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Abstract

A spin-1 anisotropic ferromagnet with crystal field anisotropy parameter D and biquadratic exchange interaction
parameter o (0 < o < 1) has been investigated using the method of double time temperature dependent Green functions.
Mixed Callen and RPA decoupling approximations have been utilized. The variations of Curie temperature T with o for
different values of the exchange anisotropy parameter # (0 < n < 1) at D/J = 1 and for different values of D/J at n = 1
have been studied. Also the value of exchange anisotropy parameter for which dependence of T on o vanishes has been
calculated at finite D. Drawbacks and limitations in the earlier calculations have been pointed out. © 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The effect of biquadratic exchange on magnetic
properties such as magnetization, Curiec temper-
ature, magnetic susceptibility, etc. have been inves-
tigated by Allan and Betts [1] Brown [2], Biegala
[3], Chaddha and Singh [4] and Chaddha [5]
using high-temperature series expansion method,
constant coupling molecular field approximation
and Green’s function (GF) decoupling theories. The
critical value of o (= . corresponds to the tricriti-
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cal point) for which the transition becomes first
order was also determined by Biegala [3].

In all these previous studies, the spin system has
been confirmed as being isotropic with respect to
both the bilinear and biquadratic exchange interac-
tions. Due to the failure of this isotropic model to
represent many real magnetic compounds, the in-
clusion of anisotropy in the exchange interaction in
the presence of crystal field anisotropy has been
proposed by many authors. The observed data
from magnetic resonance experiments and theoret-
ical studies of the crystal field, along with the per-
turbation calculation of the spin—orbit interaction
[6,21] have clearly established the fact that the ex-
change anisotropy and the crystal field anisotropy
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are two fundamentally important features existing
in a wide variety of magnetic substances and thus
the inclusion of the corresponding terms in the
Hamiltonian is fully justified.

The variation of Curie temperature T'¢ with the
biquadratic exchange interaction for different
values of the exchange anisotropy parameter
n (0 < 5 <1, the particular cases # =0 and 1 de-
scribe Blume-Emery—Griffiths model [7] and
Heisenberg model that contains in addition to
the bilinear exchange, biquadratic exchange and
single-ion anisotropy D, respectively) was studied
by Iwashita and Uryu [8] using pair model appro-
ximation but the crystal field anisotropy parameter
D was taken to be zero. At the same time only one
ordering parameter, viz. ¢ = (%), called dipolar
ordering parameter was taken into account where-
as due to the presence of the biquadratic exchange
term, the present problem needs consideration
of two ordering parameters, ¢ as well as
y =<{C}> = 6{(5%)*) — 4, called quadrupolar or-
dering parameter. Though the problem was later
on studied by Chaddha and Kalsi [9] by taking
both the said ordering parameters into account
using simple GF technique but here too the calcu-
lations were restricted to D = 0

Tiwari and Srivastava [10] considered the com-
bined effect of biquadratic exchange and crystal
field anisotropy using a simplified form of the ran-
dom phase approximation (RPA). Their calcu-
lations were, however, restricted to # = 1 case only
and at the same time while linearizing the higher
order Green functions they did not even pay atten-
tion to the fact that there exist the following spin-1
identities.

S5Cs = S5{6(55)* — 4} =287 (1a)
and

AJSZ+SP A=A, =S (1b)
in which

A3 = — [}, (S5 = AS] + SiA} (1)

and used the following linearization:
(AT ST+ SGAZ Sk y> = 2(S" )AL Sy, (2a)
((SFCIAT S0 = (SDACHLAR Sy (2b)

The GF, <{A}; S, >) arising from the biquad-
ratic exchange and crystal field anisotropy terms
was of course treated as such, that is without de-
coupling.

