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Domain structures in ferromagnetic ultrathin films with in-plane magnetization
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We show that many of the domain patterns in ultrathin films with in-plane magnetizations from experiments
and from computer simulations can be well approximated as local extrema of the exchange and anisotropy
energies with appropriate boundary conditions. These solutions can be obtained analytically from the many
soliton solution of the imaginary time sine-Gordon equation. Different types of these solutions are represented
and their physical meaning is discussed.@S0163-1829~99!10537-X#
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I. INTRODUCTION

The magnetism of ultrathin films have attracted consid
able interest recently.1,2 This is partly motivated by the pos
sible integration of the semi-conductor microelectron
technology with magnetic elements1 and possible device ap
plications with the giant magnetoresistive~GMR! and spin
tunnelling effect. These systems present opportunities
studying new phenomena that are beginning to be uncove
The interaction energy between the spins at positionsR,R8 is

H50.5 (
i j 5xyz,RR8

Vi j ~R2R8!Si~R!Sj~R8!, ~1!

where V5Vd1Ve1Va is the sum of the dipolar energ
Vdi j (R)5g¹ i¹ j (1/uRu), the exchange energyVe52Jd(R
5R81d)d i j between nearest neighbors at distancesd, and
the crystalline anisotropy energyVa , g, andJ are coupling
constants. The form of the anisotropy energy depends on
material of interest. It can be uniaxial~e.g.,Va52KS iSix

2 )
or fourfold symmetric~e.g.,Va52KS i@Six

2 2Siy
2 #2/4), with

the easy or hard axis aligned along specific directions.
The magnetic dipoles here can be parallel or perpend

lar to the plane.2–6 For discussions in this paper, we restr
our attention to those cases so that the spins lie in the p
of the film, the case of experimental interest in sensor t
applications. The domain pattern depends on the shape o
sample, which is especially important for small structures
this paper we follow our earlier work7 and show that the
many domain patterns subjected to the sample boundary
straints can be well approximated as local extrema of
exchange and anisotropy energies.

The orientation of the spin is determined by its anglef:

SW 5S~cosf,sinf!. ~2!

For most applications the contribution from the dipolar int
action is small if the global constraint of closed flux lines
satisfied and can be treated as a perturbation. The dom
PRB 600163-1829/99/60~14!/10271~9!/$15.00
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structure is approximately determined by minimizing the e
change and the anisotropy energy which has the form;

H5
1

2 E d2r F J̄~fx
21fy

2!1
K

4
@12cos~4f!#G , ~3!

and is determined approximately by the equation

¹2f20.5K sin 4f/ J̄50, ~4!

where both the exchange and a fourfold anisotropy term
incorporated.J̄'zJ/4 is the effective exchange;z is the num-
ber of nearest neighbors and comes from converting the
crete model to the continuum approximation. We shall dr
the bar onJ in what follows. The exactly soluble sine
Gordon equation8,9 (]x

22] t
2)f20.5K sin 4f/J50 is formally

the same as the above equation~4! if we transform they
coordinate into the imaginary time it. A simple two
dimensional generalization of the conventional express
for the 90° domain wall has been obtained in our previo
work10 and describes the domain wall that was observed
the experiments on the ultrathin cobalt films.10,11

In general,analytic many solitonsolutions provide for
more possibilities to describe the two-dimensional dom
wall patterns in thin magnetic films.Many solitonsolutions
are known but have never been exploited in the understa
ing of domain structures. The main goal of this paper is
represent some exact solutions of the imaginary time s
Gordon equation which can be used to describe forms of
domain wall patterns in thin magnetic films. We now expla
our results in detail.

II. CALCULATION OF THE DOMAIN STRUCTURES

To calculate the domain structures in an ultrathin fi
with in plane magnetization in the presence of the excha
and an in-plane fourfold anisotropy we have to solve Eq.~4!.
With the change of variables
10 271 ©1999 The American Physical Society
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x85xA2K

J
,

y85yA2K

J
, ~5!

Eq. ~4! becomes

2¹82f1
1

4
sin 4f50. ~6!

In what follows we drop the prime index on the coordinat
In this section we discuss three different ways of obtain
special solutions of this equation in increasing complex
Some of the results from these different approaches are
same.

A. Waves and solitons

To solve Eq.~6! we first seek trial solutions such that

f~x,y!5 f ~j!5 f ~x1uy!, ~7!

whereu is a constant. Then

~11u2!
d2f

dj2 5
1

4
sin 4f . ~8!

