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One-dimensional classical spin systems can support nonlinear excitations referred to as intrinsic localized
spin-wave modes. These entities have internal frequencies which lie outside the spin-wave bands of linear
theory, and are localized by virtue of the intrinsic nonlinearity present in spin systems. By numerical methods,
we have explored collisions between these objects. We explore the influence of a defect on the spectrum of
intrinsic nonlinear spin waves, to find a new class of modes localized at the defect. We also examine the
interaction of a propagating nonlinear mode with the defect, to find rich behavior. The mode may be trans-
mitted with no reflected component, trapped or reflected depending on the strength of the perturbation asso-
ciated with the defect spifS0163-1828)01841-4

I. INTRODUCTION tions and their properties is provided by Kosevich, Ivanov,
and KovaleV, though the ILSM’s just described are not dis-
For many decades, since the work of Bloch in the earlycussed. In the present paper, we address interactions experi-
1930s! it has been known that in Heisenberg magnets, thenced by intrinsic nonlinear spin-wave modes. We first ex-
elementary excitations are spin waves. These extendedmine collisions between two such modes. The behavior we
plane-wave modes control the thermodynamics of such sydind here is complex. There are circumstances where the
tems at low temperatures. In the late 1970s and early 1980snodes emerge from a collision unchanged in shape or form,
attention was directed toward unique aspects of oneand thus behave as solitons. However, more generally, we
dimensional Heisenberg magnets. If the spins are viewed aee spin waves emitted as a consequence of such a collision,
classical objects and suitable anisotropy is present, the equse, in fact, these localized entities interact in a complex man-
tions of motion admit static domain-wall solutions, and so-ner. We provide several examples. In what follows, we use
lutions in which such walls move with finite velocity. That the term soliton to describe these modes on occasion, but the
this is so quite generally had been known much eatlieie  reader should appreciate their interactions are complex.
unique aspect of the one-dimensional spin chain is that the We also place a defect in our one-dimensional line of
excitation energy is on the microscopic scale. Thus, movingpins and find a class of ILSM'’s localized on the defect. We
domain walls may be excited thermally, and contribute to thehen study the interaction of the ILSM solitons with the de-
thermodynamics of the system. At low temperatures, thgect spin, to find very rich behavior. If the perturbation pre-
thermal excitations may be viewed as a dilute soliton gassented by the defect is weak, the soliton passes over it with a
with spin waves present as well. _ ~ transmissivity of unity, though its center-of-mass velocity is
In the recent literature, considerable theoretical attentionyiered. Upon increasing the strength of the perturbation, we
ha; been devoted to obje4c_t§ referred to as intrinsic Io_qahzeﬂsach a regime where the entity is self-trapped. Then a fur-
spin modes(ILSM states.”™ These are localized entities, ther increase in strength of the perturbation takes us into a

ztat?zytlizoii (?fy mtgtei}or;n(t)??slecsaigh:rggm?g) f'grherrii?;rmatttr;domain where the soliton is reflected completely. In this lat-
-d : pin Sy » SO far pnmaty ¢ Ifer regime, the soliton may be trapped between two defects.
tion has been directed toward the one-dimensional line o o : .

One may inquire if one may realize a physical system

classical spins. These entities differ in one important, quali-

tative regard, when compared to the domain-wall structuregescr'bed. by a moFieI Har_mltonlan su.ch as that. employed
discussed some years agVhen the ILSM is at rest, all ere and in our earlier studies. Magnetic superlattices can be

spins in the system are engaged in circular precession, synthesized which meet this requirement. An ultrathin mag-

