Physical Review B
Physical Review B Browse Available Volumes PRB Search Subscription Information Online Help
Vol:  Page or Article #:

Search Volumes 57-Present: Abstract View

[ New Search ]     [ General Search Help ]


Article Collection:  View Collection   Help (Click on the COLLECT ARTICLE to add an article.)
[Back to Hitlist] [Prev Document]

Physical Review B (Condensed Matter and Materials Physics) -- April 1, 1998 -- Volume 57, Issue 13 pp. 7814-7822

Full Text:  [  PDF (1308 kB)    GZipped PS    Order Document  ]

Micromagnetic structures and microscopic magnetization-reversal processes in epitaxial Fe/GaAs(001) elements

E. Gu, E. Ahmad, J. A. C. Bland, and L. M. Brown
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
M. Rührig, A. J. McGibbon, and J. N. Chapman
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

(Received 23 June 1997)

The in-plane size and orientation-dependent micromagnetic structures of thin epitaxial Fe(001) elements were studied by Lorentz electron microscopy. It is found that the single-domain remanent state supported by continuous epitaxial films with in-plane anisotropy decays into a multidomain configuration upon reducing the film lateral dimensions. For 150-Å-thick Fe(001) elements, such drastic changes in the remanent domain structure and reversal processes occur when the element size is reduced to ~ 10 µm. This transition can be explained as a consequence of the in-plane dipolar (shape anisotropy) contribution to the total energy becoming comparable with that of the magnetocrystalline anisotropy at this size. Due to the interplay between in-plane shape and magnetocrystalline anisotropies, novel micromagnetic phenomena were observed. Distinct microscopic reversal processes arise according to not only the crystallographic direction along which the field is applied but also the orientation of the element edges. For magnetization reversal along the in-plane <100> directions (easy axes), domains nucleate at either element edges or corners depending on the orientation of element edges. For applied fields aligned along the in-plane <110> directions (hard axes), a fine-scale stripe (width <= 200 nm) domain structure develops upon reducing the applied field from saturation. In addition to coherent rotation and domain-wall displacement, a 90° coherent jump reversal process has been observed for the elements with edges parallel to the <110> directions. The micromagnetic behavior of these epitaxial elements is substantially different from those of either continuous epitaxial Fe(001) films [E. Gu et al., Phys. Rev. B 51, 3596 (1995), C. Daboo et al., Phys. Rev. B 51, 15 964 (1995)] or polycrystalline elements in which the magnetocrystalline anisotropy is negligibly small. As the relative contributions of the in-plane shape and magnetocrystalline anisotropies can be modified by varying the element size, shape and orientation, these mesoscopic epitaxial elements not only offer an ideal model to study the roles of anisotropies in determining the micromagnetic structures but also allow the magnetic spin configuration to be controlled which could be useful for device applications, e.g., spin-polarized injection contacts and magnetic memory elements. [G. A. Prinz, Physics Today 48(4), 58 (1995)]. ©1998 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v57/p7814
PACS: 75.30.Gw, 68.55.-a, 75.70.Kw        Additional Information

View ISI's Web of Science data for this article: [ Source Abstract  | Citing Articles  | Related Articles  ]


Full Text:  [  PDF (1308 kB)    GZipped PS    Order Document  ]

