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Abstract

Random fields occur in a wide variety of physical systems varying from type II superconductors to two-component
fluids in a random medium. However, only in model magnetic systems have systematic studies as a function of both
temperature and random-field strength been possible. In this article we review recent neutron and magnetic X-ray
scattering studies of the magnetic ordering processes in the antiferromagnets Mn

0.75
Zn

0.25
F
2
, Fe

0.5
Zn

0.5
F
2

and
Fe

0.75
Co

0.25
TiO

3
in an applied magnetic field. These systems should all represent realizations of the three-dimensional

random-field Ising model which is the simplest version of the random-field problem in models with discrete symmetry. In
all cases on field cooling (FC) the systems evolve continuously from a high-temperature paramagnetic state to
a low-temperature antiferromagnetic domain state. However, on cooling to low temperatures in zero field and then
applying a field (ZFC) long-range order (LRO) is obtained. On subsequent heating in the three systems the LRO vanishes
continuously with a rounded power-law behavior which has been labelled trompe l’oeil critical behavior. The width of the
transition region scales as H2. Reconsideration of indirect ZFC specific-heat measurements shows that the observed
peaks, previously attributed to equilibrium critical fluctuations, instead arise entirely from a LRO contribution, scaling
like dM2

4
/d¹, to the measured quantity. Here M

4
is the staggered magnetization. These results thus reconcile scattering

and bulk property measurements of random-field Ising systems. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the major unsolved problems in the study of
phase transitions is the behavior of systems with both
quenched disorder and competing interactions or fields.
The random-field model, proposed originally by Larkin
in 1970 [1] to model the defect pinning of vortices in type
II superconductors, has proven to be a useful paradigm
for this class of problems. The Ising version of this model,
the random-field Ising model (RFIM), most simply en-
capsulates the essential physics of the problem in systems
with discrete symmetry. The RFIM has been the focus of
intense study over the past two decades. The Hamil-
tonian for such systems is

H"+
WijX

J
ij
Sz
i
Sz
j
!+

i

h
i
Sz
i
. (1)
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Here h
i
are the random fields, which typically are as-

sumed to average to zero but with a finite variance.
Systems with critical behavior which can be modelled by
this Hamiltonian include absorbed monolayers on
a square substrate, many structural order—disorder
transitions, and certain Jahn—Teller systems, all with
impurities which pin the order parameter, as well as two
component fluids in a random medium.

Initially, much of the theoretical research on the RFIM
dealt with the problem of the lower critical dimension, d

-
,

the dimension at which, in equilibrium, the random-field
fluctuations drive the transition temperature to zero. The
pioneering theoretical work of Imry and Ma [2] first
discussed the competition between the gain in the statisti-
cal random-field energy which occurs when a region
follows its weak random field and the loss in the Ising
interaction energy at the walls of the domain, for the case
of compact domain formation in the d-dimensional
RFIM. Using simple phenomenological arguments it was
concluded that d

-
"2 [2]. This competition between the
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domain-wall energy and the random-field energy lies at
the heart of the RFIM and has formed the basis of
much of the subsequent theoretical work. The value of
the lower critical dimension became controversial after
arguments based on perturbation theory suggested that
d
-
"3. After almost a decade of considerable debate

a consensus emerged that d
-
"2. This view has been

supported, in particular, by the rigorous proof of Imbrie
[3, 4] that the three-dimensional (3D) RFIM is ordered
at ¹"0.

Initially, systematic experimental studies of RFIM
systems seemed to be prohibitively difficult. However,
an important breakthrough occurred when Fishman
and Aharony [5] pointed out that the application of
an external magnetic field along the easy axis of a
random antiferromagnet generates a term in the Hamil-
tonian which behaves like a random field that couples
linearly to the order parameter. Random antiferro-
magnets are ideally suited to the study of the RFIM
because the strength of the random field may be con-
tinuously varied simply by adjusting the applied field.
A variety of experimental techniques have been applied
to these systems including neutron and magnetic X- ray
scattering, optical birefringence and Faraday rotation,
dilatometry, AC susceptibility, SQUID magnetometry,
and NMR techniques. Until recently, the scatt-
ering and thermodynamic measurements seemed to
yield results which were not easily reconciled with
each other. However, recent measurements, including
especially synchrotron magnetic X-ray scattering stud-
ies, have elucidated further the behavior of RFIM
systems and, specifically, seem to have resolved this
conundrum.

As we shall discuss in this review, experiments
reveal that nonequilibrium effects play an essential
role in the behavior of RFIM systems. On the one hand,
these make both experiment and theory for the RFIM
much more difficult; on the other hand, they make the
physics much richer and complex. We now have a very
detailed empirical description of the equilibrium and
hysteretic behavior in a number of model RFIM systems.
However, there is, in our view, no satisfactory theory
for the behavior in the nonequilibrium regime and espe-
cially for the transition from metastability to equilibrium
behavior.