some frequency) which lies outside the frequency bands netic film ip such a structure is cha_racterized by its _total
associated with the spin waves of linear theory. In contrast tfhagnetizationM(t), which may be viewed as a classical
this, when the domain walls described in the previous parasPin. Two neighboring such “spins” can experience ferro-
graph are at rest, the spins are static. The ILSM states af@agnetic couplings such as contained in our model, by fab-
found to exist forany internal frequency) above the linear fricating a structure with appropriate nonmagnetic films sand-
spin-wave bands, in a model we have studied. For a onewiched between the ferromagnetic films. It is possible to
dimensional line of a finite numbeX of spins, we have synthesize easy-plane ferromagnetic films, with very small
demonstrated previously that for any such frequefigythe  in-plane anisotropy. Thus, the ground state is ferromagnetic,
equations of motion also admit solutions with two, three,with spins in the plane normal to the growth axis of the
four,... intrinsic localized spin-wave modes. superlattice. We consider such a system, with spins pulled
The studies that have appeared to date have explored tlireto ferromagnetic alignment by a magnetic field perpendicu-
properties and nature of these states for various models arar to the easy plane. Note that for a superlattice in this
circumstances. A complete review of localized spin excitaconfiguration, when the moments precess, no intrafilm de-
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magnetizing fields are generated by the spin motion. Thughere is no way of determining its form in advance of actu-
such a superlattice is a physical realization of the model sysally solving the equations of motion. There is no analytical
tem studied here. Other authors have demonstrated thablution to use as a guide, in general. WHens very close
ILSM’'s exist for other model one-dimensional spin to the top of the linear spin-wave bands, we may introduce a
system$:® continuum approximation, and one is led to the nonlinear
This paper is organized as follows. In Sec. Il, we presenSchralinger equatiof.We have proceeded here with the fol-
the model and discuss issues related to solving the equatiof®wying viewpoint. If we choose a set &f,(0) which de-
of motion for moving ILSM solitons. Section Il presents our scribes a form close to but not a perfect representation of a
studies of collisions between moving solitons. Section IVstable ILSM, then at short times this object will shed energy
examines the nonlinear modes localized on a defect, and Seo. the form of spin waves, and settle down into a stable
V the interaction of ILSM solitons with magnetic defects. object, moving with some velocity. The spin waves give
rise to a slightly noisy background. We have found that the

II. INITIAL CONDITIONS AND PROPAGATION following procedure works well over a wide parameter do-
OFE A SINGLE LOCALIZED MODE main. By this last statement, we mean the background noise
THROUGH A PERFECT CHAIN has very small amplitude, after the solution settles down.

] ) ] ) ] The initial conditions are chosen so that the ER). will
We consider a ferromagnetic chain Nfspins described gescribe the propagation of the ILSM through the finite chain
by the Hamiltonian of spins, as just discussed. It is also desirable that for the case
k=0, these initial conditions generate the stationary ILSM
H=-2J> S, Si1+AY (S)2-Ho>, &, (1) familiar from Ref. 5. The best way to proceed, in our expe-

n n n rience, is to generalize to nonzekdhe equation the station-
ary ILSM’s satisfy. Here we make use of the following ob-
servation. Let us assume for the moment that-at0 the
quantity in square brackets on the right-hand side of(Bp.
vanishes. Thus, the initial configuration satisfies

where J>0 is the exchange interaction constaAtjs the
anisotropy constant, arld, is the magnitude of the external
field applied alongz axis. We choseéd positive, which cor-
responds to the case of easy-plane anisotropy. TheHigid
assumed to be large enough so that in the ground state all

spins are ferromagnetically ordered along thexis. The Q5,(0)=5,(0)[V1—]|sp+1(0)]?+ V1—]|s,_1(0)|?]
equation of motion for theth spin is found from
| P ~ {2B$,(0)+[5y1(0)
d -
i S =1, i @ +5,-1(0)Jcosk} VI [s(O)% (4)

After obtaining the commutator of the spin operator with Then, g_iven§n(0) from Eq. (4), we find thgt the equation
the Hamiltonian in Eq(2), we treat operatorS, as classical dSh/d7=—sink(S:1 =8, 1)y1- |sn|* determines the evolu-
vectors of magnitudé To bring the equations of motion tion of the system at Ie_ast during the flrst few tlrln-e.steps..For
into suitable form, we introduce vectcss ands? defined by smalls, it descr_|bes uniform propagation of the initial pr_oflle
st =(Si+iS))/S, st=S%/S. We separate fast scale oscilla- as a whole without changing its shape. The velocity of
tons by writng s in the form s’ =[sX(t) propagation is equal te- 2 sink, as one can see if one writes

n n~ L>n

: (Kne i the equation in the fornds,/d 7+ 2 sink(s,.1—S,-1)/2=0.
y (kn—wt)
+isp(t) ] Y. Then, the complex amplitudes,(t) In numerical calculations we proceed as follows. We find

=sp(t) +isp(t) obeys a solution of stationary Eq4) and use it as an initial con-
q figuration for the full time-dependent E(B). Note thats, is
_S“:-[an_sn( V1= T[sns 12+ V1=[50_1) complex in both equations. The linear spin-wave bands as-
dr sociated with Eq.4) lie in the frequency regior) from

