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Dynamical x-ray diffraction of multilayers and superlattices:
Recursion matrix extension to grazing angles
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A generalized dynamical theory has been developed that extends previous models of x-ray diffraction from
crystals and multilayers with vertical strains to the cases of grazing incidence and/or exit below the critical
angle for total specular reflection. This provides a common description for extremely asymmetric diffraction,
surface~‘‘grazing-incidence’’!, and grazing Bragg-Laue diffraction, thus providing opportunities for the appli-
cations of grazing geometries to the studies of thin multilayers. The solution, obtained in the form of recursion
formulas for~232! scattering matrices for each individual layer, eliminates possible divergences of the~434!
transfer-matrix algorithm developed previously. For nongrazing x-ray diffraction in the Bragg geometry and
for grazing-incidence x-ray specular reflection out of the Bragg diffraction conditions, the matrices are reduced
to scalars and the recursion formulas become equivalent to the earlier recursion formulas by Bartelset al. @Acta
Cryst. A 42, 539~1986!# and Parratt@Phys. Rev.95, 359~1954!#, respectively. The theory has been confirmed
by an extremely asymmetric x-ray-diffraction experiment with a strained AlAs/GaAs superlattice carried out at
HASYLAB. A solution to the difficulties due to dispersion encountered in extremely asymmetric diffraction
measurements has been demonstrated. Finally, the validity of Ewald’s expansion for thin layers and the relation
of the matrix method to the Darwin theory, as well as the structure of x-ray standing waves in multilayers are
discussed.@S0163-1829~98!05408-3#
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I. INTRODUCTION

In recent years x-ray diffraction schemes with grazing
cidence and/or exit angles have attracted particular inte
because of their advantages in the studies of very thin sur
layers of crystals.1–4 Due to the total external reflection e
fect for grazing x rays, the x-ray penetration inside crystal
reduced from the micrometer range down to a few na
meters, thus providing the possibility of studying surfa
structures with atomic depth resolution.

Grazing geometries can be classified into three ma
types ~Fig. 1!: ~i! The coplanar extremely asymmetric di
fraction ~EAD! is realized when the diffraction planes ma
the Bragg angle with the crystal surface and either the in
dent or exit x-ray wave is grazing.5–12 ~ii ! Surface or
‘‘grazing-incidence’’ diffraction13 ~GID! is the geometry
where the Bragg planes are perpendicular to the surface
both the x-ray waves are grazing.14–23 ~iii ! Finally, grazing
Bragg-Laue diffraction~GBL! is a combination of the EAD
and GID. It involves the diffraction from atomic planes in
clined at a small angle to the crystal surface normal, so
the reciprocal lattice vector points outside the crystal at f
degrees to the surface. It is then possible to choose asym
ric diffraction with either grazing incidence or grazing ex
by a small variation in the incidence angle or even to swi
between these two cases within one diffracti
experiment.24,25

All three geometries have found widespread applicat
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in studies of semiconductor crystal surface structures, inc
ing diffusion-induced, ion-implanted, and epitaxial laye
and multilayers, oxidized, etched, and corrugated surfa
etc. ~see Refs. 26–37, Refs. 15,38–51, and Refs. 52–54
EAD, GID, and GBL, respectively!. However, these studie
also indicated the lack of a general diffraction model for t
various grazing geometries.

X-ray diffraction at grazing incidence and/or exit can
treated with the help of either an extended kinematical the
~often called the ‘‘distorted wave Born
approximation’’!,16,19,41,49,55 or extended dynamica
theory.5,6,8,9,11,14,17,22,45,48,51,56–59Both approaches take int
account refraction and specular reflection effects for graz
x rays at crystal surfaces and interfaces. As with ordin
Bragg diffraction, the kinematical theory is applicable to m
saic crystals, to the tails of the Bragg peaks, and to the
fraction from layers thinner than the x-ray extinction dep
This depth decreases to about 10 ML under total exte
reflection conditions for grazing x rays. The application
the perturbation~kinematical! theory to the above-listed
cases is possible due to a small intensity of diffracted x ra
Otherwise the dynamical theory must be applied, wh
takes into account comparable intensities of incident and
fracted waves and their multiple rescattering into each oth

Improvement in the dynamical theory is demanded by
steadily improving quality and increasing complexity
semiconductor heterostructures. However, the majority
theoretical studies have been concerned with perfect crys
4829 © 1998 The American Physical Society
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4830 57S. A. STEPANOVet al.
or with greatly simplified models of defect crystals. Th
problem is that the diffraction from strained crystals in t
case of grazing incidence/exit cannot be analyzed within
standard Takagi-Taupin approach,60,61 which is based on the
assumption that the x-ray wave-field amplitudes vary slow
at interatomic distances so that their second derivatives
be neglected. A new general theory applicable to x-ray
fraction with grazing incidence and/or exit was construc
in a (434) matrix form.45,48,51,56–59~In Refs. 56 and 57 the
rank of matrices was 838 becauses- andp-x-ray polariza-
tions were treated together.! The two different formulations
discussed in these papers, i.e., the differential ma
equations56,57 and the algebraic equations for transf
matrices,45,51,48,58,59are essentially equivalent. The form
approach is more convenient for continuous strain profile
crystals, while the latter one is superior for multilayers. T
transfer matrix~TM! technique is similar to the (232) ma-
trix solution for grazing incidence x-ray specular reflecti
of multilayers found by Abeles.62

Unfortunately, both the differential and algebraic versio
of the (434) matrix technique may suffer from serious n
merical problems in their computer implementation. In ad
tion, the TM theory makes use of Ewald’s expansion

FIG. 1. Diffraction geometries with x-ray grazing incidenc
and/or exit.~a! coplanar extremely asymmetric diffraction~grazing-
incidence case!, ~b! grazing-incidence diffraction, and~c! grazing
Bragg-Laue diffraction. Vectorsk0 , ks, and kh denote incident,
specularly reflected, and diffracted waves, respectively;h is the
reciprocal lattice vector corresponding to the Bragg planes,F0 ,
Fh , andw are the angles ofk0 , kh , andh, respectively, with the
surface;uB is the Bragg angle.
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x-ray wave fields in an infinite crystal, whose applicability
thin layers must be established. The aim of the present p
is to reformulate the matrix dynamical theory in a recursi
matrix ~RM! form that overcomes the numerical problems
the TM formulation, and to provide an experimental check
the Ewald expansion for thin strained multilayers.

In Sec. II the (434) transfer matrix theory48,58,59of x-ray
diffraction from multilayers is outlined, and in Sec. III pos
sible numerical problems are demonstrated and explaine

In Sec. IV the theory is reformulated in terms of recursi
formulas for ~232! matrices for individual layers. It is
shown how this approach overcomes the numerical probl
of the ~434! TM algorithm. In Sec. V the reduction of th
matrix recursion formulas to the scalar recursion formulas
Parratt63 and Bartels, Hornstra and Lobeek64 is demonstrated
for x-ray grazing incidence far from the Bragg diffractio
condition and for Bragg diffraction with no grazing waves

In Sec. VI the recursion matrix theory is verified with th
help of the double-crystal EAD measurements taken from
strained AlAs/GaAs superlattice~SL! with known structure
parameters.

