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Theory of nuclear resonant scattering of synchrotron radiation in the presence
of diffusive motion of nuclei. .
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A general theory of the time dependence of nuclear resonant forward scattering of synchrotron radiation in
the presence of diffusive motion of nuclei is further developed. The scattering problem is solved for the two
characteristic cases of diffusive motion. The first one is the continuous isotropic localized diffusion of a
particle within a cage formed by a drift potential. The second case is the jump anisotropic unlimited diffusion
of nuclei on a crystalline lattice. In both cases the frequency dependence of nuclear susceptibility has a
complicated shape described by a superposition of Lorentzian functions having different weights and widths.
Correspondingly several stages appear in the time evolution of the nuclear forward scattering which are
characterized by different decay rates. In the thick absorber case the target can exhibit successively different
partial thicknesses in the time evolution of forward scatteri&§163-18208)03709-6

[. INTRODUCTION pendence of radiation field can be calculated through a rep-
resentation of SR pulse as a homogeneous coherent superpo-
It is well known that M@sbauer spectroscopy provides asition of monochromatic waves and a subsequent evaluation
unique possibility to explore the dynamics of very slow of the response of the nuclear ensemble to each monochro-
atomic motions owing to its extremely high-energy resolu-matic wave as a scattering amplitude. The latter depends on
tion. First of all, it is applicable to a diffusive motion of the diffusive motion of nuclei represented by the double di-
atomic particles which occurs in liquids and solifer a ~ Mensionamomentum and frequengyourier image of the
review see Refs. 194 The analysis of Mesbauer spectra Van Hove func.tlon_. In contrast to the abso.rpt|on spectra
affected by diffusion was done by Singwi and Bjudef in where the d|ffu3|on'|nflu_ences only an absorptlon coeff|C|en't,
terms of the Van Hove correlation functio@(r,t). This the forward scattering time dependence is influenced by dif-

function describes a probability for finding the nucleus in afUSIOn In a more _com_phcated way. In Ref. 9 only a case of
I ) s - . free continuous diffusion was analyzed. Here we develop the
matter at a positiom at timet, if it was at the origin at time

t=0. The phase shift of rays scattered by the nucleus is theory further to include the continuous localized diffusion

and the jump unlimited diffusion. In the next section both the
related to the shift of the mean positioft) of the nucleus. It Jump

e main ideas and results of the general th&ame shortly sum-
depends on the time interval between the moments of excis,4rized.

tation and deexcitation. The explicit form of the Van Hove
function is different in each particular case of diffusive mo-
tion. In any case a diffusion manifests itself in the profile of
the Massbauer absorption spectra through the broadening A short pulse of synchrotron radiation can be decomposed
and the change in shape of resonance lines. into a continuous set of coherent monochromatic waves
Recently a powerful technique for studying nuclear within the frequency interval w centered at the resonance
resonance was developed with the use of nuclear resonaffequency and well exceeding the width of resonance range.
scattering of synchrotron radiatiofsR). This technique is With a good accuracy one can consider all monochromatic
based on measuring the time dependence of intensity reemitomponents to be equivalent in weight. To calculate the for-
ted by nuclei after an excitation of the nuclear system byward transmitted wave packet one should integrate all for-
very short pulse of synchrotron radiation. The observed coward transmitted monochromatic components. As it was
herent reemission into the forward direction allows us toshowr! the result can be written as follows:
claim a formation of excitation distributed coherently over
the entire nuclear system, called a nuclear exciton, which has dw ) K ™
an unusualnonexponentialcharacter of decay. The coher- E(t,z)=E0(z)f 5, S —iwt) exgizg(e)z).
ent decay of the nuclear exciton is characterized by a (1)
speed-up effect accompanied by quantum and dynamical
beats of intensity:” Many nuclear and solid-state parametersHere E(t,z) is a time-dependent electric-field amplitude of
can be explored by studying the time dependences of theynchrotron radiation transmitted through a nuclear target of
nuclear exciton decay. thickness z. The function Eg(z) has the modulus
A general theory of time-dependent nuclear resonant for{lo/Aw)*? exp(— uzl2) with u.=Kyx” being the electron
ward scattering of SR pulse by a system of nuclei movingabsorption coefficient anig) being the intensity of SR within
diffusively has been developed earlfett was shown that the frequency band w as determined by a monochromator
similarly to the approach developed in Ref. 10, the time desystem. The wave numb&=2m/\ = w/c.

Il. GENERAL FORMULAS
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The nuclear part of the susceptibility of the targé? is  ways into the scattering amplitude. The first one enters
closely related to the scattering amplitude and can be repréhrough the well-known Lamb-Vasbauer factof,, , while
sented as the second one is described by the universal resonance func-

tion in a more complicated form. Mathematically this proce-
dure can be done in all cases by simply introducing the

Ty Lamb-Massbauer factor in the explicit form and considering
(n) —j — .
g(k,w)=i Zﬁé Bgep(K, 00— weg), @ the total dephasing function without the Lamb-ébauer
factor. We note that the Lamb-Msbauer factor has different
where the value behavior in solids and liquids.

The most frequent application of SR in the nuclear reso-
nance spectroscopy is a measurement of the time dependence

8mfim(k) of the forward scattering intensity.