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. R. Allenspach and A. Bischof, Phys. Rev. Lett. 69, 3385 (1992). [ISI]
  2. R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett. 65, 3344 (1990). [ISI]
  3. M. Speckmann, H. P. Oepen, and H. Ibach, Phys. Rev. Lett. 75, 2035 (1995). [ISI]
  4. G. Bochi, H. J. Hug, D. I. Paul, B. Stiefel, A. Moser, I. Parashikov, H. J. Guntherodt, and R. C. O'Handley, Phys. Rev. Lett. 75, 1839 (1995). [ISI]
  5. G. Bochi, C. A. Ballentine, H. E. Inglefield, C. V. Thompson, R. C. O'Handley, H. J. Hug, B. Stiefel, A. Moser, and H. J. Güntherodt, Phys. Rev. B 52, 7311 (1995). [ISI]
  6. C. Kittel, Phys. Rev. 70, 965 (1946). [ISI]
  7. R. Allenspach, J. Magn. Magn. Mater. 129, 160 (1994). [INSPEC] [ISI]
  8. J. L. Robins, R. J. Celotta, J. Unguris, D. T. Pierce, B. T. Jonker, and G. A. Prinz, Appl. Phys. Lett. 52, 1918 (1988). [SPIN] [ISI]
  9. H. P. Oepen, J. Magn. Magn. Mater. 93, 116 (1991). [INSPEC] [ISI]
  10. E. Gu, J. A. C. Bland, C. Daboo, M. Gester, L. M. Brown, R. Ploessl, and J. N. Chapman, Phys. Rev. B 51, 3596 (1995). [ISI]
  11. C. Daboo, R. J. Hicken, E. Gu, M. Gester, S. Gray, E. Ahmad, J. A. C. Bland, R. Ploessl, and J. N. Chapman, Phys. Rev. B 51, 15 964 (1995). [ISI]
  12. E. Gu, C. Daboo, J. A. C. Bland, M. Gester, A. J. R. Ives, L. M. Brown, N. A. Stelmashenko, and J. N. Chapman, J. Magn. Magn. Mater. 126, 180 (1993). [INSPEC] [ISI]
  13. G. A. Prinz, Phys. Today 48 (4), 58 (1995). [SPIN] [ISI]
  14. D. A. Herman, Jr., B. E. Argyle, and B. Petek, J. Appl. Phys. 61, 4200 (1987). [SPIN] [ISI]
  15. B. W. Corb, J. Appl. Phys. 63, 2941 (1988). [SPIN] [ISI]
  16. E. J. Ozimek, J. Appl. Phys. 57, 5406 (1985). [SPIN] [ISI]
  17. S. McVitie and J. N. Chapman, IEEE Trans. Magn. 24, 1778 (1988). [INSPEC] [ISI]
  18. S. J. Hefferman, J. N. Chapman, and S. McVitie, J. Magn. Magn. Mater. 95, 76 (1991). [INSPEC] [ISI]
  19. U. Resch, N. Esser, Y. S. Raptis, W. Richter, J. Wasserfall, A. Forster, and D. I. Weatwood, Surf. Sci. 269, 797 (1992). [INSPEC]
  20. J. Yuan, E. Gu, M. Gester, J. A. C. Bland, and L. M. Brown, J. Appl. Phys. 75, 6501 (1994). [SPIN] [ISI]
  21. R. J. Hicken, D. E. P. Eley, M. Gester, S. J. Gray, C. Daboo, A. J. R. Ives, and J. A. C. Bland, J. Magn. Magn. Mater. 145, 278 (1995) (ScienceDirect). [INSPEC] [ISI]
  22. J. J. Krebs, B. T. Jonker, and G. A. Prinz, J. Appl. Phys. 61, 2596 (1987). [SPIN] [ISI]
  23. M. Gester, C. Daboo, R. J. Hicken, S. J. Gray, A. Ercole, and J. A. C. Bland, J. Appl. Phys. 80, 347 (1996). [SPIN] [ISI]
  24. J. N. Chapman, J. Phys. D 17, 623 (1984). [INSPEC] [ISI]
  25. J. N. Chapman, S. McVitie, and S. J. Hefferman, J. Appl. Phys. 69, 6078 (1991). [SPIN] [ISI]
  26. E. Gu, E. Ahmad, S. J. Gray, C. Daboo, J. A. C. Bland, L. M. Brown, M. Rührig, A. J. McGibbon, and J. N. Chapman, Phys. Rev. Lett. 78, 1158 (1997). [ISI]
  27. U. Ebels, M. Gester, C. Daboo, and J. A. C. Bland, Thin Solid Films 275, 172 (1996) (ScienceDirect). [INSPEC] [ISI]

Full Text:  [  PDF (1308 kB)    GZipped PS    Order Document  ]

Citing Articles

This list contains links to other online articles that cite the article currently being viewed.
  1. Shape anisotropy induced modification of the magnetization reversal processes in epitaxial microstripes
    E. Ahmad et al., J. Appl. Phys. 88, 354 (2000)

Full Text:  [  PDF (1308 kB)    GZipped PS    Order Document  ]


Article Collection:  View Collection   Help


[ Browse Available Volumes | Search ]
[ Home Page | Online Help | Feedback | Exit ]

© Copyright 2001 The American Physical Society