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Intrinsic localized spin waves in classical one-dimensional spin systems: Studies
of their interactions
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One-dimensional classical spin systems can support nonlinear excitations referred to as intrinsic localized
spin-wave modes. These entities have internal frequencies which lie outside the spin-wave bands of linear
theory, and are localized by virtue of the intrinsic nonlinearity present in spin systems. By numerical methods,
we have explored collisions between these objects. We explore the influence of a defect on the spectrum of
intrinsic nonlinear spin waves, to find a new class of modes localized at the defect. We also examine the
interaction of a propagating nonlinear mode with the defect, to find rich behavior. The mode may be trans-
mitted with no reflected component, trapped or reflected depending on the strength of the perturbation asso-
ciated with the defect spin.@S0163-1829~98!01841-4#
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I. INTRODUCTION

For many decades, since the work of Bloch in the ea
1930s,1 it has been known that in Heisenberg magnets,
elementary excitations are spin waves. These exten
plane-wave modes control the thermodynamics of such
tems at low temperatures. In the late 1970s and early 1982

attention was directed toward unique aspects of o
dimensional Heisenberg magnets. If the spins are viewe
classical objects and suitable anisotropy is present, the e
tions of motion admit static domain-wall solutions, and s
lutions in which such walls move with finite velocity. Tha
this is so quite generally had been known much earlier.3 The
unique aspect of the one-dimensional spin chain is that
excitation energy is on the microscopic scale. Thus, mov
domain walls may be excited thermally, and contribute to
thermodynamics of the system. At low temperatures,
thermal excitations may be viewed as a dilute soliton g
with spin waves present as well.

In the recent literature, considerable theoretical atten
has been devoted to objects referred to as intrinsic local
spin modes~ILSM states!.4–6 These are localized entities
stabilized by the intrinsic anharmonicity inherent in t
equations of motion of the spin system; so far primary att
tion has been directed toward the one-dimensional line
classical spins. These entities differ in one important, qu
tative regard, when compared to the domain-wall structu
discussed some years ago.2 When the ILSM is at rest, al
spins in the system are engaged in circular precession
some frequencyV which lies outside the frequency band
associated with the spin waves of linear theory. In contras
this, when the domain walls described in the previous pa
graph are at rest, the spins are static. The ILSM states
found to exist forany internal frequencyV above the linear
spin-wave bands, in a model we have studied. For a o
dimensional line of a finite numberN of spins, we have
demonstrated previously that for any such frequencyV, the
equations of motion also admit solutions with two, thre
four,... intrinsic localized spin-wave modes.5

The studies that have appeared to date have explored
properties and nature of these states for various models
circumstances. A complete review of localized spin exc
PRB 580163-1829/98/58~17!/11458~7!/$15.00
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tions and their properties is provided by Kosevich, Ivano
and Kovalev,7 though the ILSM’s just described are not di
cussed. In the present paper, we address interactions ex
enced by intrinsic nonlinear spin-wave modes. We first
amine collisions between two such modes. The behavior
find here is complex. There are circumstances where
modes emerge from a collision unchanged in shape or fo
and thus behave as solitons. However, more generally,
see spin waves emitted as a consequence of such a colli
so, in fact, these localized entities interact in a complex m
ner. We provide several examples. In what follows, we u
the term soliton to describe these modes on occasion, bu
reader should appreciate their interactions are complex.

We also place a defect in our one-dimensional line
spins and find a class of ILSM’s localized on the defect. W
then study the interaction of the ILSM solitons with the d
fect spin, to find very rich behavior. If the perturbation pr
sented by the defect is weak, the soliton passes over it wi
transmissivity of unity, though its center-of-mass velocity
altered. Upon increasing the strength of the perturbation,
reach a regime where the entity is self-trapped. Then a
ther increase in strength of the perturbation takes us in
domain where the soliton is reflected completely. In this l
ter regime, the soliton may be trapped between two defe

