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Essential finite-size effect in the two-dimensionalXY model
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Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008

~Received 1 February 1999!

The thermodynamics of the two-dimensional~2D! XYmodel is formulated by a transfer-matrix method and
analyzed by a density-matrix renormalization group. The finite-size scaling and the beta function of the model
are studied by the Roomany-Wyld renormalization-group theory. It is found that the 2DXY model has an
essential finite-size effect and the Berezinskii-Kosterlitz-Thouless transition with the critical temperature
TBKT50.892 appears in a finite system of 2000–3000 spins as a massless to massive transition with the
effective critical temperatureTc51.0760.01. @S0163-1829~99!03340-8#
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The two-dimensional~2D! XY model describes classica
planar spins with nearest-neighbor interactions. The Ham
tonian is

HXY52(̂
i j &

cos~u i2u j !. ~1!

This model has been intensively studied as a model wh
undergoes the Berezinskii-Kosterlitz-Thouless~BKT!
transition,1 the binding-unbinding transition of a vortex
antivortex pair that coexists with spin waves below the tr
sition temperature. The remarkable point of the BKT theo
is that it predicts an essential singularity,2 an exponential
growth of the correlation length and other thermodynam
quantities near the transition in contrast to the power-
behavior in a second-order transition. This prediction h
been tested numerically and reported confirmed again
again.3 However, there are still some legitimate questions
fact, there are three or four unknown~fitting! parameters in
the theory. Moreover, it was pointed out that critical regi
to which the renormalization-group~RG! equations confi-
dently apply is very narrow, (T2TBKT)/TBKT,1022.4 How-
ever, due to a strong finite-size effect, lnL ~L is the system
size! dependence of quantities, approaching such a nar
temperature region by standard Monte Carlo~MC! simula-
tions is almost impossible.3

Three methods have been proposed for handling
finite-size problem. One is Olsson’s self-consistent bound
condition method.5 This method can virtually eliminate
finite-size fluctuations. Another is the matching method
Hasenbusch and Pinn.6 This method is based on the exa
solution available for the BCSOS~body-centered solid-on
solid! model. Comparing the block-spin RG flow of theXY
model with that of the BCSOS model at long distance~the
two models belong to the same universality class!, the
method introduces systematic errors which decay asL22,
thereby overcoming the strong finite-size problem. Th
two methods remarkably agree on the critical temperat
giving TBKT50.892. The third and recent attempt is a sho
time dynamic approach due to Zheng, Schulz, and Trimp7

Since the critical exponents at equilibrium enter into t
short-time dynamic scaling, and the nonequilibrium spa
correlation length is small in the short-time dynamic evo
tion, the method can handle lower temperatures, up to 0
PRB 600163-1829/99/60~16!/11761~4!/$15.00
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compared to 0.98 of canonical MC simulations. The critic
temperature 0.894 thus obtained is very close to the se
ingly exact value 0.892.

In the above, the thermodynamics limit is discussed.
practice, however, when certain physical systems are con
ered by the 2DXY model, the strong finite-size effect i
essential. In fact, Bramwell and Holdsworth~BH! ~Ref. 8!
studied this issue in the context of layered Heisenberg m
nets with planar anisotropy, which are well regarded
quasi-2DXY systems.9 In these layered magnets, there is
very sharp crossover from a 3D behavior to a 2D fluctuat
when lowering temperature. Moreover, the intralayer e
change couplingJ and interlayer oneJ8 have a typical ratio
J/J8;103 to 104, and therefore only fluctuations of lengt
scale less than the order of (J/J8)1/2530– 100 are two-
dimensional. These layered magnets are thus well descr
as a finite-size, 103– 104 spins or sites, 2DXY model. Using
the linearized RG equations for finite-size scaling,10 BH
found an effective transition temperatureTc51.08060.004
for 1024 spins and a power-law behavior of magnetizat
with critical exponentb50.23, explaining some experimen
tal findings.9 A remarkable point is thatb50.23 is universal,
irrespective of lattice types, spin values, and degree of pla
anisotropy of layered magnets, and claimed to be a signa
of 2D XY behavior. While experiments are nicely explaine
the BH theory may be questionable in the following poin
First, it relies on the BKT theory that the correlation leng
behaves as2

j5expS p

$c~T2TBKT!%1/2D , ~2!

wherec is a constant of order 2. However, strictly speakin4

it is correct only in a narrow temperature window, (T
2TBKT)/TBKT,1022, and its use outside this region needs
justification. The effective temperatureTc is defined in BH
as the temperature whenj5L. Second, the ‘‘shifted’’ tem-
perature

T* ~L !'TBKT1
p2

4c~ lnL !2 ~3!

plays an important role in BH. This is the temperature wh
the renormalized spin-wave stiffness in the finite syst
takes the universal value 2/p. This is determined by Monte
11 761 ©1999 The American Physical Society
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11 762 PRB 60S. G. CHUNG
Carlo as the temperature where the magnetization becom
spin-wave estimate atT5TBKT ,

M5S 1

2L2D 1/16

. ~4!

The argument seems less precise and again uses the
theory beyond its confirmed validity.