In this paper we shall review recent studies of three
different model RFIM systems Mn

0.75
Zn

0.25
F
2

[6—10],
Fe

0.5
Zn

0.5
F
2

[11—15] and Fe
0.75

Co
0.25

TiO
3

[16, 17] in
an applied magnetic field. Neutron scattering experi-
ments are reviewed in Section 2. The time dependence is
discussed in Section 3. Magnetic X-ray scattering
measurements are reviewed in Section 4. Direct and in-
direct specific-heat measurements are discussed in
Section 5. The critical behavior in the equilibrium para-
magnetic state is reviewed in Section 6. Conclusions and
our overall perspective are given in Section 7.

2. Neutron scattering

Neutron scattering has played a central role in the
elucidation of the phenomenological behavior of RFIM
systems. This is because neutrons couple directly to the
spin; they are able to probe the antiferromagnetic spin
correlations on length scales from &1 to &1000 A_ and
for energies varying from microvolts to millivolts. Begin-
ning with the pioneering studies in 1980 by Cowley and
coworkers of RFIM effects in Co

1~x
Zn

x
F
2

[18, 19],
a series of neutron scattering experiments have been
performed on random antiferromagnets in a field. The
most detailed experiments have been carried out on the
diluted antiferromagnets Mn

1~x
Zn

x
F
2

and Fe
1~x

Zn
x
F
2

which are, respectively, weakly and strongly anisotropic
two-sublattice Ising antiferromagnets.

Generally, the Ising component of the neutron scatter-
ing cross section in a 3D RFIM system may be written as

S(Q)"
Ai

(i2#q2)2
#

B

i2#q2
#Cd(q), (2)

where q"Q!Q
AF

. The d function represents any long-
range magnetic-order component. The second term cor-
responds to the longitudinal dynamic susceptibility. The
Lorentzian-squared term arises from static fluctuations
due to the quenched random-field. Written in this form,
A is the integrated intensity for these fluctuations. From
the fluctuation dissipation theorem, the structure factor
S(Q) of Eq. (2) may be written as the sum of two terms,
S(Q)"¹s

$*4
(Q)#¹s(Q), where s

$*4
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T], are the so-called discon-

nected and connected susceptibilities, respectively. In
a nonrandom system, for ¹'¹

#
, +

j
Sp

0
TSp

j
T"0 and

S(0)&¹s&t~c. However, in random systems s
$*4

is no
longer zero and a new exponent is defined, s

$*4
&t~cN . In

Section 6, we will discuss experimental measurements of
the equilibrium critical fluctuations in the high-temper-
ature paramagnetic region which yield values for c and cN ,
together with the correlation length exponent l, where
1/i&t~l. In Eq. (2), we identify the thermal fluctuations,
given by parameter B with s(Q) and the random-field
fluctuations, A, with s

$*4
(Q). In this section we will focus

on the evolution of the RFIM from the high-temperature
equilibrium paramagnetic state to the low-temperature
metastable regime.

A detailed set of neutron experiments in
Mn

0.75
Zn

0.25
F
2

at various fields are reported in Ref.
[6—8]. We show in Fig. 1 data obtained at 5.0 T using
a triple-axis configuration with energy resolution 20 leV
half-width at half-maximum (HWHM). It was anticip-
ated that the high-energy resolution would eliminate the
Lorentzian term in Eq. (2) which is dynamic in character
and isolate the Lorentzian squared term which originates
from the static-ordered moments induced by the random
field.
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Fig. 1. The neutron scattering observed as a function of wave
vector Q"(1, f, 0) in Mn

0.75
Zn

0.25
F

2
in a field of 5.0 T, with

a two-axis configuration. At 44.0 K the results are independent
of the previous history but at 43.4 K they are dependent on the
history [6—8].

Thermal expansion measurements which were carried
out on the same system show a hysteretic peak at
¹

#
(5.0 T) + 43.7 K [20, 21]. The samples used in the neu-

tron and thermal expansion experiments were cut from
adjacent sections of the same boule and their H"0 Néel
temperatures coincided to within the errors (¹

N
(0)"

46.0 K). As shown in Fig. 1 at 44.0 K S(q) is the same for
the FC and ZFC procedures. The correlation length
m"i~1 is &200 A_ . However, at 43.4 K the spin config-
uration explicitly depends on the history of the sample.
The FC correlation length at 43.4 K is &550 A_ whereas
the ZFC system has long-range order (LRO).

The results for the inverse correlation length i from fits
to the H"5.0 T neutron data are shown in Fig. 2. For
the ZFC data the profiles were fit to the sum of a resolu-
tion-limited Gaussian and a Lorentzian squared. The
double-arrow in Fig. 2 denotes the transition region.
This will be discussed in more detail in Section 4.

