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Domain-wall resonance in exchange-coupled magnetic films
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Exchange coupling between magnetic films in multilayer geometries can strongly influence magnetization
behavior and spin-wave energies by correlating the motion of spins in one film with the motion of spins in
adjacent films. In a similar fashion correlations can be expected between domain walls existing in neighboring
exchange coupled films. In this paper we show thatrtieion of domain walls in neighboring films can
depend strongly on interfilm exchange coupling. A static equilibrium configuration exists for the domain walls,
and small amplitude oscillations about equilibrium can result in domain-wall resonances that involve interfilm
exchange energies. Frequencies for optic- and acoustic-type domain-wall resonances are calculated and effects
of a small static applied magnetic field are examined, revealing distinctly different behaviors for the acoustic
and optic domain-wall resonances. The possibility for sensitive measurements of the local coupling by study-
ing domain-wall resonance is discussed. Resonances with parallel and antiparallel coupling are considered and
the response to a small in-plane driving field is calculaf&@163-1827)00206-3

I. INTRODUCTION resonance involving interlayer coupling as a restoring force
thus offers interesting possibilities for new studies of inter-
Numerous investigations of domain-wall motion and resodayer exchange coupling.
nance have been made in various systems in order to study In this paper we investigate the effect of coupling on dy-
phenomena such as magnetization reversal, domain stabilitpamic correlations between domain walls in separate films
and material homogeneity. In a similar vein, studies of do-2nd examine possibilities of using domain-wall resonance to
main configurations and domain walls in magnetic multilay-Study interlayer coupling on length scales the order of the
ers have provided valuable insights into the effects and chatidth of a domain wall. In order to place the results for wall
acter of interactions within and between magnetic layers.'ésonance in perspective, it is useful to review known results
An interesting feature of multilayers are correlations betweerfor spin-wave excitations in uniformly magnetized coupled
domain walls in separated filnis.
To date, domain walls in multilayers have only been stud-

ied in terms of their static properties. Exchange coupling y

between domain walls on adjacent films can however lead to X
interesting dynamic effects. Consider two antiparallel (a) A
coupled thin ferromagnetic films. The coupling energy will NS s~ \ | L

be smallest if walls in each film are positioned directly be- z
neath one another as shown in Figa)lfor two Neel walls. /W m /
In this figure, the arrows represent the local orientation of the
magnetization in each film. Small deviations from this con-
figuration, depicted in Fig. (b), increase the energy of the W / /
structure and result in torques on the spins in the walls of (b)
each film. We will show in this paper how harmonic oscil-
lations are possible with a natural frequency that depends on
the magnitude and sign of the interfilm coupling.

Breathing oscillations of domain-wall pairs in single thin
films have been predicted for certain wall configuratidfs.
In this paper, we consider a very different kind of restoring / //
force responsible for wall oscillations—interlayer exchange
coupling between magnetic films. In this regard itis useful o g 1. schematic illustration of relative motion and orientation
note that a continuing experimental problem is the quantitasf the magnetizations for ¢ walls in two antiparallel coupled
tive measurement of interlayer magnetic coupling in layerediims. In (a) the equilibrium configuration is shown and o) walls
magnetic film structures:’ The sign and average strength of are displaced a small amount with a corresponding increase in en-
the coupling are usually found through magnetization meaergy due to the coupling. The geometry is also defined withythe
surements, ferromagnetic resonance, light scattering, arakis normal to the film planes, the axis normal to the domain
magnetoresistance measuremé&nt8.Coupled domain-wall walls, and a static applied field in thedirection.

-
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layers. For a sufficiently thin ferromagnetic film, only the IIl. DOMAIN-WALL RESONANCE FOR COUPLED FILMS

lowest energy spin-wave branch is easily observed in Bril-
louin light scattering or ferromagnetic resonance measure;

ments. The energy of this branch at zero wave vector va Sroperties and are assumed to be very thin so that-type
ishes in the limit of zero applied field unless anisotropies argy 4|15 are preferred and the wall profile is assumed to depend
present. A uniaxial in-plane anisotropy produces a gap typignly onx. At equilibrium the spins lie in th&z plane and far
cally on the order of a few hundred Oe for ferromagnets suckom the walls the magnetization of each film is collinear
as Fe or Co. Two such films coupled by an effective magyjith the z axis. Anglesé and ¢ are used to specify the
netic coupling will support combinations of spin-wave grientation of the magnetization as a function>ofn each
modes where the spins in each film precess either together fiim. For the magnetizatiom, in film 1, the components are
phase or out of phase. These modes are usually referred to as
acoustic and optic. The difference in frequency between the My (X) =M sin(81(x))cod ¢4 (X)), (1)
optic and acoustic modes is determined by the effective ex-
change field coupling the films, in addition to any differences
between effective internal fields acting in each film.

Similar behavior can be expected for domain-wall reso-
nance in coupled multilayers. Domain-wall resonance differs My, (X) =M cog(63(x))- 3

from spin-wave resonance, however, in that the precession % is th itude of th tizati t d d
spins in the domain walls results in a translation of the do-, IS the magnitude of the magnetization vector and assume

main wall along the film. Wall resonance frequencies aret0 be the same in both films. A magnetizatio(x) for the

therefore determined by inertia involved in the translations'econd film is defined similarly using(x) and ¢,(x).

y s ) The parameters entering into the wall energy are as fol-
and the nature of restoring “forces” incurred by the relative lows. A uniaxial anisotropy with an easy axis along the

motion of the walls. In multilayers, interfilm coupling can act yiaction is assumed for each film. The magnitude of the
as a restoring force on each doma}in.wall. The motion of theq i afiim exchange energy is specified with a constamind
walls can then be thought of as similar to two masses cone interfilm coupling has strength(hered is averaged over
nected by a spring. Acoustic- and optic-type oscillations arghe film thickness and is in units energy per volyma
possible with an effective mass for each wall determined bysmall magnetic fieldh is also applied in the direction. The
interfilm coupling and magnetostatic energies. The oscillaenergy per wall area of the two-film system in the continuum
tion frequencies follow directly as a ratio of the restoring limit is given by

force to the effective mass. Because magnetic anisotropy de-
termines the wall profile, and walls are able to move without f (
A

The geometry is shown in Fig. 1 with the direction
ormal to the film planes. The films have identical magnetic

Myy(X) =M sin(61(x))sin(¢1(x)), 2

changing shape, a result is that the frequencies for wall reso- E=
nance do not contain the anisotropy gap of spin-wave reso-
nance and are usually much smaller than spin-wave frequen-

do;\? (d6,\?
a) +(a)

+ K[sin201+sin202]] dx

+ 277M2f [Sin?6,Sir? ¢, + Sirf 6,sirf ¢, |dx

cies.