Then, on integration with respect tof,

8~11u2!S d f

dj D 2

5~C2cos 4f !, ~9!

whereC is an integration constant. Therefore

j5E d f

6A~C2cos 4f !/8~11u2!
. ~10!

We are looking for real solutions; thereforeu2>0 and
(d f /dj)2>0. There are various cases depending on the
ues ofC.

Case 1: C.1. d f /dj has the same sign, positive or neg
tive, for all j, and f is a monotonic function ofj. Equation
~10! can be integrated in terms of elliptic functions and giv
the periodic solutions of the form

f 5
p

4
1

1

2
sin21H 6snS j

kA11C2
,kD J , ~11!

wherek252/(C11) andsn is the jacobian elliptic function
of modulusk.12 With respect toj the spatial period or wave
lengthL of the periodic function is

L54K~k!kA11u2, ~12!

whereK(k) represents the complete elliptic integral of t
first kind with modulusk.

Case 2: 0<C,1. In this case we definef 05 1
4 cos21 C,

with 0< f <p/4, so that f 0 is the least positive zero o
G( f )512cos 4f. Only whenG( f )>0 are real solutions o
f possible. A particular solution is

f 5
p

4
1

1

2
sin21H 6

1

k
snS j

A11u2
,
1

kD J . ~13!
.
g
.
he

l-

-

s

This solution represents oscillations off, such that f 0, f
,p/22 f 0 with period 4A11u2K(1/k). k is related to the
parameterC by k252/(C11).

Case 3: C51. This is a case limit of case 1 and 2 abov
Here Eq.~10! gives

j2j056A11u2 ln$6tanf %, ~14!

wherej0 is a constant and the6 signs need not be related t
one another. Writing this solution in full we have:

f~x,y!56tan21H 6A2K

J

~x1uy2j0!

A11u2 J . ~15!

These are the 90° domain wall soliton solutions of Eq.~6!.
Notice that these solution can also be obtained as a limi
cases 1 and 2 fork51.

B. Some other explicit solutions

Other simple explicit solutions of Eq.~6! can be obtained
as follows. The form of the solution~14! suggest to start
from the ansatz suggested by Lamb13 for the solution of the
real time sine-Gordon equation. We seek solutions of Eq.~6!
having the form

f~x,y!5tan21@F~x!/G~y!#. ~16!

Substitution into Eq.~6! gives

~F21G2!S Fxx

F
2

Gyy

G D12~Gy
22Fx

2!2~G22F2!50.

~17!

Differentiating this equation with respect tox andy we have

1

~F2!x
S Fxx

F D
x

5
1

~G2!y
S Gyy

G D
y

5A. ~18!

Integrating these equations we have

Fx
25

A

2
F41BF21C,

Gy
25

A

2
G41~12B!G21C, ~19!

for some constantsA, B, andC. Equations~19! can be solved
generally in terms of elliptic functions, but they have al
some special solutions in terms of elementary functio
which we first discuss next. This type of solutions is partic
larly useful for boundary condition considerations, whi
will be further developed in the next section. Here we co
sider some special cases when some of the constantsA, B, C
is zero. We distinguish between the following cases.

Case 1: A50, C50, and 0,B,1. This is the soliton
solution previously mentioned. The parameteru in Eq. ~14!
is related to the parameterB by the relationship.

u56A12B

B
. ~20!

Case 2: A50, B5C.0, we have to distinguish two sub
classes. ForB.1 we have
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f5tan21H 6AB21

B

sinh@A2K/JAB~x2x0!#

sin@A2K/JAB21~y2y0!#
J

~21!

and for 0,B,1 we have

f5tan21H 6A12B

B

sinh@A2K/JAB~x2x0!#

sinh@A2K/JA12B~y2y0!#
J .

~22!

Equation ~21! describes forB→1, B.1 two 90° domain
wall separated by a distance of 2 ln(2/AB21). As B is in-
creased, the two separated domain walls become sepa
by vortices and merge into a 180° domain wall. Equat
~22! describes a closure domain. This is a case studied
Chui and Ryzhov.7

Case 3: C50, AÞ0. F and G depend onA whereas the
ratio F/G does not. We have to distinguish three subclas
For B.1 we have

f5tan21H 6A B

B21

sin@A2K/JAB21~y2y0!#

sinh@A2K/JAB~x2x0!#
J

~23!

and for 0,B,1;

f5tan21H 6A B

12B

sinh@A2K/JA12B~y2y0!#

sinh@A2K/JAB~x2x0!#
J

~24!

and forB,0

f5tan21H 6A uBu
11uBu

sinh@A2K/JA11uBu~y2y0!#

sin@A2K/JAuBu~x2x0!#
J .

