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Abstract

Surfaces of symmetric diblock copolymers thin films exhibiting non-Gaussian distribution of height are studied by X-ray reflectivity
Ž .and atomic force microscopy AFM . When deposited on a silicon substrate, the surface is essentially flat and its roughness may be

described by a Gaussian distribution of height. Upon annealing, films operate a two-dimensional phase transformation and form islands at
the free surface having height and size that evolve as a function of annealing time. The height probability function cannot be represented
by a Gaussian distribution anymore, and the question that arises is how to take into account the morphology of such surfaces in the
reflectivity calculations. In a first approach, we show that the height distribution function derived from AFM measurements is directly
transferable to analyze X-ray reflectivity curves according to a formalism that we present. In a second part, we determine the height
distribution function from a fit to the observed reflectivity. q 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

X-ray and neutron reflectivity have recently been known
as a veritable explosion of interest in the scientific commu-
nity working on the structural characterization of thin

w xfilms. Dating back to the work of Parratt 1 who initiated
the recursive technique, reflectivity curves are now mainly
analyzed via the matrix technique. More recently, the Born

w xapproximation and the distorted Born approximation 2–6
were used to model the diffuse scattering that is inevitably
observed in off-specular directions as soon as the surface
presents some kind of roughness with correlations between
height fluctuations. A wide variety of surfaces and inter-
faces occurring in nature are well represented by a kind of
roughness associated with self-affine fractal scaling, de-

w xfined by Mandelbrodt 7 in terms of fractional Brownian
motion. An isotropic rough surface can be described by the
mean-square height difference given by:

2² :G R s h r yh O , 1Ž . Ž . Ž . Ž .
Ž .where h r stands for the height of the surface at the

² :in-plane position r and the symbol denotes an ensem-

) Corresponding author.

Ž .ble average. For any physical surface, G R will saturate
to a mean-square roughness s at sufficiently large hori-
zontal lengths, i.e., when R is larger than the roughness

w xcorrelation length j 8,9 . For surfaces in which the
correlation length of the fluctuations of height is smaller
than the coherence length of the beam, the reflectivity
measurements are frequently analyzed by means of two

Ž .quantities such as: 1 the mean-square roughness s of the
surface that produces a deviation of the intensity decay
from the Fresnel reflectivity in the specular direction; and
Ž .2 the height–height correlation function that is the rele-
vant quantity intervening in the analysis of the diffuse
scattering.

This simple description is only possible if the height
distribution of the surface is Gaussian, or if the roughness
is sufficiently weak, i.e., q s-1. In such a description,z

²Ž Ž .only the second moment of the distribution ss h r y
Ž .:.2:1r2

-h r , i.e., the roughness of the surface, is suffi-
cient to model the decay of the specular reflectivity curve.
Although this assumption is frequently acceptable, it hap-
pens that some surfaces can in no way be described by
such a distribution. In such cases, the specular reflectivity

Ž .can only be calculated by means of the probability p z of
finding some points of height z at the surface. Up to now,
little work on X-ray reflectivity has been presented on the
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case of non-Gaussian surfaces mainly because it was diffi-
Ž .cult to access the height probability function p z . With

the recent development of the atomic force microscope
Ž .AFM , it is now possible to extract statistical information

Žof the surface distribution of height, correlation function,
.etc. from microscopy images and to compare with the

results calculated from X-ray scattering measurements
w x Ž .10,11 . In particular, one can precisely define p z and
transfer it in the reflectivity calculation of non-Gaussian
surfaces. It is the purpose of this work to present first, a
formalism to describe the reflectivity of non-Gaussian
surfaces, and second, to examine the validity of such a

Ž .formalism in samples on which the probability p z has
been determined by AFM. In addition, we will show that it

Ž .is possible to deduce p z from a fit to the measured
reflectivity.