These data illustrate the essential behavior of RFIM
systems. Above a certain temperature, which we label
¹

%2
(H), equilibrium is obtained. Below ¹

%2
(H) the phys-

ical state of the system depends on the history of the
sample. For FC measurements the domains grow pro-
gressively in size but saturate at a finite value. However,
for ZFC measurements LRO obtains up to ¹

%2
(H). The

loss of LRO on heating in the ZFC procedure occurs
with accompanying Lorentzian-squared fluctuations
where the maximum length of these fluctuations which is

Fig. 2. The temperature dependence of the inverse corre-
lation length, i, close to the metastability boundary in
Mn

0.75
Zn

0.25
F

2
for data taken with H"5.0 T with FC and

ZFC procedures [6—8].

achieved near but below ¹
%2

(H) equals the corresponding
FC value to within the errors. We shall discuss the
detailed behavior in the transition region in Section 4.
The critical behavior in the equilibrium region above
¹

%2
(H) will be discussed in Section 6.

Results essentially identical to these are obtained in
both Fe

1~x
Zn

x
F
2

[11—15] and Fe
0.75

Co
0.25

TiO
3

[16, 17] in an applied magnetic field. The former is
a highly anisotropic diluted Ising magnet whereas the
latter is a mixture of Ising (FeTiO

3
) and X½ (CoTiO

3
)

magnets. Thus, the behavior shown in Figs. 1 and 2 is
generic depending only on the overall 3D Ising symmetry
and not on the microscopic details. We will discuss
current models for this hysteretic behavior, especially in
the transition region, in Section 5.

3. Time dependence

The statement that d
-
"2 requires that the FC domain

state we observe in these 3D RFIM magnets is
a nonequilibrium state and that in equilibrium one ex-
pects true LRO. This, in turn, suggests that the FC
domains should expand as a function of time. Theories
which assume an instantaneous quench from the para-
magnetic phase into the ‘ordered’ region predict that the
domains will grow logarithmically with time and further
that they cannot then contract unless one crosses the
phase boundary [22—24]. The latter is in agreement with
experiment. The quenched domain size is predicted to
scale like

m&
J¹

H2
ln(t/q), (3)

where q is a microscopic time which cannot be shorter
that K/J&10~11 s. The linear dependence on ¹ in
Eq. (3) is not observed in field cooling; rather m saturates
at relatively high temperatures; presumably this reflects
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the difference between field-cooling and the instan-
taneous quench procedure assumed in deriving Eq. (3).
In Fe

x
Zn

1~x
F
2

at low temperatures m does indeed scale
like H~2 [25]. However, in Co

0.35
Zn

0.65
F
2
the exponent

is 3.6$0.4 [18, 19] while in Mn
0.5

Zn
0.5

F
2

it is 3.4$0.4
[6—8] although recent experiments at small fields on this
latter system give a value closer to 2 [14]. The order of
magnitude of m is given correctly by Eq. (3).

The most important qualitative feature of Eq. (3) is
that m should increase logarithmically with time. By rap-
idly quenching a sample through the phase boundary it is
possible to measure m for times varying between &102

and &105 s — enough to test Eq. (3) with q"10~11 s.
Birgeneau et al. [6—8] report an experiment carried out
for H"7.0 T in Mn

0.75
Zn

0.25
F
2

where the sample was
quenched from 0.4 K above the phase boundary to 0.4 K
below the boundary. As may be seen from Fig. 3, the
ratio of domain sizes at 5.4]104 and 6.0]102 s was
measured to be 1.01$0.03 compared with a minimum
ratio of 1.14 predicted by the logarithmic law, Eq. (3).
Thus, logarithmic expansion with time of the FC domain
radius is excluded. A series of additional field cooling or
field lowering experiments in Mn

0.75
Zn

0.25
F
2

and
Mn

0.5
Zn

0.5
F
2

confirm this conclusion [6—8].
This apparent contradiction with theory was ad-

dressed by Natterman and Vilfan [26]. They concluded
that the absence of measurable ln(t/q) domain expansion
behavior in Mn

1~x
Zn

x
F
2

was due to the weak aniso-

Fig. 3. Scattering profiles in Mn
0.75

Zn
0.25

F
2

in a field
H"7.0 T. The LRO-state data were obtained by the ZFC
procedure. The FC data were obtained by first raising the
temperature of the ZFC state to 41.4 K, and then cooling it
rapidly to 40.6 K. The solid lines are guides to the eye [6—8].

tropy and consequent broad domain walls in that system.
They predicted that the logarithmic growth in time of
the domains should be observable in a narrow domain-
wall system such as Fe

1~x
Zn

x
F
2
. They further pre-

dicted that the time dependence should be generalized
to ln(t/q)~t.