They concluded that the effects due to the bi-
quadratic exchange and crystal field anisotropy
annul each other at o = 0.8 and D/J = 0.1 (J being
the exchange integral) and from then T is found to
increase with the increase of o (up to o = 1) instead
of decreasing with the increase of o as expected. The
expected behaviour could be interpreted as follows.
Because of the squared form, that is (S; -Sj)z, S; and
S; being the two spin operators at the lattice sites
i and j, respectively, the biquadratic exchange inter-
action is able to stabilize the antiferromagnetic
state (0 = 180°) as well as the ferromagnetic state
(0 = 0°). Therefore, the spin-1 Heisenberg system
with the biquadratic term does become disordered
at a temperature lower than the pure Heisenberg
model. However, only ferromagnetic state is stabil-
ized in the Ising spin system.

Their [10] calculations were, however, based on
the approximation D/J < 1 whereas the values of
D/J used by them ranged from O-1 in the text.
Though the calculations were later on extended by
them [11] by assuming the exchange interaction to
be anisotropic but with the similar error.

The combined effect of biquadratic exchange and
crystal field anisotropy was also considered by
Zheng [12] using GF technique but with the follow-
ing new type of Callen decoupling approximation:

(CSTAG S >y
= (A8, D> —y<S7 Sy YA S Y, (3a)
KCFAGSK YD
= 2y<{AG S )Y — §y<{Sy Ay <LAR Si ),
(i=1,2) (3b)

for which there was no physical justification. At the
same time, the calculations were restricted to n = 1
case only. Though the problem was earlier studied
by Zheng [13] in the case of anisotropic Heisen-
berg ferromagnet in the presence of crystal field
anisotropy but with the same decoupling approxi-
mation and at the same time at o = 0.

Later on, the problem at n = 1 was also studied
by Chakraborty [14] using irreducible GF theory
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which he claims, yields different results from those
reported by GF equation of motion method em-
ploying various decoupling approximations, at
o very small. But at the same time there were
limitations on the calculations and it was not pos-
sible to have systematic quantitative estimates for
the variation of dipolar and quadrupolar ordering
parameters with temperature using the said theory.
Chakraborty [15] applying the irreducible GF the-
ory did study the case of anisotropic Heisenberg
ferromagnet in the presence of crystal field anisot-
ropy but the biquadratic exchange term was taken
to be zero.

Keeping all these things in mind, we thought to
re-study the problem. It was also thought to find
the critical value of the exchange anisotropy para-
meter # for which biquadratic exchange interaction
has no effect on the Curie temperature T¢. A de-
coupling procedure, the same as that used by
Chaddha and Singh [4] in their earlier work has
been utilized here. That is, the three spin Green
functions are decoupled using Callen decoupling
approximation [16] whereas for the still higher-
order Green functions, RPA [17] has been utilized.

2. Theory

We consider a generalized Heisenberg model ex-
pressed as

H = —) J,[{SIST + n(S¥'S} + SiS})}
ij
+ a{STST + n(S¥SY + STST}2]
— DY (SH?, @)

where J;; is a measure of the exchange force be-
tween the ith and jth lattice sites, §; is the spin
operator associated with the ith lattice site with
components S¥, S and S%. 5 measures the strength
of the anisotropic exchange whereas D is the para-
meter measuring strength of the crystal field anisot-
ropy. o the biquadratic exchange parameter is
defined by the ratio of the biquadratic exchange to
the bilinear exchange. The summation is assumed

to extend over nearest neighbour pairs i and j. In
the present paper, we restrict ourselves to the spin-1
case.

Using Devlin’s [18] notation, we define the fol-
lowing two Green functions:

ot = 1) = LA Sy (1)) (1=1,2). )
Each A} satisfies the relation
[45. 851 = — 4, (6a)
and also

[4Z,(SH*] = — A,, C: =1[42.5,] (6b)

The equations of motion of the Fourier trans-
form of the above Green functions generated by the
Hamiltonian [4] can be written as

wGa(w) = (26/21) 3,
+(2 - ocnz); Ty <<SF AL S D>
— 12— oc); Ty <SSGAT S>>
- (wv/2); Jor<KCGAT; Si >)
+ (oc/z); Jor{{(4 + 20%)

