
PHYSICAL REVIEW B 15 MAY 1997-IVOLUME 55, NUMBER 19
Reconstruction of surface morphology from coherent x-ray reflectivity
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The observation of coherent diffraction effects in recent measurements of x-ray reflectivity from Si surfaces
is explained with the development of a simple kinematical theory. Some properties of the derived formalism
are explored. We apply an algorithm developed by Gerchberg and Saxton and demonstrate its application to the
reconstruction of the surface morphology from its coherent diffraction pattern. Initial testing with experimental
data shows the method to be effective.@S0163-1829~97!01320-9#
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I. INTRODUCTION

Coherent x-ray diffraction~CXD! is a new experimenta
technique that has emerged from the development of brill
synchrotron-radiation sources of x rays. It has great poten
for studying structural fluctuations in all kinds of condense
matter systems, and a few pioneering experiments have d
onstrated this.1–6 The relaxation times of critical fluctuation
were observed near to the phase transition of Fe3Al.

3 The
Brownian motion of colloidal gold particles5 and, more re-
cently, colloidal palladium6 have been studied to determin
their diffusion time constants as functions of temperature
momentum transfer.

Static CXD patterns from GaAsxAlAs12x multilayer
samples have been examined for the purpose of explai
the diffraction mechanism.4 A phase blockmodel was intro-
duced in which the sample was modeled as uniform regi
of differing relative scattering phase that gave rise to int
ference in the CXD pattern. The finite number of phas
could be adjusted as least-squares fit parameters to prod
faithful representation of the observed intensity. The diffra
tion was observed to be one dimensional in nature; this
justified on the grounds that the beam footprint on
sample was highly elongated, so that different points of
sample across its narrow direction could all be assume
have the same phase. Despite the limitations of the arbit
discrete assumptions in the phase block model, reason
fits to the data resulted.4 In this paper, we develop a mor
general model in which the discreteness is reduced to
arbitrarily low level.

We have recently demonstrated that CXD can also
used to study surface morphology in the specular reflecti
geometry.7 While incoherent x-ray reflectivity from a roug
surface would give rise to a superposition of pure spec
and diffuse components,8 the equivalent CXD experimen
yields aspeckle patternthat intermixes both of these com
ponents: the specular component becomes broadened b
finite size of the illuminated sample area while the diffu
component adopts a finely speckled structure. The exp
mental geometry for surface CXD employed a coherent x-
beam at grazing-incidence angle and examined the resu
550163-1829/97/55~19!/13193~10!/$10.00
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distribution of intensity near to the specular direction.7 This
geometry was very similar to that used previously for stud
ing the multilayers, again with the result that the CXD pa
tern was one dimensional. The restriction to Bragg diffra
tion no longer applies in the specular reflectivity case and
the perpendicular momentum transfer,qz , can be varied in a
continuous manner. The variation of the richness of
speckle withqz was found to be a powerful way to chara
terize the surface roughness.7 An empirical rule was estab
lished for the point of emergence of strongly modulat
speckle features,qz>p/s, wheres is the root-mean-squar
roughness. This rule will be explained in the present wor

The requirements for coherence, necessary for these
periments to work, have been discussed previously.4 The
source coherence may be divided conveniently into t
components, measured as lengths in the longitudinal
transverse directions. The longitudinal coherence len
j i , is the distance along the incident beam over which d
ferent rays largely retain their relative phases with respec
each other. It is limited by the distribution of wavelengt
present,Dl/l, and so is a property of the monochromat
used for the experiments, according toj i
5l/(Dl/l)5l2/Dl. j i is critical in a CXD experiment
because it restricts the maximum path length differen
~PLD! that can be tolerated between different rays pass
from source to detector and is often dominated by beam p
etration inside the sample. The lateral coherence len
j' , is the distance across the beam over which all rays tr
eling from different points in the source largely retain the
relative phases with respect to one another. It is limited
the source size,s, according toj'5lD/s, whereD is the
distance of the experiment from the source.j' is important
because it determines the maximum size of the be
defining aperture,d<j' , that can be used. Because of t
two coherence lengths, the requirement for coherence lim
the maximum total flux that is available in a CXD expe
ment to an amount that is directly proportional to the br
liance of the source. In this paper we will discuss the orig
of the speckle pattern seen in the surface reflectivity exp
ments, its asymptotic properties, and demonstrate an a
rithm which can be used toinvert it and reconstruct the ac
tual morphology of the reflecting surface.
13 193 © 1997 The American Physical Society
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II. SPECKLE PATTERNS AND SURFACE MORPHOLOGY

All diffraction experiments detect the interference
waves scattered by a superposition of scatterers, either a
or groups of atoms. In a disordered system, an ensem
average takes place over many examples of local config
tions to give statistically meaningful information. The esse
tial point of CXD is that the diffraction signal measured fro
a sample under coherent illumination conditions is the m
nitude squared of the scattering amplitudewithout the en-
semble averaging. We simply observe the direct summatio
over all atoms, at positionsr j , within the illuminated vol-
ume,

A8~q!}(
j
f eiq–r j . ~1!

