Physical Review B
Physical Review B Browse Available Volumes PRB Search Subscription Information Online Help
Vol:  Page or Article #:

Article Collection:  View Collection   Help (Click on the COLLECT ARTICLE to add an article.)

[ Previous / Next Abstract | Issue Table of Contents | Bottom of Page ]

Physical Review B (Condensed Matter and Materials Physics) -- June 1, 1999 -- Volume 59, Issue 21 pp. 13849-13860

Full Text:  [  PDF (247 kB)   GZipped PS    Order Document  ]

Collinear spin-density-wave ordering in Fe/Cr multilayers and wedges

R. S. Fishman
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032
Zhu-Pei Shi
Read-Rite Corporation, R & D Division, 345 Los Coches Street, Milpitas, California 95035

(Received 6 April 1998; revised 5 February 1999)

Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number N of Cr monolayers, the SDW may be either commensurate (C) or incommensurate (I) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the I SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between I SDW phases with different numbers n of nodes. If the I SDW has n = m nodes at T = 0, then n increases by one at each phase transition from m to m – 1 to m – 2 up to the C phase with n = 0 above TIC(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever n changes by one. In the limit N --> [infinity], TIC(N) is independent of the Fe-Cr coupling strength. We find that TIC([infinity]) is always larger than the bulk Néel transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the I SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the C phase is never stable and the transition temperature TN(N) takes on a seesaw pattern as n >= 2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the I phase to be unstable above the bulk Néel temperature. Model II also predicts that the I SDW may undergo a single phase transition from n = m to m – 1 before disappearing above TN(N). This behavior has recently been confirmed by neutron-scattering measurements on CrMn/Cr multilayers. While model I very successfully predicts the behavior of Fe/Cr/Fe wedges, a refined version of model II describes some properties of sputtered Fe/Cr multilayers. ©1999 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v59/p13849
PACS: 75.30.Fv, 75.30.Ds, 75.70.Cn        Additional Information

View ISI's Web of Science data for this article: [ Source Abstract  | Citing Articles  | Related Articles  ]


Full Text:  [  PDF (247 kB)   GZipped PS    Order Document  ]