One may inquire if one may realize a physical syste
described by a model Hamiltonian such as that emplo
here and in our earlier studies. Magnetic superlattices ca
synthesized which meet this requirement. An ultrathin m
netic film in such a structure is characterized by its to
magnetizationM (t), which may be viewed as a classic
spin. Two neighboring such ‘‘spins’’ can experience ferr
magnetic couplings such as contained in our model, by f
ricating a structure with appropriate nonmagnetic films sa
wiched between the ferromagnetic films. It is possible
synthesize easy-plane ferromagnetic films, with very sm
in-plane anisotropy. Thus, the ground state is ferromagne
with spins in the plane normal to the growth axis of t
superlattice. We consider such a system, with spins pu
into ferromagnetic alignment by a magnetic field perpendi
lar to the easy plane. Note that for a superlattice in t
configuration, when the moments precess, no intrafilm
11 458 ©1998 The American Physical Society
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magnetizing fields are generated by the spin motion. Th
such a superlattice is a physical realization of the model s
tem studied here. Other authors have demonstrated
ILSM’s exist for other model one-dimensional sp
systems.6,8

This paper is organized as follows. In Sec. II, we pres
the model and discuss issues related to solving the equa
of motion for moving ILSM solitons. Section III presents o
studies of collisions between moving solitons. Section
examines the nonlinear modes localized on a defect, and
V the interaction of ILSM solitons with magnetic defects.

II. INITIAL CONDITIONS AND PROPAGATION
OF A SINGLE LOCALIZED MODE

THROUGH A PERFECT CHAIN

We consider a ferromagnetic chain ofN spins described
by the Hamiltonian

Ĥ522J(
n

Sn•Sn111A(
n

~Sn
z!22H0(

n
Sn

z , ~1!

where J.0 is the exchange interaction constant,A is the
anisotropy constant, andH0 is the magnitude of the externa
field applied alongẑ axis. We choseA positive, which cor-
responds to the case of easy-plane anisotropy. The fieldH0 is
assumed to be large enough so that in the ground stat
spins are ferromagnetically ordered along theẑ axis. The
equation of motion for thenth spin is found from

i\
dSn

dt
5@Sn ,Ĥ#. ~2!

After obtaining the commutator of the spin operator w
the Hamiltonian in Eq.~2!, we treat operatorsSn as classical
vectors of magnitudeS. To bring the equations of motion
into suitable form, we introduce vectorssn

1 andsn
z defined by

sn
15(Sn

x1 iSn
y)/S, sn

z5Sn
z/S. We separate fast scale oscill

tions by writing sn
1 in the form sn

15@sn
x(t)

1 isn
y(t)#ei (kn2vt). Then, the complex amplitudesn(t)

5sn
x(t)1 isn

y(t) obeys

dsn

dt
5 i @Vsn2sn~A12usn11u21A12usn21u2!

1~2Bsn1~sn111sn21!cosk!A12usnu2#

2~sn112sn21!sin kA12usnu2 ~3!

with V5(v2H0)/2JS, B5A/J, and t5(2JS/\)t. Here,
sn

z is replaced byA12usnu2, since the magnitude ofsn is
conserved, and explicit dependence ofsn’s on time is
dropped for the sake of brevity. We use free end bound
conditions. Therefore, the evolution of the end spinsn51
andn5N is described by Eq.~3! without the termsn21 for
n51 and the termsn11 for n5N. Equation~3! together with
the boundary conditions constitute the basis of our numer
calculations. Supplemented by proper initial conditions, i
solved on a computer by fourth-order Runge-Kutta meth

To integrate Eq.~3! forward in time, we need an initial se
of values forsn(0). So far as we cansee, if we assume tha
a stable, moving ILSM exists for a given choice ofV andk,
s,
s-
at

t
ns

ec.
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ry
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s
.

there is no way of determining its form in advance of ac
ally solving the equations of motion. There is no analytic
solution to use as a guide, in general. WhenV is very close
to the top of the linear spin-wave bands, we may introduc
continuum approximation, and one is led to the nonline
Schrödinger equation.4 We have proceeded here with the fo
lowing viewpoint. If we choose a set ofsn(0) which de-
scribes a form close to but not a perfect representation
stable ILSM, then at short times this object will shed ener
in the form of spin waves, and settle down into a sta
object, moving with some velocityv. The spin waves give
rise to a slightly noisy background. We have found that
following procedure works well over a wide parameter d
main. By this last statement, we mean the background n
has very small amplitude, after the solution settles down

The initial conditions are chosen so that the Eq.~3! will
describe the propagation of the ILSM through the finite ch
of spins, as just discussed. It is also desirable that for the
k50, these initial conditions generate the stationary ILS
familiar from Ref. 5. The best way to proceed, in our exp
rience, is to generalize to nonzerok the equation the station
ary ILSM’s satisfy. Here we make use of the following o
servation. Let us assume for the moment that att50 the
quantity in square brackets on the right-hand side of Eq.~3!
vanishes. Thus, the initial configuration satisfies

Vsn~0!5sn~0!@A12usn11~0!u21A12usn21~0!u2#

2$2Bsn~0!1@sn11~0!