In Sec. VII the results of recursion matrix calculations a
compared to those given by the Darwin theory applied
heterostructure diffraction.65 In contrast to our approach, th
Darwin theory does not contain Ewald’s expansion and
rectly sums x-ray scattering of atomic planes. It is shown t
in the case of ordinary Bragg diffraction the results of bo
theories coincide. Further comparisons require an exten
of the Darwin theory to grazing angles, which
forthcoming.66 In Sec. IX the structure of x-ray standin
waves in multilayers is discussed.

We conclude with some possible uses and further ex
sions of the recursion matrix theory.

II. „434… MATRIX THEORY OF MULTILAYER
DIFFRACTION

Let us consider x-ray Bragg diffraction in one of the g
ometries presented in Fig. 1. The crystal is assumed to
multilayer consisting of a stack ofN perfect crystalline lay-
ers with laterally matched lattice spacing. We allow ea
layer to possess its own lattice spacingaz

n in the direction
normal to the surface:az

n5az1Daz
n , whereuDaz

nu!az , and
n is the layer index numbered from the surface of the sta
This model corresponds to a so-called unrelaxed multila
containing no misfit dislocations. Methods to extend th
model to multilayers with misfits are briefly discussed in t
Conclusions~this problem is not completely solved yet!. A
possibility of crystal curvature as a result of strains67 is also
disregarded. That is, we assume that either the multilaye
thin enough or the substrate is thick enough to ignore cur
ture.

Those structures that contain additional amorphous lay
are not considered here for the reason of simplicity, althou
they can be readily included in the model.48,58 For the same
reason, we neglect possible changes in x-ray polarizat
which may occur due to the refraction effects in GID a
GBL. The intermixing ofs and p polarizations was taken
into consideration, for example, in Refs. 56 and 57, but t
effect is shown to be small.68 Our derivations below are car
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57 4831DYNAMICAL X-RAY DIFFRACTION OF MULTILAYER S . . .
ried out for s polarization. The equations can be extend
for p polarization by incorporating cos(2uB) in the x-ray
susceptibilitiesxh andx h̄ .

When Bragg diffraction from atomic planes in a ML wit
variableaz

n is considered, the reciprocal vectorhn associated
with the atomic planes in thenth layer slightly differs from
the mean vectorh because of the deviation of the norm
lattice spacing in the layer:hn5h1DhznZ, where
uDhznu!h, andZ is a unit vector along the internal surfac
normal. We assume the local crystal dielectric susceptib
in each layer to have the same periodicity as thelocal atomic
planes spacing in the layer:

xn~r!5x0
n1xhn

n eihn•~r2rn!1 ifn1x h̄n

n
e2 ihn•~r2rn!2 ifn, ~1!

where the beginning of coordinatesrn is taken at the uppe
layer interface, and the initial phasefn will be chosen later.
For small strains the Fourier coefficientsxhn

n , x h̄n

n can be set

equal to the Fourier coefficientsxh
n , x h̄

n of unstrained
crystal.60

Following the standard Ewald approach to dynamical d
fraction theory, we expand the x-ray wave field in each la
over the sum of the transmitted and diffracted Bloch wa
with wave vectorsk0n and khn5k0n1hn , and amplitudes
D0n andDhn , respectively:69–71

Dn~r!5eik0n•r@D0n1Dhneihn•~r2rn!1 ifn#. ~2!

Under the expansions~1! and~2!, the amplitudesD0n and
Dhn can be treated as constants satisfying the dynamical
fraction equations in each layer:

k0n
2 2k0

2

k0n
2

D0n5x0
nD0n1x h̄n

n
Dhn ,

~3!

khn
2 2kh

2

khn
2

Dhn5xhn

n D0n1x0
nDhn ,

wherek0 andkh are the values of the incident and diffracte
wave vectors in vacuum, respectively~see Fig. 1!.

The lateral components of all vectorsk0n andkhn coincide
because they remain unchanged at refraction and spe
reflection. Then, Eqs.~3! can be expressed in terms of th
normal wave-vector components, which are determined
the incidence and exit angles ~see Fig. 1!:
k0z5k sinF05kg0 , khz5k sinFh5kgh . hzn5kcn

5kc(12Daz
n/a), wherec5h–Z/k522 sinw sinuB . Mak-

ing these substitutions72 and introducing the dimensionles
complex parametersun5k0zn /k we arrive at17,73

~un
22g0

22x0
n!D0n5x h̄n

n
Dhn ,

~4!

@~un1cn!22gh
22x0

n#Dhn5xhn

n D0n .

The transition from Eq.~3! to ~4! makes use of the assump
tion that the difference betweenk0n , khn , and k05kh is
small, so that the former two can be replaced byk in the
denominators at the left side of Eq.~3!. This is the typical
approximation used in most x-ray diffraction theories. It
valid at small deviations from the Bragg conditio
a5(2k0•h1h2)/k2!1, which is well justified for most x-
d
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-
r
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y

ray diffraction experiments, sincea.1 is usually not ac-
cessed experimentally because of low reflectivity on the
tails of Bragg peaks. Thus, the rangea.1 is outside the
scope of our study. For those interested in possible ex
sions of the theory toa.1 ~so-called asymptotic Bragg
diffraction,74 or crystal truncation rod scattering75! the solu-
tion to Eq.~3! and the corrections to boundary conditions
largea were obtained by Caticha.76 In addition, as shown by
Colella77 the cases witha.1 may require analysis in the
framework of multiple Bragg diffraction theory, since th
two-wave approximation~1! and ~2! may become invalid.

The conditionkh
25k0

2 presuming the elastic scattering o
x rays gives59

gh
25~g01c!22a, ~5!

Eq. ~5! implies that the exit angle of a grazing diffracte
wave does not depend on vertical strains.

The values ofun are determined by the dispersion equ
tion, which is the condition for the existence of a solution
Eqs.~4!:

~un
22g0

22x0
n!@~un1cn!22gh

22x0
n#5x h̄n

n
xhn

n . ~6!

Equation~6! is a fourth-degree polynomial equation forun
and has therefore four roots. As shown in Ref. 24, there
always two roots corresponding to x-ray waves with amp
tudes damping out withz @Im(un).0#, and two other roots
corresponding to the waves with amplitudes growing withz
@Im(un),0#. The latter waves are usually treated as be
specularly reflected from the lower interfaces of the laye
We shall assume that the rootsun

j are sorted over descendin
Im(un

j ), so thatj 53,4 correspond to the reflected waves. F
each of the solutions Eqs.~4! give (j 51,...,4)

Dhn
j 5vn

j D0n
j , vn

j 5@~un
j !22g0

22x0
n#/x h̄n

n . ~7!