~25!

Cases 2 and 3 have a simple interpretation. These are
soliton solutions of Eq.~6!.

C. Multisoliton solutions

Multisoliton solutions of Eq.~6! can be readily obtained
from the Hirota method.14 We start now with the ansatz

f5tan21F F~x,y!

G~x,y!G ~26!

and define theD operator as

Dx
mDy

n~ab!5F S ]

]x
2

]

]x8D
mS ]

]y
2

]

]y8D
n

3a~x,y!b~x8,y8!G
x5x8;y5y8

. ~27!

Equation~6! with the ansatz~26! can be then written as

~G22F2!~Dx
21Dy

2!~FG!2FG~Dx
21Dy

2!~GG2FF !

5FG~G22F2!. ~28!

This can be reduced to two bilinear equations

~Dx
21Dy

2!~FG!5mFG,
ted
n
by

s.

wo

~Dx
21Dy

2!~GG2FF !5~m21!~G22F2!, ~29!

wherem is a constant. We look for solutions of the form

G511«2G~1!1«4G~2!1¯ ,

F5«F ~1!1«3F ~2!1¯ , ~30!

where« is a parameter and try to solve Eq.~29! order by
order in «. At zero order we findG51 andm51. At first
order we have to solve

F ~1!5Fxx
~1!1Fyy

~1! . ~31!

The simplest nontrivial solution of this equation is

F ~1!5eq, ~32!

whereq5kx1vy1d andk21v251. For this choice it is
possible to make all the other functions zero. Therefore
obtain

f5tan21@«ekx1vy1d#. ~33!

For «51 andk251/(11u2) this is the single soliton solu
tion obtained above. To get the two solitons solution we s
with a solution of Eq.~31! of the form

F ~1!5eq11eq2, ~34!

where q i5kix1v i y1d i and ki
21v i

251. The simplest
choice forG(1) which satisfies the equation

Gxx
~1!2Fxx

~1!F ~1!1~Fx
~1!!21Gyy

~1!2Fyy
~1!F ~1!1~Fy

~1!!250
~35!

is

G~1!5A~1,2!e
q11q2 ~36!

with

A~1,2!5
12k1k22v1v2

11k1k21v1v2
5

~k12k2!2

~v11v2!2 5
~v12v2!2

~k11k2!2 .

~37!

Also in this case it is possible to choose all the other fu
tions zero and we obtain for the double soliton solution

f5tan21H eq11eq2

11A~1,2!e
q11q2J . ~38!

It is easy to see that solutions~21!–~25! are particular cases
of Eq. ~38! with an appropriate choice of the constantsk1 ,
k2 , v1 , v2 , d1 , and d2 . For example, Eq.~22! with the
minus sign can be obtained after Eq.~38! with the choices
k152k25AB, v15v25A12B, d152ABx02A12By0

1 ln(A(12B)/B), d25ABx02A12By01 ln(A(12B)/B)
1 ip. Some other interesting two-soliton solutions can eas
be found after Eq.~38!. Making k15k25AB, v152v2

5A12B, d152ABx02A12By01 ln(AB/(12B)), d2

52ABx01A12By01 ln(AB/12B)1 ip, and v
5A(12B)/B, we obtain

f5tan21
„sinh@gvA2K/J~y2y0!#/$2v sinh@gA2K/J

3~x2x0!#%…, ~39!
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whereg51/A11v2. The detail of this simple structure ha
been described previously and will not be repeated h
~See, for example, Fig. 1 of Ref. 7 for the shape of t
structure.! Making k152k25A11B, v15v252 iAB, d1

52A11Bx01 iABy0 , d25A11Bx01 iABy0

1 ln@AB/(11B)#1 ip, andv5AB/(11B), we obtain

f5tan21

3Fexp@gA2K/J~x2x0!#2v2exp@2gA2K/J~x2x0!#

2 cos@gvA2K/J~y2y0!#
G ,

~40!

whereg51/A12v2. v is related to half the separation of th

domain wallsx18 by v52e2gx18. In the limit x18@1 Eq. ~40!
describes two parallel 90° domain walls located atx85x08
1 ln 2/g andx85x081 ln 2/g12x18 . Equation~40! takes the

most simple form whene2gx085v ~Ref. 7!:

f5tan21
„cos@gvA2K/J~y2y0!#/$v sinh@gA2K/J

3~x2x0!#%…. ~41!

