Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
30 of 179 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (167 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science

Volumes 433-435
2 August 1999
Pages 162-166

PII: S0039-6028(99)00168-5
Copyright © 1999 Elsevier Science B.V. All rights reserved.

In-situ investigation of Fe ultrathin film growth by infrared transmission spectroscopy

G. Fahsold, , A. Bartel, O. Krauth and A. Lehmann1

Institut für Angewandte Physik, Ruprecht-Karls-Universität Heidelberg, Albert-Ueberle-Str. 3¯5, D-69120 Heidelberg, Germany

Available online 21 August 2000.

Abstract

IR-transmission spectroscopy is sensitive to charge transport and charge localization. Applied to low-dimensional metallic systems, this offers the possibility to investigate morphology on a nanometer scale during thin film growth by IR-optical methods. We performed in-situ IR-transmission spectroscopy during deposition of Fe on UHV-cleaved MgO(001) at 313 K and at 121 K. At thicknesses corresponding to a few monolayers of Fe, we find extremely weak IR-absorption that is due to island morphology as known from our previous helium-atom-scattering results for the same system. For complete substrate coverages, the comparison of IR-transmittance with calculations for homogeneous films indicates significant attenuation of IR-absorption due to additional scattering of charge carriers at the irregular surface as a result of preceding island growth.

Author Keywords: Infrared spectroscopy; Iron; Thin films

Article Outline

1. Introduction
2. Experiment and results
3. Discussion
4. Summary
Acknowledgements
References


(9K)
Fig. 1. Transmittance spectra (normal incidence) of Fe growing on MgO(001) at various temperatures (313 and 121 K). Unity means the same transmittance as the substrate. The labels indicate the film thickness (see text).

(9K)
Fig. 2. As Fig. 1, but for very low thicknesses at 121 K. From spectrum to spectrum, the thickness increases by ~0.4 Å. Bold lines indicate approximately complete Fe monolayers (ML).

(8K)
Fig. 3. Change in Fe thin film transmittance (at 2000 cm-1) with increasing film thickness. The substrate temperature is 121 K (open circles) and 313 K (solid circles). The lines in the lower part of the figure show the HAS reflectivity for the growth of the same system at similar temperatures, i.e. at 140 K (dashed line) and at 300 K (full line). The minimum of HAS reflectivity (dotted arrows) and the optical cross-over (full arrows) are indicated.

(8K)
Fig. 4. Transmittance spectra (as in Fig. 1) for Fe thin films of 15 and 25 Å thickness, respectively, on MgO(001). Full line: experimental result for growth at 313 K. Dotted line: best fit result assuming real bulk dielectric properties and additional electron-surface scattering (see text). Dashed line: calculation result assuming real bulk dielectric properties but no size effects. Obviously, calculations omitting size effects fail in describing the experimental curves.

References

1. M. Meunier and C.R. Henry. Surf. Sci. 307 (1994), p. 514. Abstract-INSPEC | Abstract-Compendex | Abstract |  $Order Document

2. G. Bosi. J. Opt. Soc. Am. B 11 (1994), p. 1073. Abstract-INSPEC | Abstract-Compendex |  $Order Document

3. S. Berthier and K. Driss-Khodja. Opt. Commun. 70 (1989), p. 29. Abstract-INSPEC |  $Order Document

4. C.H. Shek, G.M. Lin, J.K.L. Lai and J.L. Li. Thin Solid Films 300 (1997), p. 1. Abstract | Journal Format-PDF (441 K)

5. W.P. Halperin. Rev. Mod. Phys. 58 (1986), p. 533. Abstract-INSPEC |  $Order Document

6. N. Trivedi and N.W. Ashcroft. Phys. Rev. B 38 (1988), p. 12298. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

7. P. Segovia, E.G. Michel and J.E. Ortega. Phys. Rev. Lett. 77 (1996), p. 3455. Abstract-INSPEC |  $Order Document | APS full text | Full-text via CrossRef

8. C. Liu, Y. Park and S.D. Bader. J. Magn. Magn. Mater. 111 (1992), p. L225. Abstract-INSPEC | Abstract-Compendex |  $Order Document

9. G. Fahsold, G. König, A. Pucci, K.-H. Rieder, submitted to Phys. Rev. B.

10. G. Comsa and B. Poelsema. In: G. Scoles, Editor, Atomic and Molecular Beam Methods Vol. 2, Oxford University Press, Oxford (1992).

11. M.A. Ordal, R.J. Bell, R.W. Alexander, Jr., L.L. Long and M.R. Querry. Appl. Optics 24 (1985), p. 4493. Abstract-INSPEC |  $Order Document

12. G. Fahsold, A. Bartel, O. Krauth, A. Pucci, in preparation.

13. G. Fahsold, W. Keller, O. Krauth and A. Lehmann. Surf. Sci. 402¯404 (1998), p. 790. SummaryPlus | Article | Journal Format-PDF (148 K)

14. Y.H. Kim and D.B. Tanner. Phys. Rev. B 39 (1989), p. 3585. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

1 New surname: Pucci.

Corresponding author. Fax: +49-6221-549262; email: fahsold@urz.uni-heidelberg.de
This document
SummaryPlus
Article
Journal Format-PDF (167 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science
Volumes 433-435
2 August 1999
Pages 162-166


30 of 179 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.