Since the domain-wall resonance is due to restoring forces _ .
localized to the region of the domain wall, the frequencies of _ sind; Cosp;Sind,Cosp, dx
the resonances are determined by coupling across areas with + sind;Sing,Sind,sing, + cosh, oY,

dimensions determined by the domain-wall widths. These

Iengths_are on the order of _100 Ain high anisotropy ferro- _ th [cosd, + cosh,]dx. ()

magnetic metals. Observation of domain-wall resonances

would therefore allow for investigations of coupling mecha-

nisms on a much smaller length scale than possible witfPur notation is chosen so thdt-0 always. We use to

ferromagnetic resonance or Brillouin light scattering. Thesedenote the type of coupling by definimg=+1 to mean par-

measurement techniques provide values for the interfilm cotallel coupling ando=—1 to mean antiparallel coupling.

p||ng averaged over |engths determined by the Wave'ength of The first set of terms contain the intrafilm eXChange and

the probing microwave or optical field, which puts the lengthuniaxial anisotropy that determine the shape and energy of

scales at 1000 A lengths and more. the uncoupled domain walls in film. We note that magneto-
A picture of domain-wall resonance is eas”y expressed b>$tat|c energies due to the divergence of the magnetization in

formulating the problem of domain-wall resonance in thethe film plane can be approximated by including a position-

coupled film structure in terms of exchange, dipolar, anddeépendent demagnetizing energy that varies assifihis

magnetic anisotropy contributions to the domain-wall en-has the same functional form as the uniaxial anisotropy and

ergy. We do this in the next section where Coup|ed equation.§ included in the definition oK. The second set of terms in

of motion for each wall are derived and solved for the al-Ed. (4) are demagnetizing energies for out-of-plane fluctua-

lowed frequencies_ In Sec. Ill, we examine the effects of éions. The third and fourth integrals are the interfilm cou-

small static applied magnetic field on the walls and wallPling energy and the Zeeman energy in an applied field

resonance frequencies. Finally in Sec. IV, we describe an The magnetostatic energies are assumed small in com-

alternate formulation of the problem in order to provide aParison to an uncoupled domain-wall energy per arga

unified description of spin-wave and wall resonance excita-

tions and derive response functions to an ac driving field. oo=4[AK]Y2, (5)
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An approximate solution for the profiles specified 8y  resulting integrals ovex are then evaluated using the trial
6,, ¢, and ¢, are found by using a variational method in- wall profile solutions and treated as functions of the varia-
volving trial solutions for the coupled equations. The trial tional parameteA.
solutions describe independent walls in uncoupled films. For We consider first the case of zero applied fibldThe

parallel coupling these are given by integrals are straightforward and so only the results are pre-
sented. The energy per areeof the wall pair, quadratic in
cog; =tant (x)/A] and ¢,=0, (6)  the fluctuation variables and ¥, can be put in the form
cosd,=tanH (x)/A] and ¢,=0, (7)

o=4[AIA+KA]+47M2A[ (¥ )+ (F,)?]

+IA[2W W, — p[ (V1) 2+ (W) 2]+ I(X1—X) YA,
cod¥;=tanl (x)/A] and ¢,=0, (8) (15)

and for antiparallel coupling, by

cosd,= —tant (x)/A] and ¢,= . 9 . . ] ) ]
This energy is measured with respect to the total interfilm
The wall widthA is used as the variational parameter. Thecoupling energy for uniformly magnetized filméo=J/dx.

energy of the static coupled wall structure is then found by The last term of Eq(15) shows how wall separations
substituting the appropriate solutions from E¢®—(9), as  involve interlayer exchange coupling. This means that an
determined by the sign of, into Eq. (4) and minimizing interlayer exchange restoring force can exist so that domain-
with respect to the wall width\. This procedure assumes Wall resonance is possible without considering any other ad-
that the wall profile in the coupled film system is describegditional restoring forces. This is in contrast to domain-wall
by functions of the form used in Eq&)—(9). This is a good ~réesonance in single films which requires some sort of addi-
approximation as long as the interfilm coupling and magnetional restoring force due, for example, to pinning by defects.
tostatic interactions introduce only small corrections to theNote however that an interlayer exchange coupling restoring
profile of the walls in the individual film&! In the special ~force only makes sense when the walls overlap such that
case of no applied field, for example, the interfilm exchangdX1—X2|<A. For the remainder of the paper we consider
coupling does not deform the wall profiles at all in the staticonly cases where the amplitude of the wall oscillation is
configuration. In this case, the two walls are simply centeregmall so that this condition is fulfilled.

over one another. The profiles are then given by Eg)s-(9) In order to calculate the allowed resonance frequencies, it
with A=A, where is useful to include terms in the energy that describe possible
additional restoring forces. Pinning effects due, for example,