This is basically the same as the solution~21!. Figure 1
shows the spin configurations obtained by using Eq.~41! for
different values of parameterv for a triangular lattice 40
340 spins forJ52 andK50.2 (x05y050).

FIG. 1. 180° domain configuration for a rectangle from a tw
soliton solution@Eq. ~41!#. ~a! corresponds tov50.01 and~b! to
v50.8.
e.
s

D. Trial solutions to incorporate the dipolar energy

The configurations discussed in this section have so
not taken into consideration the boundary conditions of fin
sample boundaries. The magnetostatic energy is lowere
the component ofS normal to the boundary is equal to zer
This condition can be partially incorporated by using
simple phenomenological generalization of Eq.~41!. We
suppose thatv is a function ofy. The form ofv(y) is chosen
to minimize the magnetostatic energy and is given by

v~y!5
A

exp@aA2K/J~y1y0!#1exp@2bA2K/J~y1y0!#
,

~42!

where a5 ln(A/v0)/(Ly/21y0), b5 ln(A/v0)/(Ly/22y0), v0

52 exp(2A2K/JLx/2), andLx andLy are the sample size
in x andy directions, respectively. The parametersA andy0
are obtained by minimizing the total energy of the system
Fig. 2 the spin configurations obtained by using Eqs.~41!
and ~42! are shown for a triangular lattice 40340 spins for
J52, K50.2, andg51. Figure 2~a! corresponds to magneti
field H50 and Fig. 2~b! to H5K/2. This can be compared
with the Monte Carlo result discussed in the next section
shown in Fig. 7. The total energy per particle isEt
528.39387 forH50 andEt528.31041 forH5K/2. The
parametersA and y0 are A50.027373,y057.4435 for H
50 and A50.084793,y056.6731 for H5K/2. Equations
~41! and~42! may be used to investigate the behavior of t
spin system under different system parameters. Howe

FIG. 2. Edge domain configuration for a rectangle from var
tional calculations by using Eqs.~41! and ~42!. ~a! represents the
caseH50 and~b! the caseH5K/2.
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Eq. ~42! cannot be obtained as the exact solution of the
~4! for the finite sample. Exact solutions for this case a
discussed in the next section.

E. N soliton solution

For completeness we end this section by considering
N-solitons solution of Eq.~6!. We take as solution of Eq
~31!:

F ~1!5(
i

eq i, ~43!

where q i5kix1v i y1d i and ki
21v i

251. The simplest
choice forG(1) is

G~1!5(
i , j

A~ i , j !e
q i1q j , ~44!

with

A~ i j !5
12kikj2v iv j

11kikj1v iv j
5

~ki2kj !
2

~v i1v j !
2 5

~v i2v j !
2

~ki1kj !
2 . ~45!

Also in this case is possible to choose all the other functi
zero and we obtain for theN solitonic solution

f5tan21H ( ie
q i

11( i , jA~ i , j !e
q i1q jJ . ~46!

III. BOUNDARY CONDITIONS

The consideration of domain patterns in small structu
requires the imposition of finite boundary conditions. The
are different possible ways to determine the parameters.
possibility is to require the surface part of the magnetost
energy to be equal to zero. This imposes the boundary c
ditions that the normal components of the magnetizat
must be zero at the boundary of the rectangle. We first
cuss examples of this for different cases. In the case of
riodic solutions, Eq.~11!, finite boundary conditions only
impose conditions in thek values. For example forc50 the
solution depends only onx and f (0)5 f (L)56p/2 we have

f 56
p

2
1

1

2
sin21H 6snS x

kn
,knD J , ~47!

wherekn is related to the sample sizeL by the equation

2nK~kn!5
L

kn
. ~48!

This solution corresponds to a spin density wave of perio

L54knK~kn!. ~49!