Proceeding to the boundary conditions at multilayer int
faces, one must choose the parametersfn in a way that
provides a continuous phase of the waves in Eqs.~1! and~2!.
This is provided by the following choice which does n
affect Eqs.~3!–~7!:

fn5 (
k51

n21

hzk~zk
L2zk

U!5 (
k51

n21

hzktk , ~8!

wheretk are the thicknesses of the layers andzk
U,L denote the

coordinates of the upper and lower interfaces,zk
U5zk21

L .
With the substitution of Eq.~8!, the exponents in the expan
sions~1! and ~2! become identical to6*0

zhz(z)dz; they can
also be presented in a more usual notation~compare with
Ref. 60!:

hzn~z2zn
U!1 (

k51

n21

hzktk5hzz1E
0

z

Dhz~z!dz

5hzz2hzE
0

zDaz~z!

a
dz

5hzz2hzu~z!, ~9!
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4832 57S. A. STEPANOVet al.
whereu(z) is the function representing the displacement
atoms from their positions in the Takagi-Taupin theo
Equation~1! with fn given by Eq.~8! is equivalent to the
expansions of the susceptibilityx(r) of strained crystals use
by Takagi60 and, in fact, in the Darwin-like theory of hetero
structure diffraction.65 It does not contain approximation
about slow variations ofx(r) at interatomic distances. As t
expansion~2!, its validity will be discussed in Secs. VI–VIII

The boundary conditions for grazing waves need to
formulated not only for x-ray amplitudes, but also for the
derivatives, which corresponds to accounting for x-ray
fraction and specular reflection effects.14,17,22The transmitted
and diffracted wave field of each layer are matched to th
of the upper and lower adjacent layers. The wave fields in
surface layer are matched at the surface to the follow
vacuum x-ray field which consists of incident, specularly
flected, and diffracted waves with the amplitudesE0 , Es,
andEh , respectively~see Fig. 1!:

Ev~r!5ei k0i•r@E0e
ik0g0z1Ese

2 ik0g0z1Ehe
2 ik0ghz1 ihi•r#.

~10!

The boundary conditions provide four equations for t
x-ray amplitudes at each interface, which can be formula
in the (434) matrix form:45,48,58,59

SvEv5S1D1 ,

S1F1
~L !D15S2F2

~U !D2 , ~11!

. . . . . . ,

SN21FN21
~L ! DN215SNFN

~U !DN ,

HereEv5(E051,0,Es ,Eh) andDn5(D0n
1 , D0n

2 , D0n
3 , D0n

4 )
are the four-component vectors, andSv , Sn , andFn are the
characteristic (434) matrices of the layers:

Sv5S 1 0 1 0

0 1 0 1

g0 0 2g0 0

0 gh 0 2gh

D ,Sn5S 1 1 1 1

vn
1 vn

2 vn
3 vn

4

un
1 un

2 un
3 un

4

wn
1 wn

2 wn
3 wn

4

D ,

~12!

@Fn
j (U,L)# i j 5d i j exp@iun

j kzn
(U,L)#, andwn

j 5vn
j (un

j 1cn).
A direct formal solution to Eqs.~11! is

Ev5Sv
21S1F1S1

21S2F2 . . .SN21
21 SNFN

~U !DN , ~13!

where (Fn) i j 5@Fn
(U)(Fn

(L))21# i j 5d i j exp(2iun
j ktn). After

calculating the matrix product on the right hand of Eq.~13!
and taking into account that the amplitudes of the wa
reflected from the lower interface of a thick substrate la
are zero (D0N

3 5D0N
4 50), one arrives at four linear equation

for four unknown amplitudes:Es , Es , D0N
1 , andD0N

2 . The
other amplitudes are given by Eq.~11!. This is the transfer
matrix solution to the diffraction problem, as suggested
Refs. 48, 58, and 59.
f
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III. NUMERICAL PROBLEMS WITH THE DIRECT „434…

MATRIX SOLUTION

One of the key steps of the direct~434! matrix solution
~13! is the calculation of the matrix product at the right ha
of ~13!. This product diverges for an infinitely thick
multilayer due to the accumulation of large exponents c
tained inFk . In practical computations, the loss of precisio
in adding big numbers exp(2iun

1,2ktn) and small numbers
exp(2iun

3,4ktn) happens when the multilayer thickness
greater than the x-ray extinction depth inside a crystal. A
well known, the x-ray extinction depth at grazing angles c
be as small as a few nanometers, so numerical problems
arise for quite thin structures.

A previous solution to the numerical problems was
follows.58,48 Successively calculating the matrix product
Eq. ~13! from the left to the right, one is traveling from th
crystal surface towards the deeper layers. If the matrix pr
uct becomes great at some layer, it indicates that the x
waves in this layer are very weak and the contribution toEv
coming from the layer’s lower interface and from all th
underlying layers can be neglected. Then, the overflow
overcome since the matrix product is truncated at the up
part of the multilayer. This idea is well understood for
perfect crystal formally subdivided into multilayers. The
Sk

21Sk1151 and the matrix product is the inverted absor
tion factor of x-ray waves:F1F2 ...Fn5@Fn

(L)#21.
The above-described procedure is equivalent to the u

thick crystal approximation~TCA! widely used in the dy-
namical diffraction theory.69–71 That is, the solutions of the
dispersion equation corresponding to the waves grow
with z @Im(un),0# are disregarded for thick crystal plate
However, as soon as the x-ray extinction strongly depe
on the grazing diffraction angles, the number of layers tak
into consideration may vary across a diffraction curve,
that the grazing-case TCA is dynamical. Essentially the sa
idea to overcome the numerical problems was suggeste
Berreman and Macrander57 for their matrix differential dif-
fraction equations of grazing-incidence diffraction.

The application of the dynamical TCA to the transfer m
trix method provided a successful interpretation to t
grazing-incidence diffraction measurements of strain
superlattices.48 However, we have found some cases whe
TCA is unable to avoid numerical failures.

The problem is that the four different x-ray wave mod
(Dn

1 , Dn
2 , Dn

3 , Dn
4) are characterized by different extinctio

lengths inside a crystal and may set different conditions
TCA. This is clearly seen in the case of grazing-inciden
diffraction @Fig. 1~a!#. In the GID conditions, the dispersio
equation~6! always gives a Borrmann wave fieldDn

1 with
wave nodes between the diffraction planes and weak abs
tion, and an anti-Borrmann wave fieldDn

2 with wave nodes
on the diffraction planes and strong absorption.78,22Since the
Borrmann and anti-Borrmann modes are characterized b
strong and a weak interaction with crystal matter, they p
sess different critical angles for total external reflectio
which are lower and higher, respectively, than the usual c
cal angleFc5(x0)1/2. At the exact Bragg position (a50)
the critical angles are14 F1,25(x07xh)

1/2, and for the gen-
eral case the angular areas for total external reflection
shown by the hatched patterns I and II in Fig. 2~a!. The wave
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57 4833DYNAMICAL X-RAY DIFFRACTION OF MULTILAYER S . . .
fields Dn
3 and Dn

4 with Im(u),0 are also Borrmann an
anti-Borrmann modes, and the total reflection areas for th
modes coincide with that of the modes 1 and 2, respectiv
The same consideration is applicable to the grazing Bra
Laue diffraction@see Fig. 2~b!# and to the EAD.