Bye=———————1(gli(k)|e)|? 3
ge w2v0(2|g+1)r0|<g“( el 3

characterizes the strength of nuclear response at the reso- | =IE 2 7

: 1s(t,2) = |E(t,2)[*. @)
nance frequency.q. Here the indexeg ande numerate the
hyperfine sublevels of the ground and excited states of a _ _ _
nucleusI'y is the natural width of the excited levefl,y(k) It is of interest to compare the time dependence with the
is the Lamb-Masbauer factorlq is the nuclear spin in the frequency dependence of intensity, which is ordinarily inves-
ground stateV, is the target volume corresponding to one tigated in the Masbauer absorption spectroscopy. Without a

nucleus, andg|j(k)|e) is the matrix element of the scalar SOUr¢€ convolution it is as follows:
component of the nuclear current density operator along the
polarization vector of the incident wave. In particular, the
latter parameter equals zero if the transition is forbidden for la(®,2)=|E(,2)|>=|Eq(2)|* exp(—Kz Img " (w)).
a given multipolarity of radiation. (8
The frequency dependence of susceptibility near the reso-
nance is determined entirely by the universal resonance fun@ne can see that the shape of the absorption spectra is di-
tion ¢(k, w) which takes into account the diffusive motion. It rectly determined by the real part of the universal resonance
is described by the formula function ¢(k,w) . As for the time dependence of the radia-
tion field, it is calculated through the frequency representa-
. tion, Egs.(1)—(3), where the entire universal function should
_ / ; ; / , be used.
olkw) fﬁxdt expli (@ +iTo/2) (L=t} Fs(k,t=t), On the other hand, this frequency-dependent function is
4) determined by the time dependence of the two processes
r§hown in Eq.(4), namely, by the decay of individual excited
ﬁucleus and by the diffusive motidnepresented by the MT
correlation function
The MT correlation function(5) represents the mean
value of the phase factor over a whole volume of the target.
Being a function of time this averaged phase factor reflects a
diffusive motion of nuclei. By its nature the correlation func-
tion is very similar to the Lamb-Mssbauer factor which de-
scribes a damping of the scattering amplitude owing to the
Fs(k,t)zf dr exp(—ikr)G(r,t). (5)  thermal motion. The difference between them is only in the
time scales which are characteristic of the motions involved.
For the convenience of the following calculation, we shall The evident property of the Van Hove function
use below a more direct representation for the functionG(r,0)= &(r) gives the property of the MT correlation func-
¢(k,w) which is obtained by changing the variable, namely,tion F4(k,0)= 1. Without a diffusive motion of nuclei in the
target, this initial value stays constant. Correspondingly the
resonance  function takes the ordinary form
e(k,w)=i/(w+iT'¢/2). However, in a presence of diffusive
motion the correlation function can drop down at a time
comparable with the lifetime of the nucleus. As a conse-
A derivation of formulag1)—(6) is given in the first part quence, the coherence time in the forward scattered wave
of this work® Here we emphasize once again that we restricpacket becomes shorter, while the spectral width of radiation
ourselves by the cases when polarization mixing is absent ihecomes broader.
the coherent forward scattering. For example, this takes place It is useful to consider the case of small thickness the
for the M1 transition of>Fe nuclei. On the other hand, we target where one can expand the exponential function in Eq.
consider the cases where the fast thermal motion of nucldil) in a power series. Then considering only the first term of
near a temporal equilibrium site and the slow motion of thethe expansion, one easily arrives at the following expression
equilibrium site itself are factorized and enter in differentfor the scattering intensity:

where the correlation function in momentum representatio
is introduced. Such a representation naturally corresponds
a scattering problem. We term the functién(k,t) as a
momentum-time(MT) correlation function. It is tightly re-
lated to the space-timévan Hove correlation function,
G(r,t), via the Fourier transformation

go(k,w)=foocdt exp(i wt—'ot/28)F4(k,t) (6)
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lo (Kzlp\? ) .
I(t,z)= Aol a0 exp( — umez— Iot)|Fs(K,1)] w(r)=Z"texp(=U(r)/T), Z= | drexp(—=U(r)/T).
2 (12
x| D ByeXp(—iwegt)| , t>0. (9)  The substitution of this formal solution in E() and then in
ge Eq. (4) yields

The time-dependent square modulus of the MT correlation .
function enters here as a multiplier, i.e., directly influences a go(k,w)=iJ dr exp(—ikr)[w+ilg/2n+ilL] "t
decay of the coherent signal. The approximat{®his usu-

ally called a kinematical approximation in which only a scat- X exp(ikr)w(r). (13
tering of one photon by one nucleus is taken into account.
As it was shown in Eqg(10) the universal resonance func- It W:’:lSAShOWIJI6 that it is convenient tOACOHSideI’ a Hermit-

tion ¢(k,w) can be found by averaging the resonance factoian formH of the Fokker-Planck operattrwhich is defined
by the relation

do - [ o : _ N[ _V2
QD(k'w):fﬁFs(k,w)m' (10 Fl=exp(U/2T)L exp(— U/2T)=D[ - V2+V(1)], »

where Fy(k,w) represents the spectral density of thewhere
momentum-time correlation functioRg(k,t). This expres- B _9 2 o2
sion can be interpreted as an average value of standard scat- V() =(2T) " “(VU(n)"=(2T)"V7U(r). (19
tering amplitude over Doppler shifts of the resonance frepne can easily see thaw(r)= llfo|:| o if
guency caused by diffusive motion of nuclei.