Another important type of solutions can be obtained start
from the ansatz of Eq.~16!, with the solutions to Eq.~19! in
terms of Jacobian elliptic functions with the appropria
boundary conditions.15 As an example we consider configu
rations corresponding to edge domains with the bound
conditions of that the spins point down~up! on the left~right!
edges and horizontally in both the top and bottom edge. T
is equivalent to imposing the boundary conditions
.
e

e

s

s
e
ne
ic
n-
n
s-
e-

g

ry

is

FS 6Lx

2 D→6`,

G21S 6Ly

2 D50, ~50!

whereLx and Ly are the sample sizes in thex and y direc-
tions, respectively. One class of solutions for which the
boundary conditions can be easily imposed is

f5tan21$Dtn@V~x2x0!,l f #cn@v~y2y0!,lg#%, ~51!

where

l f
25

D21V2~12D2!2

V2~12D2!
,

lg
252

D2V2~12D2!

V2~12D2!221
,

v25
V2~12D2!221

12D2 . ~52!

For a rectangular sample, the boundary condition can be
corporated by demanding thattn to be infinite at the two
vertical boundariesx52a52Lx/2 andx5a and cn to be
zero at the horizontal boundariesy52b52Lx/2 and y
5b. We first consider solutions of this type for differen
parameter values. We consider the caseD2,1 because the
opposite case leads to the same results. We describe diffe
regimes in the parameter space forD andV. In some cases
the right hand sides of Eqs.~52! becomes less than zero
Some of the parametersl f , lg , andv may become imagi-
nary. It is then necessary to rewrite the elliptic functions w
imaginary arguments in terms of functions of real argumen
Let us consider now these different forms of the soluti
~51! in detail.

A. V2>1/„12D2
…

2

From Eq.~52! l f
2.0, v2.0, lg

2,0, the solution has the
form

f5tan21FDtn@V~x2x0!,l f #
cn@vA11kg

2~y2y0!,k1g#

dn@vA11kg
2~y2y0!,k1g#

G ,

~53!

where kg
252lg

2 and k1g
2 5kg

2/(11kg
2)5D2V2(12D2)/

@V2(12D2)21#. These solutions represent edge doma
which shall be discussed in more detail below. ForV2

→1/(12D2)2 the solution~53! becomes

f5tan21$Dtn@~x2x0!/~12D2!,12D4#%. ~54!

This limit corresponds to two straight domain walls that a
far apart.

B. 1/„12D2
…<V2<1/„12D2

…

2

We havel f
2.0, lg

2.0, v2,0; the solution takes the
form
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f5tan21FDtn@V~x2x0!,l f
2#

dn@vlg~y2y0!,l1g#

cn@vlg~y2y0!,l1g# G ,
~55!

where v252v2 and l1g
2 5@V2(12D2)21#/@D2V2(1

2D2)#. The limiting behavior of Eq.~55! coincides with Eq.
~54! for V2→1/(12D2)2. For V251/(12D2) it has the
form

f5p/22tan21F cos@D/A12D2~y2y0!#

D sinh@~x2x0!/A12D2#
G . ~56!

Equation~56! coincides with the two domain wall solutio
~41! with D playing the role of the parameterv.

C. V2<1/„12D2
…

We havel f
2.1, lg

2.0, v252v2,0. Expression~51!
may be rewritten in the form;

f5tan21F D

l f

sn@l fV~x2x0!,1/l f #

dn@l fV~x2x0!,1/l f #

1

cn@v~y2y0!,lg8#G ,
~57!

where lg8
2512lg

25@12V2(12D2)#/@12V2(12D2)2#.
An example of this configuration is shown in Fig. 3 forD
50.125,V50.1,J52, K50.2. The limiting behavior of Eq.
~57! for V2→1/(12D2) coincides with Eq.~56!. By using
the relationcn(u2K,k)5A12k2sn(u,k)/dn(u,k) Eq. ~57!
can be rewritten as

f5tan21F D

l flg

sn@l fV~x2x0!,1/l f #

dn@l fV~x2x0!,1/l f #

dn@v~y2y0!,lg8#

sn@v~y2y0!,lg8#
G .

~58!

In the limit V2→1/(12D2) the solution takes the form

f5p/22tan21F sin@D/A12D2~y2y0!#

D sinh@~x2x0!/A12D2#
G . ~59!

