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Coherence volumes and neutron scattering
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Abstract

We describe neutron scattering in a space—time frame-complementary to the van Hove picture. Based on the theory of
partial coherence from light optics, neutron beams may be represented by correlation volumes, which are defined by the
wavelength distribution and by optical elements like guides, slits, choppers or crystals. Size and shape of these tiny
volumes (in space and time) determine the volume of coherent interaction within the samples, which are represented by
pair correlation functions. The beam correlation volumes also determine the resolution of the experiment and if the signal
is proportional to a Fourier transform of the sample correlation function. Here we give a simple approach to this theory
with various examples. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Scattering of neutrons from condensed matter is
commonly described by the van Hove formalism
[1]. For an incoming plane wave the scattering
process is formulated in terms of momentum and
energy transfer, q and u. Instrumental effects on
resolution are included afterwards by averaging the
scattered intensities for a certain range of in- and
outgoing wavevectors.

An alternative approach to neutron scattering
was given recently [2]. This approach, presented
here in a simple picture, shows a closer link be-
tween the scattering process and the instrument, as

*Corresponding author.
1Subtle differences between coherence and correlation are not

taken into account and we use both expressions as equivalent.

the scattering is calculated directly for the wave
field shaped by the spectrometer. On the scale of
a typical sample size, the surfaces of constant phase
are far from being planar. This condition which
only holds within tiny volumes, normally not ex-
ceeding the nm scale. We characterize these fields
by using the theory of partial coherence from light
optics [3]. For each point P

0
within the wave field,

this theory derives a certain volume »
#
around P

0
,

with a well defined phase w.r.t. the phase at P
0
.

»
#

can be considered as coherence or correlation
volume,1 with fairly a plane wave inside but more
or less random phase relations outside of this vol-
ume. Because of this randomness, scattering experi-
ments with neutrons (or other particles) reveal
knowledge on correlations between atoms only with-
in the scale of »

#
, and the correlation lengths which

define »
#
determine the resolution of the experiment.
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We will first derive correlation lengths for two
basic cases and then estimate »

#
for several devices

commonly used in neutron scattering. Then we ap-
ply these volumes for several scattering experiments,
where we describe the samples by pair correlation
functions G(r, t). The shape and size of »

#
also deter-

mine, whether G(r, t) itself or its Fourier transforms
w.r.t. r and/or t are measured in the experiment.

2. The van Cittert—Zernike theorem in space
and time

Similar to light emitted by thermal sources, neu-
tron beams emerging from moderators of reactors
may be considered as completely incoherent, i.e.
with random phase variations for radiation coming
from neighboring source points. But “2coherence
is created by the very process of propagation” [4],
and in some distance downstream from the source
there exists a well defined phase relation within
a certain volume, which gives rise to coherence in
the sense of classical optics. An intuitive explana-
tion of this phenomenon is shown in Fig. 1a.

A quantitative description of these coherence
properties for light beams was first derived by van
Cittert and Zernike (CZ-theorem) [5,6], which is
shown in Fig. 1b. For stationary neutron beams
(and elastic neutron scattering) their results are
equally valid, as the wave equations (the Helmholtz
equation for light and the stationary Schrödinger
equation for massive particles) are of the same kind.
For time-dependent optics (and inelastic scattering)
both equations are different and thus we expect
different coherence properties for light and massive
particles.

Many textbooks, e.g. [3,7,8], derive the CZ-the-
orem for the stationary case; for a treatment of the
time-dependent case see Ref. [9]. In the present
discussion we will not use the full correlation func-
tion, but only the mean lengths associated with it.

2.1. The CZ theorem in space — the correlation width
of a slit

A slit of width 2a is illuminated from the left
by an incoherent source, e.g. a neutron moderator.

Fig. 1. Two different views of the wave field emerging from
a completely incoherent source. (a) The wave field with its
statistical fluctuations. These are small only on a length scale of
d, where d increases with the distance from the source. (b) View
of the van Cittert—Zernike theorem; the coherence function for
an incoherent source (the entrance slit) is given by the amplitude
of the diffraction pattern for spherical incoming waves which
focus at the point of observation. We apply Huygens’ principle
to show this diffraction pattern.