Aoz[A/K]l’Z. (10) to inhomogeneities in the films can result in effective restor-

ing forces. We treat these effects in an approximate
Wall motion involves translations af, andé, along thex ~ mannet™'? by including terms in the wall energy propor-
direction. Deviations of the walls from their equilibrium po- tional to x>. This approximation is only useful for displace-
sitions perturb the wall profiles and change the wall width sonents from a defect smaller than the wall width since the
that it is no longer given by Eq10). If we know 6, and¢,  quadratic form is not an accurate representation of the pin-
at equilibrium, the effect of deviations, andx, away from  ning potential far from a point defect. This is acceptable

equilibrium can be written to first order ixy andx, as because our entire discussion is valid only for small ampli-
tude oscillations of the walls.
01= 015+ X1 014, (11 Magnetostatic energies also enter the problem as a contri-
bution to the effective coupling between the two wafts?
0= B0+ X200y . (120  The dipole interaction is long ranged and an accurate de-

scription of dipolar effects between coupled film domain
The profile at equilibrium ig, and 6;, =d6;/dx is evaluated \alls is quite involved. Qualitatively, antiparallel alignment
in the equilibrium configuration of the wall pair. of the magnetization is preferred by stray magnetic fields
Fluctuations out of the film plane are given by deviationspetween the films due the divergence of the magnetization
of ¢; and ¢, from their equilibrium values. With the fluc- within each film. This acts as an additional attractive force
tuations denoted by; and ¥, then in the case of parallel \vhen the walls overlap. Parallel alignment, in contrast, is
coupling (where the equilibrium values of, and ¢, are  repulsive when the walls overlap. In order to represent these
zerg we have effects, we restrict our calculations to structures where mag-
netostatic energies are weak compared to the interlayer cou-
$1="¥, and ¢=¥,. 13 pling and consider only cases where the walls overlap. Be-
cause the magnetostatic interaction between the walls will
either add or subtract from the magnitude of the effective
coupling correlating the wall motion, we represent the aver-

For antiparallel coupling the equilibrium values ¢f and ¢,
are zero andr, So we use instead

=¥, and d,=m—V,. 14 age magnetostatic contribution by an additional small qua-
$r=Va b2=m= Ve 4 dratic dependence on wall separation € x,)%
The approximations given by Eq&l1)—(14) are substituted Based on the above considerations, approximate effects of

into the energy of Eg4) and the cos and sin terms expandedmagnetostatic interactions and pinning potentials are ex-
to second order in the variables, x,, ¥;, and¥,. The pressed by postulating an enery of the form
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Ep=(Kp/A)[(X1)%+ (X2)?]— p(Kp/ /A) (X1 —X5)?, The energy of Eq(15 together with Eq.(16) is next
(16)  minimized with respect to the variational wall width. First,

where K controls the pinning potentighssumed for sim- we set

plicity to be the same in each filmand Ky represents the

strength of the magnetostatic interaction between domain- d(o+Ep)/dA=0 7
wall pair. The signp on Ky describes the relative orienta-
tion of induced poles on the walls in the two films. in order to determin@. The result is
|
A={4A+(J—pKp:)(X1—X2)2+ Kp(Xd+ X)) Y{AK+ 4nM Wi+ W3]+ I(¥, — pP,) 212 (18)

Equation(18) is then substituted into the wall energy per sented byK reduces the optic mode frequency, as can be
areaoc+Ep and terms to second order in the fluctuations expected since in the parallel coupling configuration magne-
and¥ are kept. The resulting expression for the energy is tostatic energies acting between the films are presumed to

) ) 5 ) decrease the energy in Ed.6).
0=20,T4TM A (V1) + (V) ]+ IAo(V,—p¥)) The frequencies for parallel coupling are shown in Fig. 2
_ —y)\2 2 2 as functions ofH, for different values ofHy . The results
= PKo ) (= x0) Aot (Kp /A0)[(X1)™+ (x2)]- are given in unitless frequency and field variables defined by
(19  wly47M andHJ/47M. In all casesH /47M =0.01 which

For the small displacements assumed here, the walls mowdlows for a nonzero acoustic mode. Note that the acoustic
rigidly so that the wall widths are simply given ky,. Also ~ mode is independent ¢ . o _
note that in the absence of fluctuations, the energy is simply 1€ main effect of magnetostatic interaction between the
that of two unperturbed walls. walls is to open a gap between the frequencies of the acous-
The equations of motion can now be formed using thefiC and optic resonances féf,=0. Also note that competi-
methods of Ref. 11 from the wall energy per area, @&y,  tON betweerH - and the paralleH coupling can be seen in
and appropriate wall profiles, Eq®) and(7) or (8) and (9). Fig. 2. The magnetostatic repulsion onvers the frequency of
We note that some care must be taken in determining thH€ Optic mode but leaves the acoustic mode unchanged. If
proper signs using the solutions in the different films. With et Hk—Hy <0, magnetostatic energies overcome the at-

given in Eq.(19), the results are tractive interlayer coupling and the domain walls repel each
other. Thus we observe that the frequencies are nonzero and
(2M/y)dx, /dt=da/d V¥, (200  the structure is stable fdflc//47M less than 0.01. The be-
havior of the domain-wall resonance in antiparallel coupled
(2M/y)dW¥;/dt=—da/dx;. (21)  films is similar but differs in that the gap introduced Hy
yis the gyromagnetic ratio and the subscript'‘identifies increas_es the frequency of the optic mode relative to the
acoustic.

the film (1 or 2. In order to solve these equations, time
varying solutions of the form eXxp-i wt) are assumed for; ,
X5, ¥, and¥,. Substitution into Eqs(20) and (21) results

It is interesting to interpret the optic- and acoustic-mode

in a set of four linear coupled equations. Four allowed reso- =
nance frequencies can then be determined. T
For parallel coupling, witlp=+1, the frequencies are 02 optic /,,j;j,'——"’
(waly)?=4TMHy 22 - gt
g ‘/'/ ”’f
and g. 01 //’//’ acoustic
g8 0.1 ===
(wo!Y)?=(Het+4mM)(Ho+Hc—Hy)). (23 7 — Hu/dnM = 0
The effective fields appearing in Eq22) and (23) are de- T :Kﬁ;‘m = 8'8?5
fined as follows: 0.0 / . . K‘ -
"0.00 0.01 0.02 0.03 0.04 0.05
H.=2J/M, 24
€ 24 H /4nM
Hx=2Kp /M, (25