Equation~59! can be obtained from Eq.~56! by shift in they
coordinates. In the limit ofV approaching zero but finiteD,
an equivalent limit is obtained. WhenV2,1 the limit D
→0 yields an expression

FIG. 3. Two-dimensional spin configuration obtained after E
~57!; see text.
f5p/22tan21F V

A12V2

sinh@A12V2~y2y0!#

V sinh~x2x0! G ,

~60!

which is reduced to the closure domain Eq.~39! after the
substitutionA12V2/V5v. The closure domain configura
tions may also be obtained from Eqs.~53!, ~55!, and~57! by
using a shift iny coordinates by one quarter of the period
elliptic functionsK(k) whereK(k) is the complete elliptic
integral of the first kind. In the limit of smallV, D/lF

→VA12D2, l fV→D/A12D2, v→1/A12D2, lg8→1

f→tan21F 1

Vg

sin@Dg~x2x0!#

sech@g~y2y0!# G ,
whereg51/A12D2.

We now return to a general discussion of the domain c
figurations. Another interesting solution would be to co
sider configurations corresponding to edge domains with
boundary condition of that the spins point up~up! on the left
~right! edges and horizontally in both the top and botto
edge. This is equivalent to impose the boundary conditio

FS 6Lx

2 D→`,

G21S 6Ly

2 D50, ~61!

whereLx and Ly are the sample sizes in thex and y direc-
tions, respectively. The solution we are looking for have
form

f5tan1FD
ds@V~x2x0!,l f #

nc@v~y2y0!,lg# G . ~62!

This corresponds to a solution of the Eq.~19! if we have

V25v2D2~12lg
2!,

D2V2~12l f
2!l f

25v2lg
2,

V2~2l f
221!512v2~2lg

221!. ~63!

Imposing the boundary conditions we havex05y050 and

V
Lx

2
5K~l f !,

v
Ly

2
5K~lg!. ~64!

Inserting this into the above equation we have

S 2K~l f !

Lx
D 2

5S 2K~lg!

Ly
D 2

D2~12lg
2!,

S 2K~l f !

Lx
D 2

~2l f
221!512S 2K~lg!

Ly
D 2

~2lg
221!,

D2S 2K~l f !

Lx
D 2

~12l f
2!l f

25lg
2S 2K~lg!

Ly
D 2

. ~65!

.
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This system of equations must be solved numerically to
tain lg , l f , anda. Then on substitution in equations~64!
we can calculatek andV and this completes our calculus o
the solution of Eq.~6! with the given boundary conditions
This solution for the caseLx5Ly510 is represented in Fig
4.

We can extend our solutions~22! for the closure domains
to the case of a finite sample. The solutions we are look
for have the form

f5tan21FD
sc@V~x2x0!,l f #

sc@v~y2y0!,lg# G . ~66!

This corresponds to a solution of Eq.~19! if we have

V2~12l f
2!5v2a2~12lg

2!,

D2V25v2,

V2~22l f
2!512v2~22lg

2!. ~67!

To impose the boundary conditions we assume that we
dealing with a square lattice with 1<Lx<2Nx , 1<Ly
<2Ny and the defect is centered at (x0 ,y0)5(Nx1 1

2 ,Ny
1 1

2 ). Then we have

V~Nx2 1
2 !5K~l f !,

v~Ny2 1
2 !5K~lg!. ~68!

Inserting this into the above equation we have

S K~l f !

2Nx21D 2

~12l f
2!5S K~lg!

2Ny21D 2

D2~12lg
2!,

S 2K~l f !

2Nx21D 2

~22l f
2!512S 2K~lg!

2Ny21D 2

~22lg
2!,

D2S K~l f !

2Nx21D 2

5S K~lg!

2Ny21D 2

. ~69!

FIG. 4. Two-dimensional spin configuration obtained after E
~62!; see text.
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This system of equations must be solved numerically to
tain lg , l f , andD. Then on substitution in Eq.~68! we can
calculatev and V and this completes our calculus of th
solution of Eq.~6! with the given boundary conditions. Thi
solution for the caseLx5Ly510 is represented in Fig. 5. A
simple approximation of the closure domain solution, E
~60! can be obtained in terms of elementary functions fo
square lattice of dimensionsLx5Ly.10. ForLx5Ly we ex-
pect by symmetry considerations thatl f5lg and V5v.
Then we haveD561. Furthermore forLx5Ly.10 we can
approximatel f5lg'1. Thereforev5V51/&. We have
obtained a simple approximation to Eq.~61!

f5arctanH 6
sinh 1/&~x2x0!

sinh 1/&~y2y0!
J . ~70!