There are no phase correlations between waves
emerging from neighboring points in the slit.
According to Huygens’ principle, each of these
points is a source of outgoing spherical waves W(r),
given by

W(r)"
e*kr`r0

r
, (2.1)

where k denotes the wave vector, r the distance
from the source point and u

0
is the randomly

varying phase. At a screen A in a distance ¸ down-
stream of the slit (see Fig. 2), we determine the
lateral width of coherence x

#
in the following
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Fig. 2. Correlation length x
#

for a single slit. Spherical waves
emerging from a source point S in the entrance slit pass through
two pin holes separated by x in plane A and will give rise to
a double-slit pattern (not shown) downstream of this plane. For
all different source points, r

1
!r

2
should not vary by more than

about j/2p, in order to maintain high contrast of the double slit
pattern. For given a, ¸ and wavelength j, this defines a max-
imum separation x

#
— the correlation length, which to first-order

is independent of d. The resulting coherence or correlation
volume is indicated.

gedanken experiment (see Ref. [6]): we assume two
pinholes separated by x in the screen and determine
as a function of x the contrast of the double-slit
pattern of the waves passing these slits.

This loss in contrast results from the fact that at
both holes the phase difference k(r

1
!r

2
) of the

waves emerging from one source point S in the
entrance slit will vary with the position of S within
the slit. As we calculate the intensities of the pattern
separately for each source point, it is only this
variation but not the phase u

0
which reduces the

contrast. Based on this, we can give a simple first-
order estimate of x

#
. For waves emerging from the

center of the entrance slit the path difference *¸
0
at

the two pin holes, centered around d will be, assum-
ing x

#
@d

*¸
0
"

d

¸

x
#
; *u

0
"k*¸

0
. (2.2)

For waves emerging from one of the edges of
the slit, the corresponding path difference *¸

Ba
will be:

*¸
Ba

"

d$a

¸

x
#
. (2.3)

The variation *¸"D*¸
Ba

!*¸
0
D of both path

differences, which causes the loss of contrast, is
independent of d,

*¸"

a

¸

x
#
. (2.4)

For a mean phase variation of *u"1 with *u"

k*¸ we get

x
#
"

¸

ka
. (2.5)

In a more rigorous treatment [3,6,9], the coherence
function c is used, where

c"
sin u

u
, u"

ka

¸

x. (2.6)

For u"1 the degree of coherence drops from 1 (for
x"0) to 0.84, which gives the coherence length
Eq. (2.5). Within this range of x

#
the phase differ-

ences for all waves at the screen A are fairly con-
stant, leading to high contrast of the double-slit
pattern. Note again that in this calculation the
arbitrary phase u

0
of the waves within the source

area does not play a role for the contrast, and we
see that the wave field emerging from an incoherent
source acquires some coherence by traveling. In z
direction (the direction of traveling), for stationary
beams, the longitudinal coherence is given by
j2/*j.

2.2. The CZ-theorem in time — the correlation time
for a chopped beam

Consider now a chopper of opening time 2¹ is
illuminated from the left with a white spectrum of
neutrons. We take the chopper opening as a square
function in time with a wide open area in order to
make diffraction in space negligible. Within this
time window of 2¹ we assume no phase correla-
tions between waves passing the chopper at dif-
ferent times. Nevertheless there will be phase
correlations within certain correlation times
t
#

downstream of the chopper, which — at least in
a gedanken experiment — can be measured with a
Michelson interferometer.
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The estimate of t
#
will be similar to the one for x

#
in the spatial case. We assume t

#
@2¹@t

0
with t

0
being the classical flight time for a particle of
matter wave frequency u

0
from the chopper to

the plane of observation A in distance ¸ from the
chopper (see Fig. 3a). Two waves emerging
from the chopper at time t"0 will have a certain
phase difference *u

0
in plane A, if we consider two

Fig. 3. Correlation time for a chopper. (a) Spherical waves
emerging at a certain time within the chopper opening pass
through two ‘pin holes in time’ separated by t

#
in plane A and

will give rise to a double-slit pattern in time (not shown) down-
stream of this plane. For all waves, passing the chopper during
the opening time 2¹, the phase differences at the two ‘pin holes’
should not vary by more than about 1, in order to maintain high
contrast of the double-slit pattern. This defines a maximum
separation time t

#
— the correlation time — for given ¹, mean

flight time t
0

and mean matter-wave frequency u
0
. (b) For

standard neutron spectrometers, t
#

is orders of magnitudes
smaller than the chopper opening time. The correlation length
x
#
perpendicular to the beam is determined by the slit width of

the chopper.

different flight times t
0
$t

#
/2:

*u
0
"u(t

0
!t

#
/2)!u(t

0
#t

#
/2). (2.7)

As we deal with time-dependent effects in this case,
we will use the Green’s function of the time de-
pendent Schrödinger equation, which is given by
[10,11]

