Scitation Home  |  AIP Journal Center  |  Article Purchases  |  Table of Contents Alert  |  Feedback Help  |  Exit
JAP Home  Volume:   Page/Article:  Search Browse

arrow Your access to J. Appl. Phys. is provided through the subscription of Central Research Institute. Library Welcome Message Help

[ Previous / Next Abstract | Issue Table of Contents | Bottom of Page ]

Journal of Applied Physics -- July 15, 1998 -- Volume 84, Issue 2, pp. 1003-1028


Full Text:  [  PDF (493 kB)   GZipped PS  ]    Order
Rightslink Permissions for Reuse About Rightslink
view MyArticles
What is this?

Nonspecular x-ray scattering in a multilayer-coated imaging system

D. G. Stearns, D. P. Gaines, and D. W. Sweeney
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550
E. M. Gullikson
Center for X-Ray Optics, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720

(Received 6 January 1998; accepted 11 April 1998)

We present a rigorous theoretical treatment of nonspecular x-ray scattering in a distributed imaging system consisting of multilayer-coated reflective optics. The scattering from each optical surface is obtained using a vector scattering theory that incorporates a thin film growth model to provide a realistic description of the interfacial roughness of the multilayer coatings. The theory is validated by comparing calculations based on measured roughness to experimental measurements of nonspecular scattering from a Mo–Si multilayer coating. The propagation of the scattered radiation through the optical system is described in the context of transfer function theory. We find that the effect of nonspecular scattering is to convolve the image with a point spread function that is independent of the coherence of the object illumination. For a typical soft x-ray imaging system, the scattering within the image field from the multilayer coatings is expected to be slightly greater than for single surfaces (as normalized to the reflectivity). This is because the roughness of the coatings includes both replication of the substrate roughness and the intrinsic roughness of the multilayer growth process. Our analysis indicates that the current multilayer coating technology is capable of producing soft x-ray imaging systems that have acceptably low levels of scattering, provided that the optical substrates are sufficiently smooth.

PII: S0021-8979(98)02214-2
doi:10.1063/1.368098
PACS: 07.85.-m, 42.79.Wc, 42.30.Lr        Additional Information

View ISI's Web of Science data for this article: [ Source Abstract  | Citing Articles  | Related Articles  ]