X (SP)? — 4’} AZ; Sy >)
+ DLAGSK DD, (7)

wGg(w) = (§/2m)3g + (2 — an®)}. J, (CSFAT Sy D)
-
— (2 — o)}, J KKCGAT Si >)
7
— o), J o (CS5AT S D)
S

+(/2) Y. T, <A + 207)(SP? — 4}
f
X Ag; Sy >y
+ D{{Ag: Sy ). (8)
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The three spin Green functions are decoupled
using Callen decoupling approximation [16]:

<<S Sh >>f#g—O-Ggh_o-/2<SfA >th (9a)

and for the still higher-order Green functions, we
have chosen the following decoupling approxima-
tion:

(SFAG Sk D) pag =
LCTAY Sy D) peg =

The operators S; and C; correspond to the lon-
gitudinal and the operators A} to the transverse
motions of the spins, respectively. Since only the
operators S7 and C; have finite ensemble averages,
the above decoupling represents the same type of
factorization as in

(LSFAG Sk )Y peg = oG, (10)

which is nothing but RPA [17] and implies that the
transverse motion of the spin at site g is completely
uncorrelated with the longitudinal motion of the
spin at site f. This is certainly a reasonable approxi-
mation as long as f # g.

Using the above decoupling approximations and
assuming the translational invariance, we can solve
for the spatial Fourier transforms of Green func-
tions GL(K) and GZ(K), i.e.

1|: ay a_ :|
— + s
2nlw —wy W —w_

1[ b + b- J (11)
2nfw —w,  ow—w_

where the poles of the Green functions are given by

<S > Gyha (9b)
(CF Gy %)

GW(K) =

GuK) =

= (A4 + B) + \/a*(C + B)* + w3(K)
and
wi(K) = (D + F)(D + G).

Making use of spectral theorem and settingg = h
and t =, one obtains the following correlation
functions:

8 —
(S Ay =———0

1 a, a_
S 12
N% [eﬁw* R 1]’ (12)

(S; 45> = G—y/2

b_
o P 1 I

with the renormalization function,

f=~72 T (K) (14)

and

*(C + B) + y(D + F)2
JoHC + B? + wi(K)

a(D + G) — 6y(C + B))2
JoHC + B? + wi(K)

=Q2—oan’)Jo—nJk

B =fn2—a)Jo— (2 —an’)Jg}/4,

C= —nll —og,

F = o[{(4 + 2" )m — 4n*}Jo — nyJ /2,
G = a{(4 + 2n*)m — 4n*}J /2 + Cy,

ZG"

a, =0 =%

b, =y2+

G'(K) =

*1K~(g*h)

n=12,

—iK-(g—h
JK= z Jghe K-l ),

g—h
B=1/kT and m = {(S%*).

It may be noted that the above result reduces to
that of Callen [16] fory =1 and « = D = 0, that is
in the case of the Heisenberg model. Also the result
reduces to that of Chaddha and Singh [4] obtained
earlier in the case of isotropic ferromagnets at
D =0.

Following Devlin [18] for the accurate deter-
mination of T, Egs. (12) and (13) are expanded in
the power series of ¢ about the point ¢ = 0. The
coefficients of each power of ¢ must be the same on
each side of each equation. A comparison of the
zeroth power of ¢ will yield the paramagnetic equa-
tion valid for all T > T. The coefficients of the first
power of ¢ in each equation will yield one addi-
tional equation. Accordingly, we get the following
two coupled equations,

8—y_ Z(D—i—F

coth fic wo(K)/2, (15)
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42—y 1 (B—CQ)
37 2N% wo(K)

coth ¢ wo(K)/2

+ LZ Bc(A + B)cosech? e wo(K)/2
AN~
(16)
with

Y v Ik +F)

/=3x Ty wo(K)

coth fie wo(K)/2. (17)

The reason why T« now appears as an unknown
is that the comparison of the coefficients of the first
power of ¢ gives equations which are not valid for
T > T, and hence they are valid only at the single
temperature T'¢, which is as yet undetermined.