The TCA procedure works well for the areas 0 and II
Fig. 2 where either none or all of the waves are stron
absorbed. In the area I~in the gap between the two critica
angles! the extinction~the penetration depth! for the anti-
Borrmann and Borrmann modes may be of the order of2

Å and 105 Å, respectively. As a result of this great differen
by three orders, the anti-Borrmann mode may give large
ponents in Eq.~13! and require the TCA at a few layers
while the Borrmann mode would require taking into accou
diffraction in the whole multilayer. One cannot use separ
thick crystal approximations for different wave modes b
cause they are coupled via the boundary conditions at

FIG. 2. The angular areas of total external reflection for~a!
grazing-incidence x-ray diffraction and~b! grazing Bragg-Laue dif-
fraction (w521.6°). The calculations are for~220! reflection of
Cu Ka1 radiation from GaAs crystal. Areas denoted 0, I, and
correspond to the total reflection for none, one, and two wave fi
in thick crystal, respectively.F0 is the incidence angle andFh is
the exit angle of diffracted wave,Fc5(x0)1/2 is the critical angle
for total reflection in the absence of the Bragg diffractio
F1,25(x07xh)

1/2 are the critical angles for GID introduced in Re
14.
se
y.
g-

y

x-

t
e
-
e

interfaces: the anti-Borrmann waves are excited in deep
ers by the Borrmann waves.

An illustration to this problem is given in Fig. 3 for~220!
GID of an AlAs/GaAs superlattice consisting of 20 perio
of 73 Å GaAs and 154 Å AlAs on~001! GaAs substrate. The
dotted and thin solid lines in Fig. 3~a! show the reflectivity
curves of GID calculated by the TM method with the TC
applied when the maximum element of the matrix produc
1014 and 1015, respectively. The same lines in part~b! of the
figure show how many layers out of a total of 41 are tak
into account. The curves are plotted as a function of
incidence angle ata50. This is the scan along the diagon
in Fig. 2~a!. The reflectivity curves with different TCA con
ditions coincide atF0,F1 , where all the x-ray waves ar
totally reflected and atF0.F2 , where nothing is totally
reflected. However, they differ in the gap between the t
critical angles where the anti-Borrmann waves are reflec
and the Borrmann ones are not. This proves that the T
procedure is not applicable in this range.

The TCA thresholds used in the above example are
maximum ones achievable with a double-precisionFORTRAN

program where the mantissa is 16 decimal digits. Perform
computations with a longer mantissa may overcome the
of precision in some cases, but cannot solve the problem
principle.

s

FIG. 3. An example of numerical problems that occur with t
transfer matrix method. The calculations are for~220! grazing-
incidence diffraction of Cu Ka1 radiation and an AlAs/GaAs super
lattice @20 periods of 73 Å GaAs and 154 Å AlAs on~001! GaAs
substrate#. The scan is calculated ata50 and corresponds to th
diagonal in Fig. 2~a!. The dotted line and the thin solid line in~a!
show the GID reflectivity calculated by the TM method with th
1014 and 1015 thresholds of the maximum matrix element, respe
tively ~the curves are shifted by20.3 for clarity!. Respective lines
in ~b! show the number of the top layers in the multilayer taken in
account in the calculations. The calculations for different thresho
disagree with each other and with the recursion matrix calculati
@thick solid line in~a!# in the gap between the two critical angles f
total external reflection (F1,F0,F2).
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4834 57S. A. STEPANOVet al.
Thus, the matrix technique must be reformulated in or
to overcome the divergences.

IV. RECURSION „232… MATRIX FORMULAS
FOR MULTILAYER DIFFRACTION

In the following consideration we make use of the a
proach developed by Kohn79 for nongrazing x-ray diffraction
with multiple Bragg- and Laue-case x-ray waves in multila
ers. The Bragg- and Laue-case x rays in that problem ca
viewed as being analogous to the transmitted and refle
waves in our problem. The basic idea by Kohn is that E
~13! diverges because the vacuum amplitudesEv are sought
together with the substrate amplitudesDN . The former am-
plitudes are of the order of 1, while the latter ones can
evanescent in a thick crystal. A better way is to express
reflectivity of a multilayer containingn11 interfaces via
that of a multilayer withn interfaces. Such a recursion mu
converge because the effect of additional lower interfaces
the reflectivity decreases with the distance of the interfa
from the surface.

We start with the following renormalization of the x-ra
amplitudes:80

Dn85Fn
~L !Dn , ~14!

and denotingXn115Sn
21Sn11 . Then, all equations~11! as-

sume the universal form~here and below the primes inDn
are left out!:

Dn5Xn11Fn11Dn11 ,n50,...,N21. ~15!

The amplitudesDn are constant within the layers an
change at the interfaces. Therefore, the interfaces can
treated as ‘‘scatterers’’ for amplitudes. First, let us consi
the scattering at a single interface. For clarity we discuss
crystal surface@Fig. 4~a!#, but our consideration is applicabl
to any internal interface as well. The waves at the left ha
of Eq. ~15! can be classified as two incident and two sc
tered waves. We group them in the vectorsT05(E0 ,0) and

FIG. 4. On the derivation of matrix recursion equations for x-r
diffraction in cases of single heterostructure~a! and multilayer~b!.
Tk andRk denote the two-component vectors containing the am
tudes of transmitted and reflected waves, respectively.
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R05(Es ,Eh), respectively. Also, the waves at the right ha
of Eq. ~15! can be viewed as two transmitted@Im(u1,2).0#
and two incident waves@Im(u3,4),0#. The amplitudes of the
latter waves coming to the surface from the crystal inter
are zero in thick crystals, but we keep them for the gene
case where crystals have internal interfaces. Thus, we g
the waves below the surface as the vectorsT15(D0

1 ,D0
2) and

R15(D0
3 ,D0

4), respectively. Splitting matricesX andF into
four (232) blocks we obtain

S T0

R0
D 5S Xtt Xtr

Xrt Xrr D S F1 0

0 F2
D S T1

R1
D , ~16!

whereF1 and F2 are diagonal matrices containing the i
creasing and decreasing exponential functions, respectiv

Equation~16! enables the ‘‘scattered’’ wavesR0 and T1
to be expressed via the ‘‘incident’’ wavesT0 andR1:

S T1

R0
D 5S Mtt Mtr

Mrt Mrr D S T0

R1
D , ~17!

where

Mtt5~F1!21~Xtt!21,

Mtr52MttXtrF2,

Mrt5Xrt~Xtt!21, ~18!

Mrr 5~Xrr 2MrtXtr !F2.

Equations~18! have a clear physical interpretation. F
example, the blockMrr is responsible for the scattering o
R1 into R0 and the last line in Eq.~18! implies that the
scattering may be a direct transmissionR1→R0 and may be
a multiple scattering processR1→T0→T1→R0. We note
that Eqs.~17! and~18! do not cause any divergences becau
the increasing exponentialsF1 are inverted. In the case of
thick substrate vectorR1 approaches zero, and the
R05MrtT0.

Proceeding to multilayers@Fig. 4~b!#, the solutions of the
scattering problem for multilayers incorporatingn interfaces
and n11 interfaces according to Eq.~13! can be presented
as

S Tn

R0
D 5S Wn

tt Wn
tr

Wn
rt Wn

rr D S T0

Rn
D , ~19!

and

S Tn11

R0
D 5S Wn11

tt Wn11
tr

Wn11
rt Wn11

rr D S T0

Rn11
D , ~20!

respectively. HereWn andWn11 are (232) matrices. At the
same time, according to Eq.~17! the scattering equations fo
interface (n11) are

S Tn11

Rn
D 5S Mn11

tt Mn11
tr

Mn11
rt Mn11

rr D S Tn

Rn11
D . ~21!

The combination of Eqs.~19!–~21! results in the follow-
ing recursion formulas forWn :

i-
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Wn11
tt 5AnWn

tt ,

Wn11
tr 5Mn11

tr 1AnWn
trMn11

rr ,
~22!

