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Essential finite-size effect in the two-dimensionaKyY model
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The thermodynamics of the two-dimensio2D) XY model is formulated by a transfer-matrix method and
analyzed by a density-matrix renormalization group. The finite-size scaling and the beta function of the model
are studied by the Roomany-Wyld renormalization-group theory. It is found that th¥Y2Bodel has an
essential finite-size effect and the Berezinskii-Kosterlitz-Thouless transition with the critical temperature
Tekr=0.892 appears in a finite system of 2000—3000 spins as a massless to massive transition with the
effective critical temperaturé,=1.07+0.01.[S0163-18209)03340-9

The two-dimensiona(2D) XY model describes classical compared to 0.98 of canonical MC simulations. The critical
planar spins with nearest-neighbor interactions. The Hamiltemperature 0.894 thus obtained is very close to the seem-
tonian is ingly exact value 0.892.

In the above, the thermodynamics limit is discussed. In
practice, however, when certain physical systems are consid-
Hyy==2, cog6,— ). (1) ered by the 2DXY model, the strong finite-size effect is
i essential. In fact, Bramwell and HoldswortBH) (Ref. 8
This model has been intensively studied as a model whickstudied this issue in the context of layered Heisenberg mag-
undergoes the Berezinskii-Kosterlitz-Thoules$BKT)  nets with planar anisotropy, which are well regarded as
transition! the binding-unbinding transition of a vortex- quasi-2DXY systems. In these layered magnets, there is a
antivortex pair that coexists with spin waves below the tranvery sharp crossover from a 3D behavior to a 2D fluctuation
sition temperature. The remarkable point of the BKT theorywhen lowering temperature. Moreover, the intralayer ex-
is that it predicts an essential singulaftyn exponential change coupling and interlayer ond’ have a typical ratio
growth of the correlation length and other thermodynamic)/J’~10° to 10%, and therefore only fluctuations of length
quantities near the transition in contrast to the power-lanscale less than the order of/0’)*?=30-100 are two-
behavior in a second-order transition. This prediction haglimensional. These layered magnets are thus well described
been tested numerically and reported confirmed again anas a finite-size, 3-10" spins or sites, 2IXY model. Using
again® However, there are still some legitimate questions. Inthe linearized RG equations for finite-size scaftiggH
fact, there are three or four unknowfitting) parameters in found an effective transition temperatufg=1.080=0.004
the theory. Moreover, it was pointed out that critical regionfor 1024 spins and a power-law behavior of magnetization
to which the renormalization-grou(RG) equations confi- with critical exponeniB3=0.23, explaining some experimen-
dently apply is very narrow,T{— Tgur)/ Texr<10 2. How- tal findings? A remarkable point is thg8=0.23 is universal,
ever, due to a strong finite-size effect,Ur{L is the system irrespective of lattice types, spin values, and degree of planar
size) dependence of quantities, approaching such a narrownisotropy of layered magnets, and claimed to be a signature
temperature region by standard Monte CalC) simula-  of 2D XY behavior. While experiments are nicely explained,
tions is almost impossibfé. the BH theory may be questionable in the following points.

Three methods have been proposed for handling thifirst, it relies on the BKT theory that the correlation length
finite-size problem. One is Olsson’s self-consistent boundarpehaves &s
condition method. This method can virtually eliminate
finite-size fluctuations. Another is the matching method of
Hasenbusch and PiffnThis method is based on the exact
solution available for the BCSO&ody-centered solid-on-
solid) model. Comparing the block-spin RG flow of ther

£t ?

wherec is a constant of order 2. However, strictly speaking,
: . it is correct only in a narrow temperature window] (
model with that of the BCSOS model at long distaritiee Tawr) Taxr< 102, and its use outside this region needs a

two models belong to the same universality claghe . =%/ . . . .
method introducesgsystematic errors which d)éca]y_é% justification. The effective temperatuiie. is defined in BH
' as the temperature whei=L. Second, the “shifted” tem-

thereby overcoming the strong finite-size problem. These

two methods remarkably agree on the critical temperature[,)erature
giving Tgkt=0.892. The third and recent attempt is a short- 2
time dynamic approach due to Zheng, Schulz, and Trimper. T*(L)~Tgxr+ 502 &)

Since the critical exponents at equilibrium enter into the
short-time dynamic scaling, and the nonequilibrium spatialplays an important role in BH. This is the temperature where
correlation length is small in the short-time dynamic evolu-the renormalized spin-wave stiffness in the finite system
tion, the method can handle lower temperatures, up to 0.9tkes the universal value 2/ This is determined by Monte
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Carlo as the temperature where the magnetization becomesadere ¢ is the lowest energy. The last equality holds for

spin-wave estimate at=Tggr,

1 1/16
M= (T) . (4)

N>M=>1. The free energy per site is given by

The argument seems less precise and again uses the BKhe correlation function can be evaluated likewfise,

theory beyond its confirmed validity.