The surface is conveniently defined by a single-valu
boundary functionz5h(x,y), where thez direction is taken
to be perpendicular to the surface, and (x,y) are the two
coordinates in an ideal plane defining the average surfa8

We impose a rigid periodicity perpendicular to this avera
plane so that the position of thej th column of atoms is a
r j , j 35(xj ,yj ,a3 j 3), wherea3 is the vertical lattice spacing
For simplicity, we are assuming a sample made of a sin
kind of atoms of form factor,f .

When the surface is present, we can write the sum in
~1! in the following way:

A8~q!}(
j

(
j 352`

h~xj ,yj !/a3

f ei ~qxxj1qyyj1qza3 j 3!.

Using the substitutionj 35 j 381h(xj ,yj )/a3 and summing
over j 38 , we obtain for the scattered amplitude,9

A8~q!}FCTR~qz!(
j
ei ~qxxj1qyyj !eiqzh~xj ,yj !, ~2!

where the summation has been reduced in dimension
summation over thecolumnsof equally spaced atoms at la
eral positionxj ,yj starting at heighth(xj ,yj ). The same re-
sult could be obtained equivalently in its integral form usi
Green’s theorem.8 The momentum transferq5(qx ,qy ,qz)
has also been split into its components parallel to the surf
qx andqy , and perpendicular,qz . The sum in thez direction
is identical for all columns and takes the familiar form se
in the analysis of crystal-truncation rods~CTR’s!, which
gives an amplitude that interpolates between the Bragg p
in qz ,

10

FCTR~qz!5 f @12exp~2 iqza3!#
21. ~3!

To continue the derivation for ordinary x-ray diffractio
from surfaces, the next step would be to introduce so
correlation function forh(x,y), and take the ensemble ave
age ^uA8(q)u2&.8 Instead for CXD, we can look directly a
uA8(q)u2, which should be compared with what is observ
in the experiment.

The expression forA8(q) in Eq. ~2! has a very simple
form. The first factor is the well-known CTR amplitud
given in Eq.~3!. This tells us that the signal will be larg
near to Bragg peaks inqz , and gets progressively smaller a
we move away. Near to a bulk Bragg peak atGz , the inten-
ms
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sity falls off asu(qz2Gz)u22. Most importantly, since we are
concerned with reflectivity, this is also true for the origin
reciprocal space,Gz50. The properties ofFCTR are dis-
cussed elsewhere10 and are not relevant to the rest of th
paper. The second factor in Eq.~2!, which we call the
speckle amplitude, can be rewritten in the continuum limit
a kind of Fourier transform,

A~q!5(
j
ei ~qxxj1qyyj !eiqzh~xj ,yj !,

5E E
V

r~x,y!ei ~qxx1qyy!dxdy, ~4!

where

r~x,y!5eiw~x,y!, w~x,y!5qzh~x,y!. ~5!

This speckle amplitudeA(q) is the fundamental representa
tion of the surface CXD, which we will be discussing in th
remainder of the paper. There are two unusual aspects of
Fourier transform compared with the familiar crystall
graphic expressions relating electron density in a struc
with its diffraction pattern. The first is that the domain of th
function is finite, cutoff outside the illuminated region,V.
We will assume a square beam for simplicity for whichV is
defined by the edges of the beam at positio
(x,y)5(6d/2,6d/2). The second is that the integran
r(x,y), is itself a complex function with unit amplitude an
a position-dependent phase, which depends on both
height function and the perpendicular momentum transfe

The expression in Eqs.~4!–~5! is a more general version
of the model used in fitting the static speckle from t
multilayer.4 There, it had been assumed that the coher
beam could be divided into ‘‘blocks’’ that received differe
phases after diffracting from the discrete regions of
multilayer. The physical interpretation forw(x,y) is clear:
the x-ray beam incident on the sample at position (x,y) be-
comes phase shifted by amountw(x,y), which depends on
height in the case of surface CXD, or the position of t
diffracting planes in the case of the multilayer. Thephase-
modulated beam undergoes mutual interference, which t
results in theamplitudemodulations seen in the speckle pa
tern.

The experimentally measured quantity is the intensity
CXD,

I ~q!}uA~q!u2. ~6!

So, the measurement loses all the phase information of
amplitudeA(q) and reduces to the classical inversion pro
lem of reconstructing the object from the intensity distrib
tion of the scattered radiation. This is a more difficult pro
lem than the inversion of a diffraction pattern to obtain t
electron density because the quantity sought is itself a ph
For example, we can no longer use the inversion symm
that arises from the real nature of the electron density. Inv
sion problems of this kind have been intensively studied
the past,11 and there are some powerful theoretical metho
available. The most relevant analogy is to the problem
holographic reconstruction: transmission holography
achieved by coherent illumination of an transparent obj
over a finite aperture; the interference of all transmitt
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55 13 195RECONSTRUCTION OF SURFACE MORPHOLOGY FROM . . .
waves, recorded with sufficient resolution, is t
hologram.12,14,15 Except for the requirement in holograph
for a referencewave, this is the same thing as the CX
speckle pattern. If the object modulates the amplitude of
wave, this amplitude is the argument of the Fourier tra
form. But if the object has only phase contrast with no a
plitude change, then the situation is identical to that of E
~4!. For this reason, we propose to employ the image rec
struction algorithm described below.