Wn11
rt 5Wn

rt1BnMn11
rt Wn

tt ,

Wn11
rr 5BnMn11

rr ,

where it is denoted
An5Mn11

tt ~12Wn
trMn11

rt !21,
~23!

Bn5Wn
rr ~12Mn11

rt Wn
tr !21.

Starting with the crystal surface and progressively app
ing Eqs.~22! to lower interfaces, one arrives at the matric
WN

xy determining the reflectivity of the whole multilayer. Th
recursion matrix~RM! solution does not cause any dive
gences in the numerical calculations. As follows from E
~18!, the order ofMrt is about 1, while the other three block
are small due to the factorsF2 and (F1)21. According to
Eq. ~22!, the same ratio of orders is preserved for the blo
Wxy. Thus, the blockWN

rt is the only one significant for a
thick multilayer and the solution to the diffraction problem
R05WN

rtT0. The other blocks converge to zero at the rec
sions~22!.

The thick solid line on Fig. 3~a! shows the GID reflectiv-
ity calculated by the RM method for the example discus
in the previous section. The RM calculation coincides w
the transfer matrix results in angular areas II and 0. In are
there is a disagreement, because the TM method fails. H
ever, when the TCA threshold in the transfer matrix calcu
tions is increased, the mismatch between the two meth
decreases. A complete coincidence would be achieved if
had a computer with a hypothetically unlimited number
significant digits.

Finally, let us find the x-ray wave-field amplitudesRn and
Tn inside the layers. These are required for the interpreta
of x-ray standing waves81 and diffuse scattering51 in diffrac-
tion from multilayers. Equation ~19! gives
R05Wn

rtT01Wn
rr Rk . However, the direct solution

Rk5(Wn
rr )21(R02Wn

rtT0) leads to uncertainties like 0/0 fo
thick multilayers and one has to make use of recursions
combination of Eqs.~19! and ~21! brings

Rn5~12Mn11
rt Wn

tr!21~Mn11
rr Rn111Mn11

rt Wn
ttT0!,

~24!
Tn5Wn

ttT01Wn
trRn .

Equations~24! must be progressively applied to all the laye
starting at the crystal substrate whereRN50.

V. REDUCTION TO SCALAR RECURSIONS
IN PARTICULAR CASES

A. Reduction to Parratt’s formulas far
from the Bragg diffraction

When the grazing x rays are far away from the Bra
conditions, the x-ray wave field above the surface is redu
to the incidentE0 and specularEs waves only, and the field
in each layer consists of one transmittedDn

1 and one reflected
Dn

2 wave with the wave vectorskn
1,25(6kun ,ki), respec-

tively. Here6un56(g0
21x0

n)1/2 are the solutions to the dis
-
s

.

s

-

d

I,
w-
-
ds
ne
f

n

A

d

persion equation, the order of which is reduced to 2. T
boundary conditions Eq.~11! and Eq.~13! formally remain
in the same form, but all the matrices are now (232). In
particular, the scattering matricesSv andSn are reduced to

Sv5S 1 1

g0 2g0
D , Sn5S 1 1

un
1 un

2D ~25!

and forXn11 andMn11
xy we find

Xn115S an,n11
1 an,n11

2

an,n11
2 an,n11

1 D , ~26!

Mn11
tt 5tn,n11 exp~2 iun11ktn11!,

Mn11
tr 5r n11,n exp~22iun11ktn11!,

~27!

Mn11
rt 5r n,n11 ,

Mn11
rr 5tn11,n exp~2 iun11ktn11!.

Here an,n11
6 5(un6un11)/2un . The parameterstn,n11

5 2un /(un1un11) and r n,n115 (un2un11)/(un1un11)
are the Fresnel transmission and reflection coefficients,
spectively, for the wave incident on the interface from lay
n; tn11,n and r n11,n are those for the wave incident on th
interface from layern11.

Thus, for specular reflection the recursion formulas~22!
become scalar, but they do not have exactly the same form
Parratt’s recursion formulas.63 The difference is that our
equations express the reflectivity of a multilayer consist
of n11 interfaces via that ofn interfaces and the reflectivity
on (n11)th layer, while the Parratt equations connect t
ratio Pn5Rn /Tn with the respective ratioPn11 in the next
layer. The two types of equations are equivalent and can
reduced to each other. For example, the easiest way to ob
the Parratt recursion formulas is to use Eq.~16!:

Pn5
Xn11

rt 1Xn11
rr Fn11

2 ~Fn11
1 !21Pn11

Xn11
tt 1Xn11

tr Fn11
2 ~Fn11

1 !21Pn11

. ~28!

Substituting the explicit form ofXxy we arrive at

Pn5
r n,n111Pn11e22iun11ktn11

11r n,n11Pn11exp~22iun11ktn11!
, ~29!

wherer n,n11 is the Fresnel reflectivity defined above. Equ
tion ~29! is the same as the Parratt recursion equation w
the only difference that we definePn5Rn /Tn at the lower
layer interface, while Parratt used the definition at the mid
of layers. In the general case whereRn andTn are not sca-
lars, the Parratt method is not applicable, while the recurs
equations~22! remain valid.

B. Reduction to Bartels’ formulas
for nongrazing Bragg diffraction

When x rays satisfy the Bragg condition and the incide
and exit angles are not small, one can neglect the spec
x-ray waves. Then, only those solutionsun

j to the dispersion
equation~6! are significant, for which the waves inside cry
tal only slightly deviate from the waves in vacuum:un

j 'g0 ,
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or un
j 1cn'2gh . After discarding unimportant roots an

proceeding from the large parametersun to the small refrac-
tion correctionssn5un2(g0

21x0
n)1/2 in Bragg diffraction,

Eq. ~6! is reduced to the following second-degr
polynomial:25

snS sn2
ãn

2g0
D 1

x h̄n

n
xhn

n

4g0gh
50. ~30!

Here ãn5 a2(x0
n12g0ghDaz

n/a)(11b)/b is the param-
eter determining the deviation of x-rays from the Bragg co
dition in layern, andb5g0 /gh is the asymmetry factor o
the reflection. The roots of Eq.~30! are the well-known so-
lutions of the dynamical diffraction theory:

sn5
~x h̄n

n
xhn

n !1/2

2~g0gh!
1/2

~2yn6Ayn
221!, ~31!

yn52
ãnb1/2

2~x h̄n

n
xhn

n !1/2
. ~32!

As soon as the refraction and specular reflection effe
are small, the boundary conditions can be formulated
x-ray wave amplitudes only, and the solution to t
multilayer diffraction problem is obtained in the gener
form ~13! with (232) scattering matrices. In this case th
explicit form of Sv andSn is

Sv5S 1 0

0 1D , Sn5S 1 1

vn
1 vn

2D , ~33!

and the calculation ofXn11 andMn11
xy is straightforward, but

tedious.
The important practical result is that the recursion form

las ~22! become scalar. Again, as in the case of the spec
reflection problem, our recursion formulas differ from th
by Bartels, Hornstra, and Lobeek,64 who used the recursion
for Pn5Rn /Tn . However, the two types of equations a
equivalent and the formulas by Bartels, Hornstra, a
Lobeek can be obtained using Eq.~28!.