Full Text:  [  PDF (493 kB)   GZipped PS  ]    Order

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. G. D. Kubiak and D. R. Kania, OSA Trends in Optics and Photonics Vol. 4, Extreme Ultraviolet Lithography (Optical Society of America, Washington, DC, 1996).
  2. E. Spiller, in Soft X-Ray Optics (SPIE, Bellingham, 1994), p. 235.
  3. D. G. Stearns, J. Appl. Phys. 71, 4286 (1992). [ISI]
  4. D. E. Savage, J. Kleiner, N. Schimke, Y.-H. Phang, T. Jankowski, J. Jacobs, R. Kariotis, and M. G. Lagally, J. Appl. Phys. 69, 1411 (1991). [ISI]
  5. V. Holy and T. Baumbach, Phys. Rev. B 49, 668 (1994);
    V. Holy et al., 47, 896 (1993).
  6. A. P. Payne and B. M. Clemens, Phys. Rev. B 47, 2289 (1993). [MEDLINE]
  7. T. Salditt, D. Lott, T. H. Metzger, J. Peisl, G. Vignaud, P. Hoghoj, O. Scharpf, P. Hinze, and R. Lauer, Phys. Rev. B 54, 5860 (1996); [MEDLINE]
    T. Salditt, T. H. Metzger, and J. Peisl, Phys. Rev. Lett. 73, 2228 (1994). [MEDLINE]
  8. J. B. Kortright, J. Appl. Phys. 70, 3620 (1991). [ISI]
  9. R. Paniago, H. Homma, P. C. Chow, S. C. Moss, Z. Barnea, S. S. P. Parkin, and D. Cookson, Phys. Rev. B 52, 52 (1995).
  10. D. R. Lee, Y. J. Park, D. Kim, Y. H. Jeong, and K. B. Lee, Phys. Rev. B. (submitted for publication).
  11. E. L. Church and P. Z. Takacs, Opt. Eng. (Bellingham) 34, 353 (1995); [Inspec] [ISI]
    E. L. Church and P. Z. Takacs, Appl. Opt. 32, 3344 (1993). [SPIN]
  12. J. E. Harvey, Appl. Opt. 34, 3715 (1995); [SPIN] [ISI]
    J. E. Harvey, K. L. Lewotsky, and A. Kotha, Opt. Eng. (Bellingham) 35, 2423 (1996). [SPIN] [ISI]
  13. S. Singh, H. Solak, and F. Cerrina, Rev. Sci. Instrum. 67, 3355 (1996).
  14. M. Born and E. Wolf, in Principles of Optics, 6th ed. (Pergamon, New York, 1987), p. 480.
  15. D. G. Stearns, Appl. Phys. Lett. 62, 1745 (1993). [ISI]
  16. D. G. Stearns, J. Appl. Phys. 65, 491 (1989). [ISI]
  17. B. R. Frieden, in Probability, Statistical Optics, and Data Testing, 2nd ed. (Springer, New York, 1991), p. 75.
  18. For a review see, A. L. Barabasi and H. E. Stanley, in Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995), p. 19.
  19. W. M. Tong and R. S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994). [ISI]
  20. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982). [Inspec]
  21. C. Herring, J. Appl. Phys. 21, 301 (1959). [ISI]
  22. T. Salditt, D. Lott, T. H. Metzger, J. Peisl, R. Fischer, J. Zweck, P. Hoghoj, O. Scharpf, and G. Vignaud, Europhys. Lett. 36, 565 (1996). [Inspec] [ISI]
  23. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986). [MEDLINE]
  24. R. P. U. Karunasiri, R. Bruinsma, and J. Rudnick, Phys. Rev. Lett. 62, 788 (1989). [MEDLINE]
  25. C. Tang, S. Alexander, and R. Bruinsma, Phys. Rev. Lett. 64, 772 (1990). [ISI] [MEDLINE]
  26. J. A. Thornton, Thin Solid Films 45, 387 (1977). [Inspec] [ISI]
  27. R. Messier and J. E. Yehoda, J. Appl. Phys. 58, 3739 (1985). [ISI]
  28. D. J. Miller, K. E. Gray, R. T. Kampwirth, and J. M. Murduck, Europhys. Lett. 19, 27 (1992). [Inspec] [ISI]
  29. E. L. Church, Appl. Opt. 27, 1518 (1988). [SPIN] [ISI]
  30. D. G. Stearns, R. S. Rosen, and S. P. Vernon, J. Vac. Sci. Technol. A 9, 2662 (1991). [ISI]
  31. Y. Cheng, D. J. Smith, M. B. Stearns, and D. G. Stearns, J. Appl. Phys. 72, 5165 (1992).
  32. M. B. Stearns, C.-H. Chang, and D. G. Stearns, J. Appl. Phys. 71, 187 (1992). [ISI]
  33. E. S. Machlin, in An Introduction to Thermodynamics and Kinetics Relevant to Materials Science (Giro, Croton-on-Hudson, 1991), p. 115.
  34. K. H. Muller, Surf. Sci. 184, L375 (1987); [Inspec] [ISI]
    Phys. Rev. B 35, 7906 (1987). [ISI] [MEDLINE]
  35. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988). [MEDLINE]
  36. D. K. G. de Boer, Phys. Rev. B 53, 6048 (1996). [MEDLINE]
  37. D. G. Stearns, M. B. Stearns, Y. Cheng, J. H. Stith, and N. M. Ceglio, J. Appl. Phys. 67, 2415 (1990). [ISI]
  38. Y. Cheng, J. Liu, M. B. Stearns, and D. G. Stearns, Proc. SPIE 1547, 167 (1992).
  39. J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, and W. F. Steele, Rev. Sci. Instrum. 67, 3372 (1996), CD-ROM only.
  40. URL: www-cxro.lbl.gov; B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data Nucl. Data Tables 54, 181 (1993). [Inspec] [ISI]
  41. R. S. Rosen, D. G. Stearns, and S. P. Vernon, Appl. Opt. 32, 6975 (1993). [SPIN] [ISI]
  42. W. C. Sweatt, OSA Trends in Optics and Photonics Vol. 4, Extreme Ultraviolet Lithography, edited by G. D. Kubiak and D. Kania (Optical Society of America, Washington, DC, 1996), p. 178.
  43. G. E. Sommargren and L. Seppala, Appl. Opt. 32, 6938 (1993). [SPIN] [ISI]
  44. E. Spiller, D. Stearns, and M. Krumrey, J. Appl. Phys. 74, 107 (1993). [ISI]
  45. Physical Metallurgy, edited by R. W. Cahn and P. Haasen, 3rd ed. (Elsevier, Amsterdam, 1983), p. 398.
  46. M. Born and E. Wolf, in Principles of Optics, 6th ed. (Pergamon, New York, 1987), p. 51;
    O. S. Heavens, Optical Properties of Thin Films (Dover, New York, 1966).
  47. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980). [Inspec]

