |ψ0〉) as well as spin-wave
and higher multipole-wave excitations.

The “fast collision” approximation means that the collision time T = |∆ω −
iΓ/2~|−1 is short compared to ~/∆EI , the time scale over which the torques exerted
amongst the core hole and the intermediate state valence electrons affect the evolution
of the intermediate state. Here ~∆ω = EI − E0 − ~ω is the deviation of the inci-
dent radiation from resonance, and ∆EI is the spread of the intermediate levels EI .
Under this condition, the spread ∆EI can be ignored, and there is a single resonance
denominator for the transition. We note that, even if Γ 6 ∆EI , the fast collision
approximation can be assured by simply tuning off-resonance several ∆EI .

The polarization factors T (k)∗
q (e∗f k̂fe0k̂0) are the spherical tensors made by cou-

pling e0 ·Y(e)∗
LM (k̂0) and e∗f ·Y

(e)
LM ′(k̂f). For an E1 transition, T (0)

0 ∝ e∗f ·e0, T(1) ∝ e∗f ×e0,
and the T (2)

q (q = −2, . . . , +2) are the second rank tensors made up from products of
e∗f and e0.

The expressions for the spin-orbital multipole moment operators M (k)
q (li, si) are

given by Luo [6,5]. If total L, S are conserved for the valence shell being probed
(for the ground state and low lying excitations), then the operators can be expressed in
terms of L and S, M (k)

q = M (k)
q (L, S). The simplest situation occurs for quasi-elastic

scattering within a manifold of good total J, in which case M (k)
q = M (k)

q (J) ∝ T (k)
q (J),

the kth order spherical tensor obtained from J. This is often a good approximation
for transitions to the 4f valence shell of rare earth ions. For an E1 transition, such as
the 3d3/2,5/2 → 4f transitions at the M4 and M5 edges, the vector part of the effective

scattering operator is ∝ (e∗f × e0) ·J, and the quadrupole part is ∝ T (2)
−q(e

∗
f ⊗ e0)T (2)

q (J).
The expressions for M (k)

q (L, S) and M (k)
q (J) have been worked out by Hu [118].

The simple relation between fr and the spin-orbital operators M (k)
q (li, si) is of

considerable importance for the interpretation of resonant X-ray scattering experiments.
The coherent elastic scattering gives sharp Bragg peaks and satellites which measure
the long range order of the thermal expectation values of these moments, and the diffuse
inelastic scattering gives information about coherent and incoherent excitations, and
short range correlations.

Of particular interest, below the ordering temperature TN , the inelastic resonant
scattering can determine the dispersion curves ω(q) for spin wave excitations, just
as for inelastic neutron scattering, but moreover, because of the higher spin-orbital
moments entering fr, the inelastic resonant X-ray scattering couples to quite new types
of spin-charge wave excitations – quadrupolar, octupolar, and hexadecupolar waves.

Just above TN , the frequency integrated diffuse critical scattering depends upon
the instantaneous moment–moment correlations 〈M (k)†

q (i)M (k)
q (j)〉 between the ith and

jth sites. This includes the short range spin–spin correlations 〈sisj〉, just as for neutron
scattering, but also gives quite new information about the correlations of higher order
moments above TN .
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A.2. Resonant nuclear scattering

For the sharp resonant γ-ray scattering by the nucleus, the coherent elastic scat-
tering amplitude is

fn = fM
∑

0

p0

∑
I

[
〈ψ0|J(−kf) · e∗f |ψI〉〈ψI |J(k0) · e0|ψ0〉

EI −E0 − ~ω − iΓI/2

]
, (A.39)

where J(k) is the Fourier transform of the nuclear current density operator and fM is
the Mössbauer phonon factor. Here ψ represents the state of the crystal, excluding
the vibrational state, and E represents its energy (e.g., ψ includes the magnetic state
of the crystal and the internal state of the nucleus). Finally, ΓI is the total width
of the excited state ψI , including the radiation width Γγ and the internal conversion
width Γα.

In the fast relaxation cases (relaxation times very much smaller than the nuclear
Larmor precession times τL), we may take ψ and E in eq. (A.39) as the state and
energy of the nucleus i in the external fields and the “static effective fields” of the
surrounding medium. Similarly, in the slow relaxation limit, ψ and E may be taken
as the state and energy of the atom i, but unless the hyperfine energy is negligible
relative to the electronic Larmor frequency, one can no longer consider the transitions
between nuclear states in an effective field but must allow for the dynamic effects
of the nucleus plus atomic electrons as a coupled quantum-mechanical system. The
modifications necessary when the relaxation times are on the order of τL are discussed
briefly in section A.2.5.