In this paper, we study the finite-size effect in the XV
model by a transfer matrikTM) method! with the help of
the density-matrix RGDMRG) (Ref. 12 technology and

_T20
f—TM. (12
(6(0)6(r)) = (4ol (0) ()| 1ho), 13

where ¥, denotes the eigenvector for the eigenvalye
The problem is thus reduced to the TM eigenvalue problem

Roomany-Wyld RG theory® Our approach does not involve (10).

any uncontrolled parameters, nor rely on the BKT theory. It

demonstrates that the finite-siz&Y model with 2000—-3000

To analyze the TM equatiofl0), we use DMRG recently
developed for #i quantum system. In fact, the TM equa-

spins behaves precisely like a system with the transition tenyjon contains the Hamiltonian in a Boltzmann factor, so it is
peratureT.=1.07+0.01 separating the massless and massivggsentially a quantunM-body problem. The TM-DMRG

phases in agreement with tig=1.080+ 0.004 in the BH
theory for 1024 spins.
To calculate the partition function

N
z= i[[l dé; exp(— BHxy), (5)

where#,=(6;1,6;5,...,6;m), consider a ribbon geometriyj
sites in the width direction anM sites along the long, circu-

method is now a powerful tool for studying the thermody-
namic properties of d quantum system¥.In the latter case,

the Suzuki-Trotter decomposition of the Boltzmann factor
leads to a non-Hermitian TM equation, requiring a little bit
of numerical innovation&™® In the present case, the TM
operatorK is real and symmetric, and less troublesome. On
the other hand, unlike the quantund tases where the TM
equations are discrete from the outset, our TM equation is an
integral equation, and needs a descretization. For that pur-

lar direction. With a negligible error at the edges, the Boltz—pose’ we use a Gaussian integration formula, transforming

mann factor in Eq(5) can be written as

N
il]l K(6;,6;:1) (6)

with the TM operator
M-1 ﬁ
K(6;,0i11)= Jl:[l eXF{E{COS(Gij —0i41j)

+¢08 0jj — 6ij+1) +COLb; 1~ bi 1 1j+1)

+C0 0 41— 011+ 1)} |- (7
Now write
N N+1
[ Wao-[ T avso-on0 @
and expand as
861 1) = 2 ¥ (On+2) ¥l 01, 9)

Eqg. (10 to

p

™ >
ijK-=
=exp(—e&n) ¢n(i'j'k" ), (14

where W ,(ijk---) means¥ (60,6, --) and 6;=m(x;+1),
etc., withw; andx; being the Gaussian abscissas and weight
factors®® If we rescale as

) WiW Wi K (KK ) (ke )

(mMwiwwie =) P2k ) — pijke ), (15

then the eigenvector is Euclid normalized and the TM equa-
tion becomes

2 OSUIWI:] OS] IW(ik:j k)

X OS(KK')- -~ (ijk--+)
=exp(—en)y(i'j'k" ), (16)

whereW(ij:i’j") denotes the Boltzmann factor on the right-
hand side of Eq.(7) with i+1=i" and j+1=j’, and
Og(ii ") = m(w;w/ )2, etc.

where {¥} is an orthonormal complete set. We choose The DMRG procedure to get the lowest eigenvalagss

{¥,} such that the TM equation

HOK(8,0') ol )= XD — ) Un(0'). (10
0

as follows. Step(i), consider three sites, that is tipdx p3
eigenvalue problem. Note that, unlike thd fjluantum cases
where the degree of freedom at each site is small, the degree
of freedom herep, needs to be large, so we have to use the
three-site algorithm whose accuracy was discussed b&fore.

With these manipulations and using the TM equation repeatStep(ii), construct the density matrix out of the ground state

edly, we arrive at

Z=2, exp(—e,N)=exp —goN), (11)

n

Yo,

p(i’i’:ij)=2k W (1K) wolijk), 17)
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FIG. 3. Beta function vs temperature for=45, 47, 49, and 51
with L'=L+2 from top to bottom. Agairp=12 andm=60. To-
FIG. 1. Internal energy vs temperature. Open circles are datgether with Fig. 2, the effective critical temperature is determined to
from the equation of motion method for the kine¥ model and  be T¢=1.07+0.01.
diamonds are Monte Carlo data available upite 1.5 (Ref. 18.
Solid circles are from the TM-DMRG.

Temperature

O, and then a RG transformatidip- W—T3. The seven-site
system is now represented By- T;. Repeating the proce-
dure, one can get a larger and larger system.