Yo=2"Y2 exp(—U(r)/2T), (16)

Ill. LOCALIZED DIFFUSION IN GENERAL CASE and the resonance functionp(k,o) can be found as a
In the first part of our workthe case of free diffusion has quantum-mechanical average of the Hermitian operator rep-

been analyzed as an example of an application of the gener%ﬁsentmg the resonance interaction

theory. The free diffusion is understood as the unlimited in . . . SNa—1

space, continuous motion of particles in a medium that is ¢(k,)=i(0] exp(—ikr)[w+ilg/2h+iH]

described by the diffusion coefficient only. The developed X exp(ikr)|0). a7

theory can be easily extended to more complicated regimes

of diffusive motion. Indeed, the main problem here is to find By employing the total set of eigenfunctions of the Her-

an explicit form of the Van Hove correlation functio__n. We mitian operatoH, Eq.(17) can be transformed with the help

note that the same problem should be solved in thessMo of the relation

bauer absorption spectroscopy. Following the first consider-

ation given by Singwi and SjandeP one can distinguish

two limiting cases: a continuous motion of large particles in

a medium and a jump motion of nuclei between the sites on ]

the crystal lattice. The first motion can be limited in spacet0 the equation

under the influence of a drift potential. The second motion . .

generally is unlimited in space, however there are cases ok )= <¢po|exp(—|kr-)|¢n)(zpn.| explikr)| o)

where it also can be limitetf24 ’ n w+il'g/2h+iDeg, ’
Here we consider the localized diffusion which represents (19

the case of spacially restricted diffusive motion of a particle hereDe. is the ei | f th i d-

under the influence of a drift potenti&l(r). It is known whereLe, 1S the eigenvajue ot the operatbr correspon

(see, for example, Refs. 15)tat in this case the Van Hove ing to the eigenfunction,. The sum ovem denotes the

correlation function is a solution of the Fokker-Planck equa-Summation over all eigensolutions. When the opertitdras
tion both the discrete and the continuous parts of spectrum then

this sum must be added by the integral.
The last formula allows us to reveal some general prop-

(0|AHB|0)=2, (O|A|n)(n|H|n)(n|BJ0), (18

dG(r,t)

P LG(r,t), L=-DV2—B(VU(r))V erties of localized diffusion. We rewrite it in a more compact
form
11
. - K,0)=i>, An(k) (20
where L is the Fokker-Planck operator describing the ¢(K,w = WwtilTg2h+iDs,’

Brownian motion in the drift potentidl (r) with the diffu-

sion coefficientD and the drift coefficienB=D/T. HereT with
is the absolute temperature in energy units. This equation has )
a formal solutionG(r,t) = exp(~Lt)G(r,0) whereG(r,0) can A (K :U dr exo( —ikr)* (r r A (K)=1

be taken in the fornG(r,0)=exp(kr)w(r), wherew(r) is (k) X W (Nn(n)] zn: (k=1
the standard Boltzmann distribution function (21
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It is easy to verify thaH ,=0. This means that the eigen- €asily deduced from Eq22) for the potential considered.

value of the ground state is,=0 independently on the ex- Moreover, the only one state with=k has a nonzero coef-

plicit form of the drift potential. The ground state representsficientA,=1. Thus, in the limit of an infinitely large cage we

the partial state of a nucleus where it does not move diffuarrive once again at the universal resonance function charac-

sively and preserves its average position unchanged durirfgristic for a free diffusion

all time. The corresponding resonance has the natural width

as for a static nucleus in isolation. The weight of this state is [

defined by the coefficier,. This coefficient has a property ok w)= oLl /2% +iDK2

which is essential for the retrieval of the drift potential. Ac- 0

cording to Egs(12), (16), and(21) one can write The most simple case of bounded diffusion within a cage
£(K) is_ real_ized when the cage has_ the_form of a rectangular box

Ao(k):‘_ , f(k):J dr exp(—ikr —U(r)/T). with dimensionsX,Y,Z in the directionsx,y,z, correspond-
f(0) ingly. This illustrative example might be also of a practical
(22 interest in the view of future experiments because it can be

Thus the weight of the ground statg(k) is directly asso- realized artificially with the control of parar?eter_s such as the
ciated with the drift potential profil&) (r) through the Fou- diffusion coefficient or the size of the cageOwing to the
rier transformation. In the case of nuclear resonance scattefact that the cages are oriented randomly in different parts of
ing the modulus ok is fixed, therefore one cannot probe the & réal sample the task is spherically symmetrical. That is
potential at different magnitudes & However, the mea- why, perhaps_, in R_ef. 17 the accurate solutlon_ of the Fokker-
surements at different directions kfcan give information Planck equation with a spherical cavity of radiuas a hole
about the symmetry of the potential. In addition, the tem-n the Swiss cheest has been considered to analyze the
perature dependence Af can provide the potential strength. experlmentall result;. Nevertheless, it is useful to gon3|der
In particular, whem, does not depend Gf a specific case and analyze in detalil t_he task of the rectangular_ca_vlty.
of localized diffusion is realized—a continuous diffusion in- ~ We take the potentidll (r) to be equal to zero inside the
side a strictly restricted volume. This type of diffusion we P0x and infinity outside of it. The potenti®|(r) is also equal
shall refer to as the bounded diffusion within a cage. to zero inside the box but it has a singularity on the box
Finally we conclude that in the case of localized diffusionWalls. Unlike the similar task of quantum mechanics we have
the problem is reduced to finding the total set of eigensolul© find now the eigensolutions,(r) which obey the bound-
tions of the Hermitian operatdd with a specific potential &Y conditions (V)g=0 wheren is a normal to the box
obtained by the transformation of a drift potentiake Eq. boupdanegsee_ Ref: 15 for detajlsThe glgensolutmns for a
(15)]. The momentum-time correlation function in this ap- Particle diffusing inside the box with the coordinates
proach takes the form originating from E@) as follows: 0<x<X, 0<y<Y, 0<z<Z are found in the form

h?2 k& |2
Fs(k’t)zin: An(k)exp(—Dent). (23  Yha(xy,2) =) (Y fi(2), 8hk|=772(ﬁ+?+ ?)