W"exp Ci
m¸

2

2+q D , (2.8)

where q is the flight time. We obtain for the phase
difference at the two times separated by t

#

*u
0
"

m¸2

2+ A
1

t
0
!t

#
/2
!

1

t
0
#t

#
/2B

+

m¸2t
#

2+t2
0

"u
0
t
#

(2.9)

with u
0

being the mean matter-wave frequency.
For waves emerging from the chopper at opening
time $¹, we get for the phase difference *u

BT
for

the same arrival times as before:

*u
BT

"(u
0
G*u)t

#
,

*u
u

0

"

2¹

t
0

, (2.10)

where *u is the change in matter-wave frequency
to account for the mean change in flight time from
t
0

to t
0
G¹. The two phase differences *u

BT
and

*u
0

should not be different by more than K1,
which is the analog coherence condition to the
spatial case, and which determines t

#
. It follows:

D*u
BT

!*u
0
D"1"*ut

#
"

2¹u
0

t
0

t
#
, (2.11)

t
#
"

t
0

u
0
2¹

. (2.12)

Within time elements of t
#

the waves in plane A
can be taken as coherent (see Fig. 3b). Note that
t
#
is proportional to the mean travel time, whereas

for continuous beams the correlation time t
#
[3] is

constant:

t
#
"j2/(*jv) ,

Time-dependent slits are often made by two coun-
ter rotating choppers close together. For identical
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slit widths and velocities the opening function is of
triangular shape. For a time width 2¹ (FWHM),
we obtain as correlation time

t
#
"0.72

t
0

2u
0
¹

. (2.13)

3. Correlation volumes for further neutron
optical devices

3.1. Monochromating crystal

Bragg scattering from crystals with fairly small
mosaicity, as often used in triple axis spectrometers
[12], gives a dominant correlation length l

g
in di-

rection of the reciprocal lattice vector G (see Fig. 4),
whereas the situation may be quite different for
large mosaicities or for gradient crystals [13]. As
the momentum space volume »

1
and the correla-

tion volume »
#

are conjugate volumes (»
1
»
#
++3)

[9], the shape of »
#
can always be deduced from the

known shape of »
1
, which is strongly dependent on

the crystal properties.
We estimate the length of l

g
by the typical size

s of a crystallite, as we get coherent superposition of
scattered waves only within s, which is assumed to
be smaller than the primary extinction length [14].
The correlation length l

M
perpendicular to l

G
is de-

termined by the mosaicity *H of the crystal and the
beam divergence, and as stated above, we assume
l
M

significantly smaller than l
g
.

It follows that the correlation volume in the case
of Bragg scattering is tilted by the Bragg angle H

Fig. 4. For Bragg reflection from a crystal with small mosaicity,
the correlation length can be estimated as the typical size of
a crystallite. The correlation volume is tilt w.r.t. the beam axis.

w.r.t. the beam axis, an effect of particular import-
ance for phonon focussing, as will be shown below.
Note that in our simple picture the length of
»
#
does not depend on the neutron velocity, but is

just a crystal property.

3.2. Magnetic field

Neutrons of energy E
0

may have two states of
different energies E

0
$kB in a magnetic field of

strength B, with k being the neutron magnetic mo-
ment. After passage through a field of length ¸,
tilted by an angle h w.r.t. the beam axis (see Fig. 5),
the correlation volumes of the two states are separ-
ated by d

B
where the unit vector n is normal to the

field boundary.

d
B
"

2kB

mv2

¸

cos H
)n. (3.1)

It may be noted that this separation occurs without
change in the shape of the incoming correlation
volume. In spin echo spectrometry, d

B
/v is called

spin echo time. In these instruments, after the scat-
tering process both states get recombined again by
a second magnetic field and the polarization is
determined from adding the amplitudes of both
states.

3.3. Detector

We assume a detector with pointlike absorbers
randomly distributed behind the exit slit. As there

Fig. 5. The different energies of the two eigenstates of a neutron
in a magnetic field lead to a separation of their correlation
volumes. For parallel field boundaries, the separation is in the
direction of the normal to these boundaries. The longitudinal
separation D expressed as a time delay, is the well known spin
echo time q.
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are no interference effects between different absorp-
tion processes, we may describe the wave field by
incoming spherical waves centered at the absorb-
ers, and the situation is somewhat similar to the
source slit, where we assumed independent out-
going spherical waves. Consequently, we may de-
fine a correlation volume at the sample due to
the detector, which we denote as backward correla-
tion volume »

#"
. This means that paths going

through pairs of scattering points whose separation
lies outside the ‘back correlation’ volume, lose cor-
relation on travelling from the scattering points to
a single absorbing point in the detector. For an exit
slit of width 2d we get as backward correlation
length:

x
#"
"

¸
$

kd
, (3.2)

where ¸
$

is the distance from the sample to the
detector.