The usual situation is the fast relaxation limit. The states ψ0 and energies E0 are
then the hyperfine levels of the nuclear ground state, produced by the interaction of
the ground state magnetic dipole moment of the nucleus with the effective magnetic
field Bint arising from the s-electron density at the origin, and the coupling of the
quadrupole moment of the nucleus in the ground state with the electric field gradient
(EFG). Similarly, the ψI and EI are the hyperfine levels of the excited state of the
nucleus involved in the Mössbauer transition. The ground and excited states will be
states of good angular momentum, j0 and j1, but Jz need not be conserved. Because
the ground state hyperfine splittings are typically ≈10−8 eV ≈ 10−4 K, the initial
state is normally equally likely to be in any of the (2j0 + 1) hyperfine substates, and
p0 = C/(2j0 + 1), where C is the enrichment fraction for the Mössbauer isotope.

A.2.1. Coaxial B and EFG
If the effective fields acting on the nucleus have a common axis of symmetry (ẑ),

then the ground and excited nuclear states are states of good Jz .
Mössbauer transitions occur with well-defined multipolarity E1, M1, E2, and in a

few cases, M1–E2. The multipole expansion of the Fourier transform nuclear current
density J(k) is given by (A.14). The matrix elements of the current multipole moment
operator J (q)

LM are evaluated in terms of the radiative width Γγ(QL), i.e., the width
associated with the emission of (QL)-multipole radiation. (The ratio of the radiative
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widths gives the mixing ratio δ2, i.e., δ2(E2/M1) = Γγ(E2)/Γγ(M1).) Denoting the
spin of the states explicitly, |ψ0〉 = |a,J0,m0〉 and |ψI〉 = |n,J1,m1〉, we have〈

ψ0
∣∣J (q)†
LM

∣∣ψI〉 = C(j0Lj1;m0Mm1)
∣∣χ(QL)

∣∣eiη(QL), (A.40)

where χ(QL) is the reduced matrix element (for emission). Substituting (A.14) into
the width expression

Γγ = λ−1
0

∑
e

∑
m0

∫
dΩk

∣∣〈ψ0|J(−k) · e∗|ψI〉
∣∣2, (A.41)

we obtain ∣∣χ(QL)
∣∣ =

√
λ0Γγ(QL). (A.42)

The phase η(QL) of the reduced matrix element is only important for mixed multipole
transitions. For such transitions, Lloyd has shown that if T invariance is valid for
γ emission/absorption, then η(QL)− η(Q′L′) = 0 or π [119].

For a pure QL Mössbauer transition with conserved Jz , the coherent elastic
scattering amplitude is

fn = 4πλ̄
L∑

M=−L

[
e∗f ·Y

(q)
LM

(
k̂f
)][

Y(q)∗
LM

(
k̂0
)
· e0
]
F (q)
LM (ω), (A.43)

where now F (q)
LM is given by

F (q)
LM (ω) =

CfM

2j0 + 1
Γγ
Γ

j0∑
m0=−j0

C(j0Lj1;m0M )2

x(m0M )− i
, (A.44)

with x(m0M ) = 2[E(j1;m0 +M )−E(j0;m0)−~ω]/Γ. Alternatively, we can express
fn as

fn =
2L∑
l=0

Al(ω)Pl
(
e∗f kf; e0k0; zJ

)
, (A.45)

where the amplitude factors Al and the polarization factors Pl are given by eqs. (A.34)–
(A.37) for E1, M1 and E2 transitions, with the F (q)

LM now given by eq. (A.44).
For a mixed M1–E2 transition,

fn = 4πλ̄
∑
q′L′

∑
qLM

[
e∗f · Y

(q′)
L′M

(
k̂f
)][

Y(q)∗
LM

(
k̂0
)
· e0
]
F (q′q)
L′M ;LM , (A.46)

where
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F (q′q)
L′M ;LM =

CfM

(2j0 + 1)
ei[η(Q′L′)−η(QL)]

√
Γγ(Q′L′)Γγ(QL)

Γ

×
j0∑

m0=−j0

C(j0L
′j1;m0M )C(j0Lj1;m0M )

x(m0M )− i
.

Here both (qQL) and (q′Q′L′) are summed over (mM1) and (eE2).