1sn21~0!#cosk%A12usn~0!u2. ~4!

Then, givensn(0) from Eq. ~4!, we find that the equation
dsn /dt52sink(sn112sn21)A12usnu2 determines the evolu
tion of the system at least during the first few time steps.
smallsn it describes uniform propagation of the initial profi
as a whole without changing its shape. The velocity
propagation is equal to22 sink, as one can see if one write
the equation in the formdsn /dt12 sink(sn112sn21)/2'0.

In numerical calculations we proceed as follows. We fi
a solution of stationary Eq.~4! and use it as an initial con
figuration for the full time-dependent Eq.~3!. Note thatsn is
complex in both equations. The linear spin-wave bands
sociated with Eq.~4! lie in the frequency regionV from
22B to 422B. For all calculations discussed here we u
the anisotropy constantB54, the same value as in Ref. 5
Then, the linear spectrum corresponds to28,V,24. We
find that for any value ofk Eq. ~4! also has localized solu
tions, with frequencies above the linear spin-wave band.
amplitude and degree of localization of these solutions
now determined not only byV, B, but also byk. When k
equals zero they are the stationary ILSM’s of Ref. 5. IfV is
close to the linear spin-wave band region, andk is not too
large, then the amplitude of the ILSM is small and it prop
gates without loss of its shape. We first consider a solution
Eq. ~4! for N5501 in the form of a single localized excita
tion with V523.85 andk50.1. The evolution of this exci-
tation is illustrated in Fig. 1 where we plotusn(t)u2 at each
site. The ILSM travels through the chain with a consta
speed and reflects elastically from the boundaries. The ve
ity of the propagation is very close to the estimated va
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11 460 PRB 58S. RAKHMANOVA AND D. L. MILLS
22 sink. The excitation remains stable and shows little sig
of decay even after a very long run.

This method of initialization of the traveling ILSM’s
works quite well for frequenciesV close to the top of the
linear spin-wave band and small wave numbersk. For larger
V’s but k still small we observe a slowdown, stopping, a
finally reversal of direction of the propagation of the ILSM
which is in agreement with the results of Ref. 7 for antife
romagnetic chains. If bothV andk are large in the Eq.~4!,
then during the evolution the starting configuration expe
ences relaxation into an ILSM with lower amplitude before
begins to move. This process is accompanied by energy
lease in the form of low amplitude extended spin waves. T
remaining localized entity moves freely through the chain
pictured in Fig. 2. Clearly, while we have achieved a sta
ILSM, our initial guess is sufficiently far removed from th
final stable profile that a substantial fraction of the init
energy is shed by the structure. Note the ‘‘Cerenkov wak
A spectral analysis of this ILSM shows that its frequencyV
has changed and is smaller than the value that was use
Eq. ~4! for obtaining the initial envelope.

The procedure outlined above differs considerably fr
that used in Ref. 7. Once we chose the initial valuessn(0) by

FIG. 1. The time evolution, as determined by Eq.~3!, of the
initial configuration taken as the solution of Eq.~4! in the form of a
single soliton withV523.85 andk50.1. The chain consists o
501 identical spins.

FIG. 2. The same as in Fig. 1, but the value of the wave num
k is much larger,k50.9.
s
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the method just outlined, at all future times we are solvi
the full equation of motion, Eq.~3!, for each spin in our
system. The authors of Ref. 7 assumesn(t) to be real at all
times. They choosesn(0) by requiring the quantities insid
the square brackets of Eq.~3! to vanish. They then projec
forward in time by requiring

dsn

dt
52~sn112sn21!sin kA12usnu2 ~5!

for all times. Note this procedure assumes the quantity
square brackets in Eq.~3! vanishes atall times, and not just
t50. We have checked explicitly whether this assumption
valid by using their method to findsn(0), but then solving
the full Eq. ~3! for all times. We find the terms in squar
brackets to vanish only at short times; one is required
solve the full time-dependent equation, unfortunately, on
the initial configuration is chosen.