In this paper, we study the finite-size effect in the 2DXY
model by a transfer matrix~TM! method11 with the help of
the density-matrix RG~DMRG! ~Ref. 12! technology and
Roomany-Wyld RG theory.13 Our approach does not involv
any uncontrolled parameters, nor rely on the BKT theory
demonstrates that the finite-sizeXY model with 2000–3000
spins behaves precisely like a system with the transition t
peratureTc51.0760.01 separating the massless and mass
phases in agreement with theTc51.08060.004 in the BH
theory for 1024 spins.

To calculate the partition function

Z5E )
i 51

N

du i exp~2bHXY!, ~5!

whereu i5(u i1 ,u i2 ,...,u iM ), consider a ribbon geometry;M
sites in the width direction andN sites along the long, circu
lar direction. With a negligible error at the edges, the Bol
mann factor in Eq.~5! can be written as

)
i 51

N

K~u i ,u i 11! ~6!

with the TM operator

K~u i ,u i 11!5 )
j 51

M21

expFb2 $cos~u i j 2u i 11 j !

1cos~u i j 2u i j 11!1cos~u i 11 j2u i 11 j 11!

1cos~u i j 112u i 11 j 11!%G . ~7!

Now write

E )
i 51

N

du15E )
i 51

N11

du id~u12uN11! ~8!

and expand as

d~u12uN11!5(
n

cn* ~uN11!cn~u1!, ~9!

where $Cn% is an orthonormal complete set. We choo
$Cn% such that the TM equation

E
0

2p

du K~u,u8!cn~u!5exp~2«n!cn~u8!. ~10!

With these manipulations and using the TM equation rep
edly, we arrive at

Z5(
n

exp~2«nN!5exp~2«0N!, ~11!
s a

KT

t

-
e

-

t-

where«0 is the lowest energy. The last equality holds f
N@M@1. The free energy per site is given by

f 5T
«0

M
. ~12!

The correlation function can be evaluated likewise,11

^u~0!u~r !&5^c0uu~0!u~r !uc0&, ~13!

where C0 denotes the eigenvector for the eigenvalue«0 .
The problem is thus reduced to the TM eigenvalue probl
~10!.

To analyze the TM equation~10!, we use DMRG recently
developed for 1d quantum systems.12 In fact, the TM equa-
tion contains the Hamiltonian in a Boltzmann factor, so it
essentially a quantumM-body problem. The TM-DMRG
method is now a powerful tool for studying the thermod
namic properties of 1d quantum systems.14 In the latter case,
the Suzuki-Trotter decomposition of the Boltzmann fac
leads to a non-Hermitian TM equation, requiring a little b
of numerical innovations.11,15 In the present case, the TM
operatorK is real and symmetric, and less troublesome.
the other hand, unlike the quantum 1d cases where the TM
equations are discrete from the outset, our TM equation is
integral equation, and needs a descretization. For that
pose, we use a Gaussian integration formula, transform
Eq. ~10! to

pM (
i jk¯51

p

wiwjwk¯K~ i jk¯ : i 8 j 8k8¯ !cn~ i jk¯ !

5exp~2«n!cn~ i 8 j 8k8¯ !, ~14!

whereCn( i jk¯) meansCn(u iu juk¯) and u i5p(xi11),
etc., withwi andxi being the Gaussian abscissas and wei
factors.16 If we rescale as

~pMwiwkwk¯ !1/2c~ i jk¯ !→c~ i jk¯ !, ~15!

then the eigenvector is Euclid normalized and the TM eq
tion becomes

(
i jk¯

OS~ i i 8!W~ i j : i 8 j 8!OS~ j j 8!W~ jk: j 8k8!

3OS~kk8!¯c~ i jk¯ !

5exp~2«n!c~ i 8 j 8k8¯ !, ~16!

whereW( i j : i 8 j 8) denotes the Boltzmann factor on the righ
hand side of Eq.~7! with i 115 i 8 and j 115 j 8, and
OS( i i 8)5p(wiwi8)

1/2, etc.
The DMRG procedure to get the lowest eigenvalues«n is

as follows. Step~i!, consider three sites, that is thep33p3

eigenvalue problem. Note that, unlike the 1d quantum cases
where the degree of freedom at each site is small, the de
of freedom here,p, needs to be large, so we have to use
three-site algorithm whose accuracy was discussed befo17

Step~ii !, construct the density matrix out of the ground sta
C0 ,

r~ i 8 j 8: i j !5(
k

c0* ~ i 8 j 8k!c0~ i jk !, ~17!
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diagonalize it, and retain the largestm states. Denote them
eigenvectors by X1 ,X2 ,...,Xm and eigenvalues by
j1 ,j2 ,...,jm . So (X1X2¯Xm)[O( i j :j) constitutes ap2

3m transformation matrix for the change of basisu3u
→j. The renormalized TM operator is

(
i i 8 j j 8

O* ~j8: i 8 j 8!OS~ i i 8!

3W~ i j : i 8 j 8!OS~ j j 8!W~ jk: j 8k8!O~ i j :j!