— —2B to 4—2B. For all calculations discussed here we use
+(2Bsy+ (Sn+ 1+ 8n-1)COSK) V1= [/ 7] the anisotropy constarB=4, the same value as in Ref. 5.
—(Sps1—Sn_1)SiNkyVI—[s,]? 3y  Then, the linear spectrum correspondst8<()<—4. We
find that for any value ok Eq. (4) also has localized solu-
with Q=(w—H()/2JS, B=A/J, and 7=(2JS%)t. Here, tions, with frequencies above the linear spin-wave band. The
s is replaced byy1—[s,[?, since the magnitude of, is  amplitude and degree of localization of these solutions are
conserved, and explicit dependence fs on time is now determined not only by}, B, but also byk. Whenk
dropped for the sake of brevity. We use free end boundargquals zero they are the stationary ILSM’s of Ref. X)lIfs
conditions. Therefore, the evolution of the end spins1 close to the linear spin-wave band region, dni$ not too
andn=N is described by Eq3) without the terms,_, for  large, then the amplitude of the ILSM is small and it propa-
n=1 and the terns, ., for n=N. Equation(3) together with  gates without loss of its shape. We first consider a solution of
the boundary conditions constitute the basis of our numericdEq. (4) for N=501 in the form of a single localized excita-
calculations. Supplemented by proper initial conditions, it istion with () =—3.85 andk=0.1. The evolution of this exci-
solved on a computer by fourth-order Runge-Kutta methodtation is illustrated in Fig. 1 where we pl¢s,(7)|? at each
To integrate Eq(3) forward in time, we need an initial set site. The ILSM travels through the chain with a constant
of values fors,(0). So far as we caree, if we assume that speed and reflects elastically from the boundaries. The veloc-
a stable, moving ILSM exists for a given choice@fandk, ity of the propagation is very close to the estimated value
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FIG. 1. The time evolution, as determined by Eg), of the FIG. 3. Collision of two ILSM solitons. Each ha@=—3.85
initial configuration taken as the solution of Bg) in the form of a  andk=0.1, due to the fact that they were obtained by taking as the
single soliton with()=—3.85 andk=0.1. The chain consists of injtial configuration a two-soliton solution of E¢4).

501 identical spins.

the method just outlined, at all future times we are solving
She full equation of motion, Eq(3), for each spin in our
system. The authors of Ref. 7 assusjér) to be real at all
times. They chooss,(0) by requiring the quantities inside
the square brackets of E(B) to vanish. They then project
forward in time by requiring

— 2 sink. The excitation remains stable and shows little sign
of decay even after a very long run.

This method of initialization of the traveling ILSM's
works quite well for frequencie§) close to the top of the
linear spin-wave band and small wave numbderSor larger
)'s but k still small we observe a slowdown, stopping, and
finally reversal of direction of the propagation of the ILSM, ds,
which is in agreement with the results of Ref. 7 for antifer- —=—(Sp41—Sn_1)SiNky1— |5n|2 (5
romagnetic chains. If botf) andk are large in the Eq4), dr
then during the evolution the starting configuration experi-f

ences relaxation int(_) an ILSM with lower am_plitude before itsquare brackets in E¢3) vanishes aall times, and not just
begms_ to move. This process IS accompamed_ by energy '€~ 0. We have checked explicitly whether this assumption is
lease in the form of low amplitude extended spin waves. Th‘%,
remaining localized entity moves freely through the chain ag
pictured in Fig. 2. Clearly, while we have achieved a stabl
ILSM, our initial guess is sufficiently far removed from the
final stable profile that a substantial fraction of the initial
energy is shed by the structure. Note the “Cerenkov wake.
A spectral analysis of this ILSM shows that its frequelfty
has changed and is smaller than the value that was used in IIl. COLLISIONS BETWEEN TWO ILSM'S
Eq. (4) for obtaining the initial envelope. ON THE PERFECT CHAIN

The procedure outlined above differs considerably from
that used in Ref. 7. Once we chose the initial valsjge) by

or all times. Note this procedure assumes the quantity in

alid by using their method to find,(0), butthen solving

he full Eq. (3) for all times. We find the terms in square
rackets to vanish only at short times; one is required to
solve the full time-dependent equation, unfortunately, once
.Ihe initial configuration is chosen.