III. COLLISIONS BETWEEN TWO ILSM’S
ON THE PERFECT CHAIN

In this section, we present studies of collisions betwe
two ILSM’s. In Fig. 3 we show an example of such a col
sion. To generate this figure, we have proceeded as follo
We have a line of 501 spins. We then, fork50.1 and the
frequencyV523.85 ~recall the top of the linear spin-wav
band is atV524.0), find att50 a two-soliton solution of
Eq. ~4!; as we have demonstrated earlier,5 for the finite line,
multisoliton solutions exist. As we start the integration of E
~3! in time, both ILSM’s in the solution move to the right a
the same speed. The rightmost feature reflects off the r
end of the line, and subsequently the two approach e
other and collide. It is evident from the figure that they r
main unchanged in shape.

If we regard the two solitons in Fig. 3 as independe
entities, then each has precisely the same internal freque
V, and wave vectork. One may inquire if this is perhaps
special case. This does not appear to be so, as we illustra
Fig. 4.

At time t50, we create two distinct objects as follow
We find a single soliton solution on the line of 501 spins f

er

FIG. 3. Collision of two ILSM solitons. Each hasV523.85
andk50.1, due to the fact that they were obtained by taking as
initial configuration a two-soliton solution of Eq.~4!.
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FIG. 4. Collision of two ILSM solitons, one hasV523.90 andk50.1, and another hasV523.95 andk50. The ILSM solitons are
initiated as two different single-soliton state solutions of Eq.~4! with corresponding parametersV andk.
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V523.90 andk50.1, and then we find a second sing
soliton state forV523.95 andk50 on the same line. We
set upsn(0) by placing theV523.90 mode on the left side
of the line, and theV523.95 mode on the right side of th
line. The initial configuration is illustrated in Fig. 4~a!. Then
we integrate thefull equations of motion, Eq.~2! forward in
time; we cannot use Eq.~3! because, of course, it assum
we have a single frequencyV and wave vectork everywhere
on the line. When we carry out this calculation, we use
three equations of motion, forsn

x , sn
y , andsn

z , respectively.
We see in Fig. 4~b! that the leftmost soliton moves to th

right, and approaches the rightmost one, which remains
tionary. We see the two collide, and Fig. 4~f! shows that in
the final state, each emerges unchanged in shape. Note
there is one small effect of the interaction. Thek50 mode
has been displaced very slightly to the left, after the collis
has been completed.

If one looks closely at Fig. 4~f!, one sees very small
amplitude spin waves that have appeared. In our view, to
level of accuracy of our simulation, it is not clear that the
features are significant. Keep in mind our discussion of S
II, where the precise procedure for setting up the spinst
50 is not clearly defined. Such very small-amplitude sp
waves may well be a reflection of the fact that att50, the
stable ILSM has not quite been depicted accurately.

In Fig. 4, each ILSM has an internal frequency very clo
to the top of the linear spin-wave bands. As a consequenc
this, the envelopes of each extends over quite a few lat
constants. As noted earlier, in this limit, one may use
continuum approximation, and Eq.~3! may be mapped into
the nonlinear Schro¨dinger equation.4 In fact, the envelope
function of each ILSM is reproduced nicely by this co
tinuum approximation. Since the nonlinear Schro¨dinger
equation is well known to admit multisoliton solutions, an
these entities are noninteractive, one may suppose the r
in Fig. 4 is, thus, expected. However, the internal freque
of each ILSM in such a multisoliton solution is identica
while we have two distinctly different internal frequenci
for the objects in Fig. 4.

At this point, one is tempted to conclude that the ILSM
have solitonic properties. Further studies show this is not
case. We return to the case examined in Fig. 3, where
e
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internal frequencyV523.85. We noted earlier,5 that there
are two distinct solutions of Eq.~3! for a given choice ofV.
This is because the equation of motion is invariant un
sn→2sn . The second differs from the first by a 180° pha
shift. We thus have two ILSM’s which, in some sense, m
be regarded as degenerate.~In Ref. 5, the states were studie
in the presence of an external, circularly polarized oscillat
magnetic field in thexy plane. Such a field ‘‘splits’’ these
two states, in a sense discussed in Ref. 5.! The collision
illustrated in Fig. 3 is between two identical ILSM’s. In Fig
5, we show a collision between an ILSM withV523.85
and a second such object with same internal frequency,
phase shifted by 180°. We now see a complex interac
between these two objects. In Fig. 6, we show another
ample. This is the interaction between an ILSM with an
ternal frequency ofV523.90, with a very localized ILSM
at rest withV522.00. Here the ILSM at rest acts like
perfectly reflecting barrier.