5T2~j8k8:jk!. ~18!

Symbolically•W•W→T2 , where the solid circles represe
OS. Step~iii !, go back to step~i! with the renormalized op-
eratorT2•T2 for the five sites, and diagonalize the resulti
pm23pm2 eigenvalue problem to get the new ground st
C0 . Step~iv!, repeat step~ii ! to construct the reduced den
sity matrix, diagonalize it to get a new transformation mat

FIG. 1. Internal energy vs temperature. Open circles are d
from the equation of motion method for the kineticXY model and
diamonds are Monte Carlo data available up toT51.5 ~Ref. 18!.
Solid circles are from the TM-DMRG.

FIG. 2. L3gap(L) vs temperature forL537, 43, 49, 55, and 61
from bottom to top. The result is forp512 andm560. The cases
p512, m566 andp516, m560 give less than 1% correction t
the result.
e

O, and then a RG transformationT2•W→T3 . The seven-site
system is now represented byT3•T3 . Repeating the proce
dure, one can get a larger and larger system.

One needs to keep track of, in the course of RG trans
mations, the spin operator (cosu,sinu) at each site to calcu
late various expectation values such as the correlation fu
tion ~13!. For example, in the RG operation•W•W→T2 in
steps~i! and ~ii !, the angleû ~the caret denotes an operato!
in the middle site is a one-particle operator, diagonal in
original angle representation, and therefore represented

~ 1̂3 û !u iu j :u i 8u j 8
5d i i 8u jd j j 8 . ~19!

Thus the RG transformationû→ ûnew is

(
i i 8 j j 8

O~j8: i 8 j 8!d i i 8u jd j j 8O~ i j :j![ûnew~j8j!. ~20!

Let us first check the accuracy of our TM-DMRG metho
For this purpose, we calculate the internal energy per sit

E52T2
]

]T
~«0 /M !. ~21!

It is now well established that the ground-state energy
site«0 /M in the thermodynamic limit can be easily obtaine
by measuring the energy increase in successive steps o
DMRG procedure. In the present case, the typical sys
size to get the convergence is 30. We have started the ca
lation with p5m512 and checked the complete conve
gence up top5m524. In theT50.1 case, we have checke
the convergence by calculating up to thep5m532 case.
The result is given in Fig. 1, where the kinetic energyT/2 is
added to compare with the latest simulation on the kineticXY
model.18 The agreement is perfect nearT51, but both at low
T50.1 and highT.1.3 the TM-DMRG result is about 10%
larger than the simulation result. Since the finite-size effec
negligibly small at higherT, the discrepancy is a puzzle a
the moment. However, similar discrepancies have been
served for the specific heat among MC calculations,3 so the
problem could reside in simulations.

ta

FIG. 3. Beta function vs temperature forL545, 47, 49, and 51
with L85L12 from top to bottom. Againp512 andm560. To-
gether with Fig. 2, the effective critical temperature is determined
be Tc51.0760.01.
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11 764 PRB 60S. G. CHUNG
We now calculate not only the smallest«0 but also the
next smallest«1 . In fact, one can show easily that the co
relation function~13! behaves forr @1 like

;exp$2~«12«0!r %. ~22!

Thus gap(L)[«12«0 measures the gap energy of the sy
tem at sizeL @alias M in Eq. ~21!#. Then due to the
Roomany-Wyld RG theory,13 the effective critical tempera
ture Tc of the finite-size 2DXY model can be located b
calculatingL3gap(L) versusT. Figure 2 shows the resu
for L537, 43, 49, 55, and 61 usingp512 and m560.
The casesp516, m560 andp512, m566 give less than
1% correction to the result. We have also calculated
Roomany-Wyld approximate for the beta function

bLL8
RW ~T!5

11 ln~GL /GL8!/ ln~L/L8!

~DLDL8 /GLGL8!
1/2 , ~23!

whereGL5gap(L) and DL5]GL /]T. Figure 3 shows the
result for L545, 47, 49, and 51 withL85L12. Again p
512 andm560. Small drift of the zero point of the bet
function towards higherTc for larger L may be due to an
accumulation of the truncation (p3m→m) error in DMRG.
Based on the results in Figs. 2 and 3, the effective crit
.

,
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v
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-

e

l

temperature is determined to beTc51.0760.01, in agree-
ment with theTc51.08060.004 in the BH theory8 for 1024
spins.

To conclude, the thermodynamics of the 2DXY model is
formulated by a transfer-matrix method and analyzed b
density-matrix renormalization group. The finite-size scali
and the beta function of the model are studied by
Roomany-Wyld renormalization-group theory. It is foun
that the 2DXY model has an essential finite-size effect a
the Berezinskii-Kosterlitz-Thouless transition with the cri
cal temperatureTBKT50.892 manifests itself in a finite sys
tem of 2000–3000 spins as a massless to massive trans
with the effective critical temperatureTc51.0760.01.

After the completion of this work, I was informed of
new finite-size-scaling MC method which gives the critic
temperatureTBKT50.893, very close to the seemingly exa
value 0.892, and demonstrates that the critical exponenh
51/4 andn50.48.19
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