  The American Institute of Physics is a member of CrossRef.


Full Text:  [  PDF (493 kB)   GZipped PS  ]    Order

Citing Articles

This list contains links to other online articles that cite the article currently being viewed.
  1. Development of projection optics set-3 for high-numerical-aperture extreme ultraviolet exposure tool (HiNA)
    Tetsuya Oshino et al., J. Vac. Sci. Technol. B 22, 2975 (2004)
  2. Developing a viable multilayer coating process for extreme ultraviolet lithography reticles
    Paul B. Mirkarimi et al., J. Microlithogr. Microfabrication, Microsyst. 3, 139 (2004)
  3. Relevance of technology computer aided design (TCAD) to process-aware design
    Vivek Singh et al., J. Microlithogr. Microfabrication, Microsyst. 1, 290 (2002)
  4. Cross sectional studies of buried semiconductor interfaces by means of photoemission microscopy
    F. Barbo et al., Appl. Phys. Lett. 80, 2511 (2002)
  5. Observation of speckle patterns in extreme ultraviolet imaging
    H. H. Solak et al., J. Vac. Sci. Technol. B 19, 2406 (2001)
  6. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers
    Sasa Bajt et al., J. Appl. Phys. 90, 1017 (2001)
  7. Multilayer coating and test of the optics for two new 10× Microstepper extreme-ultraviolet lithography cameras
    Claude Montcalm et al., J. Vac. Sci. Technol. B 19, 1219 (2001)
  8. Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers
    J. M. Freitag et al., J. Appl. Phys. 89, 1101 (2001)
  9. Investigating the growth of localized defects in thin films using gold nanospheres
    P. B. Mirkarimi et al., Appl. Phys. Lett. 77, 2243 (2000)
  10. Enhancement of perpendicular and parallel giant magnetoresistance with the number of bilayers in Fe/Cr superlattices
    M. C. Cyrille et al., Phys. Rev. B 62, 3361 (2000)
  11. Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics
    D. L. Windt et al., J. Appl. Phys. 88, 460 (2000)
  12. Electron density fluctuations at interfaces in Nb/Si bilayer, trilayer, and multilayer films: An x-ray reflectivity study
    N. Suresh et al., J. Appl. Phys. 87, 7946 (2000)
  13. X-ray scattering study of interfacial roughness correlation in Mo/Si multilayers fabricated by ion beam sputtering
    A. Ulyanenkov et al., J. Appl. Phys. 87, 7255 (2000)
  14. Effects of object roughness on partially coherent image formation
    Neil A. Beaudry et al., Opt. Lett. 25 454 (2000) [SPIN]
  15. Asymmetric extreme ultraviolet scattering from sputter-deposited multilayers
    E. M. Gullikson et al., Phys. Rev. B 59, 13273 (1999)

Full Text:  [  PDF (493 kB)   GZipped PS  ]    Order

[ Previous / Next Abstract | Issue Table of Contents | Top of Page ]

[JAP Home] [All Online Issues: Browse | Search] [SPIN Database: Search] [HELP] [EXIT]

Copyright © American Institute of Physics
Copyright Statement : Rights & Permissions : Permitted/Prohibited Uses