A.2.2. Isotropic limit
An important special case is the “isotropic limit” (magnetically disordered state

for which the splittings are negligible compared to Γ, e.g., 57Fe). In this case all
amplitudes Al(ω) in eq. (A.45) have the same resonance denominator, and fn is in-
dependent of the direction of the quantization axis zJ which enters the expressions
for Pl(e∗f kf; e0k0; zJ ). The calculation is simplified by averaging over all directions
of zJ . The resulting coherent elastic scattering amplitudes for E1, M1, and E2 in the
isotropic limit are

fE1 =
λ̄CfM

[x− i]
2j1 + 1
4j0 + 2

Γγ
Γ
(
e∗f · e0

)
, (A.47)

fM1 =
λ̄CfM

[x− i]
2j1 + 1
4j0 + 2

Γγ
Γ
(
k̂f × e∗f

)
·
(
k̂0 × e0

)
, (A.48)

fE2 =
λ̄CfM

[x− i]
2j1 + 1
4j0 + 2

Γγ
Γ
[(
k̂f · k̂0

)(
e∗f · e0

)
+
(
k̂f · e0

)(
k̂0 · e∗f

)]
, (A.49)

where x = 2[E1 −E0 − ~ω]/Γ.

A.2.3. Jz not conserved
Here we discuss the modifications (for the fast relaxation limit) when Jz is not

conserved. This can arise from crystal field effects, e.g., an EFG tensor which is not
axially symmetric, or an axially symmetric EFG tensor which is not coaxial with Bint.
It is then possible to have cross terms M ′ 6= M in the absorption and emission matrix
elements in the scattering process. (But we note again that even in the presence of
crystal fields, the condition M ′ = M will often hold, e.g., E1 or M1 transitions in a
cubic symmetry field.)

The asymmetry terms will mix the states of good Jz , and the eigenstates for the
level |n,Jn〉 are given by

|ψn〉 ≡ |n,Jn,µn〉 =
∑
mn

K(µn,mn)|n,Jn,mn〉. (A.50)

The index µn takes on the same values as mn, and the K(µn,mn) are the elements
of the unitary transformation matrix which diagonalizes the interaction Hamiltonian.
The (QL) multipole component of the current matrix element for emission becomes〈

ψ0
∣∣J (q)†
LM

∣∣ψI〉 = GLM (µ0µ1)
√
λΓγ(QL), (A.51)
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where

GLM (µ0µ1) =
∑
m0

K(µ0m0)∗K(µn;M +m0)C(j0Lj1;m0M ). (A.52)

The coherent elastic scattering amplitude for a pure QL resonance is then

fQL = 4πλ̄
∑
M ′

∑
M

[
e∗f ·Y

(q)
LM ′

(
k̂f
)][

Y(q)
LM

(
k̂0
)
· e0
]
F (q)
LM ′;LM , (A.53)

where

F (q)
LM ′;LM =

CfM

2j0 + 1
Γγ
Γ

∑
µ0

∑
µ1

GLM ′(µ0µ1)GLM (µ0µ1)∗

x(µ0µ1)− i
. (A.54)

Here x(µ0µ1) = 2[E(j1µ1)−E(j0µ0)− ~ω]/Γ.
As a simple example we consider a (j0 = 1/2) ↔ (j1 = 3/2) M1 transition

where the effective Hamiltonian of the nucleus is given by

H = H0 + ĝβBJz + Q̂

[
3J2

z − J2 +
1
2
η
(
J2

(+) + J2
(−)

)]
. (A.55)

The asymmetry term, ∝η(J2
(+) + J2

(−)), mixes Jz states which differ by ∆Jz = ±2.
Thus, for the j0 = 1/2 ground state, Jz is still conserved and the eigenstates are
|α0, j0,m0〉, m0 = ±1/2, while for the excited level, there is mixing between m1 =
3/2 and m1 = −1/2, and between m1 = 1/2 and m1 = −3/2. The resulting
transformation matrix is

K̃(µ1m1) =


a3/2 0 b3/2 0

0 a1/2 0 b1/2

b−1/2 0 a−1/2 0

0 b−3/2 0 a−3/2

 , (A.56)

where

aλ =
[
1 + ε2

λ

]−1/2
, bλ = ελaλ,

ε±3/2 =
[(3Q± Z)2 + 3Q2η2]1/2 − (3Q± Z)

Qη
√

3
, ε±1/2 = −ε∓3/2,

with Z = gβB. We note that ελ → 0 as η → 0.
Thus, the polarization for a photon emitted by the |3/2µ = 3/2〉 → |1/2, 1/2〉

transition, which would be ∝Y(m)
11 (k̂) for Jz conserved, now contains an admixture of

Y(m)
1−1(k̂), i.e., the polarization is proportional to

C(1/2, 1, 3/2; 1/2, 1)Y(m)
11

(
k̂
)

+ ε3/2C(1/2, 1, 3/2; 1/2,−1)Y(m)
1−1

(
k̂
)
.