The appearance ofqz in the expression forw(x,y) pro-
vides us with an opportunity that is specific to the surfa
CXD problem. If we can measure the amplitudeA(q) at a
number of differentqz values, then we would have redunda
information concerning theh(x,y) functions sought, coupled
to the phasesw(x,y) through different coefficientsqz . The
additional information could then be used in a reconstruct
procedure.

On the other hand, if the surface morphology, i.e.,
function h(x,y) were known independently, then accordin
to ~4!–~5! the full functionA(q) could be calculated. This is
illustrated at the top of Fig. 1, where the surface morpholo
of a silicon wafer was measured with a commerc
profilometer.7 The profilometer stylus rides over an approx
mately three micrometer-wide strip of surface. The 30
micrometer trace,h(x,0), therefore covers about the sam
area as the beam in the surface speckle measurements.7 The
speckle intensity corresponding to this tra
I (qx ,qz)5uA(qx,0,qz)u2 is plotted for this one-dimensiona
case by the direct evaluation of~4!–~6!. The observed
speckle patterns are horizontal cuts across this diagram,
the smooth evolution asqz is varied can be seen immed
ately. For example, if the speckle pattern is measured
particular value ofqz , and the functionh(x,y) is somehow
derived from it, then the pattern can be verified at oth
values ofqz as a validity check.

Even though theqz scale in Fig. 1 is a thousand time
wider than that ofqx , the pattern is notably anisotropic
being strongly streaked in theqz direction. This is a genera
characteristic of surface diffraction, and is not changed w
the FCTR term is restored, since that shares the same p
erty. TheV shape of the calculated pattern arises from
bimodal slope of the profilometer trace, as if there were~lo-
cally! two different specular directions, corresponding to t
two characteristic slopes seen in the profilometer trace.

We can understand some general properties of sur
speckle patterns, and their relation to surface morphology
the examination of Eqs.~4!–~5!. Any arbitrary rough surface
can be considered as a superposition of roughness com
nents on different length scales, often as a power spect
Such a description implies a statistical average over an
semble of surfaces, and attaches aroot-mean-square rough
ness, s, which is just the spectral weight expressed a
height variation, to each length scale. This roughness s
trum will then determine the qualitative features of t
speckle pattern as a function ofqz .

For example, if we consider a surface with just two leng
scales of importance, with long-range roughnesss1 and a
short-range roughnesss2!s1 with a finer length scale. The
CXD pattern, given by Eqs.~4!–~5!, will then split into three
ranges of qz . So long as qz!p/s1 we will have
r(x,y).1 and a speckle pattern which is a simple slit fun
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tion, as would be formed by the direct x-ray beam itse
Whenp/s1!qz!p/s2, the speckle pattern would be dete
mined by the long-range roughness alone, and might stil
relatively simple, not extending far inqx . At the greatest
values ofqz , whenqz@p/s2 the speckle pattern finally is
sensitive to the short-range roughness as well, and
spread out much further inqx . Thus, by tuning of the ex-
perimental variableqz , patterns of increasing complexit
could be generated and analyzed progressively. The ev
tion of complexity is clearly seen in Fig. 1 and correspon
closely with what was seen experimentally.7 In practice this
should be done by changing x-rayenergy, rather than the
angle of incidence, because the changing angle would
change the shape of the beam footprint on the sample. T
are also severe limitations in the accuracy of diffractome
components that make it hard to vary the angle while illum
nating exactly the same spot on the sample.

One further consideration is very important for the des

FIG. 1. Simulated speckle patterns from a one dimension
rough surface specified by theh(x) function in the top panel, which
was measured from a Si~111! wafer using a profilometer. Thex axis
represents a position across the beam and has been shorten
account for the grazing incidence angle, for consistency with
rest of the paper. Below, logarithmic contours ofH(q) are plotted
as a function ofqx andqz . Note that both top and bottom pane
use the same 1000:1 aspect ratio, so the ridges in the lower p
are seen to lie perpendicular to the sloped sides of the profile in
top panel.
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13 196 55VARTANYANTS, PITNEY, LIBBERT, AND ROBINSON
of experiments to measure speckle from surfaces: the lo
tudinal coherence requirements. According to the formal
above, the PLD entering into the sum in Eq.~2! at qx50 is
just lw(x,y), which is very small indeed since the diffrac
tion conditions~i.e.,qz) would be chosen to havew(x,y) not
vary by more than a fewp. Large PLD’sare present be-
tween the terms in Eq.~1!, but these all accumulate in th
factor FCTR, which is common to all terms of Eq.~2!. The
PLD constraint can therefore be written,

l@qzdh~x,y!1qxd/2#,j i , ~7!

wheredh(x,y) is the excursion of the height,h(x,y), over
the range2d/2,x,d/2. The second term in Eq.~7! ac-
counts for the lateral component of the PLD accumulated
the edges of the illuminated area. This latter term of
dominates the roughness term, and can limit the effec
range of scans inqx that can be reached before coherence
lost. j i is the longitudinal coherence length, defined in t
introduction, which is determined in an experiment by t
monochromator or the source characteristics. Even in
case wherej i is extremely short, say 70l for a raw undulator
beam, there will be broadening inqz of FCTR(qz) in Eq. ~3!,
but this is already a slow-varying function.