In extremely asymmetric Bragg diffraction where on
one x-ray wave is grazing, the dispersion equation~6! can be
reduced to a third-order polynomial with three roots.59 How-
ever, some of the matrices in Eq.~22! then become (231)
rectangular. The way to handle rectangular matrices in re
sion formulas was discussed by Kohn,79 who solved this
problem for multiple Bragg diffraction with no grazing
rays in multilayers.

VI. EXPERIMENT

Ewald’s expansion~2!, the starting point of our method, i
obviously valid for thick layers~mathematically—for an in-
finite crystal!, while for thin layers composed of a few
atomic planes, a continuous expansion ofDn(r) in a Fourier
integral overh may be required. Thus one has to prove th
using the expansions over the local periodicity of atom
planes gives results that are consistent with experiment
with other theories containing no such assumption.
-

ts
r

l

-
ar
t

d

r-

t
c
nd

In order to give an experimental verification to our theo
we have carried out symmetric and extremely asymme
Bragg diffraction measurements of an AlAs/GaAs super
tice. The sample was a 20-period AlAs/GaAs superlatt
grown on a~100! GaAs substrate by molecular-beam ep
taxy. The thickness of the layers was 154 Å AlAs and 73
GaAs, and the interface roughness was 4 Å, as found
fitting grazing-incidence x-ray specular reflection data of
sample. The multilayer thickness was far below the criti
thickness for the strain relaxation and formation of mis
dislocations. The absence of relaxation was confirmed by
measurements of symmetric 400 Bragg reflection~see be-
low! and asymmetric x-ray topographs~the latter are not
shown here!. Also, no noticeable sample curvature w
found.

The measurements of the superlattice can provide a g
test for the assumption concerning the periodicity of x-r
waves. First, the layers in the SL are as thin as a few mo
layers and, second, a possible deviation of the real wave
from the theory will be accumulated in a resonant way at
SL peaks.

The symmetric 400 Bragg diffraction measurements w
taken in the laboratory using a Philips materials resea
diffractometer~MRD! and CuKa1 radiation from a 2 kW
x-ray tube monochromatized by a Ge~220! Bartels-type
monochromator. The extremely asymmetric diffraction e
periment was carried out at the CEMO beamline of HAS
LAB, DESY. An (n,2n) nondispersive setup was used wi
a Ge double-crystal monochromator~symmetric 311 reflec-
tion! and coplanar asymmetric 311 reflection from t
sample. The asymmetry of the sample Bragg reflection w
varied by changing the x-ray energy around 8.5 keV.

All the data were simulated with the help of the theo
presented in Sec. IV. The experimental angles are introdu
into the theory as follows:59 let a be a unit vector along the
crystal scan axis. When the crystal is rotated rounda through
an angledu, the original wave vectork0

B satisfying the exact
Bragg condition (a50! is changed by a vectordk, which
can be expanded into the two mutually perpendicular vec
c andb, both lying in the plane of rotation:

dk5xc1yb, ~34!

b5k0
B2~k0

B
•a!a, c5@k0

B3a#. ~35!

Then, the conditions:dk52b sin(du/2) and (k0
B1dk)25k2

give

x5~b/c!sin~du!, y522 sin2~du/2!. ~36!

As soon asdk is found, we can calculatea52(dk–h)/k2

andg05g0
B1(dk•Z)/k. The value ofgh is given by Eq.~5!.

Unlike usual Bragg diffraction, accounting for the variatio
in g0 andgh during scans is absolutely necessary in graz
geometries because these parameters may change si
cantly.

For coplanar geometries (a.@k0
B3h#) and small scan

angles (du!1) Eq. ~34! is simplified to
dk'du@k0

B3@k0
B3h##/(khcosuB), which brings the well-

known expression fora522 sin(2uB)du.
The data for the symmetric reflection are presented in F

5. The experiment and the theory are shown by dotted
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solid lines, respectively. The theoretical curve is calcula
using the normal lattice spacing mismat
(Da/a)AlAs52.77531023 in the AlAs layers, as measure
in the precise experiment by Bocchiet al.82 for fully strained
AlAs on GaAs. The general match between the theory
the experiment is good, although the theory overestima
the reflectivity of the12 SL peak. This can be explained b
the effect of 4 Å interface roughness~or by the presence o
transition layers!.83

In the symmetric case the RM calculations perfectly c
incided with the calculations provided by the commerc
Philips software based on the Bartels, Hornstra, and Lob
algorithm.64 This fact is not surprising because the Bart
recursion formulas are a particular case of the RM meth

Figure 6 presents the experiment~dotted lines! and the
theory~solid lines! for the 311 coplanar extremely asymme
ric Bragg reflection from the same sample. The succes
curves correspond to increasing asymmetry of the Bragg
flection which is determined by the differenceuB2umisc be-
tween the kinematical Bragg angle and the miscut of
~311! planes. The actual difference deviates from this va
because of the refraction effects for incident x rays. T
reflection asymmetry was altered by small tilts of the doub
crystal monochromator that caused small changes in the
ergy of incident synchrotron radiation. The upper and
lower three energies correspond to the kinematical Br
condition above and below the total-reflection critical an
for the incident x rays, respectively. In the latter case
extinction length of x rays decreases and the reflectivity
the substrate peakS falls.

The theoretical curves are corrected for a geometrical
tor ~the part of the diffracted intensity measured by the
tector was proportional to the incidence angle because o
large footprint of the incident x-ray beam at the sample s
face! and added to the experimental background.

As we see, the same theory with the same structure
rameters explains both the symmetric and asymmetric x
diffraction experiments. It should be noted that the appli
bility of Ewald’s expansion~2! to asymmetric diffraction is
justified even better than for symmetric diffraction, becau

FIG. 5. A comparison of the recursion matrix theory with e
periment for 400 symmetric reflection of an AlAs/GaAs superl
tice.S and the numbers 0,11, ... mark the substrate Bragg peak a
the different-order superlattice peaks, respectively. The inset sh
the experimental setup with the~220! Bartels monochromator.
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grazing x rays interact with a greater number of atom
planes projected on their path, which results in a sho
extinction depth.

However, the general match between the theory and
experiment in the 311 case is worse than that in the 400 c
It cannot be due to the larger angular range of this sc
becauseuau&0.02, so the approximation used in Eq.~4! is
well justified. Possible explanations for the mismatch can
a greater footprint of incident beam at the sample surfac
asymmetric diffraction~the reflectivity is averaged over
greater surface area!, or a greater sensitivity of EAD to sur
face defects due to a smaller extinction length. Also, it mig
be due to the sensitivity of EAD to the fluctuations of ma
rial density and interface roughness,51 which affect the re-
fraction of grazing x rays.