This corresponds to Eq.~22! with B5 1
2 . We have compared

the approximate solution with the exact one for aLx5Ly
510 square lattice and we have found a value of the m
square difference between the azimuthal angles in both s
tions of about 0.08 rad.

D. Edge domains in detail

Quite often good analytic approximations exists for t
solutions of the boundary conditions. We discuss in detail
example of this for the calculation of the parameters of
edge domains in Eq.~53!. As mentioned above, in this cas
tn@V(x2x0)# must be infinite at the vertical boundaries a
cn@vA11kg

2(y2y0),k1g# must be zero at the horizonta
boundaries. Thereforex05y050 and

VA2K/Ja5K~l f !,

vA11kg
2A2K/Jb5K~k1g!. ~71!

For large enough values of the half horizontal and verti
box sizesa and bl f→1, k1g→0 and Eqs.~71! can be ap-
proximated by

.

FIG. 5. Two-dimensional spin configuration obtained after E
~66!; see text.
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VA2K/Ja50.5 ln@16/~12l f
2!#,

vA11kg
2A2K/Jb5p/2. ~72!

From the definition of kg and v, we get vA11kg
2

'AV221. These equations have the simple approxim
solution:

V'A11~p/2b8!2,

D'4Ve2Va8/AV221. ~73!

Here a85A2K/Ja and b85A2K/Jb. The second equation
of Eq. ~73! is obtained directly from the second of Eq.~72!.
We have also solved the boundary conditions numeric
with the bisection algorithm for solving nonlinear equation
The difference between the numerical and approximate
sults is less than 0.01% forV and less than 3% forD. Using
the approximation tn(u,l f)'sinh(u) for l f'1 and
cn(u,k)'cos(u), dn(u,k)'1 for k'0, we obtain f
'tan21@8b8 exp(2a8)sinh(x)cos(py/2b)/p#, where w is
given by w215A2K/J1p2/(8b2)AJ/2K. For the sake of
completeness, we show in Fig. 6~a! the edge domain patter
obtained by using Eqs.~53! and ~73! for the system of 40
340 particles (J52, K50.1J, g50.5J, J521.5J, and the
lattice constanta051). Figure 6~b! shows the results of the
Monte Carlo simulation for this system in zero magne
field. There are other metastable solutions where the pe
in the y direction is smaller. This corresponds to replaci
the factor cos(py/2b) by cos@p(2n11)y/2b#. These type of
solutions exhibit more singularities at the edges and is o
observed experimentally as well as in simulations. An
ample of this is shown in Fig. 7 forn51 (J52, K
50.1333g50.5 for a square lattice of 60360 spins!. More
generally one can considerD andV in Eq. ~51! as the varia-
tional parameters which can be determined by minimiz
the total energy of the system. For the same parameter
that at the end of Sec. II at zero field minimization of t
energy givesV51.024,D50.006, and the energy per pa
ticle Emin528.39035. This energy is close to th
~28.39387! obtained by using the variational approach at
end of Sec. II. From the boundary condition constraint@Eqs.
~73!# we haveV51.032, D50.01, and the energy corre

FIG. 6. Edge domain configuration for a rectangle from a t
soliton solution. The analytic results are in~b!. The finite tempera-
ture Monte Carlo results observed in Ref. 10 are shown in~a!.
te

ly
.
e-

od

n
-

g
as

e

sponding to these parameters isEb'28.371. Therefore the
simple equations~53! and ~73! may be considered as th
reliable starting point for the quantitative investigation of t
edge domain patterns. Minimizing the energy of the clos
domain configuration described by the Eq.~60! we have
Dv'0, Vv50.632, Emin528.49. This result exactly coin
cide with the minimum of the total energy obtained by usi
Eq. ~39! to describe the closure domain configuration. Th
minimum corresponds tov51.235A12Vv

2/Vv . So the
simple formula~39! obtained for the infinite sample may b
used to describe closure domain patterns for finite size
tems provided the system size is not extremely small.