More sophisticated approaches to coherence exist in
optics literature, dealing with the case ofpartial coherence
that occurs when the quantities appearing in inequality~7!
become approximately equal. Recent progress has b
made to measure the degree of coherence using x-ray dif
tion methods.2,16,17 The most important conclusion for th
case of surface CXD is that expression~7! is considerably
less demanding than the PLD constraints on bulk diffracti
where the large penetration depth can be insurmounta
Note that we are not necessarily constrained to the sm
angle case ofqz'0, if the surface is sufficiently flat.

The effects of longitudinal coherence are seen in the c
text of the speckle amplitude directly by a suitable constr
tion in Fig. 1. The definition ofj i5l/(Dl/l) means that the
effect of longitudinal coherence can be considered to b
radial smearing of theq-space diffraction pattern due to th
distribution of wavelengths,Dl/l. The features of Fig. 1
that are already streaked in the radial direction will be
fected very little by this procedure, and so the limited coh
ence will not change the result. Conversely, features that
diagonal in the diagram, not emanating from the origin, w
be strongly affected, and eventually washed away by ove
with their neighbors.

III. PROPERTIES OF THE SPECKLE AMPLITUDE

In coherent x-ray reflectivity experiments the sample
arranged at grazing incidence angles. Due to this arran
ment, the footprint of the beam on the sample is highly el
gated and its speckle pattern becomes one dimensional,
good approximation. Throughout the remainder of the pa
we will consider only this 1D case. The results obtained m
be generalized to the 2D case in a straightforward manne
1D we have for the amplitude

A~qx!5uA~qx!ueia~qx!5E
2d/2

d/2

r~x!exp~ iqxx!dx, ~8!
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r~x!5eiw~x!, w~x!5qzh~x!. ~9!

While deriving expressions~8!–~9! we implicitly assumed
the following:

~i! The incident radiation is a coherent plane wave.
~ii ! The rough surface is an idealphase objectwhich

changes only the phasew(x) of the reflected beam across th
surface. This implies that the amplitude of the reflected be
is constant.

~iii ! The aperture of the entrance slit alone determines
size of the illuminated region on the sample. The sample
in the near field, a short distance,L, behind the entrance sli
of sized, satisfyingd2@lL.

~iv! The registration~detection! plane is far away. This is
the far field approximation which gives rise to the Frau
hofer limit of diffraction. This assumption is valid i
d2!lL1, whereL1 is the distance from the sample to th
detector.

These assumptions are the reason that expressions~8!–~9!
are so simple. However, certain real experimental conditio
for example, the finite distance from the entrance apertur
the sample, can be allowed for~see below! without changing
the main results of the following analysis. We will now an
lyze what information can be obtained in the framework
our model in different limiting cases.

A. Asymptotic behavior asqx˜`

Integrating~8! by parts we obtain

A~qx!5E
2d/2

d/2

eiw~x!eiqxxdx

5eiw~x!
eiqxx

iqx
U2d/2
d/2

2
1

iqx
E

2d/2

d/2

eiw~x!eiqxx„iw8~x!…dx, ~10!

wherew8(x) is the spatial derivative of the phase. For lar
qx values we can neglect the second term in Eq.~10! relative
to the first one and we would have for the intensity far fro
the center of the speckle pattern,

I ~qx!}uA~qx!u25
4

qx
2sin

2Fqxd1Dw

2 G , ~11!

whereDw5w(d/2)2w(2d/2)5qz@h(d/2)2h(2d/2)#.
We can see from this result that the intensity distributi

in this limit is just a slit function, I 0(qx)
5(4/qx

2)sin2(qxd/2), shifted by the phase valueDw. It is pos-
sible in principle to determine the phase shiftDw directly
from the shift of the fringes of the intensity distribution rel
tive to those of the direct beam, although in the experimen
situation this would be equivalent to a change in the sam
alignment. From the shift of the fringes, the height differen
across the sample@h(d/2)2h(2d/2)# could be determined
Indeed, a change in this height difference is nothing ot
than a small rotation of the sample, which leads to a shif
the pattern across the detector.

If we continue our expansion over the terms (1/qx) in Eq.
~10!, integrating the second term of Eq.~10! by parts, we
would obtain the next term in the expansion of the intens
over small (1/qx) values
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I ~qx!}
4

qx
2sin

2Fqxd1Dw

2 G$121/qx@w8~d/2!1w8~2d/2!#%.

~12!

B. Asymptotic behavior asqx˜0

The other limiting case to consider is smallqx values,
giving the intensity distribution in the center of the speck
pattern. In this case we can expand the exponent in the
gral of Eq.~8!, eiqxx511 iqxx2••• and obtain for the am-
plitude,

A~qx!5E
2d/2

d/2

eiw~x!@11 iqxx#dx5d@M01 i ~qxd!M1#,

~13!

where the complex numbersM0 and M1 are the average
value M05^eiw(x)&d and the first moment M1

5^(x/d)eiw(x)&d of the functione
iw(x). Note that the symbols

^&d denotespecificaverages over the finite range of integr
tion of Eq.~13! andnotensemble averages. Hence we obt
for the intensity,

I ~qx!}d
2$uM0u222qxdIm@M0*M1#%, ~14!

where we have neglected the small quadratic (qxd)
2 term.