In case of a detector with time resolution 2¹
$
the

backward correlation time at the sample is given by

t
#"
"

t
$

2u¹
$

, (3.3)

where t
$

is the flight time and u is the mean mat-
ter-wave frequency of particles arriving at the de-
tector within time elements 2¹

$
.

4. Description of various instruments

In the following we consider for various simplifi-
ed cases the interaction of the sample with the wave
fields inside these correlation volumes. This sample
may be fully described by its density of scatterers
o(r) or o(r, t) in case of a time-dependent system.
We assume the same scattering length for all atoms,
a generalization to different ones would be straight-
forward.

4.1. Small-angle scattering (SANS)

A simple SANS device consists of two slits S
1
,

S
2
separated by a distance ¸

1
, with the sample close

to S
2

and a detector with a certain spatial resolu-
tion 2d downstream of S

2
at a distance ¸

2
.

The lateral correlation length x
#

at the sample
due to slit S

1
of width 2a is given by

x
#
"

¸
1

k
1
a

. (4.1)

According to Section 2, the dominant extension of
»
#
is in x-direction and we will assume that phase

variations of waves scattered within »
#
only depend

on x. We also assume that the density of scatterers
is only a function of x, i.e. o"o(x). The amplitude
emerging from a scatterer at x inside »

#
is propor-

tional to o(x). The intensity at the detector due to
all scattered waves from »

#
will be proportional to

the sum of all cross products of o(x) and o(x#d),
where d varies within the range of x

#
. For a small

scattering angle u"q/k
1
, the phase difference *u

between waves scattered from x and x#d (see
Fig. 6) will be

*u"(k
1
!k

2
) ) d"q )d+qd, (4.2)

Fig. 6. In small-angle neutron scattering, the incoming correla-
tion volume »

#
has its main extension x

#
perpendicular to k

1
.

This allows to measure sample correlations with dox
#
, which

may reach values up to lm in SANS instruments. Adding of all
products of scattered waves from o(r) and o(r#d) leads to the
Fourier transform of G(r, t). The resolution is limited to the
intersection volume of the in- and outgoing correlation volume
»@

#
, which shows the relation between monochromaticity and

scattering angle.
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where q is the momentum transfer, k
1

and k
2

ae the
in- and outgoing wave vectors. The phase *u may
also be seen from the outgoing volume »

#"
, where

a plane wavefront in the direction of k
2

implies an
appropriate correlation length in the sample.

Well defined phase relations within the outgoing
wave field can only exist within the intersection vol-
ume »M

#
"»

#
W»

#"
, which has a length of x

#
. This

shows the close-link between wavelength band and
q-resolution. With increasing q the beam mono-
chromaticity has to be enhanced, to maintain sig-
nificant overlap (length of x

#
) between »

#
and »

#"
.

As intensity we get from summing over all scattered
waves within x

#
:

I"cP
x#

o(x)o(x#d)e~*qd dd"P
x#

G(d)e~*qd dd, (4.3)

where G(d) is the pair correlation function within
the correlation volume »M

#
. Enlargement of the

sample above »M
#

does not yield new information,
except for better statistics. Averaging over all cor-
relation volumes (i.e. over all positions x) within the
sample leads to

I
505
"cP

4!.1-%

G(d)e~*qd dd. (4.4)

Correlations up to the lateral correlation width x
#

will be visible and in this sense, x
#

can be con-
sidered as the spatial resolution of the experiment.
If significant correlations within the sample are

limited to distances d(x
#
, then Eq. (4.4) is the

Fourier transform of G(d).
The maximum lateral width 2b of the sample can

be estimated from Fig. 7. We consider a correlation
volume centered around b instead of being on the
optical axis, which leads to some dephasing of the
waves at the detector. As before we may tolerate
a maximum path difference

(l@
1
#l@

2
)!(l

1
#l

2
)"j/2p"1/k. (4.5)

Assuming x
#
@b@¸

1
, ¸

2
we get

b+
1

kx
#
A

¸
1
¸
2

¸
1
#¸

2
B. (4.6)

Fig. 7. Estimate of the maximum sample size (width 2b; x
#
@b)

in SANS. Shifting the correlation volume off the axis by a length
b, leads to a path difference l@

1
#l@

2
!(l

1
#l

2
), which should not

exceed j/2p.