We have found that an additional source of mismatch
dispersion effects in the (n,2n) scheme applied to EAD
The (n,2n) scheme is dispersion free for conventional g
ometries, because the Bragg curves for different wavelen
possess the same shape and they are simultaneously

-

ws

FIG. 6. Same as in Fig. 5 for 311 extremely asymmetric refl
tion. The insert shows the experimental setup with the doub
crystal monochromator in the nondispersive 311 Bragg posit
The captions above each rocking curve indicate the asymmetr
the reflection at the respective wavelength of synchrotron radia
selected by the monochromator.
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sured at the same deviations from the Bragg angle. T
dispersion effects in two crystals cancel each other. T
does not remain true for extremely asymmetric diffractio
One can see in Fig. 6 that when the incident energy
changed by a small valueDE/E.1023, the curves of asym-
metric diffraction not only shift by the Bragg angle, but al
considerably change their shape. In our case the shape o
Bragg curves depends on the angular distance between
Bragg angle and the critical angle for total external refl
tion. Therefore, the shape of the curves for different wa
lengths is averaged in (n,2n) measurements~the effect is
proportional to the wavelength spread of incident x rays!.

In order to avoid the dispersion effect, we have carr
out an asymmetric diffraction experiment with an addition
four-reflection Si~333! monochromator selecting a narro
wavelength interval. The results are presented on Fig
Clearly, the experiment now tends to be in much be
agreement with the theory.

Thus, we have shown that our theory gives a good ex
nation for both symmetric and extremely asymmetric Bra
reflections from a short-period superlattice containing 13
27 atomic layers of GaAs and AlAs, respectively. Howev
further experiments, especially with thinner layers and x-
standing waves measurements are welcome. These cou
x-ray fluorescence measurements of interface-located a

FIG. 7. Same as in Fig. 6 for the experimental curves measu
with an additional~333! double-reflection monochromator reducin
the wavelength dispersion.
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is
.
is

the
the
-
-

d
l

7.
r

a-
g
d
,
y
be

ms

under Bragg diffraction, which might provide direct informa
tion on the structure of x-ray standing waves~XSW!. Recent
XSW studies of short-period ~AlAs! 3/~GaAs! 7
superlattices81 constitute a step in this direction, but the flu
rescence yield was not interface specific.

VII. COMPARISON WITH THE DARWIN THEORY
OF HETEROSTRUCTURE DIFFRACTION

Since the assumption of the applicability of Ewald’s e
pansion to thin layers is the most critical point of our theo
it is important to compare our results with the Darwin-ty
theory of heterostructure diffraction,65 which contains no as-
sumptions of that kind, but instead directly sums up x ra
scattered from atoms in the individual atomic planes.

Figure 8 presents the results of the RM method for
ideal example discussed by Durbin and Follis.65 The reflec-
tivity of symmetric 400 Bragg diffraction is calculated for
hypothetical structure where a Ge crystal has a surface l
with a linearly increasing lattice parameter. The layer co
sists of 20 000 atomic planes whose spacingan successively
increases towards the surface asan5(11nd)a0, where
n51,...20000,d5531028, anda051.44 Å is the interpla-
nar spacing for~400! planes in Ge. In order to apply ou
method, we formally subdivided the strained layer in
20 000 sublayers and solved the dynamical diffraction pr
lem in each of them. Our resultexactlycoincides with the
Darwin theory calculations, even though one cannot cons
any periodicity at all in a layer consisting of just one atom
plane.

The coincidence of the two theories can be understood
observing that the dynamical diffraction solution automa
cally reduces to the kinematical one for a very thin layer71

Our method thus gives the kinematical scattering of e
plane, and sums up the multiple scattering exactly in
same way as in the Darwin theory.

Retracing the calculation of superlattice diffraction d
cussed in the experimental section, one can subdivide e
layer in the SL into sublayers corresponding to the atom
planes and apply both the Darwin and our theory. The re

d

FIG. 8. Rocking curves of the 400 symmetric reflection for ide
Ge crystal and Ge crystal with linearly strained surface la
@ t520 000a0, an5(11nd)a0, wheren51,...20000,d5531028,
a051.44 Å is the interplanar spacing for~400! in Ge#. The results
of the calculations completely coincide with that calculated by
Darwin method and presented in Ref. 65.
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of our method does not change if the perfect layers are
mally subdivided into monolayers. On the other hand, it
incides with the Darwin theory if the sublayers are atom
planes. Thus, our method gives the same reflectivity as
Darwin method with the advantage that with our approa
the scattering from thick layers is summed up analyticall

The above comparison is restricted by the symme
Bragg case with ordinary incidence and exit angles. Rece
it has been proposed to extend the Darwin theory to graz
incidence and/or exit by treating these cases as mult
Bragg diffraction.66 Then the Darwin theory will also requir
matrix recursion formulas, indicating the fundamental sim
larities of the two approaches.

VIII. X-RAY STANDING WAVES IN MULTILAYERS

The analysis carried out in previous sections has sho
that the RM method gives correct reflectivities for x-ray d
fraction of multilayers. The aim of this section is to prove t
identity between x-ray standing waves in our method a
other theories. The main point is to understand the seem
contradiction between x-ray waves ‘‘hooked’’ by atom
planes in the Ewald expansion~2! used in our method and
‘‘unhooked’’ x-ray standing waves reported by both the D
win and the Takagi-Taupin theories.65,84 That is, the wave
field within a given layer as described by Eq.~2! must have
the periodicity of the atomic planes in that layer, yet o
would not expect the total standing wave field to alwa
follow the periodicity of the individual layers, especial
when it arises primarily from substrate diffraction, for e
ample.

Let us consider a symmetric Bragg reflection from a cr
tal with a strained overlayer of thicknesst as an example
Then, the intensity of XSW can be calculated as

I ~z!5U(
j 51

4

eikun
j z@D0n

j 1Dhn
j eihzn~z2zn

~U !
!1 ifn#U2

, ~37!

where one uses (n51, z1
(U)50, f150! and (n52, z2

(U)5t,
f25hz1t) inside the layer (z,t) and the substrate (z.t),
respectively. Here the amplitudesD0n

j are given by Eqs.~14!
and~24!, andDhn

j are calculated according to Eq.~7!. Since
D0n

j and Dhn
j are constants within the layers and the pha

relation between them oscillates as 1/hzn , the XSW corre-
sponding to each wave mode has the periodicity of lo
atomic planes. However, there is also an interference
tween several wave modes with differentun

j .
Assume that we are interested in the XSW at the in

dence angle corresponding to the substrate Bragg peak
the difference in lattice spacing of substrate and overlaye
large enough to provide a splitting of their Bragg pea
Then, solving the dispersion equation~6! for the overlayer,
we obtain two roots corresponding to a weak coupling
tween D0

j and Dh
j . In the first approximation, one roo

u1'Ag0
21x0 gives the pair of waves (D0

1.1, Dh
1.0) being

the continuation of incident wave in the layer, and the ot
root u2'2Ag0

21x02cn gives the pair (D0
2.0, Dh

2.1)
corresponding to the continuation of the wave diffracted
the substrate. Substituting these roots in the expression
r-
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h

c
ly
g
le

-

n

d
ng

-

s

-

e

l
e-

i-
nd
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.

-

r

y
for

XSW in the layer:

I~z!'ueiku1z@D0
11Dh

2eiP~z!#u2,

~38!