In this section, we present studies of collisions between
two ILSM’s. In Fig. 3 we show an example of such a colli-
sion. To generate this figure, we have proceeded as follows.
We have a line of 501 spins. We then, fo=0.1 and the
frequency() = — 3.85 (recall the top of the linear spin-wave
band is at)=—4.0), find atr=0 a two-soliton solution of
Eq. (4); as we have demonstrated earfidor the finite line,
multisoliton solutions exist. As we start the integration of Eq.
(3) in time, both ILSM’s in the solution move to the right at

o f” Wi RN the same speed. The rightmost feature reflects off the right
o * qu‘?(i}i '(ﬂ%f ’WWWWW end of the line, and subsequently the two approach each
P e R e . -

02+ el ‘Q‘\WWW@W"‘? s % other and collide. It is evident from the figure that they re

i “WN@&Q’W’W main unchanged in shape.
™ MW/’/‘W ‘ wx“\‘h‘&i“:‘:“m’ o If we regard the two solitons in Fig. 3 as independent
) R o . N
o) / ‘A““&‘” . entities, then each has precisely the same internal frequency

Q, and wave vectok. One may inquire if this is perhaps a
W gy O special case. This does not appear to be so, as we illustrate in
” Fig. 4.
FIG. 2. The same as in Fig. 1, but the value of the wave number At time 7=0, we create two distinct objects as follows.
k is much largerk=0.9. We find a single soliton solution on the line of 501 spins for

440
420 400

Site number, n
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FIG. 4. Collision of two ILSM solitons, one had = —3.90 andk=0.1, and another haQ = —3.95 andk=0. The ILSM solitons are
initiated as two different single-soliton state solutions of Ef).with corresponding parametefs andk.

0 =-3.90 andk=0.1, and then we find a second single internal frequency)= —3.85. We noted earliérthat there
soliton state fo)=—3.95 andk=0 on the same line. We are two distinct solutions of Eq3) for a given choice of).

set ups,(0) by placing theQ) = —3.90 mode on the left side This is because the equation of motion is invariant under
of the line, and the&) = —3.95 mode on the right side of the s,— —s,,. The second differs from the first by a 180° phase
line. The initial configuration is illustrated in Fig(@d. Then  shift. We thus have two ILSM’s which, in some sense, may
we integrate théull equations of motion, Eq2) forward in  be regarded as degenerdte. Ref. 5, the states were studied
time; we cannot use Eq3) because, of course, it assumesin the presence of an external, circularly polarized oscillating
we have a single frequendy and wave vectok everywhere magnetic field in thexy plane. Such a field “splits” these
on the line. When we carry out this calculation, we use théwo states, in a sense discussed in Ref. The collision
three equations of motion, fa&, s, ands;,, respectively. illustrated in Fig. 3 is between two identical ILSM’s. In Fig.

We see in Fig. ®) that the leftmost soliton moves to the 5, we show a collision between an ILSM with = —3.85
right, and approaches the rightmost one, which remains st&nd a second such object with same internal frequency, but
tionary. We see the two collide, and Figfyshows that in  phase shifted by 180°. We now see a complex interaction
the final state, each emerges unchanged in shape. Note tH@tween these two objects. In Fig. 6, we show another ex-
there is one small effect of the interaction. Tke0 mode ample. This is the interaction between an ILSM with an in-
has been displaced very slightly to the left, after the collisionternal frequency of)=—3.90, with a very localized ILSM
has been completed. at rest with()=—2.00. Here the ILSM at rest acts like a

If one looks closely at Fig. @), one sees very small- perfectly reflecting barrier.
amplitude spin waves that have appeared. In our view, to the Interactions between ILSM'’s are, thus, complex in nature.
level of accuracy of our simulation, it is not clear that theseWe do realize, under the circumstances outlined, that these
features are significant. Keep in mind our discussion of Sembjects can behave in a manner similar to solitons, i.e., they
I, where the precise procedure for setting up the spins at pass through each other as if they are noninteracting par-
=0 is not clearly defined. Such very small-amplitude spin
waves may well be a reflection of the fact thatrat0, the
stable ILSM has not quite been depicted accurately.