(24)

2

We note that this expression has a clear physical sense. One (29

can expect different rates of diffusive movement which leadwvhereh,k,1=0,1,2 ... . Below we introduce the notation
to different speeds of dephasing the coherently scattered ra=h,k,l, s=x,y,z, S=X,Y,Z. The solution is factorized
diation (similar to dephasing due to thermal vibrations de-into the functions independently describing the motion along
scribed by the Lamb-Mssbauer factgr The weights of each of the three main axes. A particular function is as fol-
these movements depend on the propagation v&ofooth a  lows:

magnitude and a directiprand on the form of the drift po-
tential. fi(s)=2Y4C;S) "2 cog mjs/S). (26)

HereC;=1 for all j>0 andC;=2 for j=0.
IV. BOUNDED DIFFUSION WITHIN A CAGE One can readily find the weights of different diffusion
Until now the drift potential was assumed to be a finite States in accord with Eq21). These also consist of three
one having an arbitrary profile. In this section we regard dndependent factors
articular case where the potential equals zero inside a finite
Solume, called a cage, andpis infinite gutside. It can be shown Anki(ky Ky kz) =an(ko)ax(ky)ay (ky), (27)
that if the size of the cage tends to infinity then one arrives ajith
the case of free diffusion. Let us consider this limit case in

view of the general theory described above. 1| [kS—j kSt 3
The potentialsU(r) and V(r) are equal to zero in all aj(ks):f Jo T) -1)jo 2 ,
space(actually in a volume) with a size being much larger J (28)

than the wavelength of radiatipnin this case a full set of

eigenfunctions can be chosen in the form of plane wavewherej(z)=sinzzis a zero-order spherical Bessel function.
z//p(r)=Q*1’2 expipr) corresponding to eigenvalues It is easy to verify that this formula gives the relation
£p= p2. The ground state igy,=const=Q~ Y2 However, a;(0)=5jo. On the other hando(ke) = j5(ksS/2). Therefore
this state is not realized becausg=0 for k#0. This can be the ground stateqqq is now really existing.



5792

Weights

0 1 2 3
z (&)

FIG. 1. The weights, of the Lorentzian functions contributing
into the universal resonance function in the case of bounded diffu-
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—Reop(k,,m)/2t,

sion (29) in dependence on the size of the one-dimensional Zage ? “j ’

a, is the weight of the partial resonance having the natural width

Fo.

In the model considered a dependence arises on the ori-

entation of the cage with respect to theray propagation
direction. Let us take the orientation for whikl=k,=0. In

this case the radiation can probe only a diffusive motion

along thez direction. Then the general formul(20) trans-
forms to

o aky
2 +iqTo/2h

=0 W

<p<kz,w>=§0 @Ky, @) =i (29)

where the weightsa,(k,) and the relative widthg,(Z) of the
partial resonances are determined by

[1+(—1)'"*cogk,2)]

k,)=4C; %(k,Z)?
ay(ky) 1 (kZ) [(17)2— (k,Z)%]?

(1m)?

q|:1+2DtO 22 y

(30

wherety=7%/T" is the natural lifetime of the excited nucleus.

The formula for the weights follows directly from E¢R8).
The maximum value of each term in the sy2) equals

@1(k,,0)=2tqa,(k,)q; *, i.e., it is determined by both the

weight and the width of each Lorentzian contribution.
Let us analyze the shape of thefunction as a function of

the box sizeZ. The coefficients, as the functions of are

shown in Fig. 1 for the case of thé’Fe nucleus with

k,=2m/\=73 nm 1. Each coefficient has a pronounce

e

-1.2 T - 1 RN I
- 2 - 0 1

ho /T,

FIG. 2. The shape of the real part of the universal resonance
function, describing the absorption ability of the nuclear target, at
different sizes of the one-dimensional cate 0,0.0% . ..,0.2 nm.
Each next curve is shifted up on 0.05 relative to the previous one.

i, =1+ 2Dk§t0. Thus, we see that the widths of the Lorent-

zians contributing in the function are dependent éghonly
very softly whenzZ>2\.

Figure 1 shows that the behavior similar to that of free
diffusion should appear already for not so large a box size,
namely, aboutZ>2\ where the coefficienta, becomes
close to zero. The existence of a zero term having a natural
resonance width makes the situation quite different. Thus
one should have a significant change of the resonance shape
only within the transition region €Z<2\. Studying this
transition region is most informative with respect to the po-
tential parameters.

The absorption spectral function f,(w,Z)
=—Rep(k,,w)/2ty is displayed in Fig. 2 for this transition
range ofZ=0,0.01 . ..,0.2 nm. For &etter view each next
curve is shifted up on 0.05 relative to the previous one. The
calculation has been made féfFe with A =0.086 nm and
D=10* m?%s. In this case I'yy/T'g~16 where
I'¢q=To+22DK? is the resonance width in the case of free
diffusion. As it follows from the calculation, an apparent
g decrease of the resonance dips of the funcfigfw,Z) oc-

main maximum and side maxima which are of much lowerCurs there accompanied by a significant broa_dening of the
height. The main maxima for different coefficients are dis-resonance. The resonance shape close to that in the regime of
tributed over theZ axis rather regularly. After the initial fast free diffusion is approached already Zt=\ where the

drop down within the interval Z>\ the heights of the

weight of the unbroadened partial resonance drops to zero

next maxima are reducing very slowly farther on. It is clearly (the curve 9. Afterwards the coefficierd, increases again at

seen in the figure that at any value®there are only a few
(one, two, or a maximum thrgsignificant coefficients while

aboutZ=1.4\ that results in a narrowing of the resonance
for this range which is well seen in the figufthe curves

all others are very small. Hence only a few Lorentzians con12-15.