FIG. 2. Frequencies in zero applied field as a function of inter-
He =2Kp: /M. (26) film coupling strength. Frequencies for parallel coupling are shown
for different values oHy-, which approximately represents a mag-
The subscriptsa and o refer to acoustic and optic and de- netostatic restoring forceH/4mM=0.01 in all cases. The fre-
scribe the relative phase between translations of the twquency of the optic modésolid line) is strongly dependent on the
walls. Note that the interfilm magnetostatic coupling repre-interlayer coupling.
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frequencies in terms of the harmonic oscillator analogy. The )
resonance frequency can be interpreted as a ratio betweenl\éhsf [cos; +coshp]dx~ — Mhsf [(X1=X2) Oysind,
restoring force and an effective mass. The effective mass in

Egs. (22) and (23) is the inverse of 4M for the acoustic +(1/2) (x2—x3) 62cos, — (1/6)
mode and the inverse ¢f.+47M for the optic mode. The 3 33
restoring forces arél, andH,—Hy+ H, for the acoustic X(x1—X3) Bisindoldx.  (29)

and optic modes, respectively. The acoustic-mode frequency 2 . . .
is identical to the resonance mode frequency of a single un- 'I'Ihetxdt(?rrrr]nstvanl'ls'h Whgn thz mtdegtrals n E(ﬁ]g) are.
coupled wall given by [4MH ]Y? with an effective mass evaluated. he term linéar k andx, determines the equi-

that depends only oM and a restoring force that depends :c|br|um p(_)smog (I)f ttT]e ;/vtalls but dtoes_ r:ott(ra]nt(fer the res_onat?ce
only on restoring forces from pinning centers. The optic requencies. Only the™ erms enter into the frequencies by

mode involves relative displacements of the walls with re_dlstLIer[[ng thfe. \{vall ?rqflleE a2ngd qhangmg th?t wall width.
spect to one another, so that the restoring force includes CO|J1:'—Va uation of integrals in Eq29) give the resu
tributions to the interlayer magnetic couplilty, in addition

to effective forces due t&p andKy/. Note that when the Mhsf [cosf;+cosh, |dx~ —2h (X1 —X5)

films are uncoupledH-=H.=0) all frequencies reduce to

the uncoupled single wall resonance frequency. —(x3-x3)/1(3A)?]. (30)
Two different modes also exist for antiparallel coupling

with p=—1. These have frequencies: Only the third-order term involves the wall width This, as

will be shown below, leads to a field dependence of the wall
width and consequently, the resonance frequencies.

(waly)?=(He+4mM)H 27 The equilibrium separation between the walls is again
found by settingda/dx; andda/dx, to zero. When the in-
terfilm coupling is antiparallel, the equilibrium values are
X1=—X,=d with

(wo!7)2=47M(Ho+Hy+Hy). (29) d/A=(3J/Mh){1+[1—(1/3)(Mhs/2)?]¥3. (31
Our discussion assumes thhis less tham\, and so we are

The acoustic-mode vanishes for both the parallel and antipanly interested in the behavior for small The — root gives
allel coupling if the only restoring force is interfilm coupling. the proper behavior ofl for small hy whereas thet root
When the interfilm coupling is zero and the films are un-gives unphysical answers for vanishing We also note that
coupled, both frequencies reduce to the single uncouplethe equilibrium values for¥; and ¥,, determined by
wall resonance frequency. We also note that the effectivélo/d¥;,=0, are still zero even to third order in the expan-
masses are different for the two modes, as in the case &ON.

parallel coupling. In the present case, the acoustic-mode ef- The separation is nearly linear i for a wide range of
fective mass contains contributions from interlayer magnetidields hs. ForJ much larger thaMhg,

coupling whereas the optic-mode effective mass depends

and

This relationship is exactly what one finds when solving for
the equilibrium position of the walls keeping only terms to
11l. DOMAIN-WALL RESONANCE IN AN APPLIED second order in the energy.

STATIC FIELD We next transform the position variables énaccording
to x;—X;+d and x,—X,—d. Minimizing the result with
We now consider domain-wall resonance for two antipartespect ta\ as before, we arrive at an expression for the wall
allel interlayer exchange coupled films in the presence of @nergy
small static applied fieldh=h,. For simplicity we neglect
other energies represented Ky, or K. The static applied ~ 0=20,+Ap{(IJ+4aM)[(V1)2+(V,)?]+2JV,V,}
field creates pressure on the walls and causes them to move
apart. This is countered by antiparallel coupling that instead (VAN +MPNSBI(x)?+ (x2) ] = 23x1},
tries to bring the walls together. A static equilibrium exists (33
with the walls positioned ail; andd, when the correspond-

ing torques balance. The equilibrium positiahsandd, are where

found by minimizing the wall energy with respect to the _ 2_ 291/2

position variablex,, x,, ¥, and¥,. on=2[o5 = AADMhTTT (34
The frequencies of the wall resonance modes are un- Ap=A,/[1—(Mhy)2/(4JK)]¥2. (35)

changed when this is done using the energy per area of Eq.