Recently, Feng and co-workers [13] have studied the
time dependence of the FC domain size in the highly
anisotropic diluted 3D Ising magnet Fe

0.5
Zn

0.5
F
2
. They

have, in addition, measured the time dependence of the
excess magnetization M

%9
"M

FC
!M

ZFC
where M

FC
and M

ZFC
are the magnetizations at a given field and

temperature after field cooling and zero-field cooling,
respectively. Heuristically, M

%9
should provide a measure

of the excess magnetization in the FC domain walls;
a phenomenological argument suggests that M

%9
should

scale like m~1 possibly raised to a power t depending on
the fractal nature of the domain walls [26, 27].

Fig. 4 shows a comparison of the inverse correlation
length i obtained directly using neutron scattering tech-
niques and M

%9
determined by SQUID measurements

Fig. 4. Comparison of the time dependence of the inverse cor-
relation length, i, as measured by neutron scattering and the
excess magnetization from domain walls M

%9
as measured by the

SQUID for three temperatures below the transition in
Fe

0.5
Zn

0.5
F

2
in a field of 5.5 T. The M

%9
values have been

rescaled according to the neutron scattering i. Both techniques
show frozen dynamics at low temperatures. At higher temper-
atures, the two techniques also agree, suggesting that the fractal
properties of the domains do not change noticeably while the
average size of the domain grows with time [13].
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in Fe
0.5

Zn
0.5

F
2
, taken at the same temperatures at H"

5.5 T. At ¹"6.8 K, both techniques show that the mag-
netic domains are frozen. At ¹"21.5 and 27.1 K, i
and M

%9
undergo a similar percentage of decay over the

same period of time. Detailed fits show that the decay is
consistent with the simple logarithmic form ln(t/q), i.e.,
t"1 although the uncertainties in the exponent are
large. More generally, from detailed studies of M

%9
it is

found that t is typically much less than 1 at low fields,
increasing to 1 at higher fields [13].

In brief, then, the experiments of Feng et al. [13]
confirm the predictions of Natterman and Vilfan [26].
Specifically, in narrow domain-wall systems logarithmic
expansion of the FC metastable domains is indeed dir-
ectly observed. The measurements also confirm the close
association between the FC domain-wall radius and the
excess magnetization M

%9
"M

FC
!M

ZFC
.

4. Magnetic X-ray scattering

Neutron scattering studies of the ZFC behavior are
compromised because the diffraction is severely affected
by extinction. Thus it is not possible to measure quanti-
tatively the temperature evolution of the order
parameter, at least outside of the transition region. An
alternative experimental approach made possible by the
advent of dedicated synchrotron sources is to study the
magnetic correlations using magnetic X-ray scattering.
This technique is complementary to neutron scattering
with several important strengths. First, the small cross
section results in extinction-free scattering, so that the
order parameter may be reliably determined. This is of
particular importance in the work discussed here. Sec-
ond, the small penetration depth of X-rays, typically on
the order of 2 lm, may reduce the effect of concentration
gradients. Third, the high reciprocal space resolution
allows large length scales to be probed. Fourth, the
relatively poor energy resolution (&10 eV) ensures in-
tegration over all relevant thermal fluctuations. Fifth,
though not pertinent to this work, the contributions due
to the orbital and spin magnetic moments may be distin-
guished through polarization analysis.

Extensive studies of each of Mn
1~x

Zn
x
F
2

[9, 10],
Fe

1~x
Zn

x
F
2

[11, 12] and Fe
1~x

Co
x
TiO

3
[16, 17] in an

applied field have been carried out using magnetic X-ray
scattering techniques. The FC results so-obtained agree
in detail with those measured using neutron scattering
techniques. We will not review those results here. Instead,
we will focus on the ZFC transition behavior. As dis-
cussed previously, bulk thermodynamic measurements of
properties such as the thermal expansion [14] and the
temperature derivative of the uniform magnetization
[11, 12, 27] or optical birefringence [28—30] show
anomalies on warming from the low-temperature ZFC
state. As we shall discuss in Section 5, these anomalies

occur just below ¹
%2

(H). They have been interpreted by
some groups as signalling an equilibrium phase
transition with RFIM critical behavior [28—30]. How-
ever, it is difficult to reconcile this claimed critical behav-
ior with the fact that the system is manifestly not in
equilibrium and with the absence of a divergent magnetic
correlation length (cf. Fig. 2).

We discuss first results in Mn
0.75

Zn
0.25

F
2

[9, 10]. The
salient features of the disordering process are shown in
Figs. 5 and 6. Representative scans through the (1 0 0)
magnetic Bragg peak are shown in Fig. 5 at a series of
temperatures for H"6.0 T. The system was initially
cooled into the X½ phase and then warmed with the field
fixed at H"6.0 T. This is equivalent to the ZFC process
since the X½ phase has true LRO. The peak is well-fit by
the resolution function, which is a Lorentzian, for all
temperatures up to ¹

%2
(H), the metastability boundary.