From this result we can see that the intensity in the ce
of the speckle pattern is determined by the average valu

I ~qx!}d
2uM0u25d2u^eiw~x!&du2. ~15!

For example for a rough surface which is flat in the range
interest so that̂w(x)&d50, we obtain

M05^eidw~x!&d.e2~1/2!^dw~x!2&d5e2~1/2!qz
2sd

2
, ~16!

wheredw(x)5w(x)2^w(x)&d andsd is thespecificrough-
ness of the surface averaged over the range2d/2,x,d/2,
since ^dw(x)2&d5qz

2sd
2 . So, in this case we have for th

intensity in the center,

I ~qx50!}d2e2qz
2sd

2
, ~17!

which resembles the classical~incoherent! result. For a rough
surface with a sufficiently largesd value we find that
I (qx50)→0.

C. Perturbation limit, w!p

In the case of the small phasesw we can expand ou
density function,

r~x!5eiw~x!511 iw~x!2•••, ~18!

and hence obtain the speckle amplitude,

A~qx!5E
2d/2

d/2

@11 iw~x!#eiqxxdx5A0~qx!1 i ~qzd!H~qx!,

~19!

where

H~qx!5
1

dE2d/2

d/2

h~x!eiqxxdx ~20!
te-

n

er

f

is the Fourier transform of the height functionh(x) itself and
A0(qx)5(2/qx)sin(qxd/2) is the slit function.

This gives for the intensity,

I ~qx!}uA0~qx!u222qzdA0~qx!Im@H~qx!#, ~21!

where we have neglected the small quadratic te
uH(qx)u2. Thus the height information inH(qx) appears as a
perturbation from the ideal Fraunhofer diffraction of the d
rect beam.

According to this expression we can determine the ima
nary part ofH(qx) from the difference between an exper
mental curveI exp(qx) and uA0(qx)u2, as measured for the
direct beam,

Im@H~qx!#5
I exp~qx!2uA0~qx!u2

2uA0~qx!u
. ~22!

In the case of incoherent diffraction from a rough surfac8

the resulting diffraction pattern clearly separates into the s
of a d function and diffuse components. With coherent d
fraction, on the other hand, we generally cannot make
separation. As shown above, a partial separation is poss
in the limit of small phases, when the surface structure p
turbs the tails of the slit functionuA0(qx)u2, leaving the cen-
tral part of the intensity nearly unchanged.

IV. RECONSTRUCTION OF h„x… FROM STATIC CXD

The ideal CXD experiment we have described is forma
identical to the measurement of the Gabor hologram of
object under investigation.13 There an object, usually of spa
tially varying absorption, is illuminated by coherent radi
tion, and all scattered waves are collected in the far fie
with a sufficient resolution to resolve all the interferen
fringes. In this case, theamplitude of the function r(x)
would represent the absorption, and its phase would be c
stant, ignoring refraction effects. If the object field is suitab
transparent that a large fraction of the beam passes unm
fied, or alternatively areference waveis deliberately added
we would have the equivalent of the small phase approxim
tion described above, in which the hologram is a perturbat
of the ideal diffraction pattern of the beam itself.

From the considerable literature on the subject of ima
reconstruction, we have selected an algorithm18 that has the
potential of inverting Eq.~8! to recover the height function
h(x). In one dimension, the algorithm is summarized by t
pair of equations,

A~qx!e
ia~qx!:5E

2`

`

B~x!eiw~x!exp~ iqxx!dx,

r~x!eiw~x!:5
1

2pE2`

`
AI ~qx!eia~qx!exp~2 iqxx!dqx ,

~23!

where we have used the symbol ‘‘:5 ’’ to mean ‘‘is replaced
by.’’ The method iterates back and forth between real sp
and reciprocal space by the repeated application of Eq.~23!.
In the numerical application, the Fourier transforms wou
be achieved by fast Fourier transforms~FFT’s!, as described
below. In both real and reciprocal space, constraints are
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plied to guide the algorithm to find a solution consistent b
with the observed data and with the expected form ofr(x).
The speckle amplitude in reciprocal space,A(qx), generated
during one cycle is overwritten by the observed amplitu
AI (qx). Similarly, the amplitude of the real-space densi
r(x), is reset to a predefined real function,B(x), while re-
taining the phase information,w(x). For the present discus
sion, we considerB(x) to be a ‘‘box’’ function, with unit
value within the illuminating aperture, and zero outside.

In the context of holography, the procedure would
identical if the object being imaged were aphase objectthat
modified the phase of the illuminating radiation. More co
monly in holographic reconstruction the object under inv
tigation would have an amplitude contrast, often blocking
beam completely over certain regions. In the latter case,
function r(x) would be constrained to be real in the retu
half of the procedure instead by resetting its phase to z
upon every cycle of the algorithm.