(4) expanded to second order in thkendV variables. Field The field dependence of the wall width and energy are
effects in the energies only appear for higher-order correcelearly shown in Eqs(34) and (35) and are due entirely to
tions to # and ¢ in the energy. To see this, consider thethe third-order term appearing in EQ9). Competition be-
expansion of the last term in E() using Eqs(11) and(12)  tween the applied field and the antiparallel interfilm coupling
with antiparallel coupling: causes a distortion of the wall, leading to the field depen-
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0.5 - - - 1.0 : .
(a) .
04 | A HeJ4nM=0.0i}
5037 > 1 0.8 f He/4nM = 0.01
B 02+ 06
01 ¢ E '
0.0 : - - <
00 02 04 06 08 S 04 |
M h/J
0.2
1.050
(b)
1.040
0.0 : :
< 1.030 r 0.0 0.1 0.2
3 1.020 | h/4nM
1.010 FIG. 4. Frequencies for antiparallel coupling as a function of
1.000 applied field. The static applied fielty pushes the walls apart and

00 02 04 06 08 the frequencies represent small oscillations about the equilibrium
M hS/J position. Note that the acoustic mod@botted line$ increase lin-
early with field unlike the optic modes at small field strengths.
FIG. 3. Field dependence @& wall separation andb) wall
width. The solid lines are calculated using the analytical results oZeeman energy for translation of one of the walls. Transla-
Egs.(31) and(35) and the dots are from the numerical calculation tion of the other wall in the acoustic mode gains Zeeman
described in Appendix A. Field dependence of the wall width entersenergy. This means that the two walls experience unequal
through higher-order terms in the wall energy expansion. forces with the result of a nonzero frequency for the acoustic
mode, thus giving rise to the nonzero frequency of B§).
dence of the wall width. As |Ong as the walls overlap, the The Optic_mode frequency is increased by the app“ed
distortion of the walls increases as the separation increasege|d, as can be seen by comparing E(8) and (37). The
It is interesting to examine the severity of the approxima-quadratic dependence on field is interesting because it means
tions made in deriving these equations. In Appendix A, athat field effects on the optic mode are only visible for large
description is given of a numerical solution for the statich_. This is illustrated in Fig. 4 where wall resonance fre-
configuration of two antiparallel coupled walls in an applied quencies in the antiparallel configuration are shown as a
field. The results are shown in Fig. 3 along with the analyti-fynction of fieldh, . The dotted lines are the acoustic modes,
cal approximation of Eqg31) and(35). The solid lines are  ,_  and the solid lines are optic modes, . The frequencies
the analytic results and the dots are the numerical results. lgre given in dimensionless units as before with the field vari-
Fig. 3@ the separationd/A, is shown as a function of apleh/47M. Coupling parameters /4rM between 0 and
Mhy/J. The wall width A/A, is shown as a function of (.1 are used. Note the linear dependencehgnfor the
Mhg/J in Fig. 3(b). In both cases)/K=0.5 andA/K=400.  zcoustic-mode frequency whereas for small fields the optic-
The agreement is very good for smhl, and only deterio- mode frequency is insensitive . Also note that the sen-

rates for largeih;. _ sitivity to changes irhg becomes less as the interlayer cou-
The equations of motion are next constructed from theyling H, is made stronger.
energy in Eq(33) according to Eqs(20) and(21). Solution

f th ive the followin tic- an tic-m fre-
0 ese give the toflo g acoustic- a d optic ode fre IV. RELATION TO SPIN WAVES

guencies:
AND DYNAMIC RESPONSE
(waly)*=(MhZ/33)(He+47M) (36) The theory presented in the previous sections was ad-
and equate for describing domain-wall profiles and motions in
exchange-coupled films. In this section we construct a theory
(w0/7)2:477M(He+Mh§/3J). (37) based on a discrete spin Hamiltonian capable of describing

spin waves as well as domain-wall dynamics. This will allow
We again emphasize that these results are valid in the ant comparison of spin-wave frequencies and domain-wall
parallel configuration and only for small wall separationsresonances obtained using the same theory, and will also
less than a wall width. The striking feature is the existence oprovide a general framework for constructing dynamic sus-
the acoustic mode for a small applied field. Reference to Ecceptibilities. Being a different approach, the theory of the
(27) shows that in the absence of an external applied fieldpresent section can also be used as a check on the previous
the acoustic mode has zero frequency. This is because riesults.
takes no energy for the walls to translate equal amounts in We will see that a comparison of the frequencies for
the same direction so the acoustic-mode motion does natoupled film spin waves and domain-wall resonances pro-
incur a restoring force. In the antiparallel configuration withvides a surprising result. As noted in the Introduction,
a nonzero applied field, acoustic-mode motion always costanisotropies usually cause spin-wave frequencies to be larger
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than domain-wall resonance frequencies. In this section waeighbors is represented by the stiffness conddarfthe two
show how interfilm exchange coupling can increase the optiéilms are allowed to have different thicknessgsfor the top
domain-wall resonance frequency into the spin-wave regionfilm andt, for the bottom film.
The theory of this section will also be applied in the calcu- Film thickness effects the strength of the interfilm ex-
lation of susceptibilities for small applied time varying mag- change coupling experienced by the spins and can also con-
netic fields. trol the strength of anisotropies in thin films. Out-of-plane

Our approach is an extension of that used by Winter inanisotropies do not affect the profile of the in-plane walls
describing wall waves in single Bloch wallé Because the assumed here, but they do influence the energies of spin
formulation will begin with discrete variables, slightly differ- wave and wall resonance excitations. The out-of-plane
ent notations and geometry are used. To begin, the magnetanisotropies enter the energy equations in the same manner
moments are not described by a continuous variable as bas dipolar demagnetizing energies. We represent the total
fore, but instead are assigned positions on a threesut-of-plane anisotropy with an effective perpendicular an-
dimensional periodic lattice with the indéxSpins in the top  isotropy, K, defined for each film as
film 1 have amplitudes, and spins in the bottom film 2 have
amplitudeb; . ar=2TM?+ K, /t, (38

The saturation magnetization in both filmsNts and the and
anisotropy and exchange constants in each film are also as-
sumed identiqal. The_ani;otro@is uniaxial as before with K2ﬁ= 2 M2+ Kp/to., (39)
an easy axis in the direction. The geometry is the same as
in Fig. 1 and the parameters and notation are as followswhereK is an out-of-plane uniaxial anisotropy with units
Unlike the previous treatment, here a small time-dependergnergy per area. Anisotropies of this form often appear in
magnetic fieldh is applied along thez direction. The thin films as a surface or interface anisotropy.
strength of the intrafilm exchange coupling between nearest The energy per wall area for the system in this notation is