The above consideration may be compared with
Eq. (18) in Ref. [2]: The three sin u/u factors fall
significantly, if d exceeds x

#
and consequently the

main contribution to the integral comes from
values dox

#
, i.e. from inside the correlation vol-

ume. For intensity reasons, the arguments of all
the sin u/u functions should be made equal, which
leads to:

bA
1

¸
1

#

1

¸
2
B"

d

¸
2

"

a

¸
1

, (4.7)

which may also be obtained from the present con-
sideration.

4.2. Time of flight spectrometer (¹OF)

The time equivalent of a SANS instrument
consists of two choppers Ch

!
and Ch

S
, with the

sample close to Ch
S
and a detector D with a certain

time resolution. The correlation time t
#

at the
sample due to the chopper Ch

!
with opening time

2¹
!

is

t
#
"

t
1

2u
1
¹

!

, (4.8)

where u
1

is the mean matter wave frequency and
t
1

is the mean time of flight between Ch
!
and Ch

S
.

In analogy to scattering in space, only sample cor-
relation times which are not much greater than
t
#

will be observable in the experiment. This also
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holds for the ‘backward’ correlation time

t
#"
"

t
2

2u
2
¹

D

(4.9)

seen from the detector at the sample where t
2

is the
mean time of flight between Ch

S
and D, with 2¹

D
being the time resolution of the detector (see Fig. 8).
Again, t

#
should be matched to t

#"
because of inten-

sity reasons.
The total amplitude is obtained from integrating

all scattered amplitudes within the correlation time
t
#
. In calculating the intensity via all cross products

of o(r, t) and o(r, t#q) we get an additional phase
factor in the integrand. In analogy to the SANS
case (correlating two scattered waves separated in
space), this leads to a Fourier transform, but now
w.r.t. time: The correlation of two waves scattered
with a time delay q leads to a phase difference (see
Fig. 8)

*u"u
1
q!u

2
q"uq. (4.10)

Fig. 8. Quasielastic scattering. The correlation volumes exhibit
maximum extensions parallel to k, and allow for a long interac-
tion time with a localized excitation given by o(t). Integration
over the interaction time leads to the Fourier transform of G(r, t)
w.r.t. time.

For the scattered intensity we get

IJP
t#

S(q, q) e~*uq dq, (4.11)

where we assumed a certain momentum transfer
q similar to the SANS case. If all significant time
correlations in the sample are smaller than t

#
,

Eq. (4.11) is the Fourier transform of S(q, t). Access-
ible time correlations are limited to t

#
, and hence

t
#
can be considered as time resolution of the instru-

ment.
The maximum opening time 2¹

S
of the chopper

Ch
S
may be estimated analog to the sample size in

the spatial case:
We consider correlations in time centered

around a time t@
1

(instead of t
1
) with t@

1
"t

1
#¹

S
and may tolerate an additional phase difference of
1. From Eq. (2.8), using t

#
@¹

S
@t

1
, t

2
, we finally

obtain:

¹
S
K

+/(mt
#
)

v3
1
/¸

1
#v3

2
/¸

2

, (4.12)

where v
1

and v
2

are the mean velocities before and
after scattering.

For ¸
1
"¸

2
and v

1
+v

2
"v we get

¹
S
K

t

2kvt
#

, (4.13)

where t is the mean flight time. Eq. (4.13) is closely
related to Eq. (4.6), which estimates the sample
width in the SANS case, assuming ¸

1
"¸

2
"¸.

Eq. (4.13) may be compared with Eq. (48) from
Ref. [2], which contains correlation functions for
both arms of the spectrometer and the sample. For
intensity maximizing reasons, these three factors
should be made equal, and we get:

k2
1
¹"k2

2
¹

D
"2(k2

1
#k2

2
)¹

S
. (4.14)

4.3. Triple-axis spectrometer

Triple-axis instruments are commonly used to
determine nonlocalized excitations e.g. phonons in
crystals, and these spectrometers cover a large
range in momentum transfer q and energy transfer
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u. Here, special emphasis is given to measurements
of life times of those excitations, which gives in-
formation on electron phonon coupling and on
unharmonicities of the lattice.