The X-ray reflectivity experiments were made at the
Troıka Beam line of the ESRF on diblock copolymer thin¨
films of PS-PBMA, which were annealed at 1508C for 6
min and 4 h. The samples that we have studied were made
by spin-coating a toluene solution of the diblock copoly-
mer on the surface of a flat silicon wafer. Upon annealing,
such materials undergo a two-dimensional phase transfor-
mation in which the surface of the film presents either
holes or islands depending on the initial value of its

w xthickness 12–14 . In this case, the initial thickness of the
˚film which was 400 A, led to the formation of islands, the

height and the size of which were evolving upon the

Ž . Ž .Fig. 1. AFM image of relief domains at the free surface of PSrPBMA diblock copolymer films annealed for 6 min a and 4 h b at 1508C.
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annealing time. Fig. 1 shows the morphology of the film
surface measured by AFM over a square surface of 5=5
mm2 and clearly evidences a huge difference in the statisti-
cal properties of the two surfaces. The height probability

Ž .function p z of these two surfaces is presented in Fig. 2.
It is clear on this figure that, in both cases, the probability
Ž .p z cannot be represented by a Gaussian distribution.

In the Born approximation, the differential scattering
cross-section is the Fourier transform of the correlation
function density–density. For a thin film of a diblock
copolymer presenting a corrugated surface as shown in
Fig. 1, assuming that the material is homogenous, except
for the presence of the surface, the differential cross-sec-

w xtion restricted to the specular direction becomes 14 :
2

1ds r yr r 12 2si cp cp2 y q s yi q zŽ x , y.z si zsr e q H d xd ye ,2 HedV iq iq S Sz z

2Ž .

where r is the classical radius of the electron, S is thee

coherently illuminated area of the sample, and r is the
electron density of either the silicon wafer or the diblock

Ž .copolymer. z x, y defines the height of the surface of the

Fig. 2. Height probability function extracted from the AFM measure-
Ž .ments on PSrPBMA copolymer films annealed for 6 min a and for 4 h
˚Ž .b at 1508C. Note the appearance of the peak at 600 A after 4 h of

annealing.

Ž .film at the coordinates x, y taking the origin of the z
axis on the surface of the substrate. s represents thesi

roughness at the film–substrate interface assuming that the
distribution of height is Gaussian at this interface. The
roughness and the electronic density of the substrate have

˚been determined on the non-annealed film s s3 A,si
y ˚ y3r s0.73 e A and these values were kept fixed for thesi

annealed films. Keeping only the specular part, the above
equation can be written as:

2
1ds r yr r2 2si cp cp2 y q s yi q zz si zsr e q Hd zp z e ,Ž .2edV iq iqspec . z z

3Ž .

Ž .where p z is the probability density function of the
Ž .surface heights of the film. It is clear from Eq. 3 that the

measured reflectivity is only dependent on the Fourier
Ž .transform of the height probability p z . However, note

that the diffuse scattering integrated in the specular direc-
tion is not considered in this calculation. It appears from

Ž .the AFM images Fig. 1 that since the averaged distance
between the islands and the size of the islands are small,
we do not expect diffuse scattering to peak in the specular

Ždirection and it is possible to neglect this quantity such is
w x. Ž .not always the case 3 . As shown by Eq. 3 , the calcula-

tion of the specular reflectivity can be made if one can
Ž .measure the probability function p z , or if one has a

sufficient knowledge of the surface properties, allowing a
close guess of its analytical form. As presented above, the

Ž .measurement of p z is made possible with an AFM that
measures the relative height of the points in a surface.
From the heights measured by AFM, it is straightforward

Ž .to determine p z . Another alternative consists in model-
Ž .ing p z by an analytical form. This is easy for example,

in the case of a grating, in which one knows that the
Žsurface presents two dominating heights the heights of the

. Ž .grooves and of the steps to adjust p z to the X-ray
w xreflectivity data 15 . It is, in principle, also possible to

Ž . Ždevelop the characteristic function w q which is thez
Ž ..Fourier transform of p z as the following series expan-

sion:

q2
zyi q z 2z ² : ² :w q sHd zp z e s1y iq z y z q . . .Ž . Ž .z z 2!

i n
n n² :q z k . 4Ž .

n!