3. Results and discussion

Egs. (15)<(17) have been solved numerically in
the case of spin-1 anisotropic BCC ferromagnet to
study the variation of Curie temperature T with
(0 < o < 1) for different values of exchange anisot-
ropy parameter n and for different D/J values. The
variation of T¢ with e for D/J =0, 1l and4aty =1
that is, in the case of a Heisenberg model, has been
displayed in Fig. 1. T is found to be a decreasing
function of o for all values of D/J. Thus the two
effects one due to the crystal field anisotropy and
another due to the biquadratic exchange never an-
nul each other as far as 0 <o <1 is concerned
which is contrary to the results earlier reported by
Tiwari and Srivastava [10]. Their wrong con-
clusions are probably because of the invalid ap-
proximations used by them during the course of
calculations. The slopes of our T versus a curves
for finite values of the crystal field anisotropy para-
meter D are significantly different from those re-
ported by Zheng [12]. This could be due to the fact
that we have used a decoupling procedure which is
physically very sound. However, for D/J — oo, the
renormalization factor f — 0 and the results reduce
to those in RPA. Also at D/J — oo, one gets y = 2,
implying {(S%)*» = 1, which is an expected result
because in this limit SZ is effectively restricted to
take only the values + S so that {(S%)*) — S

4 . L

0 02 04 06 08 10

oK ——

Fig. 1. Variation of kT ¢/J with & on a BCC lattice for D/J = 0,
land 4 atn=1.

Fig. 2 shows the variation of T with o for
different values of the exchange anisotropy para-
meter # = 0, 0.5, 0.65, 0.8 and 1.0 at D/J = 1. The
results indicate a decrease in T with an increase of
o for n =1 spin system whereas T is found to
increase with increasing « for # = 0 spin system.
This trend is consistent with the results reported by
Iwashita and Uryu [8] in pair model approxima-
tion and by Chaddha and Kalsi [9] using simple
GF technique. However, the results for the inter-
mediate values of 5 differ significantly. The depar-
ture could be probably due to the fact that Iwashita
and Uryu [8] considered only the dipolar ordering
parameter whereas the present problem needs con-
sideration of two ordering parameters viz. dipolar
and as well as the quadrupolar ordering para-
meters. The omission of the quadrupolar ordering
parameter by Brown [19] resulted in two values of
T for the same value of & which is quite unphysical
and also the existence of a tricritical point at o > 1
which contradicted the results reported in molecu-
lar field approximation by Chen and Levy [20] and
also by Biegala [3] in RPA.
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Fig. 2. Variation of kT¢/J with o on a BCC lattice for n = 0.0,
0.5, 0.65, 0.8 and 1.0 at D/J = 1.

Denoting the Curie temperature in the case
of vanishing o as T2 and in order to estimate 7¢, the
value of n at which biquadratic exchange inter-
action has no effect on the Curie temperature,
we have studied the variation of T¢/TQ with 5
at a=D/J =1. The results so obtained are
displayed in Fig. 3. The value of 5 determined
from these observations comes out to be 0.57 in the
case of spin-1 BCC ferromagnet. Though the value
of nc has been determined earlier by Iwashita
and Uryu [8] using pair model approximation
and by Chaddha and Kalsi [9] using simple GF
technique they were both determined at D/J = 0.
To the best of our knowledge it is for the first
time that the value of 5 has been found at the finite
value of D.

0(=D/J:1

0 v Il 1 1 i
0 02 04 06 08 10
Tl B —

Fig. 3. Variation of T¢/T2 with n on a BCC lattice at
%=DJJ =1.

The present results are thought to be certainly
more reliable and at the same time more realistic
compared with the earlier results as they have been
obtained for the finite value of D in the presence of
anisotropic exchange and by assuming that there
are two ordering parameters ¢ and y in the bi-
quadratic problem and also by using a decoupling
procedure which is physically very sound. The for-
malism, of course eliminates completely the need to
decouple the higher order GF, ({47; S, > arising
from the biquadratic exchange and crystal field
anisotropy terms.
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