K
+ —
1 K

(8 )%+ (ajy)? | +tp| (by ) >+

D K K i 5
E:—W%> [taa,--aj+tbbi-bj]+Wzi ta 1+? (bi,y)

J
—h20 [tad o1zl =Pz 2 &by (40)

The sums ove(i,j) indicate sums over nearest neighbors.axis defines the equilibrium orientation of the magnetic mo-
The first two sets of terms contain the exchange, anisotropyment at site. For exampleg, is rotated intoa via
and demagnetizing energies. Note that the uniaxial anisot-

ropy K is written here in terms of the andy components of ai’vx= aj x COsa;—a; , Sin oy, (41
the magnetization rather than thecomponent. This is more

convenient for the present representation using variables in ai,y:ai,y1 (42
Cartesian coordinates. The third term represents the interac-

tion energy with a driving fielch. The last term represents al,=a, sine;+a;, sina;. (43

the interfilm coupling which has the form of an effective

Heisenberg interfilm exchange interaction. Note that the inin our convention, primed variables are in the local system.
terfilm coupling has not been averaged over the film as be- Before continuing, we also include a description of pin-
fore and has units energy per area. The paramepgri§ ning effects as in previous sections. This is done in the
used to specify paralldp=1) or antiparallel(p=—1) cou-  present notation by including into the total energy an addi-
pling as before. Note also that the films are assumed to béonal uniaxial anisotropy energy

very thin such that the magnetization is uniform across the

film thickness. This is a reasonable approximation for strong Eu=Kp(a,’+by%)/M2, (44)

ferromagnets such as Fe and Co for film thicknesses less . ) ) .
than 50 A. This can be shown to result in a restoring force in the equa-

i ; ; 12

The orientation of a magnetic moment at siie specified  ions of motion of the same form used in E46)."* Magne-
by an angley; in the top film and the anglg, in the bottom tostatic effects,. discussed in Sec. Il, are ignored in the
film. Both angles are referenced from thaxis as shown in Present calculation. o
Fig. 5. The equilibrium positions of the magnetic moments 1€ next step in the calculation is to expand teom-
are always assumed to be in theplane because of demag- ponents of the moments in terms of transverse fluctuations in
netizing fields in a thin-film geometry. The energy per arean€ localx andy directions:
[Eq. (40)] is then written with the magnetic moments at each . o o
positioni rotated into a local coordinate system. The lacal aj ,~M—[aj;+ay]/(2M), (45
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b/ ,~M—[b/2+Db/3]/(2M 46 da’
i,z [ ] ( ) ( ) —:’}/a’XHa, (55)
: . . dt
The resulting energy describes second-order fluctuations
in the spin variables that are discrete functions of position. db’
Effective fields at a given site are next determined using ——=yh’ X HP, (56)

Hf= =V (E+Ey) andHP= — Vi (E+E,). We are prima- dt
rily concerned with long wavelength excitations and materi- The equations of motion given in E¢55) and (56) to-

als with wide domain walls so that, b’, «, andB vary little  gether with the effective fields given in Eqel9)—(52) are
between neighboring lattice sites. We therefore transform theapable of describing both spin-wave and domain-wall dy-
effective fields from a discrete form to a continuum limit namics in the coupled system. We consider zero wave-vector
with a/ —a’(x) andb; —b’(x) in the usual manner. We note excitations for both spin-wave excitations and domain-wall
that in order to convert the discrete variablesand 3, to  translations. In each case we first calculate the frequencies
continuous functionsx(x) and B(x) we expand quantities for parallel and antiparallel coupling and then discuss the
such asa(x+ ), whereéd is a nearest-neighbor distance, in aresults in terms of response to the driving fieldThe thick-
Taylor's expansion under the assumption that there is aessed, andt, are set equal in the following discussion
domain-wall structure in the films. In particular, we use theunless otherwise specified.

relations

. Zero wave-vector spin waves
da/dx=sina/Ay, (47 _ _ . .
In order to compare with results for spin waves in uni-

dBldx=sinB/A,. (48)  formly magnetized films, we sé{, to zero. A time depen-
) ] ) ] dence fora’, b’, andh of the form exg—iwt) is assumed.
In the followingD is contained in the exchange parameier zerg wave-vector spin-wave resonance solutions to the
which includes lattice constants and coordination numbers.iorque equations are

The final effective fieldsH? andH are

a,=Atanh(x/A)exp —iwt), 5
2A ) 2K ' 2Kp Ja X «tanh( yexp(—iwt) (57)
H2= iz v 2(co§a—sm2a)——2+p—2a; , _
M M ay=Ajtanh(x/A)exp —iwt), (58)
=% b.+h sina, (49) b, =B,tanh(x/A)exp(—iwt), (59)
b, =B,tanh(x/A)exp —iwt). 60
LA, 2« 2Keff 3], y=Byanfixid)exp —iwt) (60
Hy=lmz V'~ w2 (coS'a—sirfa) — 7 +p M2 Substitution of these solutions into the equations of motion
[Egs. (55) and (56)] give a set of four coupled equations.
Ja ., These equations are shown in Appendix B, H@.).
T M2 by, (50 We setp=+1 for parallel coupling. The allowed frequen-
cies are found by setting the determinate of the correspond-
2A
E |:M2V2 M2 (Cogﬂ SInZB) MZ +p M2:|b, \
Z
b, .
~m2 a,+h sing, (51
a | 2A Kgff b |,
Hy: W M2 (0052,8 SII’]Z,B) +p W by
N
“mZ e (52
The different film thicknesses scale the interfilm exchange ~ =
appearing in each film and is represented by the quantities S X
J=dity, (53) el
Jb:J/tb, (54) \l\\\

in the expressions for the effective fields. We note that these

expressions also agree with those of Winter in the case of FiG. 5. In the discrete spin formulation, the coordinates are

zero interfilm COUp“”g1L2 rotated locally in each film about the axis in order to place the
Equations of motion are found with the usual torque equaprimedx’ andz’ axes along the equilibrium directions of the local

tions magnetizations.
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ing homogeneoug$with h=0) set of equations to zero. De- '
fining an effective exchange fiell, as in Eq.(24), and (a)
effective anisotropy fieldsl, andH . with