We experimented with this algorithm and found that the
were some important details that needed attention. These
discussed in the following subsections. They lead to so
practical constraints on the procedure.

A. Illumination filter function

Over the course of the cycle, the real-space dens
r(x), leaks outside the range6d/2 and requires cutting off
however, if this is done abruptly, strong fringes will appe
in the diffraction. These fringes are the desired Fraunho
fringes of the speckle pattern, but in the experiment they
smeared by the detector resolution and imperfect beam
herence. These effects can be partly accounted for by ch
ing in Eq. ~23! an appropriate filter functionB(x), such as a
rounded box function.

This filter function can also be used to account for t
change of the illuminated area on the sample due to its fi
separation from the defining aperture. The form ofB(x)
would then depend on the distanceL of the sample from the
entrance slits, in a way that can be predicted. The deriva
requires retaining the quadratic terms in the Fresnel limi
diffraction.20 In this near-field approximation,L<d2/l, we
obtain the following expression for the illumination acro
the sample:

B~x!5
1

A2
$@C~z2!2C~z1!#1 i @S~z2!2S~z1!#%, ~24!

whereC(z) andS(z) are Fresnel integrals,

C~z!5E
0

z

cosS pt2

2 Ddt, S~z!5E
0

z

sinS pt2

2 Ddt,
andz15A2/lL(x2d/2), z25A2/lL(x1d/2).

As we can see from this expression, the functionB(x) is
complex, meaning that the illumination changes phase ac
the sample and is no longer an ideal plane wave. In Fig. 2
plot the absolute value,uB(x)u, as solid curves for differen
distances,L. For small distancesL!d2/l, as in the top pane
of Fig. 2, the phase is almost constant across the central
of the aperture,2d/2,x,d/2. Important phase deviation
start whenL'd2/l, shown in the middle panel, and th
h
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magnitudeuB(x)u has significant tails. In our fitting proce
dure, these additional phase shifts would be absorbed
the experimentally determined phasew(x). Finally, in the
limit of big distances,L@d2/l in the bottom panel, the func
tion becomes real again and would itself look like a re
space slit functionB(x)5sin(bx)/(bx), whereb5pd/lL. In
this limit, the illumination is diffraction limited, with width
lL/d, and no longer resembles the shape of the defining
at all. In practice, this large-L limit would not be interesting
in experiments requiring a small illuminated area on t
sample, because alarger aperture,d, could have been use
for a gain in flux and would have resulted in anarrower
illumination function.

Instead of calculating the exact illumination functio
B(x), for a particular experimental setup, and becau
B(x) also needs to include the aforementioned filters,
choose to approximate it with fairly good accuracy as a pr
uct of a pair of Fermi functions,

B~x!5 f ~x2d/2! f @2~x1d/2!#, ~25!

wheref (x)51/@11exp(x/w)# and the slope parameterw de-
termines the sharpness of the edge. The width of this fi
functionB(x) is equal to the width of the slits and the slop
parameterw5 1

4AlL takes into account the smearing effec
of the distance of the sample from the beam-defining ap
ture. The expression forw was obtained by differentiation o
uB(x)u at the slit edgesx56d/2. These approximate illumi-
nation functions are superimposed on the exact ones
dashed curves in Fig. 2. Clearly this approximation is go
only for values ofL<d2/l, which ensures the sample is i
the near field of the slit~see Fig. 2!.

Having definedB(x) we can extend the limits of our Fou
rier transform~8! to infinity,

A~qx!5E
2`

`

r~x!exp~ iqxx!dx, ~26!

where

r~x!5B~x!eiw~x!. ~27!

FIG. 2. The solid curves are the magnitude of the illuminati
function, uB(x)u, for different distances,L, of the sample from the
entrance slits: sample near the slits~top!; intermediate distancesL
~middle!; limit of large distancesL@d2/l ~bottom!. Curves are
calculated forl50.15 nm andd55 mm.
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We have constructed a new density function which ado
the amplitude of the illumination functionur(x)u5uB(x)u
Þconst and its argument into the sought-after phasew(x).

B. Uniqueness problem

The question of uniqueness must always be taken
consideration when we are dealing with inverse problem
which the phase information is lost in an experiment. Wh
we have one solution to~8!–~9!, we can always generate
second one, the so-calleddual solution, using the properties
of the Fourier transformation. If a complex functio
r(x)5ur(x)ueiw(x) is the first solution, then

r̃~x!5r* ~2x!5ur~2x!ue2 iw~2x!, 2d/2,x,d/2
~28!

is its dual. r̃(x) gives the identical intensity in the speck
pattern.

The general mathematical problem of the construction
a complex function given its modulus and the modulus of
Fourier transform as well as the problem of the uniquen
of the solution have been investigated in a series of pa
~see references in Ref. 19!. Even if there exist only two so
lutions, without other prior knowledge, it is impossible
choose between them. There are some situations where
problem can be avoided, however. For example, if we h
data in the form of atime series, in which one scan is only
slightly different from the previous one, the internal se
consistency could help to establish the uniqueness of
solution. Similarly, as mentioned above, if data are measu
on the same area of the sample but with differentqz values,
the fact that all measurements must correspond to the s
h(x) function can under some circumstances constrain
uniqueness, as we will discuss next.