This corresponds to a domain size in excess of 20 000 A_ .
Fig. 6 shows the (1 0 0) peak intensity versus temper-

ature for a series of such runs at different fields in two
different samples. A remarkable feature of these data is
that the behavior is universal for all fields studied. In
particular, at low temperatures there is a linear dimin-
ution with increasing temperature of the order para-
meter, crossing over to a power-law-like decay with
exponent, b"0.2$0.05, near ¹

%2
(H). Further, a careful

Fig. 5. Representative transverse X-ray scans in
Mn

0.75
Zn

0.25
F

2
taken on warming from the X½ phase at

H"6.0 T. These data are offset by two counts/s for each suc-
cessive temperature. The data are well fit by a Lorentzian resolu-
tion function of constant width i"4]10~5 r.l.u. [9, 10].
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Fig. 6. Order parameter squared versus temperature after ZFC
(H"3.5 and 5.0 T) and FHXY (H"6.0, 6.5 and 7.0 T) in two
different samples of Mn

0.75
Zn

0.25
F
2
. The solid lines through the

H"0 T data are the results of power-law fits I&(¹
N
!¹)2b

with 2b"0.70. The solid lines through the HO0 data are the
results of fits to a Gaussian rounded power law, Eq. (4), with
2b"0.40 and p

ZFC
(H)"0.0034H2 (K/¹2) [9, 10].

inspection of the data in the transition region reveals that
the transition is not a true power law, but rather it is
smeared out. The solid lines in Fig. 6 represent the results
of fits to a power law with b"0.2 and a Gaussian distri-
bution of transition temperatures;

I(¹, H)"
1

Jpp
ZFC

(H)PA
t
#
!¹

t
#
B

2b

]expA!A
t
#
!¹

#
(H)

p
ZFC

(H) B
2

B dt
#
, (4)

from the fits one finds that to within the errors
p
ZFC

(H)&H2.
With the knowledge that the width of the transition

region scales as H2, one can construct a scaling plot for
these data. That is, by measuring the temperature in units
H2, all of the HO0 data should collapse onto a single
curve. Fig. 7 displays the data of Fig. 6 as a function of
the variable (¹!¹

#
(H))/H2. The relative intensity is

then the only free parameter, and is adjusted to optimize
the data collapse. The data do indeed collapse onto
a single function, shown in the figure as the solid line. The
scaling function is a power law with exponent b"0.2
with a transition region rounded as H2. This has been

Fig. 7. Scaling of the ZFC data in the transition region in
Mn

0.75
Zn

0.25
F

2
. The data are plotted as a function of the

scaling variable (¹!¹
#
(H))/H2; the relative intensity is then the

only free parameter and is adjusted to optimize the data collapse
[9, 10].

Fig. 8. (a) The ZFC order parameter squared in Fe
0.5

Zn
0.5

F
2
as

measured at the (1 0 0) position with X-rays for five fields and
H"0 T. For HO0, the data are well described by a power-
law-like behavior with a broadened transition region. The
broadening is modelled by a Gaussian distribution of transition
temperatures of width p

ZFC
(H)JAH2, Eq. (4). (b) The HO0

data of (a) replotted as a function of the temperature interval
away from ¹

#
(H) as measured in units of H2. This illustrates the

rounding of the transition which is attributed to nonequilibrium
effects arising from extreme critical slowing down and the uni-
versal scaling behavior of the trompe l’oeil critical phenomena.
The inset shows the phase boundary of Fe

0.5
Zn

0.5
F

2
as deter-

mined from the X-ray fits [11, 12].
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Fig. 9. RFIM behavior of Fe
0.75

Co
0.25

TiO
3
in a magnetic field.

The upper panel shows the (1, 1, 1.5) Bragg intensity after ZFC.
The solid lines for HO0 are the results of fits to the trompe l’oeil
model, Eq. (4). The H"0 line is the result of a fit to a simple
power law with b

,
"0.36(3). The inset shows the (1, 1, 1.5)

intensity for ¹"15 K as a function of field for X-rays and
neutrons. The H dependence in the X-ray cross section orig-
inates in a subtle coupling term which scales like MM

4
o
4
where

M is the magnetization, M
4

the staggered magnetization and
o
4
the staggered charge density. The bottom panel shows the FC

inverse correlation length i
T

for varied fields [16, 17].

labelled trompe l’oeil critical behavior since the behavior
simulates ordinary critical phenomena at a second-order
phase transition but, in fact, represents escape from meta-
stability [9, 10].

A similar set of experiments and analysis was carried
out in Fe

0.5
Zn

0.5
F
2

[11, 12]. The results are shown in
Fig. 8. Again one finds that p

ZFC
(H)&H2. This once

more enables one to construct a scaling plot as shown in
the bottom panel of Fig. 8. The best fit of Eq. (4) to the
scaled data yields b"0.15$0.05. As shown in Fig. 9,
similar results are obtained in Fe

0.75
Co

0.25
TiO

3
al-

though in that case the data are more complicated be-
cause of a novel coupling between the magnetization, the
staggered magnetization and the staggered charge den-
sity which affects the magnetic superlattice X-ray cross
section [16, 17].