2.00
H,=2K/M, (61)
HeffZZKeff/M, (62) E
the allowed frequencies are i 1.00
~
wgzyz(Ha+He)(Ha+He+Heff) (63 S
and
2 0.00 —T T
@ = y"Ha(Hat Her). (64) 000 040 0.80
The subscript® anda refer to “optic” and “acoustic” re- He/4nM
spectively, as before. (b)
For antiparallel couplingp=—1. The frequencies are
w5 =7 (Ha+t He)(Ha+ Her), (65 300 .
wi= Y Ha(Ha+He+Heg). (66) S 200- o
The results of Eqs(63)—(66) agree with those of previous E . )
spin-wave and ferromagnetic resonance calculations on E_ 1 .
coupled filmg~10 3 1.00d." a
The main points we now wish to emphasize are the dif- |72
ference in the optic-mode frequencies between parallel and ] a
antiparallel coupled cases and the existence of an energy 0.00 —T—
“gap” which increases the frequencies of the excitations. 0.00 0.40 0.80
The difference in frequencies between parallel and antiparal- He/4neM

lel is due to demagnetizing fields and the gap is due to the

uniaxial in-plane anisotropy. FIG. 6. Frequencies of the spin-wave and domain-wall reso-

nances for théa) antiparallel coupled an¢b) parallel coupled con-
Domain-wall resonance figurations as functions of coupling strengthy . The solid lines are
acoustic(a) and optic(o) domain-wall resonances and the dotted
lines are the acoustic and optic spin-wave resonances. The films are
a,=Asinaexp —iwt), (67) identical with anisotropie$</27rM2_:l.5 andK,=0. A rzestoring

force for the wall resonances is included wiky/277M“=0.05.
(68) Note that the optic resonance mode has a frequency greater than the

acoustic spin-wave mode for lard, .

Solutions of the form

ay=Aysinaexp —iwt),

b, =B,singexp —iwt), (69 ] , )
The difference in spin-wave resonance and wall reso-

b§= B,singexp(—iwt), (70) nance frequencies for' both the pgra!lel an'd antipargllel cases
is due mostly to the in-plane uniaxial anisotroldywith a

correspond to translation of the domain wall in thelirec-  small contribution fromKy. The acoustic modes are less
tion. The corresponding equations of motion are shown irsensitive to the interfilm exchange than the optic modes for
Appendix B in Eqs(B2). antiparallel coupling and independent of the exchange for

We allow K to be nonzero and define a correspondingparallel coupling. Interestingly, a large interfilm exchange
field Hy as before. The frequencies found by setting thecan cause the optic wall resonance mode to have a frequency
determinate of homogeneos=0) set of equations to zero greater than the acoustic spin-wave branch. This occurs for a
agree exactly with thel =0 form of Eqgs.(22) and(23), for ~ smaller value of the exchange in the parallel case than in the
p=+1 and with Eqs(27) and(28) for p=—1. Comparison antiparallel case.
of the spin-wave and domain-wall resonance frequencies As a final comment, we note that it is a simple matter to
show that the wall resonance frequencies are lower becauggneralize the equations of motion in HEg2) to describe
of the absence of anisotropy terms in the frequencies. domain-wall resonance in multilayers consisting of several

Spin-wave resonance and wall resonance frequencies aceupled films. A band of wall resonances would appear,
shown in Figs. ) and Gb) as functions of exchange cou- analogous to collective excitations in multilayers.
pling. In both cases a small additional restoring fokgg is
included (K p/27M?2=0.05 with frequencies for antiparallel
coupling shown in(@ and frequencies for parallel coupling
shown in (b). The other parameters aret,=t,, As in ferromagnetic resonance on coupled films, standard
K/2mM?=1.5. techniques for observing domain-wall resonances in multi-

Dynamic response
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layers require a net fluctuating magnetic moment for the -
coupled film structure. This is the situation for the optic wall
resonance mode in antiparallel coupled films since out-of- 8.00 1
phase translations lead to a change in the magnetization in
the z direction averaged over both films. This is not the case
however for parallel coupled films since optic wall resonance 4.00
translations lead to zero average change in the total magne-
tization.
This difficulty can be overcome by allowinl§ .+ to be

different for each film. This can be accomplished using dif- 0.00 | . | .
ferent film thicknesses, i.et,#t,,, as done by Zhangt al,’ 0.40 0.80
in measurements of the acoustic and optic spin-wave reso- w/y4nM

nances in multilayers with thickness dependent anisotropies.
In order to gain a feeling for how the intensities of the wall g5 7. Imaginary parj, of the in-plane responsg, as a func-
resonance modes quen_d on unequal anisotropies in the Pregn of driving field frequency for the parallel coupling configura-
ence of small rf driving fields, we calculate the response ofjon, The ratior controls the magnitude of the internal fields acting
the coupled wall structure to the time-dependent driving fieldn film b relative to those in filma and the response is shown for
h. The results are presented as averaged susceptibjlities four differentr. The dotted line is the response for1. The pa-
andyy, that measure fluctuations in tkzeandy directions in  rameters areJ/2rM?=0.1, K/2eM?=1.5, K,/2rM?=0.5, and
the film geometry due to a driving field in theedirection. Kp/2mM?=0. The response becomes larger with increasindile

The susceptibilities are defined as averages over a film dhe peak response shifts lower in frequency as explained in the text.
lengthL:

Here again the resonance is only visible for the in-plane fluc-

1 tuations of the magnetization. Whef,=K%;, then
Xzzzm J’ (A;+Bydx, (7D
_ —27mAMHegg .
Xzz— L(w/,y)Z ’ ( 7)

1 and there is no longer a pole at the wall resonance in either
Xyz= L (Ay+By)dx. (72) component. This can be understood by considering the am-
plitude of precession for the magnetic moments in each film.