With respect to size and shape of »
#
, we assume

the monochromating and analyzing crystals to be
the dominant optical elements of triple-axis instru-
ments (see Section 3). As we deal with time-depen-
dent phenomena, we have to take into account the
time dependence of both correlation volumes dur-
ing the scattering process, i.e. the movement of
»
#
with the neutron velocity. This is similar to the

TOF case, whereas in the SANS case, »
#

could be
taken as static.

In analogy to the above cases, significant contri-
butions to the total amplitude at the detector may
only come from the overlap volume »M

#
"»

#1
W»

#2
,

where the indices 1 and 2 denote the mono-
chromator and analyzer crystal. Due to the tilt of
both volumes w.r.t. their beam axes, »M

#
moves with

a certain velocity �
#
(see Fig. 9). By matching �

#
to

the velocity �
1

of a moving excitation, i.e. to
a phonon, we obtain a fairly long interaction time.
The relation between the relevant vectors for this
‘phonon focusing’ condition may be deduced from

Fig. 9. Triple-axis spectrometer in focusing geometry. The in-
tersection of the coherence volumes »

#1
and »

#2
moves with the

phonon, represented by v
1
. Phonon lifetimes smaller than the

interaction time can be observed. The focusing conditions may
be deduced directly from the figure.

Fig. 10:

n
1
) l
g1
"(�

1
!�

1
)q, n

2
) l
g2
"(�

1
!�

2
)q, (4.15)

where l
g1@2

are the lengths of the correlation vol-
umes of the monochromator and analyzer and q
is the relevant correlation time for the interaction.
In a space-time picture, (see Ref. [15]) this excita-
tion can be described by a specific correlation func-
tion G:

G(R, q)"e~C > q ) d(3)(R!�
1
) q), (4.16)

where C is the life time of the excitation, being
located in space around R. In order to measure C,
the interaction time q, i.e. the time of overlap be-
tween R and »M

#
, should not be less than about 1/C,

and together with Eq. (4.15) this condition deter-
mines minimum values of l

g1
and l

g2
for given �

1
and �

2
. Using Eq. (4.15) we obtain:

n
1
) l
g1
#n

2
) l
g2
"(�

1
!�

2
)q"cq (4.17)

where q is the momentum transfer and c is a con-
stant, given by the interaction time q and by mo-
mentum conservation in the scattering process.
Eq. (4.17) is the triple-axis focusing condition in
the space—time picture. For the focusing condi-
tion in the q—u picture, we refer to Refs. [16,17].
Energy conservation in the scattering process sets
an additional constraint to the possible values of
�
1

and �
2
.

Fig. 10. Relation between the n-velocities v
1
/v

2
, the phonon

velocity v
1
, the correlation lengths l

g1
and l

g2
for the in- and

outgoing beams and the interaction time q.
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Fig. 11. Triple-axis spectrometer with spin-echo fields in focus-
ing geometry. We assume that the correlation lengths due to the
crystals are much smaller than the splittings due to the B-fields.
The focusing condition is similar to the pure triple axis case. By
varying the magnitude and the direction of the field boundaries
of the B-fields, the focusing condition can be matched to a wide
range of phonon parameters.

4.4. Triple-axis spectrometer with spin echo option

We now place magnetic precession fields B
1

and
B
2

upstream and downstream of the scattering
sample (see Fig. 11) and assume the boundaries of
each field to be tiltable w.r.t. the beam axis by
angles H

1
and H

2
. We further assume that all

dimensions of the correlation volumes »
#1,2

are
small compared to the splittings caused by the
B-fields, i.e. we assume l

g
@Dd

B
D (see Eq. (3.1)). The

focusing condition, which was first derived in Ref.
[18] is similar to the pure triple axis case, but the
fixed lengths of l

g1,2
(given by the crystal properties)

are replaced now by the splittings d
B1,2

. The condi-
tion for overlap of the corresponding correlation
volumes for the in- and outgoing beam i.e. the
focusing condition, which may be derived from

Fig. 11, reads:

n
1
E�

1
!�

1
, n

2
E!�

2
#�

1
. (4.18)

The magnitude as well as the direction of d
B

can be
varied in a wide range by changing the magnitude
and the shape of the B-fields. The focusing condi-
tions (4.18) can now be fulfilled for a large range of
experimental parameters, and the high energy res-
olution of spin echo can be combined with the wide
space—time (or q—u) range of triple-axis spectro-
meters. A spectrometer of this kind was built for the
HMI Berlin [19].
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