Interactions between ILSM’s are, thus, complex in natu
We do realize, under the circumstances outlined, that th
objects can behave in a manner similar to solitons, i.e., t
pass through each other as if they are noninteracting

FIG. 5. Collision between two ILSM’s. Each hasV523.85
and k50.1. The initial configuration is same as for Fig. 3, exce
that one of the ILSM’s is phase shifted by 180° with respect to
other.
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ticles. But this behavior is not universal; the interactions m
be complex in character.

IV. NONLINEAR SPIN-WAVE MODES LOCALIZED
AT DEFECTS

So far we have explored the properties of ILSM solito
on the perfect lattice. Now we place a defect spin right in
middle of the line. We model the defect as follows. All spi
on the line continue to interact with the same neare
neighbor exchange interactionJ. For the defect spin, we
change the anisotropy constant fromB, to B2DB. A real
defect in one-dimensional spin system will have excha
coupling to neighbors of magnitude different than found
the host, and the spins may have different magnitude a
well. While such effects are easily included in our mod
without an explicit example in mind, a meaningful choice
such parameters is problematical. We wish to study the n
linear properties of a system which, in linear theory, admit
localized spin mode above the spin-wave bands in freque
We achieve this by simply decreasing the anisotropy c
stant of a selected spin, designated as the impurity. The
sulting model then has just one parameter.

In the theory of the linearized excitations, whenDB.0,

FIG. 6. Collision of a moving ILSM with low frequency (V5
23.90) with stationary ILSM with high frequency (V521.00).

FIG. 7. Nonlinear modes localized at a defect for whichDB/B
50.03. We show modes for the following frequencies:~a! V
523.60, ~b! V523.80, ~c! V523.85, and~d! V523.90.
y

e

t-

e

,
f
n-
a
y.
-
e-

we always have a localized spin-wave mode pushed ou
the top of the spin-wave bands of the linear theory. The lo
spin-wave mode thus resides in the frequency region wh
the ILSM’s are found, for this sign ofDB. For DB,0, a
local mode emerges from the bottom of the spin-wave ban
WhenDB.0, if VM is the maximum linear spin-wave fre
quency, thatV loc of the local mode may be written

V loc5VM1DV, ~6a!

where for our model

DV52A11~DB!222. ~6b!

We find that we have stationary, nonlinear localized mo
solutions where the localized nonlinear mode is localized
the defect. These states can occur when the internal
quencyV of the localized mode exceedsV loc , the frequency
for localized spin-wave modes in linear theory. ForDB/B
50.03 we show the spatial form of the nonlinear localiz
modes in Fig. 7, for several frequencies. These modes ha
spatial profile quite similar to the ILSM’s on the perfect lin
but have smaller amplitudes, as we see from Fig. 8, wh

FIG. 8. Envelope functions of stationary ILSM on a perfect sp
chain ~showed by dotted line!, and nonlinear localized mode
trapped on a defect withDB/B50.03. The internal frequency o
both modes isV523.90.

FIG. 9. Dependence of the amplitude of nonlinear mode loc
ized at a defect site on the value of the defect perturbation.
frequency of the mode isV523.85.
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we make a comparison between the two. The amplitude
the nonlinear mode localized at a defect depends on
value of the perturbation associated with the defect. We
lustrate this dependence in Fig. 9.

In Fig. 9, we show the following. For smallDB/B, we set
up a localized ILSM, trapped on the defect. Then we exa
ine the amplitude on the impurity of the ILSM, asDB/B is
increased in magnitude with the internal frequency of
localized ILSM held fixed. We haveDB/B positive always,
so we have a defect which supports a localized spin-w
mode in linear theory. We see that asDB/B increases in
magnitude, the amplitude of the localized ILSM decreas
to vanish whenV loc equals its internal frequencyV. We find
no localized, nonlinear modes whenV,V loc . We now turn
to our studies of the interactions of propagating ILSM’s w
the defect.

V. INTERACTION OF PROPAGATING ILSM MODES
WITH THE DEFECT

In the previous section, we saw that in the presence
defect in the spin chain, we may have localized ILSM ex
tations, trapped on the defect. In this section, we study
interaction of moving ILSM’s with the same defect. We
lustrate the various characteristic regions through a sequ
of figures. In all figures, the frequency of the propagat
ILSM is set atV523.85, and its wave vectork50.1. We
will vary the ratio DB/B, as we study the interactions. W

FIG. 10. Propagation of an ILSM soliton withV523.85
through the spin chain with a defect. The defect spin is at site 2
and has the valueDB/B50.01.