For the |3/2,µ = 3/2〉 → |1/2,−1/2〉 transition, which is not allowed for Jz
conserved, the amplitude and polarization of the emitted photon is proportional to
[ε3/2C(1/2, 1, 3/2; 1/2,−1)Y(m)

1−1(k̂)].
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A.2.4. Screening effects
When a photon is emitted from a nucleus, the scattering of the photon by the

surrounding electron cloud of the atom gives rise to a complex index of refraction for
passage of the photon through the electron cloud. In effect, the radiation emitted by
the nuclear transition induces multipole currents in the electron cloud, and the radiation
emitted by these induced electronic currents interferes with the primary radiation from
the nucleus.

The effect of the electronic scattering is to replace the bare nuclear current jfn

by the “screened” nuclear current Jfn,

Jfn⊥ (−k) = jfn⊥ (−k)[1 + δ(QL) + iξ(QL)], (A.57)

Jfn being just the bare nuclear current multiplied by the screening factor n(QL) =
1+δ(QL)+iξ(QL). The parameter δ+iξ will be referred to as the screening parameter,
or, alternatively, as the interference parameter.

The contribution δ(QL) gives the effect of the induced electronic currents which
are in phase, or 180◦ out of phase, with the nuclear current. Typically, δ(QL) values are
small (≈10−5–10−2 � 1), and in emission give only a small correction to the nuclear
radiation width, which can generally be neglected. On the other hand, the imaginary
part iξ(QL), although small (≈10−3–10−1), gives a phase shift to the emitted multipole
wave which can lead to observable effects, as discussed below.

Screening also affects resonant γ-ray scattering from the nucleus, which is a
combined absorption–emission process. The effect of screening again modifies the
“emission current” jfn⊥ (−k) by the factor [1 + δ(QL) + iξ(QL)] as given in eq. (A.57),
and similarly, the screening modifies the “absorption current” jna⊥ (k0) by the same
screening factor. The overall effect of the screening processes in γ-ray scattering
is then to modify the nuclear scattering amplitude fn by the factor (1 + δ + iξ)2 ≈
1 + 2δ(QL) + i2ξ(QL). In particular, for coherent elastic scattering by a pure QL
Mössbauer transition, the modified scattering amplitude is fn, as given by eq. (A.43),
times the factor 1 + 2δ(QL) + i2ξ(QL).

The total cross-section for resonant scattering and absorption is then given by
the optical theorem, σn = (4πλ̄)=[fn(k0, e0; k0, e0)]. For each (m0M ) resonance,
=[(1+ i2ξ)/(x(m0M )− i)] = (1+2ξx)/(1+x2). In the limit of no hyperfine splitting,
the resonant cross-section becomes

σn = σ0
1 + 2ξx
x2 + 1

, (A.58)

where σ0 is the total cross-section at exact resonance.
Thus the screening gives a small dispersion term [2ξx/(x2 + 1)]σ0 to the total

cross-section. The effect of this contribution is to give a small asymmetry to the
Mössbauer absorption spectrum, and to shift the minimum of the spectrum from x =
0 to x ≈ ξ. Although the screening effect is small, the induced dispersion can be
important in isotope shift measurements.
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For absorption experiments, the imaginary part of the screening parameter, ξ(QL),
which gives the dispersion term, arises from the interference between coherent com-
peting processes, and for this reason we refer to ξ as the interference parameter.

The dominant contribution to ξ arises from the interference between nonreso-
nant photoelectric absorption and resonant absorption followed by internal conversion.
Since both processes have the same initial and final states (assuming no nuclear spin
flip), they are coherent and, hence, interfere. This contribution to ξ(QL) we call
conversion screening.

A second contribution to ξ arises from the interference between resonant scatter-
ing from the nucleus and nonresonant scattering from the atomic electrons. We refer to
this contribution as Rayleigh screening. In most cases the primary contribution to ξ is
from conversion screening, but in a few isolated cases Rayleigh screening is dominant.

The magnitude of the screening effect is dependent on the multipolarity of the
Mössbauer transition, but not as strongly as one might expect. In the case of Rayleigh
screening the strongest effect occurs if the Mössbauer transition is E1. This is because
the scattering from the atomic electrons is dominantly E1, so if the resonant transition
is M1 or higher, the final photon states are almost orthogonal, i.e.,

∫
f∗n fe dΩ ≈ 0,

and it is only the small admixture of higher multipole orders in the Rayleigh scattering
which lead to a nonzero Rayleigh screening contribution ξR.