The phase obtained from any calculation of this kind w
always be bounded in some range such as2p,w(x)<p.
At any position, the phase valuew(x) is indistinguishable
from the phase valuew(x)12np. For this reason the de
rived phase function will be highly degenerate. The r
height function,h(x), is of course not necessarily bounde
but it is expected to be a continuous function. In princip
this could be used to resolve any ambiguity in the mapp
w(x)5qzh(x), except for a single arbitrarily chosen pha
point. In practice, the problem is not so straightforward b
cause of the finite spacing of theq points~see below! and the
effective coupling between them due to application of
Fourier transforms in applying the algorithm.

Let us consider an example of how this last kind of non
niqueness could cause problems in trying to invert surf
CXD data. If the surface height functionh(x) happened to
contain a fairly abrupt stepdh which resulted in a localized
phase jump ofdw5qzdh.2p, this would be almost invis-
ible in measurements at that particularqz . The fitting algo-
rithm ~23! could find a solution in which the step was om
ted, and the agreement with the data would be already q
good, but not perfect. There would be little chance of suc
feature being introducedgradually by the cycling of the al-
gorithm because a broad or smaller version of the step wo
fit much worse than the fulldh. To avoid this problem with
safety, it would be necessary either to have data at more
oneqz , or to include testing for phase jumps, by inserti
ts
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them between cycles to see if they are supported, as pa
the general application procedure.

C. Data sampling

In the real experimental situation, data are measu
within a finite region of reciprocal space,qmin<qx<qmax.
However, the domain of the inverse Fourier transformat
must extend to infinity. The data must, therefore, be
tended smoothly beyond the range of measurement. I
clear that, if they are cutoff abruptly, this will give rise t
additional oscillations in real space which have no physi
meaning. According to the properties of the Fourier tra
form, the far tails in reciprocal space will influence only th
higher spatial-frequency features in real space. One of
simplest ways to extend the data is just to smoothlycutoff the
long tails.

A more accurate way of extending the experimental d
would be to make use of the asymptotic behavior of spec
intensity asqx→`, which we derived in Eq.~11!. We could
continue our experimental data smoothly outside the ra
qmin<qx<qmax using expression~11!. Then the inverse Fou
rier transformation in the range2`,qx,qmin and
qmax,qx,` can be performed analytically with thi
asymptotic function.

In numerical calculations, Fourier integrals such as E
~8! are calculated as discrete Fourier transforms~DFT!,
which are Fourier series,

An5 (
m50

N21

rmexpF6 i
2pmn

N G , m,n50, . . . ,N21,

~29!

whereN is the total number of points of calculation, usual
with small prime factors, as in the FFT. According to E
~29!, the real and reciprocal spaces are connected to e
other. Really, thenth point in real space is equal to a fractio
of some unit cell length,X, by xn5Xn/N, so themth point
in the reciprocal space according to Eq.~29! is equal to
qm52pm/X. So, for the steps in the real and reciproc
space we haveDx5X/N andDq52p/X or for their prod-
uct,

DxDq52p/N. ~30!

Due to relationship~30! the steps in the real and reciproc
space are correlated and strictly cannot be taken inde
dently. In practice, the intervalDq is fixed by the step size in
scanning the diffraction pattern, or the pixel size of the d
tector, but we are usually free to choose the sampling in
val Dx with which we represent the real-space functions.

A related practical consideration of using the DFT is t
problem ofaliasing, which arises from the periodic boundar
conditions inherent in Eq.~29!. This is usually avoided by
choosing a suitably large value ofN, and retaining a healthy
amount of empty space within both the real- and reciproc
space unit cells. This also allows room for the smooth c
tinuation of the diffraction pattern outside the measur
range, mentioned above. Relationship~30! will then guaran-
tee that the spacingDx is sufficiently small that the dis-
cretely sampled numerical function,w(x), will be over-
sampled and will therefore appear to be smooth.
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D. Tests of the algorithm

Our first test was simply to show that a simple structu
could be recovered from simulated data. This is shown
Fig. 3 for a Gaussian-shaped phase bump as the test s
ture. The simulated speckle pattern is shown in the up
panel as data points and the line passing through them
obtained using the Gerchberg-Saxton fitting algorithm
have described. The real-space amplitude and phase
shown in the lower panel. The data were generated usin
illumination functionB(x) given by Eq.~25! with a width
d511 mm and slope parameterw51.25mm. This same il-
lumination function was asserted on every cycle of the al
rithm, except a slope parameterw51mm was used instead
as a test. For starting phases, a random number was ch
for each value ofx with 2p,w(x)<p. The procedure con
verged within 40 iterations to the correct solution or to
dual ~about half the time for each!, depending on the startin
phase set.