In Fig. 4, each ILSM has an internal frequency very close
to the top of the linear spin-wave bands. As a consequence of
this, the envelopes of each extends over quite a few lattice
constants. As noted earlier, in this limit, one may use the
continuum approximation, and E¢3) may be mapped into
the nonlinear Schidinger equatiofd. In fact, the envelope
function of each ILSM is reproduced nicely by this con- o«
tinuum approximation. Since the nonlinear Sdlinger P
equation is well known to admit multisoliton solutions, and
these entities are noninteractive, one may suppose the resuli
in Fig. 4 is, thus, expected. However, the internal frequency
of each ILSM in such a multisoliton solution is identical,
while we have two distinctly different internal frequencies
for the objects in Fig. 4. FIG. 5. Collision between two ILSM’s. Each hd3= —3.85

At this point, one is tempted to conclude that the ILSM'S andk=0.1. The initial configuration is same as for Fig. 3, except
have solitonic properties. Further studies show this is not theénhat one of the ILSM’s is phase shifted by 180° with respect to the
case. We return to the case examined in Fig. 3, where thether.

500
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FIG. 8. Envelope functions of stationary ILSM on a perfect spin
chain (showed by dotted line and nonlinear localized mode
trapped on a defect withB/B=0.03. The internal frequency of

ticles. But this behavior is not universal; the interactions maybOth modes id) = - 3.90.

be complex in character.

FIG. 6. Collision of a moving ILSM with low frequency(}=
—3.90) with stationary ILSM with high frequency¥)X= —1.00).

we always have a localized spin-wave mode pushed out of
the top of the spin-wave bands of the linear theory. The local
spin-wave mode thus resides in the frequency region where
the ILSM’s are found, for this sign oAB. For AB<O, a

So f h lored th " £ ILSM solit local mode emerges from the bottom of the spin-wave bands.
o far we have explored the properties ot ILsM SolitonSyypan A, if Qy is the maximum linear spin-wave fre-
on the perfect lattice. Now we place a defect spin right in the

middle of the line. We model the defect as follows. All spins quency, thakdi, of the local mode may be written
on the line continue to interact with the same nearest-
neighbor exchange interactiah For the defect spin, we
change the anisotropy constant fradnto B—AB. A real  where for our model
defect in one-dimensional spin system will have exchange

AQ=2\1+(AB)%-2. (6b)

coupling to neighbors of magnitude different than found in

the host, and the spis may have different magnitude as

well. While such effects are easily included in our model, We find that we have stationary, nonlinear localized mode

without an explicit example in mind, a meaningful choice of solutions where the localized nonlinear mode is localized on

such parameters is problematical. We wish to study the norihe defect. These states can occur when the internal fre-

linear properties of a system which, in linear theory, admits &luency(Q of the localized mode exceefl,, the frequency

localized spin mode above the spin-wave bands in frequencyor localized spin-wave modes in linear theory. FoB/B

We achieve this by simply decreasing the anisotropy con=0.03 we show the spatial form of the nonlinear localized

stant of a selected spin, designated as the impurity. The rénodes in Fig. 7, for several frequencies. These modes have a

sulting model then has just one parameter. spatial profile quite similar to the ILSM'’s on the perfect line,
In the theory of the linearized excitations, whai>0, but have smaller amplitudes, as we see from Fig. 8, where

IV. NONLINEAR SPIN-WAVE MODES LOCALIZED
AT DEFECTS

Qo= Oy+AQ, (6a)
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FIG. 9. Dependence of the amplitude of nonlinear mode local-
ized at a defect site on the value of the defect perturbation. The
frequency of the mode i€ = —3.85.

FIG. 7. Nonlinear modes localized at a defect for whicB/B
=0.03. We show modes for the following frequenciga) ()
=-3.60,(b) =-3.80,(c) 2=—3.85, and(d) Q=—3.90.
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FIG. 10. Propagation of an ILSM soliton witlf=—3.85 FIG. 12. Propagation of an ILSM soliton witl =—3.85
through the spin chain with a defect. The defect spin is at site 251through the spin chain with a defect. The defect spin is at site 251,
and has the valuAB/B=0.01. and has the valuAB/B=0.07.