In the case of conversion screening we might expect a similar result since photo-
electric absorption is also primarily E1. However, this conclusion is not correct, and in
particular, the screening parameters ξ for E2 transitions are often larger than those for
E1 transitions. This occurs because for a QL multipole nuclear transition, the interfer-
ence parameter ξ(QL) is proportional to

√
σpe(QL)σic(QL), where σpe(QL) is the QL

multipole contribution to the photoelectric absorption cross-section, and σic(QL) is the
cross-section for internal conversion–absorption at resonance. For an E2 transition,
the photoelectric partial cross-section σpe(E2) is much less than the E1 contribution,
i.e., σpe(E2) � σpe(E1), but, on the other hand, internal conversion is much stronger
for an E2 transition than for a corresponding E1 transition, so that σic(E2)� σic(E1).
This amplification of the internal conversion cross-section just offsets the reduction of
the photoelectric partial cross-section, so that generally ξ(E2) ∼ ξ(E1).

Various aspects of this problem are treated in [2,120–122], and extensive calcu-
lations of the screening parameters are given by Goldwire [123].

A.2.5. Relaxation effects
Up to now, we have assumed the “fast relaxation limit”, which is the usual

situation, in which the atomic relaxation processes are very fast relative to the lifetime
of the excited Mössbauer state and to the nuclear Larmor precession period, τL. In
this limit, we can take ψ and E in eq. (A.39) as the state and energy of the nucleus i
in the external fields and the “static effective fields” of the surrounding medium.
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If the relaxation times are on the order of τL, then it is convenient to write (A.39)
in the form

fn = i
∫ ∞

0
dtei(ω+iΓ/2~)t

×
〈
〈χ0φ0|e−ikf ·r(t)G†0(t)e∗f · J(−kf)G0(t)J(k0) · e0eik0·r(0)|χ0φ0〉

〉
, (A.59)

where G0(t) = exp(−iH0t). Here we are concerned only with coherent elastic scat-
tering, and the brackets 〈 〉 indicate that the ensemble average is to be taken. To
calculate the resonance response of the scattering operator, it is necessary to calculate
the current–current correlation function.

Equation (A.59) is directly analogous to the correlation formulations for
Mössbauer absorption or emission spectra in the presence of relaxation, such as de-
veloped by Afanas’ev and Kagan [124,125], Bradford and Marshall [126], and Blume
and Tjon [127,128], and the same methods for solving for the correlation function can
be applied here.

Just as in the absorption and emission cases, the resonance response of fn is only
a simple Breit–Wigner response in the fast relaxation limit. When the relaxation time
is on the order of τL, the resonances can be shifted or split, the effective widths can
be broadened or narrowed, and lines corresponding to normally forbidden transitions
can be obtained.
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[49] J.P. Hannon and G.T. Trammell, in: Mössbauer Effect Methodology, Vol. 8, ed. I. Gruverman

(Plenum, New York, 1973) p. 25.
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[53] M. von Laue, Röntgenstrahleninterferenzen (Academische Verlagsgesellschaft, Frankfurt am Main,

1960) p. 430.



272 J.P. Hannon, G.T. Trammell / Coherent γ-ray optics III-1.2

[54] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Addison-Wesley, Reading,
MA, 1960) p. 288.

[55] R. Tixier and C. Wache, J. Appl. Cryst. 3 (1970) 466.
[56] D.M. Blow and F.H.C. Crick, Acta Cryst. 12 (1959) 794.
[57] T.L. Blondell and L.N. Johnson, Protein Crystallography (Academic Press, New York, 1976).
[58] G. Wendin, Phys. Scripta 21 (1980) 535.
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[73] E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages and J.P. Hannon, Phys. Rev. Lett. 54

(1985) 835.
[74] E. Gerdau and U. van Bürck, in: Resonant Anomalous X-Ray Scattering, eds. G. Materlik,

C.J. Sparks and K. Fischer (North-Holland, Amsterdam, 1994) p. 589;
G.V. Smirnov and A.I. Chumakov, ibid. p. 609;
U. van Bürck and G.V. Smirnov, Hyp. Interact. 27 (1986) 219.

[75] G. Faigel, D.P. Siddons, J.B. Hastings, P.E. Haustein, J.R. Grover, J.P. Remeika and A.S. Cooper,
Phys. Rev. Lett. 58 (1987) 2699.

[76] E. Burkel, Inelastic Scattering of X-rays with Very High Energy Resolution (Springer, New York,
1991).

[77] W. Sturhahn, T.S. Toellner, E.E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C.W. Kim-
ball and B. Dabrowski, Phys. Rev. Lett. 74 (1995) 3832.
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’89), Budapest (unpublished).
[83] P.J. Black, Nature 206 (1965) 1223.
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