For a simple function as in this example, the method w
fairly reproducible, even when the illumination function w
not chosen exactly the same as the true one. The two
amples of reconstructed profiles shown in Fig. 3 by das
and dash-dot curves were obtained with different start
phases. They are not quite the same: they both resembl
original in the center, but begin to diverge dramatically o
side the range where the illumination function is larg

FIG. 3. Test of the Gerchberg-Saxton algorithm applied to
simple height function in the form of a Gaussian phase bump. T
derived speckle pattern~points! and eventual fit. Middle: derived
illumination as a function of position across the incident beam
two reconstruction attempts. Bottom: starting height function~solid!
and two versions of the reconstruction~dashed and dash-dot! to-
gether with their duals. The two versions, which differ substantia
only outside the illuminated aperture, were obtained using differ
random starting phases.
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2d/2,x,d/2. Since the phase has little weight outside th
window region, it does not contribute much to the data a
so is poorly constrained there.

The convergence of the algorithm was found to be d
dependent. It has been reported that if the solution and
dual start to resemble each other, this can interfere with
convergence.21 This is a well-documentedstagnationfailure
of the Gerchberg-Saxton method when it becomes stuck w
a function that adopts features of both the solution and
dual.21 Stagnation was apparently not a problem in th
simple test case, perhaps because of the particular choic
test function used.

Our second test, shown in Fig. 4, was more demand
We considered a different example of a real surface m
phology as measured with a profilometer.7 A typical 300
mm trace was compressed into 12mm to represent the graz
ing incidence angle of the beam on the sample. A roun
Fermi-function illumination function,B(x), was assumed a
in Eq. ~25!. The speckle amplitude was generated and th
used, together with the sameB(x) and random starting
phases to recover the surface height. The data are
shown in the center of the pattern, but have important sm
features extending far beyond the edges of the figure; ret
ing these is important for the fitting to work. The recover
surface structure as well as the initial one are shown in
bottom panel of Fig. 3. Clearly, the coarser features of
profile have been largely recovered by the algorithm
there remain some differences on a finer scale, which m
be attributed to the finite range of the reciprocal-space F
rier transform.

The final test was on the reconstruction of anunknown
surface structure from an example of data from silicon wa

a
p:

r

y
t

FIG. 4. Test of the algorithm on profilometer data. Top: deriv
speckle pattern~points! and eventual fit. Middle: assumed illumina
tion as a function of position across the incident beam and even
fit. Bottom: starting height function and reconstructed version.
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samples, shown in the top panel of Fig. 5. These data w
measured at ID10 of the European Synchrotron Radia
Facility ~ESRF! using the methods described in Ref. 7. T
illumination function was assumed to be of the form~25!
with parameters estimated from the dimensions of the
perimental setup:d57 mm andw50.8 mm. In our fitting
procedure we made several attempts~starting with random
phases! to fit the data and the solution was regarded as fo
whenx2 values for both the real-space amplitude constra
S@ ur(x)u2uB(x)u#2 and the reciprocal-space data constra
S$AI obs(qx)2uA(qx)u%2 became small. Of course we hav
no independent way of checking the validity of the deriv
surface profile, so we show three independent solutions,
tained with different random starting phases. The simila
of these gives confidence that the solutions may be corr

V. CONCLUSIONS

We have shown how the coherent diffraction profiles se
in reflectivity experiments can be derived with a kinema

FIG. 5. Fit of a height functionh(x) to a 1D speckle pattern
obtained by reflection from a silicon wafer at the ESRF using
methods described in Ref. 7. A perpendicular momentum tran
of qz50.2 Å21, a nominal pinhole ofd57mm and wavelength
l50.136 nm were used. Three examples of reconstructions
shown superimposed.
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formalism. The expression for the reflected amplitude fact
izes into a crystal-truncation part and an integral of a ph
factor that depends on the height function,h(x), describing
the surface. One consequence of this factorization is that
reflection geometry is very favorable from the point of vie
of longitudinal coherence, so wide-band optics can be
lized for a considerable advantage in flux.

Interesting mathematical properties of the derived form
ism were explored. An expression was derived for the
tails of the diffraction pattern, which are oscillatory b
shifted in phase by an amount that depends on the ove
height difference across the sample. In the perturbation lim
it was discovered that there is a threshold value of the p
pendicular momentum transfer,qz.p/s, beyond which a
surface of a given roughness,s, will start to produce strong
speckle features in its coherent diffraction pattern. This w
already seen experimentally.7

Finally, we tested the possibility of using a reconstructi
algorithm, proposed by Gerchberg and Saxton, and wid
used in the optics literature since. The algorithm switch
back and forth between real space and reciprocal space
serting a sample illumination function,B(x), in the former
and the observed data in the latter. The illumination funct
also acts as a filter to allow for partial coherence and
finite detector resolution. Our tests showed that images
surface morphology could be recovered from simulated d
and that satisfactory fitting of real data could be achieve

Further investigations of the capabilities of this da
fitting algorithm are in progress. We intend to pursue t
questions of the uniqueness of the solution from the emp
cal direction, and to explore the sensitivity to errors in t
data and in the illumination function. We will investigat
other kinds of real-space intervention in the Gerchbe
Saxton cycle, which might improve the convergence. We
extend the application to other kinds of data, for examp
2D speckle or speckle due to antiphase domains rather th
continuous height function. We would also like to look
time-series andqz-dependent data. We believe the metho
outlined here will help to establish CXD as a powerful an
lytical tool for probing the structure of matter on the nano
eter length scale.
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