tribute essentially to the universal resonance function at any We turn now to the time response of the nuclear en-
box size. The indexes of the contributing Lorentzians in- semble. The analysis is the most simple in the case of a thin
crease with a rise of the size. Thealue which corresponds single line target. Here the intensity is proportional 29

to the main contribution, equals

approximately while the time dependence is determined by the following

lo=k,Z/7m=2Z/\. The relative width of this contribution is forward scattering function:
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FIG. 3. The time dependence of nuclear forward scattering of FIG. 4. The time dependence of nuclear forward scattering of
synchrotron radiation in the limit of the thin targ&1) in the case  synchrotron radiation by the thick target in the case of bounded
of bounded diffusion at different sizes of the one-dimensional cageliffusion at different sizes of the one dimensional cZge0, 0.01,

Z=0,0.01...,0.1 nm. ..., 0.1 nm. Theeffective thickness of targei,z=10.
o 2 by multiple scattering of radiation by nuclei in the target. It
fo(t,Z)=exp( —t/ty)| > ay(k,)exp —1272Dt/Z2)| | is of interest that the dynamical beat pattern appears to be
=0 highly sensitive to the box size. With increasing the size the
beat minima are shifting towards later times. Then they dis-
t>0. (3D appear completely in the observation time wind@urves 1

—5in Fig. 4. This effect is related to a redistribution of

The entire time dependence of the forward scattering inweights of contributing Lorentzians, particularly to the drop-
tensity is the sum of exponents where each term is chara¢ing down of the coefficiend, which represents the rigidly
terized by its own decay regiont<t, where bound state of the nucleus. The latter leads to decreasing the
t,;=to(1+2DtoZ 2#21%) 1. So the number of contributing effective thickness of the target similar to that due to the fall
terms decreases when the delay time increases. Finally on{.iDWH of the recoilless factor. We shall discuss this effect in
the term having the natural decay time becomes dominantnore detail in the next section. The time evolution for the
Therefore the contribution of this term given by the coeffi- intermediate range af (curves 6-8 in Fig. ¥is similar to
cienta, can be well separated in the time dependence. Thehat for a thin target. The nonmonotonous transformation is
functionf4(t,Z) is shown in Fig. 3 for box sizes in the range Seen again later ofcurves 9-11 in Fig. # However, under
Z=0,0.01...,0.1 nm. The uppermost curve corresponds toconditions close to the free diffusion regime, i.e., for the well
a rigidly bounded nucleus. It is described by only a zero tern$ize large compared to the wavelength of radiation, the dy-
with ap=1 andqgo=1, i.e., it exhibits the natural decay. hamical beat pattern specific for the full effective thickness
With the increase of the box size the diffusion is activatedof the target is restored.
and the next terms related to the broader resonances start to The initial slope of all curves seems to be somewhat uni-
contribute. This results in a faster decay of the scatteringersal. This slope can be easily obtained analytically using
intensity observed within the initial time interval. However, the asymptotic behavior of the function. It is known that
until the zero term has a noticeable magnituttee range the asymptotic behavior of the universal resonance function
0<Z<0.06 nm in Fig. ], the natural decay rate is reached. at far tails of resonance allows us to estimate the temporal
It is manifested by the Straight segments of the curves obnuclear response at the initial time. We obtain directly from
served at later times in the logarithmic scéee curves +7  EQ. (29) in the case of largéw| that
in Fig. 3). In this range of box sizes the coefficiegt@n be

determined directly by extrapolating the straight segments of . _ '_ . Tig o _ 2
the curves to zero time. ‘al)lgx"p(kz’w) o\ 1125 T 7] Tre=Tot28Dk;.
The coefficientay drops down sharply with the increase (32)

of Z, reaches its minimum and then slightly oscillatég.

1). This behavior is reflected in the nonmonotonous transforHere Ity just corresponds to the free diffusion caEee

mation of the time dependences aroung 0.09 nm (the above. To derive this result one has to take into account the

curves 8-11 in Fig. 3. relations
To illustrate the role of bounded diffusion in a scattering

from a thicker nuclear target we consider the time response

in the case of a single line sample having an effective reso-

nance thicknessu,z=10, where u,=KZ,Bg. [see (3)].

The results of the computer calculation are shown in Fig. 4The first relation follows from the general thedryee Eq.

for the same range of box sizes. The time dependence co21)]. The second one is the consequence of the fact that

tains now the dynamical beats of intensity which are causethside the volume of the cage we have the same equation as

© o

> ak)=1, > a(k)e=Kk2. (33

I=0 I=0
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in the case of free diffusiofthe potential is absentThere- lated in the more general case. This function can be written
fore £,11(z) = — d?y(z)/d 2 and the relation is obtained by in a form similar to Eq{(23), namely,
inserting this formula into the integrdR1) which defines
gg;\t(:rally the coefficients(k,) and then integrating by Fs(kat):Z a,(k)exp[— & (K)t/2to],
From Eqgs(1), (2), and(32) we obtain after expanding the

exponent in the Taylor series and using the residue theorem 2

m

izl VeiBal EI a=1, (35
wherety=#/T"y is the nuclear lifetime as above,is the
index of inequivalent sites inside the primitive unit cell of
the crystal lattice. This site has thth local symmetry. The

. (34 relative Ith decay rates (k) and the vectorg; (k) are the
eigenvalue and orthonormalized eigenvector of the probabil-