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988). [ISI]
  2. E. Fawcett, Rev. Mod. Phys. 60, 209 (1988); [SPIN] [ISI]
    E. Fawcett, H. L. Alberts, V. Yu. Galkin, D. R. Noakes, and J. V. Yakhmi, 66, 25 (1994). [SPIN] [ISI]
  3. A. Schreyer, J. F. Ankner, Th. Zeidler, H. Zabel, C. F. Majkrzak, M. Schäfer, and P. Grünberg, Europhys. Lett. 32, 595 (1995); [INSPEC] [ISI]
    A. Schreyer, C. F. Majkrzak, Th. Zeidler, T. Schmitte, P. Bödeker, K. Theis-Bröhl, A. Abromeit, J. A. Dura, and T. Watanabe, Phys. Rev. Lett. 79, 4914 (1997). [ISI]
  4. E. E. Fullerton, S. D. Bader, and J. L. Robertson, Phys. Rev. Lett. 77, 1382 (1996). [ISI]
  5. J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991); [ISI]
    69, 1125 (1992). [ISI]
  6. P. M. Marcus, S.-L. Qiu, and V. L. Moruzzi, J. Phys.: Condens. Matter 29, 6541 (1998).
  7. T. M. Rice, A. Jayaraman, and D. B. McWhan, J. Phys. Colloq. 32, C1 39 (1971).
  8. R. Griessen and E. Fawcett, Physica B & C 91B, 205 (1977). [INSPEC] [ISI]
  9. J. Mattson, B. Brumitt, M. B. Brodsky, and J. B. Ketterson, J. Appl. Phys. 67, 4889 (1990). [SPIN] [ISI]
  10. T. G. Walker, A. W. Pang, H. Hopster, and S. F. Alvarado, Phys. Rev. Lett. 69, 1121 (1992). [ISI]
  11. C. Turtur and G. Bayreuther, Phys. Rev. Lett. 72, 1557 (1994). [ISI]
  12. S. Adenwalla, G. P. Felcher, E. E. Fullerton, and S. D. Bader, Phys. Rev. B 53, 2474 (1996). [ISI]
  13. J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991); [ISI]
    J. Magn. Magn. Mater. 150, 13 (1995) (ScienceDirect). [INSPEC] [ISI]
  14. R. S. Fishman, Phys. Rev. Lett. 81, 4979 (1998). [ISI]
  15. E. E. Fullerton and J. L. Robertson (private communication).
  16. Z. P. Shi and R. S. Fishman, Phys. Rev. Lett. 78, 1351 (1997). [ISI]
  17. R. S. Fishman and Z. P. Shi, J. Phys.: Condens. Matter 10, L277 (1998). [INSPEC] [ISI]
  18. R. S. Fishman, Phys. Rev. B 57, 10 284 (1998). [ISI]
  19. A. W. Overhauser, Phys. Rev. Lett. 4, 226 (1960); [ISI]
    Phys. Rev. 128, 1437 (1962). [ISI]
  20. W. M. Lomer, Proc. Phys. Soc. London 80, 489 (1962). [ISI]
  21. P. A. Fedders and P. C. Martin, Phys. Rev. 143, 8245 (1966).
  22. S. Asano and J. Yamashita, J. Phys. Soc. Jpn. 23, 714 (1967). [ISI]
  23. M. D. Stiles, Phys. Rev. B 48, 7238 (1993); [ISI]
    54, 14 679 (1996).
  24. M. van Schilfgaarde and F. Herman, Phys. Rev. Lett. 71, 1923 (1993); [ISI]
    M. van Schilfgaarde, F. Herman, S. S. P. Parkin, and J. Kudrnovský, 74, 4063 (1995). [ISI]
  25. D. Li, J. Pearson, S. D. Bader, E. Vescovo, D.-J. Huang, P. D. Johnson, and B. Heinrich, Phys. Rev. Lett. 78, 1154 (1997). [ISI]
  26. R. S. Fishman and S. H. Liu, Phys. Rev. B 48, 3820 (1993). [ISI]
  27. R. S. Fishman, X. W. Jiang, and S. H. Liu, Phys. Rev. B 58, 414 (1998). [ISI]
  28. X. W. Jiang and R. S. Fishman, J. Phys.: Condens. Matter 9, 3417 (1997). [INSPEC] [ISI]
  29. R. S. Fishman and V. S. Viswanath, Phys. Rev. B 55, 8347 (1997). [ISI]
  30. See, for example, A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems (McGraw Hill, New York, 1971), pp. 426 and 451.
  31. M. A. Tomaz, W. J. Antel, Jr., W. L. O'Brien, and G. R. Harp, Phys. Rev. B 55, 3716 (1997). [ISI]
  32. S. Mirbt, A. M. N. Niklasson, B. Johannson, and H. L. Skriver, Phys. Rev. B 54, 6382 (1996). [ISI]
  33. In the C phase of bulk Cr alloys, charge conservation requires that theta = pi/2, which also guarantees that the rms moment is continuous across a second-order IC phase boundary. Because theta is now chosen to minimize the interfacial coupling energy in both the I and C phases, we have implicitly assumed that the SDW amplitudes rather than the rms moments are equal near the Cr-Fe interface in I and C phases with the same order parameter g. For the C phase, charge conservation (Ref. 28) then requires that between 0.005 and 0.014 electrons per Cr atom are transferred from the Fe layers to the Cr spacer within a coherence length xi0 from the interface.
  34. D. Venus and B. Heinrich, Phys. Rev. B 53, R1733 (1996).
  35. M. Freyss, D. Stoeffler, and H. Dreyssé, Phys. Rev. B 56, 6047 (1997). [ISI]
  36. D. Stoeffler and F. Gautier, Phys. Rev. B 44, 10 389 (1991). [ISI]
  37. In Refs. 14 and 16, all energies were normalized by the dimensionless density of states (V/N)rhoehT<sub>N</sub><sup>*</sup> [approximate] 0.0272 in order to simplify the notation.
  38. D. T. Pierce, J. A. Stroscio, J. Unguris, and R. J. Celotta, Phys. Rev. B 49, 14 564 (1994). [ISI]
  39. P. Grünberg, S. Demokritov, A. Fuss, M. Vohl, and J. A. Wolf, J. Appl. Phys. 69, 4789 (1991). [SPIN]
  40. M. From, L. X. Liao, J. F. Cochran, and B. Heinrich, J. Appl. Phys. 75, 6181 (1994). [SPIN] [ISI]
  41. E. E. Fullerton, J. E. Mattson, C. H. Sowers, and S. D. Bader, Scr. Metall. Mater. 33, 1637 (1995). [INSPEC] [ISI]
  42. A. Davies, J. A. Stroscio, D. T. Pierce, and R. J. Celotta, Phys. Rev. Lett. 76, 4175 (1996). [ISI]

Full Text:  [  PDF (247 kB)   GZipped PS    Order Document  ]

Citing Articles

This list contains links to other online articles that cite the article currently being viewed.
  1. Spin density waves in Cr/Mo films
    Anders M. N. Niklasson et al., Phys. Rev. B 63, 104417 (2001)

Full Text:  [  PDF (247 kB)   GZipped PS    Order Document  ]

[ Previous / Next Abstract | Issue Table of Contents | Top of Page ]


Article Collection:  View Collection   Help (Click on the COLLECT ARTICLE to add an article.)

[ Browse Available Volumes | Search ]
[ Home Page | Online Help | Feedback | Exit ]

© Copyright 2001 The American Physical Society