Skip Main Navigation Links ScienceDirect Logo Skip Main Navigation Links Register or Login: Password: Home Browse Search Forms My Alerts My Profile Help (Opens new window) Quick Search: within Quick Search searches abstracts, titles, and keywords. Click for more information. 13 of 21 Result List Previous Next Physica B: Condensed Matter Volume 253, Issues 3-4 , 15 October 1998, Pages 278-289 This Document SummaryPlus Full Text + Links PDF (241 K) ------------------------------------------------------------------------ Actions Cited By Save as Citation Alert Export Citation PII: S0921-4526(98)00395-0 Copyright © 1998 Elsevier Science B.V. All rights reserved Analysis of grazing incidence X-ray diffuse scatter from Co¯Cu multilayers I. Papea <#orfa>, T. P. A. Hasea <#orfa>, B. K. Tannera <#orfa>, * <#cor*> and M. Wormingtonb <#orfb>, c <#orfc> a Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK b Bede Scientific Inc, Suite G-104, 14, Inverness Drive East, Englewood, CO 80112, USA c Department of Engineering, University of Warwick, Coventry, CV4 7AL, UK Received 15 July 1997. Available online 19 March 1999. Abstract Grazing incidence diffuse X-ray scattering data from a Co¯Cu multilayer with stepped interfaces grown by molecular beam epitaxy on a copper silicide buffer on a silicon substrate has been analysed using a computer code based on a fractal interface within the distorted wave Born approximation. We have extended the theory to include the scattering from a stepped interface and have shown that a single set of structural parameters can be used to obtain an excellent agreement between simulation and experimental data taken under very different X-ray optical conditions. The symmetry of the diffuse scatter on rotation about the surface normal can be explained if it arises from step bunching at the ends of extensive flat terraces. These steps have a self-affine nature, enabling the fractal model to be used successfully. Author Keywords: X-ray scattering; Magnetic multilayers; Terraced interfaces Article Outline 1. Introduction 2. Experimental configuration 3. Simulation technique 3.1. Specular scatter 3.2. Diffuse scattering 4. Results 5. The validity of a self-affine model for MBE growth 6. Conclusions Acknowledgements References Enlarge Image (5K) Fig. 1. Experimental and simulated reflectivity curves from a Cu¯Co multilayer. Enlarge Image (6K) Fig. 2. Structure used to simulate the reflectivity curve in Fig. 3 <#figFig.3>. Enlarge Image (18K) Fig. 3. Transverse diffuse scan taken through the first -order Bragg peak on rotation about the sample's surface normal. Enlarge Image (4K) Fig. 4. Separation of the diffuse and specular peaks as a function of the azimuthal angle. The solid line is a sine function fitted to the data points. Enlarge Image (11K) Fig. 5. Transverse scans through a Kiessig (a) maxima and (b) minimum, wavelength of 1.3801 Å. Enlarge Image (15K) Fig. 6. Simulated reciprocal space maps of the scattering from the Co/Cu multilayer (a) with vertically correlated roughness and (b) with vertically uncorrelated roughness. The asymmetry about the origin is a result of the decreasing illuminated area as the specimen angle, straight theta, small theta, Greek, is increased. The neighbouring isointensity contours represent an intensity ratio of 102. curly or open small phi, Greek is the detector angle. Enlarge Image (4K) Fig. 7. Specular and off-specular longitudinal scans showing interference fringes in the diffuse scatter, characteristic of strong correlated roughness. Enlarge Image (7K) Fig. 8. Detector-only scan for three different incidence angles on the specimen. Enlarge Image (9K) Fig. 9. Figuring and off-centred diffuse scatter displayed in reciprocal space. References 1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Fiedrich and J. Chazelas. Phys. Rev. Lett. 61 (1988), p. 2472. Abstract-INSPEC | $Order Document | Full Text via CrossRef 2. S.S.P. Parkin, R. Bhadra and K.P. Roche. Phys. Rev. Lett. 66 (1991), p. 2152. Abstract-INSPEC | $Order Document | Full Text via CrossRef 3. S.S.P. Parkin, Z.G. Li and D. Smith. Appl. Phys. Lett. 58 (1991), p. 2710. Abstract-INSPEC | $Order Document | Full Text via CrossRef 4. E.E. Fullerton, D.M. Kelly, J. Guimpel, I.K. Schuller and Y. Bruynseraede. Phys. Rev. Lett. 68 (1992), p. 859. Abstract-INSPEC | $Order Document | Full Text via CrossRef 5. M.E. Tomlinson, R.J. Pollard, D.G. Lord and P.J. Grundy. Zhao Chun, IEEE Trans Mag. MAG 28 (1992), p. 2662. Abstract-INSPEC | Abstract-Compendex | $Order Document 6. K.Y. Kok and J.A. Leake. Thin Solid Films 275 (1996), p. 210. Abstract | PDF (273 K) 7. H. Laidler, C.I. Gregory, I. Pape, B.J. Hickey and B.K. Tanner. J Magn. Magn. Mater. 154 (1996), p. 165. Abstract-Compendex | Abstract-INSPEC | $Order Document 8. M. Safa and B.K. Tanner. J. Magn. Magn. Mater. 150 (1995), p. L290. Abstract-INSPEC | Abstract-Compendex | $Order Document 9. I. Pape, T.P.A. Hase, B.K. Tanner, H. Laidler, C. Emmerson, T. Shen and B.J. Hickey. J. Magn. Magn. Mater. 156 (1996), p. 373. Abstract-Compendex | Abstract-INSPEC | $Order Document 10. B.K. Tanner, D.E. Joyce, T.P.A. Hase, I. Pape, and P.J. Grundy, Adv. X-ray Anal. 40 (1998) in press. 11. S. Cockerton and B.K. Tanner. Adv. X-ray Anal. 38 (1995), p. 371. 12. L.G. Parratt. Phys. Rev. 95 (1954), p. 359. Full Text via CrossRef 13. V. Holý and T. Baumbach. Phys. Rev. B 49 (1994), p. 10668. Abstract-INSPEC | $Order Document | Full Text via CrossRef 14. S. Dietrich and A. Haase. Phys. Reports 260 (1995), p. 1. Abstract | PDF (6737 K) 15. S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley. Phys Rev. B 38 (1988), p. 2297. Abstract-INSPEC | $Order Document | Full Text via CrossRef 16. D.K. Bowen and M. Wormington. Adv. X-ray Anal. 36 (1993), p. 171. 17. M. Wormington, I. Pape, T.P.A. Hase, B.K. Tanner and D.K. Bowen. Phil. Mag. Letters 74 (1996), p. 211. Abstract-Compendex | Abstract-INSPEC | $Order Document | Full Text via CrossRef 18. Q. Shen. Phys. Rev. Lett. 64 4 (1990), p. 451. Abstract-INSPEC | $Order Document | Full Text via CrossRef