In accordance with this formula the initial slope is deter-ity jump matrix, which is a Hermitian one

mined by three physical reasofiepresented by the three

a =

2
z
|im|fs(t,z)=|Eo(Z)|2( -
t—0 4t0

X|1-t

+on

1 MnZ
to-|-2Dkz-|- at,

terms in the straight brackétsnamely, by natural decay of _ 2k 1 1 L)
the excited state, by diffusive motion of nuclei, and by co- Aij (k)= Je 5”%: Tig njiq-jizn: eXRIKR) Ve,
herent speedup of decay. Tledependence of the initial (36)

slope is absent. Usually the term related to a diffusion brings , . i
the main contribution and this determines the behavior of th&1€ré and above; is the probability of the occupation of the
curves in Figs. 3, 4The time dependence of intensity in the 't sublatticen;; is the number of sites of t["fh sublattice
case of limited diffusion cannot be faster than in the case ofvhich surround the site of thigh sublattice,r;; ~ is the jump
free diffusion. rate from the site of symmetiiyto any nearest-neighbor site
This fact has a clear physical sense. In the limit of smaliof symmetryj, R is the nth vector distance of the set of
delay time only displacements of nuclei which are smallerdistances between nearest-neighbor sites ofitimeand jth
than the cage size are essential. Therefore the walls of trgublattices. Detailed balance demands that
cage cannot influence the time behavior. In the opposite limit
of very large delay time, the picture of nuclear motion is _
influenced essentially by the reflections from walls. On av- N7, N
erage, the coherent nuclear scattering is related to the megn_
position of a nucleus, as if it is at rest. The strength of this
scattering channel is described by the coefficigntwhich
plays the same role as the Lamb-$4bauer factor whic
takes into account the thermal motion. Obviously when the _ a,(k)
mean displacement of the nuclefi®2 becomes comparable e(kw)=i> ————=—x, qi(k)=1+¢(K).
: e - n o+iq (k)T /2h
with the wavelength of the radiation the coefficienta, (38)
tends to zero due to a dephasing of the scattered waves.
When the coefficieng, is not too small one can find in the This formula implies that each resonance becomes a super-
case of the thin target a characteristic intermediate timéposition of several resonances having the same position but
range(about 80—120 ns in Fig.)3vhere the transition from different widths, i.e., like in the case of bounded diffusion
the free diffusion regime to the natural nuclear decay occurdzgs.(23) and(32).
The time of transiton can be estimated as As an example, we consider in detail the case of jump
ttr~ln(1/ao)/2Dk§~10 In(lk,) ns in the case considered diffusion in the alloy F@Si which was investigated recently
(°Fe, andD =10""* m?%s). It depends significantly on the Using the nuclear forward scattering of synchrotron
size of cageZ through the coefficieny, on the diffusion radiation®® The time dependences of the forward. scattering
coefficientD as well as on the wavelength of the radiation. @long the{113] crystal direction were measured. Single crys-
The rea' Samp'e may Contain different Cages with differ-tals of F638| haVe a CUbiC Superstructure COI‘ISiSting Of four
ent sizes and orientation. Therefore the mean value has to Isélblattices. In the entirely ordered crystals the three sublat-
calculated. This procedure is essential in fitting the experifices are occupied by iron atoms while the fourth one is

mental data. However the general properties of the tim@ccupied by Si atoms. The diffusion mechanism of iron in
spectra considered here will be unchanged. this structure was studied It was proven that in accordance

with earlier suggestions iron atoms jump between three iron
sublattices only and avoid the fourth silicon sublattice.
Therefore the matrix\;; takes the form

Ci Cj

(37)
;j= 7 thenc;=const=1/m andaj=m~!|Z;8;|%.

Expression(35) leads immediately to the following ex-
h pression for the universal resonance function:

V. JUMP DIFFUSION

The theory developed for the quasielastic dbauer

_ _E*
spectroscopy'® describes a jump diffusion on simple Bra- A 2v Ev —E'v ot
vais lattices where all crystal sites are equivalent. The exten- A=| —E*v v 0 , v= —O, (39
sion of the theory to the case of non-Bravais crystal lattice —Ey 0 v T

was done in Refs. 20,21. Here we shall use the results of Ref.
21 where the correlation functioR¢(k,t) has been calcu- where
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E=cogk.d)cog k,d)cogk,d) +isin(k,d)sin(k,d)sin(k.d)
(40 1

with 107 ;
\\
(ke Ky k) =(1,1,3K/\11, d=a/4. (41) 2 s
HereK=27/\A=wl/c is the wave number of incident radia- i'zi !

tion (which fits the nuclear resonance transition 3ffre in
our casg a is a crystal lattice constant of E8i.
Taking into account the specific valus=72.98 nm 1,

-
o
~

\
\& ™~

a=0.571 nm one obtains thkfd=3.1411, i.e., very close to 103 E—
7. Therefore approximatelff=E* =—1 and with definite TR R L b
accuracy the jump matrix39) has the following analytical 0 40 80 120 160
eigensolutions time (ns)
q = 3y v 0, FIG. 5. The time dependence of nuclear forward scattering of
synchrotron radiation from R&Si crystal in the directiod113] in
1 2 1 0 1 -1 the presence of jump diffusion at differeqt factors (see text
Bi= —|1 . . Curves 1-4 correspond @=2.2, 5.1, 11.5, and 36, respectively.
\/6 1 \/E 1 \/5 1 ' The effective thickness of target,z=3.
a= 8/9 0 1/9. (42) lows the same law described above but at a later time the

It follows from Eq. (42) that only two resonance contribu- dynamical beats appear within the natural lifetime of nuclear
tions have nonzero weight, one having the natural width an@Xcitation. It is of interest to note that a position of the beat

another broadened. Correspondingly the universal resonan@@nimum is sensitive to a diffusion ratéke in the case of
function takes the form having only one parameter bounded diffusion where it is sensitive to the cage size, see