One needs to keep track of, in the course of RG transfor-
mations, the spin operator (c6sin6) at each site to calcu-
late various expectation values such as the correlation func-
tion (13). For example, in the RG operatioW-W—T, in
steps(i) and(ii), the angleb (the caret denotes an operator
in the middle site is a one-particle operator, diagonal in the
original angle representation, and therefore represented as

diagonalize it, and retain the largeststates. Denote then
eigenvectors by X;,X,,....X,, and eigenvalues by
E1,60v. . ém. SO XXy Xm)=0(ij:£) constitutes ap?
Xm transformation matrix for the change of badix @
—§&. The renormalized TM operator is

> O*(¢:i'j)oSi’)

i’
XW(ij:i'j")OS(jj )W(jk:j k" )O(ij:€)
=T,(&'k":€Kk). (18

Symbolically - W-W—T,, where the solid circles represent
OS Step(iii ), go back to stefi) with the renormalized op-
eratorT,- T, for the five sites, and diagonalize the resulting
pm?X pn? eigenvalue problem to get the new ground state
Wo. Step(iv), repeat stegii) to construct the reduced den- | et us first check the accuracy of our TM-DMRG method.
sity matrix, diagonalize it to get a new transformation matrix For this purpose, we calculate the internal energy per site

(ixa)aioj:oi,aj,:&i'9j5jj'- (19

Thus the RG transformatiofl— 6y, is

> O(&:i"]") 86,6, O] :£)=Open £'6).  (20)

iy’

6 T T T T

E——Tzi( IM) (22)
RS A

It is now well established that the ground-state energy per
siteegy/M in the thermodynamic limit can be easily obtained
by measuring the energy increase in successive steps of the
DMRG procedure. In the present case, the typical system
size to get the convergence is 30. We have started the calcu-
lation with p=m=12 and checked the complete conver-
gence up tp=m=24. In theT=0.1 case, we have checked
the convergence by calculating up to the=m=32 case.
The result is given in Fig. 1, where the kinetic enefigg is
added to compare with the latest simulation on the kingtic
model!® The agreement is perfect nék 1, but both at low
T=0.1 and highT>1.3 the TM-DMRG result is about 10%
larger than the simulation result. Since the finite-size effect is
negligibly small at higheiT, the discrepancy is a puzzle at
the moment. However, similar discrepancies have been ob-
served for the specific heat among MC calculatidss, the
problem could reside in simulations.
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FIG. 2. L X gap() vs temperature fok =37, 43, 49, 55, and 61
from bottom to top. The result is fgg=12 andm=60. The cases
p=12, m=66 andp=16, m=60 give less than 1% correction to
the result.
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We now calculate not only the smallesg but also the temperature is determined to e=1.07=0.01, in agree-
next smallest,. In fact, one can show easily that the cor- ment with theT,=1.080+0.004 in the BH theofy/for 1024
relation function(13) behaves for>1 like spins.
To conclude, the thermodynamics of the XI¥ model is
~exp[—(e1—eo)l}- 22 formulated by a transfer-matrix method and analyzed by a
Thus gapl)=s;,—e, measures the gap energy of the sys-density-matrix renormalization group. The finite-size scaling
tem at sizeL [alias M in Eq. (21)]. Then due to the and the beta function of the model are studied by the

Roomany-Wyld RG theory? the effective critical tempera-
ture T, of the finite-size 2DXY model can be located by
calculatingL X gap(L) versusT. Figure 2 shows the result
for L=37, 43, 49, 55, and 61 using=12 and m=60.

The casep=16, m=60 andp=12, m=66 give less than

Roomany-Wyld renormalization-group theory. It is found
that the 2DXY model has an essential finite-size effect and
the Berezinskii-Kosterlitz-Thouless transition with the criti-
cal temperaturd gx1=0.892 manifests itself in a finite sys-

tem of 2000—3000 spins as a massless to massive transition

1% correction to the result. We have also calculated th&yith the effective critical temperaturg,=1.07+0.01.

Roomany-Wyld approximate for the beta function

~ 1+In(GL/GL)/In(L/L")
(DD /GG

where G, =gap(l) andD_ =dG,/JT. Figure 3 shows the
result for L=45, 47, 49, and 51 with.'=L+2. Againp
=12 andm=60. Small drift of the zero point of the beta
function towards higheiT for largerL may be due to an
accumulation of the truncatiorp¢< m—m) error in DMRG.

BR(T) (23)

After the completion of this work, | was informed of a
new finite-size-scaling MC method which gives the critical
temperaturel gxr=0.893, very close to the seemingly exact
value 0.892, and demonstrates that the critical expongnts
=1/4 andv=0.48"°
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