E. Vorticity

The edge domain in case 1 corresponds to configurat
of ‘‘finite vorticity’’ wherein the magnetizations along th
two vertical edges are opposite to each other. Let us cons
now the exact two soliton solution of Eq.~4! corresponding
the configuration with parallel edge domain magnetizati
Keeping in mind that the spins point down at the left a
right edges of the rectangle and horizontally at both the
and bottom edges we find

f5tan21$Dcn@ iV~x2x0!,l f #cn@v~y2y0!,lg#%

5tan21F D

cn@V~x2x0!,k8#
cn@v~y2y0!,lg#G , ~74!

wherek85A12l f
2 and

l f
25

D2@V2~11D2!21#

V2~11D2!2 ,

lg
25

D2~V21D2V21D2!

~11D2!@V2~11D2!1D221#
,

v25
D2V21V21D221

11D2 ,

k82512l f
25

V21V2D21D2

V2~11D2!2 . ~75!

Physically interesting results can be obtained forV2>1/(1
1D2). In this casel f

2>0, v2>0, k82<1, lg
2<1. First con-

sider the limiting behavior of the solution forV251/(1

FIG. 7. Edge domain configuration of zero vorticity with mo
edge singularities.
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1D2). One hask825lg
251, v25D2/(11D2). Taking into

account thatcn(u,1)5sech(u), we find

f~x,y!5tan21F Dch@~x2x0!/A11D2#

ch@D~y2y0!/A11D2#
G . ~76!

To determine the parametersD andV in Eq. ~74!, we assume
that the normal component of magnetization is zero at
boundary of the rectangle. In this casex05y050 and the
boundary conditions have the form

Vxux56a85K~k8!,

vyuy56b85K~lg!. ~77!

We assumeD2!1 so thatk8'1 and lg!1. In this case
K(lg)'p/2, K(k8)' ln(4/l f)50.5 ln(16/l f

2), and the ap-
proximate solution of the equations forV and D coincides
with Eqs. ~73!. Taking into account thatv'p/(2b8), and
for lg!1 the elliptic functioncn(vy,lg)'cos@(py)/(2b8)#,
we find the final expression

f~x,y!'tan21F 4V

AV221
e2a8Vch~Vx!cosS p

2

y

b8D G
'tan21F8b8

p
e2a8ch~x!cosS p

2

y

b8D G . ~78!
t

e

he

An example of such zero vorticity edge domains is shown
Fig. 7.

IV. CONCLUSION

In this paper we have provided details about differen
soliton solutions of the imaginary time sine Gordon equat
and their application and interpretation of different doma
structures. The effect of dipolar interaction is taken as
boundary constraint here but is otherwise not included. T
residual effect of the dipolar interaction is usually slight a
has been discussed recently, with particular emphasiz
multilayer structures.16

ACKNOWLEDGMENTS

This work was supported in part by the Office of Nav
Research under Contract No. N00014-94-1-0213. V.N.R.
knowledges the financial support from the Russian Scie
Foundation through the Grant No. 98-02-16805 and the h
pitality of the Bartol Research Institute. Many valuable d
cussions with Dr. J. W. Tucker are gratefully acknowledg
s

*Electronic address: facastro@usc.es
1G. Prinz, Science1092, 250 ~1990!.
2B. Heinrich and J. F. Cochran, Adv. Phys.42, 524 ~1994!.
3S. T. Chui, Phys. Rev. Lett.74, 3896~1995!.
4S. T. Chui, Phys. Rev. B50, 12 599~1994!.
5A. Berger and H. P. Oepen, Phys. Rev. B45, 12 596~1992!.
6A. Berger and H. P. Oepen, J. Magn. Magn. Mater.121, 102

~1993!.
7S. T. Chui and V. N. Ryzhov, Phys. Rev. Lett.78, 2224~1997!.
8G. Eilenberger,Solitons. Mathematical Methods for Physicis

~Springer-Verlag, New York, 1981!.
9V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pita
 -

vsky,Theory of Solitons~Consultants Bureau, New York, 1984!.
10S. T. Chui and V. N. Ryzhov, J. Magn. Magn. Mater.182, 25

~1998!.
11H. P. Oepen, J. Magn. Magn. Mater.93, 116 ~1991!.
12H. Jeffreys and B. Jeffreys,Methods in Mathematical Physics

~Cambridge University Press, Cambridge 1992!.
13G. L. Lamb, Jr., Rev. Mod. Phys.43, 99 ~1971!.
14R. Hirota, Prog. Theor. Phys.52, 1498~1974!.
15P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals

for Engineers and Physicists~Springer-Verlag, Berlin, 1954!.
16S. T. Chui and V. N. Ryzhov, J. Magn. Magn. Mater.177, 1303

~1998!.