we make a comparison between the two. The amplitude oRgain have a line of 501 spins, with the defept at site 251.
the nonlinear mode localized at a defect depends on the !N Fig. 10, we show the ILSM soliton passing by a defect
value of the perturbation associated with the defect. We jl€haracterized by a very small value 8/8, AB/B=0.01.
lustrate this dependence in Fig. 9. The soliton passes over the defect, with no reflected pulse.
In Fig. 9, we show the following. For smallB/B, we set Clearly, its center-of-mass velocity has decreased rather ap-
up a localized ILSM, trapped on the defect. Then we exambreciably. If one looks carefully at the figure, one sees no
ine the amplitude on the impurity of the ILSM, aB/B is evidence of spin waves shed by the ILSM before collision.
increased in magnitude with the internal frequency of thefterward, however, one sees distinct small-amplitude exci-
localized ILSM held fixed. We havAB/B positive always, tatl_ons spread over the chain, outside the reg|on_0f _the ILSM
so we have a defect which supports a localized spin-wav&°!iton. So far as we can see, we have no excitation at the
mode in linear theory. We see that AB/B increases in site of the defect, after thg ILSM_sqhton has passed by_. Evi-
magnitude, the amplitude of the localized ILSM decreasesdently the slowdown has its origin in the energy shed in the
to vanish wherf),, equals its internal frequendy. We find  form of spin waves. FOAB/B=0.0075, the slowdown is.
no localized, nonlinear modes whéh< Q.. We now turn less pronounced, and the amplitude of the spin waves excited

to our studies of the interactions of propagating ILSM’s with &ftér the collision is much smaller. .
the defect. As AB/B increases further, we enter a regime where the

“radiative loss” of energy by the ILSM soliton is sufficient
for this entity to become trapped on the defect. We illustrate
this in Fig. 11 where we havAB/B=0.015. So far as we
can tell from the simulations, the trapped enfjyesumably

In the previous section, we saw that in the presence of & localized ILSM such as that discussed in preViOUS Se)Ction
defect in the spin chain, we may have localized ILSM exci-has an infinite lifetime. Clearly, it is perturbed periodically
tations, trapped on the defect. In this section, we study th®Y interaction with the “spin-wave radiation” reflected from
interaction of moving ILSM’s with the same defect. We il- the ends of the chain. ASB/B increases yet further, how-
lustrate the various characteristic regions through a sequen&er not exceeding the limit whet@,. exceeds(), we see
of figures. In all figures, the frequency of the propagatingthe build up of a reflected ILSM. In Fig. 12, whereB/B
ILSM is set at()=—3.85, and its wave vectdk=0.1. We
will vary the ratio AB/B, as we study the interactions. We

V. INTERACTION OF PROPAGATING ILSM MODES
WITH THE DEFECT

Is_[?

Is 2

FIG. 11. Propagation of an ILSM soliton witl)=—3.85 FIG. 13. Propagation of an ILSM soliton with)=—3.85
through the spin chain with a defect. The defect spin is at site 251through the spin chain with a defect. The defect spin is at site 251,
and has the valuAB/B=0.015. and has the valuAB/B=0.35.
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=0.07, we see well-defined reflected ILSM solitons, withinitial condition. We conclude that in the collisions with each
energy stored continuously near the defect site, in the fornother, ILSM’s can exhibit solitonic properties, as illustrated
of a localized ILSM soliton. Notice that the propagating soli- by the examples provided. That is, they preserve their shape,
ton is trapped between the defect, and the end of the chaigpeed, and identity after the collision. Generally, however,
Clearly, one could trap such a mode between two defects. the interactions can be complex. It is possible to have sta-
As we saw in the previous section, when the internal fretjonary nonlinear localized excitation centered at the defect
quency is fixed, and},,; exceedd), the defect fails to sup-  sjte. The internal frequency of this excitation has to be
port a nonlinear ILSM. In this regime, the ILSM soliton is greater than the frequency of corresponding linear localized
reflected off the defect; the reflection appears elastic, in th&,y4e The interaction of a moving ILSM with defects has
sense that in the simulations we see no evidence for radiateflerse and rich character, depending on the relation of the
Spin Waves. We_ lllustrate this n F_|g. 13. . internal frequency of the ILSM to the local mode frequency
i b o s oo S ey Inar spv-tave thony. 0=, 50 tat saonary
frequency region above the spin-wave bands. We find n%inmear localization is not allowed on the defect_, the trav-
localized nonlinear ILSM's as well. We find fakB/B<0 ling ILSM reflects elastlcally from the o_lefect spin. In the
. . ' range of the defect perturbations, for which nonlinear local-
the propagating ILSM is fully reflected from the defect, BVen; ation is possible, we observe a strong interaction between a

WwhenAB/B is as s_ma_\ll as—O._OO75. The Interaction has an traveling ILSM and a stationary nonlinear mode localized on
appearance very similar to Fig. 13. In this section, we havt?he defect

explored the interaction of ILSM solitons with defects, to
find the rich behavior outlined above.
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