We should emphasize that Eq. (4) is not unique. In-
deed, as pointed out by Wong [31] and Hill et al. [32]
a model assuming a mean-field first-order transition

rounded like H2 can also describe the data. Currently
there is no real theory for the observed trompe l’oeil
behavior.

5. Scattering, direct and indirect heat capacity data

One of the most important experimental issues for the
RFIM has been how one reconciles X-ray and neutron
scattering data with direct and indirect heat capacity
results. Recent work seems to have resolved this conun-
drum [11, 12]. We show in Fig. 10 results of neutron and
X-ray scattering measurements on an identical sample of
Fe

0.5
Zn

0.5
F
2

in a field of 6.1 T. The X-ray and neutron
thermometer scales were normalized at H"0 T (¹

N
"

(0)"36.8 K), and no further temperature-scale correc-
tion was made in comparing the neutron and X-ray data
at 6.1 T. Fig. 10 contains several important results. First,
it shows that neutron and magnetic X-ray scattering
yield identical results for M2

4
in the transition region.

Second, the ZFC fluctuation correlation length is a max-
imum at ¹

#
(H), and this length equals the corresponding

FC value at all temperatures *¹
#
(H). This was also seen

earlier in measurements in Mn
0.75

Zn
0.25

F
2
(Fig. 2). Con-

comitantly, the critical scattering amplitude measured at
(1, !0.003, 0) is a maximum at ¹

#
(H).

Fig. 11 shows the results of SQUID and neutron
measurements in Fe

0.5
Zn

0.5
F
2

at 5 T [11, 12]. The
SQUID data were taken on a small piece cut from the

Fig. 10. Top panel: X-ray and neutron magnetic intensities in
Fe

0.5
Zn

0.5
F

2
for H"6.1 T. The solid line is the result of a fit to

the rounded power law of Eq. (4) with ¹
#
(6.1 T)"25.54 K

(dashed line) and p (6.1 T)"0.9 K. Bottom panel: Inverse cor-
relation length versus temperature on FC and ZFC [11, 12].
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Fig. 11. Top panel: neutron scattering intensity at (1, 0, 0)
(LRO) and (1, !0.003, 0) at H"5.0 T. The solid line is the
result of a fit to the trompe l’oeil rounded power-law form,
Eq. (4). The small arrow at the top indicated the 0.3 K shift in
the neutron data temperature scale. Bottom panel: FC and ZFC
data for d(¹M)/d¹ at H"5.0 T [11, 12].

neutron sample. They agree in detail with previous re-
sults by Lederman and co-workers [27]. The neutron
data are analogous to those shown in Fig. 10 at 6.1 T.
The temperature derivative of the SQUID magnetization
shows a sharp peak on ZFC, but not FC. The temper-
ature scales of the neutron and magnetization data have
again been normalized at H"0 T. The net accuracy of
this normalization is $0.3 K. In plotting the data at 5 T
in Fig. 11, the neutron temperature scale has been shifted
by 0.3 K, as indicated by the small arrow at the top of the
figure. This is based on the physically compelling argu-
ment that d(¹M)/d¹ should have its maximum at the
same temperature as that at which the correlation length
is a maximum. In any case, the temperature-scale shift
is within the combined temperature uncertainties, and
its omission has no important effect on the overall
argument.

In Refs. [11, 12] it was hypothesized that for indirect
heat-capacity techniques for RFIM systems there may be
a term of the form dM2

4
/d¹. The argument was based on

general phenomenological considerations for probes
where the response is determined by short-range spin—
spin correlations. In fact, such a term has been hy-
pothesized previously by many authors for different
kinds of measurements in other kinds of systems and has
been observed in a number of cases. It was further

hypothesized that the thermal contribution to
d(¹M)/d¹, which is determined by short-range effects,
would not be very different for FC and ZFC measure-
ments. Therefore, as a first approximation, the ZFC
d(¹M)/d¹, should equal the FC result augmented by the
dM2

4
/d¹ contribution. The solid line in the bottom panel

of Fig. 11 is the result of such an analysis. In this case,
only the amplitude of the dM2

4
/d¹ contribution (dashed

line) has been varied, and there has been no further
adjustment in the temperature scale. Clearly this simple
model describes the ZFC d(¹M)/d¹ data very well. Sim-
ilar agreement is obtained at all other fields; in each case
the adjustment of the temperature scales to match the
peak temperatures is well within the temperature uncer-
tainties. The evident good agreement is compelling evid-
ence that the basic model is correct.