² n:The coefficients of the polynomial z , which can be
fitted to the data, are the moments of the distribution, and
once these coefficients determined a Fourier inversion of
Ž . Ž .w q yields p z . The major drawback of such a calcula-z

tion is that one generally needs many coefficients to
correctly describe a reflectivity curve, and that these coef-
ficients are unknown. We show now on an example how
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we have analyzed our reflectivity curves with help of the
height distribution function.

To ascertain the validity of this method, we have first
measured the height probability of the surface of the
diblock copolymer annealed for 6 min. In such case, it is

Ž .somewhat difficult to predict the functional shape of p z ,
since the surface of the film that was essentially flat before
the annealing is undergoing deep modifications with the
onset of the island growth. The reflectivity curve presented
in Fig. 3a clearly shows some oscillations that would have
been difficult to interpret in an ab initio calculation. With

Ž .the help of the AFM measurements, p z is introduced in
the calculation, and a good agreement is immediately
obtained between the calculated and the observed reflectiv-

˚ y1ities. The calculation begins at Q s0.05 A because ofz

the limitation imposed by the Born approximation. Resolu-
tion effects have been considered by convolving the calcu-

Ž . Ž .Fig. 3. Calculated solid line and observed reflectivities dotted line of
Ž . Ž .PSrPBMA copolymer film annealed for 6 min a and for 4 h b at

˚ y11508C. The calculated curves begin at Q s0.05 A because of thez

limitation fixed by the Born approximation. The calculations have been
done by entering the height probability extract from the AFM measure-
ments shown in Fig. 2.

Ž .Fig. 4. a Height probabilities extracted from the AFM measurement
Ž . Ž .compared to the functional form solid line used in the calculation. b

Ž . Ž .Calculated solid line and observed reflectivities dotted line of a
ŽPSrPBMA copolymer film annealed for 4 h at 1508C compare Fig. 4b

.and Fig. 3b .

lated intensity with a Gaussian resolution function. This
result unambiguously shows that AFM profiles can give,
under certain conditions that we will presume, the same
statistical information as an X-ray reflectivity curve. There
is indeed a restriction that clearly appears in the second
example that we have chosen, i.e., the case of the surface

Ž .of a diblock copolymer annealed for 4 h see Fig. 3b . In
such case, the islands are well formed and have grown
bigger. With our AFM, the size of the image was 5=5
mm2 so that only a few islands were present in this image.

Ž .As a result, the shape of p z was determined only on a
Ž .limited number of islands so that the transfer of p z in

Ž .Eq. 3 did not give a good agreement between the ob-
served and calculated reflectivities. This shows that AFM
and X-ray measurements give the same statistical informa-
tion, provided that the size of the AFM image is large

Ž .enough to produce a stationary condition on p z . In this
case, the main reason of the discrepancy between the two
curves was found in the poor determination of the bottom
height of the film by AFM. As we know, with enough
confidence, the morphology of our film, we have tried to

Ž .include in the calculation a simple functional form p z
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shown in Fig. 4a, consisting of a truncated Lorentzian to
describe the top part of the film, and of a Maxwellian to
describe the bottom part. The observed data are fit into the
model, which leads to an excellent agreement between the
observed and calculated reflectivities as shown in Fig. 4b.

2. Conclusion

In conclusion, we have shown in this letter that the
statistical properties of a surface that are completely con-

Ž .tained in the height probability distribution p z are essen-
tial to describe X-ray reflectivity curves. As a general rule,
we believe that instead of assuming Gaussian distributions,
as is the case in most of the literature, it would be more
suitable to determine the height probability distribution,
either by AFM for simple surfaces, or by assuming some
simple functional forms in more complex systems. We
have indeed evidenced in this study that AFM images that
verify the stationary condition are in full agreement with
X-ray reflectivity curves. However, except if one is inter-
ested in only one interface for which AFM is the ideal
tool, it is frequent that interfaces are buried inside the

Ž .material. Then p z at each interface can only be deter-
mined via a model. This is how it is done when one tries to
define the profile of electron density by using the represen-
tation of interface in terms of slabs. However, in such a

case, the usual methodology is to assume Gaussian distri-
butions which, to our viewpoint, are too restrictive.
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