FIG. 11. Propagation of an ILSM soliton withV523.85
through the spin chain with a defect. The defect spin is at site 2
and has the valueDB/B50.015.
of
e

l-

-

e

e

s,

a
-
e

ce
g

again have a line of 501 spins, with the defect at site 25
In Fig. 10, we show the ILSM soliton passing by a defe

characterized by a very small value ofDB/B, DB/B50.01.
The soliton passes over the defect, with no reflected pu
Clearly, its center-of-mass velocity has decreased rather
preciably. If one looks carefully at the figure, one sees
evidence of spin waves shed by the ILSM before collisio
Afterward, however, one sees distinct small-amplitude ex
tations spread over the chain, outside the region of the IL
soliton. So far as we can see, we have no excitation at
site of the defect, after the ILSM soliton has passed by. E
dently the slowdown has its origin in the energy shed in
form of spin waves. ForDB/B50.0075, the slowdown is
less pronounced, and the amplitude of the spin waves exc
after the collision is much smaller.

As DB/B increases further, we enter a regime where
‘‘radiative loss’’ of energy by the ILSM soliton is sufficien
for this entity to become trapped on the defect. We illustr
this in Fig. 11 where we haveDB/B50.015. So far as we
can tell from the simulations, the trapped entity~presumably
a localized ILSM such as that discussed in previous sect!
has an infinite lifetime. Clearly, it is perturbed periodical
by interaction with the ‘‘spin-wave radiation’’ reflected from
the ends of the chain. AsDB/B increases yet further, how
ever not exceeding the limit whereV loc exceedsV, we see
the build up of a reflected ILSM. In Fig. 12, whereDB/B

1,

1,

FIG. 12. Propagation of an ILSM soliton withV523.85
through the spin chain with a defect. The defect spin is at site 2
and has the valueDB/B50.07.

FIG. 13. Propagation of an ILSM soliton withV523.85
through the spin chain with a defect. The defect spin is at site 2
and has the valueDB/B50.35.
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50.07, we see well-defined reflected ILSM solitons, w
energy stored continuously near the defect site, in the fo
of a localized ILSM soliton. Notice that the propagating so
ton is trapped between the defect, and the end of the ch
Clearly, one could trap such a mode between two defec

As we saw in the previous section, when the internal f
quency is fixed, andV loc exceedsV, the defect fails to sup-
port a nonlinear ILSM. In this regime, the ILSM soliton
reflected off the defect; the reflection appears elastic, in
sense that in the simulations we see no evidence for radi
spin waves. We illustrate this in Fig. 13.

If DB/B,0 in our model, in linear spin-wave theory
there is no spin-wave mode localized at the defect in
frequency region above the spin-wave bands. We find
localized nonlinear ILSM’s as well. We find forDB/B,0,
the propagating ILSM is fully reflected from the defect, ev
whenDB/B is as small as20.0075. The interaction has a
appearance very similar to Fig. 13. In this section, we h
explored the interaction of ILSM solitons with defects,
find the rich behavior outlined above.

VI. CONCLUDING REMARKS

We have presented a method for simulating a mov
ILSM numerically, starting from a stationary ILSM as th
d

th
, S
m

in.

-

e
ed

e
o

e

g

initial condition. We conclude that in the collisions with eac
other, ILSM’s can exhibit solitonic properties, as illustrat
by the examples provided. That is, they preserve their sh
speed, and identity after the collision. Generally, howev
the interactions can be complex. It is possible to have
tionary nonlinear localized excitation centered at the def
site. The internal frequency of this excitation has to
greater than the frequency of corresponding linear locali
mode. The interaction of a moving ILSM with defects h
diverse and rich character, depending on the relation of
internal frequency of the ILSM to the local mode frequen
of linear spin-wave theory. IfV loc.V, so that stationary
nonlinear localization is not allowed on the defect, the tra
eling ILSM reflects elastically from the defect spin. In th
range of the defect perturbations, for which nonlinear loc
ization is possible, we observe a strong interaction betwee
traveling ILSM and a stationary nonlinear mode localized
the defect.
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