P~z!5k~u22u1!z1hzn~z2zn
~U !!1fn ,

we find that the termihznz is cancelled and the XSW has th
periodicity of atomic planes in the substrate. However, if t
deviation from the Bragg condition for the layer is small, t
amplitudesDh

1 andD0
2 become considerable and the atom

periodicity of layer may compete with that of the substra
To justify this conclusion, we have calculated the XS

for an overlayer consisting of 100 atomic planes on Ge~100!
substrate and the symmetric 400 reflection of CuKa1 radia-
tion. The overlayer was assumed to be stretched out
Da/a51023. Figures 9~a! and 9~b! present the calculated
XSW as a function of thez coordinate for the two angle
(u2uB)569 and (u2uB)521289 corresponding to the
substrate and the overlayer Bragg conditions, respectiv
(uB is the kinematical Bragg angle!. At the substrate Bragg
angle the XSW in the overlayer completely conforms w
the XSW in the substrate, while at the overlayer Bragg c
dition the XSW starts with conformality near the substra
and then it gradually shifts towards the expanded crystal
tice of the overlayer. Near the surface the shift with resp
to the XSW extended from the substrate is as large as a
1/4 of the XSW period. However, we note that in the lat
case the relative intensity of the XSW is rather small. Stro
ger XSW correspond to thicker layers, but then the effec
‘‘hooking’’ becomes evident.

FIG. 9. The structure of x-ray standing waves at 400 symme
Bragg reflection of Cu Ka1 radiation from a Ge crystal with 100
surface monolayers stretched byDa/a51023. Solid line presents
XSW for heterostructure and dashed line shows the substrate X
extrapolated into the layer.~a! at the substrate Bragg peak;~b! at the
overlayer Bragg peak. The depth is measured in Ge monolayers
and SW indicate the surface shift due to stretching and the X
shift, respectively.



In summary, there is good agreement between our meth
di

e
e
m
o
in
u

a

fa
th

h
s

ac
v

un
re
th

in
T
fe
ea
t
M

gg
.
her

ed

M
ing
of

ed

ex-
nd

p-
e

face

n,

ey

4840 57S. A. STEPANOVet al.
and the results of other theories concerning x-ray stan
waves.

IX. CONCLUSIONS

We have presented a recursion matrix theory and exp
mental results on x-ray diffraction from strained multilay
crystals. It has been shown that the RM theory overco
the numerical problems of the former transfer matrix meth
and is generally applicable for ordinary as well as graz
angles of x rays. The RM method has been shown to red
to the scalar recursion formulas by Bartels, Hornstra,
Lobeek64 and by Parratt63 in cases of ordinary~nongrazing!
x-ray diffraction and grazing-incidence x-ray reflection
from the Bragg conditions, respectively. The results of
Darwin theory for multilayer diffraction65 have also been
reproduced, and the behavior of x-ray standing waves
been demonstrated to be in agreement with the prediction
the Darwin and the Takagi-Taupin theories.

The symmetric and extremely asymmetric Bragg diffr
tion experiments with strained AlAs/GaAs superlattice ha
confirmed the RM theory. A dispersion effect has been fo
in the (n,2n)diffraction scheme applied to the measu
ments of extremely asymmetric Bragg diffraction and
necessity of an additional monochromator has been dem
strated in order to suppress this effect.

Extensions of the theory to relaxed multilayers contain
misfit dislocations and lateral strains can be considered.
relaxation is usually characterized by a considerable dif
ence in lateral lattice parameters, so that the Bragg p
from different layers are well resolved and can be trea
independently. Then, in the first approximation, the R
t

.

t
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ng

ri-
r
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of
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e
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e
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ed

theory can be applied independently for each of the Bra
peaks with the assumption of uniformly strained layers85

Then, scattering from strains around dislocations and ot
defects can be calculated as a perturbation86 using the wave
fields given by the RM theory as a basis for the distort
wave Born approximation~DWBA!.

The combination of the wave fields provided by the R
method and the DWBA can also be applied to the scatter
from surface gratings, like, e.g., in the recent analysis
roughness effects on GID.51 The same approach can be us
as well for the scattering from point defects.

Finally, some grazing-incidence x-ray standing waves
periments from strained multilayers are in preparation, a
will be useful tests of the theory.

The results of this study are aimed at stimulating the a
plication of x-ray diffraction schemes with grazing incidenc
and/or exit to semiconductor structure research and sur
science.
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8J. Härtwig, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theo

Gen. Crystallogr.37, 802 ~1981!.
9V. M. Kaganer, V. L. Indenbom, M. Vrana, and B. Chalup

Phys. Status Solidi A71, 371 ~1982!.
10H. R. Höche, J. Nieber, and O. Bru¨mmer, Acta Crystallogr., Sec

A: Found. Crystallogr.42, 585 ~1986!.
11A. M. Afanas’ev and O. G. Melikyan, Phys. Status Solidi A122,

459 ~1990!.
12S. Kimura, J. Harada, and T. Ishikawa, Acta Crystallogr., Sect

Found. Crystallogr.50, 337 ~1994!.
13The name ‘‘grazing incidence’’ is misleading in the context

this paper, since it can be applied to the other two geome
too. However, we keep it as commonly used.
Bo-

v,

es

r.

a,

.

A:

of
ries

14V. G. Baryshevskii, Pis’ma Zh. Tekh. Fiz.2, 112 ~1976! @Sov.
Tech. Phys. Lett.2, 43 ~1976!#.

15W. C. Marra, P. Eisenberger, and A. Y. Cho, J. Appl. Phys.50,
6927 ~1979!.

16G. H. Vineyard, Phys. Rev. B26, 4146~1982!.
17A. M. Afanas’ev and M. K. Melkonyan, Acta Crystallogr., Sect.

A: Found. Crystallogr.39, 297 ~1983!.
18A. L. Golovin, R. M. Imamov, and S. A. Stepanov, Acta Crystal-

logr., Sect. A: Found. Crystallogr.40, 225 ~1984!.
19H. Dosch, B. W. Batterman, and D. C. Wack, Phys. Rev. Lett.56,

1144 ~1986!.
20P. L. Cowanet al., Phys. Rev. Lett.57, 2399~1986!.
21N. Bernhardet al., Z. Phys. B69, 303 ~1987!.
22T. Jach, P. L. Cowan, Q. Shen, and M. J. Bedzyk, Phys. Rev. B

39, 5739~1989!.
23S. M. Durbin and T. Gog, Acta Crystallogr., Sect. A: Found.

Crystallogr.45, 132 ~1989!.
24P. A. Aleksandrov, A. M. Afanas’ev, and S. A. Stepanov, Kristal-

lografiya 29, 197 ~1984! @Sov. Phys. Crystallogr.29, 119
~1984!#.

25P. A. Aleksandrov, A. M. Afanas’ev, and S. A. Stepanov, Phys.
Status Solidi A86, 143 ~1984!.

26A. Fukuhara and Y. Takano, J. Appl. Crystallogr.10, 287~1977!.
27B. K. Tanner and M. J. Hill, J. Phys. D19, L229 ~1986!.
28L. Tapfer and K. Ploog, Phys. Rev. B33, 5565~1986!; 40, 9802

~1989!.



s.

pl

s.

.

ta

l.

tu

.

gr.,

ls

n

e
ce.
-

v-
.

rily,

r.,

57 4841DYNAMICAL X-RAY DIFFRACTION OF MULTILAYER S . . .
29T. Kitano et al., Jpn. J. Appl. Phys., Part 226, L108 ~1987!.
30C. A. Lucaset al., J. Appl. Phys.63, 1936~1988!.
31J. R. Buschertet al., J. Appl. Phys.66, 3523~1989!.
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