In order to test these ideas further, direct heat-capacity
measurements were carried out by Feng and Ramirez
both on samples of Fe

0.5
Zn

0.5
F
2

taken from the same
boule as the samples used in the above work, and on
crystals of Mn

0.75
Zn

0.25
F
2

[11, 12, 15]. The above
model necessitates that the direct heat capacity, which is
sensitive to the local spin configuration and not to the
LRO, should show little hysteresis. In the top panel of
Fig. 12, direct heat-capacity data taken on Fe

0.5
Zn

0.5
F
2

at H"1.5 T, and 5.5 T are displayed. These data were
taken using a semiadiabatic technique. The time scale for
each datum point is &20 s. There is no observable
hysteresis in either data set. This demonstrates that the
FC and ZFC thermal fluctuations are closely similar.
Identical results are obtained in Mn

0.75
Zn

0.25
F
2

[15]. It
is clear that the ZFC peak of indirect heat-capacity
methods is not indicative of the true heat capacity.

Finally, these ideas have been tested on published
birefringence data, as shown in the bottom panels in
Fig. 12. In Fig. 12b, we show data of Ferreira et al.
[28—30] taken on a sample of Fe

0.46
Zn

0.54
F
2

of very
high quality. In this case, the solid line is the X-ray
scaling function with the width taken from the H2 scaling
law of Fig. 8. The FC data are used for the background
arising from the noncritical fluctuations. ¹

#
(H) was ad-

justed slightly from the value determined in the X-ray
experiments on Fe

0.5
Zn

0.5
F
2
. Again the agreement is

good. Finally, in Fig. 12c similar data and analysis for
Fe

0.6
Zn

0.4
F
2

are shown [11, 12, 28—30]. In this case, the
coefficient of the H2 width is fitted at H"4 T. Once
more the model describes the ZFC birefringence data
well.

The above analysis removes one of the major stumbl-
ing blocks in understanding the phenomenology of
RFIM systems. In general, it is now clear that there are
three important temperatures: ¹

%2
(H)'¹

#
(H)'¹

N
(H).

¹
%2

(H) is the onset temperature for metastability ef-
fects. ¹

#
(H) is the midpoint of the transition region of

the diminution of the order parameter after ZFC. ¹
N
(H)

is the equilibrium Néel temperature. So far no true
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Fig. 12. (a) Heat capacity of Fe
0.5

Zn
0.5

F
2
. There is no evidence

of hysteresis on FC and ZFC, nor is there any sign of critical
heat capacity in the ZFC data. (b) Optical birefringence data
taken from Ferreira et al. [29] for Fe

0.46
Zn

0.54
F
2
. The solid line

is the FC data plus the contribution from the dM2
4
/d¹ term.

(c) Similar results and analysis for Fe
0.6

Zn
0.4

F
2

(Refs. [28—30]).
In each panel, the open symbols are ZFC data and the closed
symbols are FC results [11, 12].

equilibrium phase transition in the bulk has been ob-
served in RFIM systems. A transition to LRO on FC has
been observed in certain samples in the near-surface
region (&2 lm) using X-ray scattering techniques
[9, 10, 14]. However, the interpretation of these experi-
ments is still problematical so we do not discuss them
explicitly here.

How does one understand the breakdown of equilib-
rium at ¹

%2
(H)? A phenomenological model has been

introduced by Villain [33] and Fisher [34]. The Villain—
Fisher picture is as follows. For a given correlated vol-
ume, there is only one thermally populated minimum.
Thermal fluctuations in this minimum are small because
of the steep curvature in the free energy. However, on
rare occasions, with probability ¹/mh two minima occur
within a correlated volume which differ in energy only by
order ¹. In such cases, the equilibrium fluctuations may
be thermally activated over the free-energy barrier. To
achieve such a reversal of a block of spins of size R,
a free-energy barrier of height u(R)+Rh must be over-
come. Rh is the random-field energy of a volume Rd (the
surface tension vanishes as ¹P¹

#
) and h is the exponent

which modifies the hyperscaling relation to (d!h)l"
2!a. Arrhenius’ law then implies that the characteristic
relaxation time of the system close to the transition, i.e.,
the time to flip a correlated volume, is

q+q
0

exp(Cmh), (5)

where q
0
and C depend on the random-field strength. The

‘activated dynamics’ of Eq. (5) result in extreme critical
slowing down and the system cannot equilibrate on ex-
perimentally accessible time scales, as mPR. ¹

%2
(H)

then is the temperature above ¹
N
(H) at which q exceeds

laboratory measurement time scales.
The ZFC trompe l’oeil critical behavior then may be

understood as follows: just as extreme critical slowing
down prevents the attainment of equilibrium on field
cooling, activated dynamics with the concomitant ex-
treme critical slowing down will also operate on warming
the ZFC state. Thus, as the temperature is increased to
¹[¹

N
(H), the system will fall out of equilibrium, at least

on experimentally relevant time scales, and the correla-
tion length will saturate, as is observed experimentally.
The system will not be able to relax fully until it has
passed through the critical region to reach the high-
temperature equilibrium phase. This leads to a qualitat-
ive picture of the process in which the LRO is destroyed
through ‘flipping’ of domains with successively larger
sizes. The maximum rate of change occurs at the center of
the trompe l’oeil Gaussian distribution which is when the
size of the volume being flipped becomes approximately
equal to the FC domain size at that temperature. As
found experimentally, the rounding of the transition may
then be understood as a finite-size effect, in which the
growth of the correlation length in the transition region
is limited by the random fields to the FC domain size
[6—12].