Fig. 4). The minimum is shifting towards the later times with
i 8 1 an increase of the diffusion coefficient. Such a behavior is
o(k,w)== - + - , q=1+6ty/r. different from that predictetfor the case of free continuous
43) iffusion where the beat pattern position is unchanged. This
difference is tightly related to the difference in form of the

In the range of high temperatures where diffusion taked€sonance universal function. In the case of free diffusion it
place the hyperfine splitting of the nuclear levels is absentS & single Lorentzian having variable width. Here and in the

and the time-dependent electric field of the scattered wave 2S€ 0f bounded diffusion it is the sum of several Lorentz-
described by the following equation: ians having different weights and widths.
The split of the universal resonance function into several

do unZ terms leads to the fragmentation of the effective resonance
E(t,z)=E(z)J Eex;{ —iwt— Fgo(k,w— o) |, thickness of a target into relevant partial thicknesses which
0 (44) are aju,z. The contributing Lorentzians turn out to deter-
mine essentially the decay of the nuclear exciton within dif-

wherew is a resonance frequencyjs a crystal plate thick-
ness, angt,=Nonf\ is an absorption coefficient at reso- —
nance withN being a number of iron atoms in the unit vol- mN
ume, o being a nuclear cross section at resonamcbeing

an enrichment by resonant isotopée andf,,, being the \

Lamb-Massbauer factor. ! & R

We compare the time-dependent forward scattering inten- 4 &\ S
sity for different diffusion rates, respectively, differepfac- 10! Q ]
tors. The time dependences for the two effective thicknesses z T
of targetu,,z=3 and 21.5 are displayed in Figs. 5,6. In a thin 107

R\
target limit using approximatiot®) one can readily find that \/ /

Intensity

the time response is described by the sum of two exponential 107

functions, one of which exhibits the natural decay of the

nuclear excitation while another shows the accelerated de- 10

cay. With an increase of thq factor the acceleration of

decay is well seen within an initial time interval in Fig. 5. In

the limit g>1 the two exponential functions turned outto be  FiG. 6. The time dependence of nuclear forward scattering of

well separated in time and the two stages of the decay argnchrotron radiation from the E8i crystal in the directiofi113]

clearly observed. in the presence of jump diffusion at differeqfactors. Curves 1-4
The time dependences for the thicker sample have a morsrrespond t@=2.2, 5.1, 11.5, and 36, respectively. The effective

complicated character. The initial stage of decay mostly folthickness of targett,z=21.5.

0 40 80 120 160

time (ns)
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ferent time intervals in dependence on the Lorentzian widthsthin target for any regime of diffusion. The spectral density
This leads, roughly saying, to the fact that the target exhibit®f this functionF(k,w) is found by the Fourier transforma-

its different partial thicknesses in different parts of the timetion of F(k,t). Actually the universal resonance function
dependence of the forward scattering. In general, the effe¢t(k,w) represents the averaging of the standard resonance
of the thickness split is revealed for any relation between th%lmplitude describing the scattering process by a static
weights and widths of contributing Lorentzians. Obviously cleus over the spectral density functiBtk, ») which re-

the dynamical beat pattern should be sensitive to this reldqects the motion of particles in the nuclear ensemble owing
tionship. This is actually the physical reason for the shift of;; o Doppler effect.

the beat minima with the change of both the potential well The analytical solution for time dependences of the coher-

S'Zlen%m: ;hzg]lfflis!gr;hr:tleﬁt of laraerfactor a>1. where ent forward scattering of SR can be obtained only for the
ur exampie | imi 9er q>-1, Wh case of free diffusion where the universal resonance function
two contributing Lorentzians have essentially different ; . i

has Lorentzian shape. The additional width of the resonance

widths, one can distinguish two characteristic stages in th'@ne is simply proportional to the diffusion coefficient in this

entire time dependence. At an early stage of decay the tai : " .
of the resonance are essential and one can consider only tf@S€- Respectively, an additional exponential factor appears

broadened contribution. Making use of the result obtained id" the time response, the decrement of which contains the

Ref. 9 for the case of one broadened resonance one obtairstiffusion coefficient. This yields an accelerated decay of the
coherent signal. As to the dynamical beat structure it does

lo Tito aty not depend on the resonance broadening.
W(t2)=1 -0 ex;{ ~HeZ ™ 5 | iV T, In contrast to the regime of free diffusion in the case of
bounded diffusion inside a potential well, and in the case of
t<to/q, (45  jump diffusion between different sitegacancies in solids

the universal resonance function has a more complicated
where J;(x) is a Bessel function of first order and shape represented in general by the coherent superposition of
T1=8unz/9. In this time interval the evolution of the for- the Lorentzian functions where the weight and the width of a
ward scattered intensity is similar to the case of free diffu-separate Lorentzian are determined by the specific character
sion, and via parametay one can determine the diffusion of the diffusion process. The main physical parameters af-
coefficientD =a*/327. fecting the shape of the universal function are the diffusion

At later times, on the contrary, the region near the centegqeficient, temperature, the drift potential profile, and the
of the resonance is essential in the intedra). Therefore jump rate

one can neglec in the first term of Eq(43) and consider Such a shape of the universal function corresponds to a

approximately the case with one resonance of natural Widﬂ}hore complicated behavior of the time response. In general
As a result the time evolution takes the form . ) L
there are several stages of the decay which are characterized

o Tot 8 t by the different decay rates. The initial stage reveals a faster

o '2lo Mn S .