6. Equilibrium critical behavior

Because of the onset of metastability at ¹
%2

(H), which
is well above the equilibrium phase transition temper-
ature ¹

N
(H), studies of the asymptotic equilibrium criti-

cal behavior in RFIM systems appear not to be possible.
Further, the behavior well above ¹

N
(H) is complicated

by an anticipated crossover from random exchange to
random-field Ising critical behavior. Thus, at best crude
estimates of the 3D RFIM critical exponents can be
obtained experimentally. Such estimates are nevertheless
valuable since the critical behavior of the 3D RFIM is
expected to be radically different from that of the uniform
or random exchange 3D Ising model, including especially
an unusually rapid divergence of the disconnected sus-
ceptibility [35, 36].

Feng et al. [14] have carried out a study of the FC
behavior in Fe

0.5
Zn

0.5
F
2

in fields of 5 and 6 T using
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two-axis neutron scattering techniques. From decon-
volutions of the neutron scattering spectra they are able
to extract the inverse correlation length i, the connected
susceptibility s&B/i2 and the disconnected susceptibil-
ity s

$*4
&A/i3. The results so-obtained at 5 T are shown

in Fig. 13. From fits of power laws, i&(¹!¹
N
(H))l, to

the i data they find l"1.5$0.3. With ¹
N
(H) fixed at

the value determined from fits to the i data, they then
find for the connected susceptibility c"2.6$0.5 and for
the disconnected susceptibility cN"5.7$1. The large er-
rors reflect the strong dependence of the exponents on
the choice of ¹

N
(H). Cowley et al. [6—8] have carried out

a similar analysis on their data on Mn
0.75

Zn
0.25

F
2
. They

find l"1.4$0.3 and cN"4.5$1. Thus the experiments
in Fe

0.5
Zn

0.5
F
2

and Mn
0.75

Zn
0.25

F
2

yield similar, if
poorly determined, values for the equilibrium RFIM
exponents. The values for l, c and cN are consistent within
the combined experimental and theoretical errors with
most current theoretical predictions for the respective
critical exponents of the 3D RFIM [35, 36]. Interesting-
ly, the values for l and c agree within the errors with
those of a pure Ising model in &1.6 dimensions [37],
consistent with the dimensional reduction argument of
Villain [33] and Fisher [34].

Fig. 13. Inverse correlation length i, disconnected susceptibility
s
$*4

, and connected susceptibility s as measured by neutron
scattering for Fe

0.5
Zn

0.5
F

2
at 5 T. The dotted line shows the

metastability temperature. ¹
N

is the temperature at which the
solid-line fit for i reaches zero. The estimated critical exponents
are given [14].

7. Conclusions

We now have a fairly complete empirical description
of the equilibrium and nonequilibrium properties of
several model RFIM systems. There appear to be no
major contradictions between different classes of
measurements on these materials. The application of
synchrotron magnetic X-ray scattering techniques to
this problem has clarified the behavior at large length
scales and has provided the first reliable measurements
of the order parameter, especially in the transition region.
We also now have well-developed heuristic ideas which
seem to describe successfully the overall dynamic behav-
ior. However, a detailed quantitative theory for the
equilibrium and nonequilibrium properties of the RFIM
as well as the transition between these two behaviors is
lacking. Clearly this represents an important challenge
to all physicists interested in the behavior of systems
with quenched disorder. Further experiments, espe-
cially on the equilibrium critical behavior, are also
required.

These experiments illustrate clearly the role of model
magnetic systems in condensed matter and statistical
physics. As we noted in the Introduction to this paper,
random-field effects are ubiquitous in condensed-matter
materials. However, typically these systems are quite
complicated and it is difficult to isolate those effects
which arise purely from the random fields. Further, most
often the random fields arise from quenched impurities so
that one cannot easily vary the strength of the field in
a given sample in order to deduce the quantitative de-
pendence of the effects on the strength of the random
field. By contrast, following the suggestion of Fishman
and Aharony [5], it has been possible to explore thor-
oughly the physics of random fields using as ‘laborator-
ies’ simple diluted or otherwise random two-sublattice
Ising antiferromagnets. We anticipate that the field of
Magnetism and such model magnetic systems will con-
tinue to play a central role in condensed-matter physics
overall for the indefinite future.
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