\t2=3, 4_eX‘< | met 5|2 2—) monotonous decay which is more accelerated the larger dif-
w 4t q to fusion coefficient and the size of the potential well are. At

20 T later times the decay rate becomes slower and the dynamical
* JiVTatlto), - t>to/q, (48 beats appear in the case of the thick target. The dynamical
whereT,= u,z/9. We note that similar to the case of bound beat pattern is transformed drasticdlily contrast to the free
diffusion the broad resonance effectively provides an absorpdiffusion regime depending either on the size of the poten-
tion in addition to the electronic absorption, while the effec-tial well in the case of bounded diffusion or on the tempera-
tive thickness of the target turned out to be less in accordure in the case of jump diffusion. When both parameters are
with the weight of the resonance of the natural width. Thugising, the transition to a beat pattern characteristic for a
one and the same target exhibits, in this case, behavior of tlinner target occurs.
target with the effective thicknesk, at an early stage and  The physical reason for this result is in the split of the
with T, at a later stage of decay. universal resonance function into several terms. It leads to a
Finally we want to note that the consideration presentedragmentation of the effective resonance thickness of the tar-
above deals with the pure diffusion process, while the relaxget into relevant partial thicknesses. When the contributing
ation process is assumed to be the same as in the case wilterentzians have essentially different widths the target ex-
out diffusion. hibits its partial thicknesses in the time dependence within
different time intervals. Hence a time-variable thickness is
characteristic for the nuclear exciton decay in these cases
VI. CONCLUSION rather than a unique thickness. In general, the effect of the
thickness split is revealed for an arbitrary relation between
The response of the nuclear ensemble in the presence tife weights and widths of contributing Lorentzians. The dy-
diffusive motion of nuclei is described by the universal reso-namical beat pattern is sensitive to this relationship. How-
nance functiong(k,®) which is related to the Van Hove ever, under conditions close to the free diffusion regime, i.e.,
space-time correlation functio®(r,t). While considering a for the well size large compared to the wavelength of the
scattering problem it is natural to use the momentum-timeadiation in the case of bounded diffusion, or for high tem-
correlation functionF(k,t) which enters directly into the peratures in the case of jump diffusion, the dynamical beat
time dependence of nuclear exciton decay in the limit of gpattern is restored to the full effective thickness of the target.
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The time evolution of the coherent forward scattering ofcomplex amplitudes of oscillations of the electromagnetic
synchrotron radiation is thus transformed not only quantitafield, while a spectroscopic methddesonance absorptipn
tively but also qualitatively in contrast to the relevani$de  exhibits only their strengthsee Ref. 8 This makes forward
bauer spectra. This higher sensitivity of measurement is bescattering of synchrotron radiation to be a perspective
cause an interference technigferward scatteringreveals method for the studies of diffusion.

1E. R. Bauminger and I. Nowik, iMossbauer Spectroscopggd- M. A. Krivoglaz and S. P. Repetskii, Fiz. Met. Metalloved®, 1
ited by D. P. E. Dickson and F. J. Ber(@ambridge University (1979 [Phys. Met. Metallogr(USSR 32, 8991(1979)].
Press, Cambridge, 1986 12G. Vogl, W. Mansel, and P. H. Dederichs, Phys. Rev. L&

2A. Abras and J. G. Mullen, Phys. Rev. & 2343(1972. 1497(1976.

*G. Vogl, Hyperfine Interacts3, 197 (1990; in Mossbauer Spec- 13w, petry, G. Vogl, and W. Mansel, Phys. Rev. Letf, 1862
troscopy Applied to Magnetism and Materials Scieremited by (1980.

Gary J. Long and Fernande Grandjed@ienum, New York,
1996, Vol. 2, p. 85.

4G. U. Nienhaus and F. Parak, Hyperfine Inter@6.243(1994. 16A, M. Afanasev and V. E. Sedov, Phys. Status Solidi®, 299

K. S. Singvi and A. Sjtander, Phys. Rev120, 1093(1960. (1985.

°J. P. Hannon and G. T. Trammell, Resonant Anomalous X-ray 17A. S. Plachinda, V. E. Sedov, V. I. Khromov, I. P. Suzdalev, V. I.
Scattering,edited by G. Materlik, C. J. Sparks, and K. Fischer ' ' ' '

14W. Petry and G. Vogl, Z. Phys. B5, 207 (1982.
15W. Nadler and K. Schulten, Phys. Rev. Leit, 1712(1983.

(Elsevier, Amsterdam, 1994p 565 Goldanskii, G. U. Nienhaus, and F. Parak, Phys. Revd33
7 . . 7716(1992.
E. Gerdau and U. van Bek, in Resonant Anomalous X-ray Scat- 18 . .
. F. Volino and A. J. Dianoux, Mol. Phy€l1, 271 (1980.
tering (Ref. 6), p. 589.

19 i

8G. V. Smirmov, Hyperfine Interac7/98 551 (1996 in X-ray T. Chudley and R. J. Elliott, Proc. Phys. Soc. Lond6f 353
and Inner-Shell Processe®roceedings of 17th International (1961).'
Conference, edited by R. L. Johnson, B. F. Sonntag, and H, B Sepiol and G. Vogl, Phys. Rev. Leitl, 731 (1993.
Schmidt-Bocking, AIP Conf. Proc. No. 38%\IP, New York, - ©O- G. Randl, B. Sepiol, G. Vogl, R. Feldwisch, and K. Schroeder,

1997, p. 323. Phys. Rev. B49, 8768(1994).
9G. V. Smirnov and V. G. Kohn, Phys. Rev. &, 3356(1995. 22g, Sepiol, A. Meyer, G. Vogl, R. Rufer, A. I. Chumakov, and A.
0yy. Kagan, A. M. Afanasev, and V. G. Kohn, J. Physl1g; 615 Q. R. Baron, Phys. Rev. Letl6, 3220(1996.

(1979.