— i ) When the effective fields acting within each film are the
The susceptibilities are found by solving the equations okame, the precession amplitudes are the same. The walls then

motion[Eq. (B2)] for the amplitudes\ andB. For simplicity 5y equal amounts in the same direction, which takes no
we present results withp=0. The general expressions are gnergy ifk ,=0. There is then also no fluctuation in the net
not particularly illuminating so it is useful instead to examine magnetization. When the effective internal fields are differ-
the susceptibilities for equal film thicknesses but with differ- ot tor the two films, the two precession amplitudes are dif-
entKe;r. For antiparallel coupling the susceptibilities are  ferent and fluctuations in the net magnetization are possible.
a b The behavior ofy,, for parallel coupling is illustrated in
_mA M (Hegg+Het) 73 Fig. 7 fort,#t, . Here the susceptibility is found by solving
Xezm Ho(H3+ H2%)/2— (! y)?’ the equations of motion for the sum of the in-plane fluctua-
tions A,+B,. A small imaginary part was added to the fre-
quency to give a width to the peaks in simulation of damp-
Xv,=0. (74) ing. We note that this should not be understood as properly
vz representing actual damping processes.
_ - _ The parameters for Fig. 7 areK,/2mM?=0.5,
In this case the susceptibility still has a pole at the wall J,/27M 2=0.1, andt, held constant. The imaginary part
resonances whekg;=KZ. Note that the total response de- y”_of the respons,, is shown for three values f=t,/t,
fined bya+b is only in thez direction. indicated on the plot with the dotted line calculated ferl.
For parallel coupling we find As expected, the response to the optic wall resonance pole
becomes larger asis increased. However the frequency at
which the peak occurs decreases with increasinghis de-

A —M(Hg:+ Hgﬁ) crease is due to the reduction of the internal fieldst,as
X2 (ol ) THZ+ Ho(HE+ HE) 12— (wl9) 2] becomes larger, which weakens the interfilm coupling and
anisotropies. Note also the large values®f for small driv-
) 2HeHZﬁH2ﬁ ) ing field frequencies due to the second-order polea0.
X He+ W—(w/y) , (75)
ff ff
o V. CONCLUSIONS
_ 2iM We have examined spin-wave and domain-wall resonance
Xyz= wly’ (76)

in two thin ferromagnetic films coupled either parallel or
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antiparallel with an effective Heisenberg exchange interacthe corresponding Euler equations:
tion. The coupling acts as a restoring force correlating the
wall motion in the separate films and only one wall reso-
nance appears in the absence of other restoring forces. This 2
resonance corresponds to an optic-type oscillation involving 2o ——1_K sin(26;)+Mhsin( ;) +J sin(6,— 6,)=0,
opposing motion of the walls. An acoustic-type oscillation 2
appears when other restoring forces within the individual (A1)
films exist.

For small interfilm coupling, the frequencies of the wall
resonances lie below the frequencies for spin-wave reso- ;2
nance in the domain walls by an amount dependent on the 2A —22—K sin(26,) + Mhgsin(6,) —J sin( 6, — 6,) =0.
in-plane anisotropy of the films. A feeling for the frequencies X
can be obtained by estimating the resonances for coupled (A2)
ferromagnetic films such as Fe. WithrM =21 kG,K=10°

erg/cn, K, =0, andH,=0.1 kG and in the absence of other .. co can pe written as two coupled finite difference equa-
restoring forces, the spin-wave resonance fields are 5.2 anfl < where the value of at positionx is determined by

5'4.kG for the acoustic and optic ‘.“Odes’ respectively, in tr?(?/alues at neighboring positions a distariceaway atx+ Ax
antiparallel configuration. The optic wall resonance mode is _ :

. . .~ andx—AX. These equations are
at 1.45 kG. Domain-wall resonances in coupled transition-
metal magnetic structures should then occur in a range below
5 GHz for weak to moderate coupling.

We also find that for larger interfilm coupling it is pos- 1 Ax |2
sible for the optic wall resonance to h_ave a frequency comy, (x)= > [ 61(x+AX)+ 91(X_AX)]_(E)
parable or even larger than the acoustic spin-wave resonance. 0
This is interesting because it offers the possibility for large Mh J
interactions between spin-wave and domain-wall excitations - = sin 1(x)]— — sin 61(X) — 62(X)]
in strongly coupled films. K K

The effects of a small static applied magnetic field were
examined for antiparallel coupling. The walls on the separate
films separate until the pressure on the walls due to the field
balances the pressure due to the antiparallel coupling. Both 1 Ax |2
the acoustic- and the optic-mode oscillations about the equi?2(X)= 5 [#2(x+AXx)+ GZ(X_AX)]_(ZTAO)
librium position of the walls are then possible. The acoustic Mh ;
g]rﬁgﬁ flirellcéesa;f:r?gltlr:f.arly with field unlike the optic mode at _ Ts S 0,00 ]+ = SI 6,00 — 0,(X)]

The possibility of observing domain-wall resonances in
coupled film structures may allow the study of coupling
mechanisms across regions with dimensions on the order of a Numerical solution of these two equations is done by di-
domain-wall width. With experiments of this type in mind, viding a long interval in positiox into N segments each of
we have examined the response of the domain-wall resdength Ax. Fixed values for9; and 6, at the ends determine
nances to a small driving field. The optic wall resonancethe boundary conditions. In this problem, the boundary con-
should be visible by looking at in-plane fluctuations of theditions are §,=0, 6,=m in the first segment, and,=,
magnetization if the films are antiparallel coupled. In theg,=27 in the last segment. The values &f and 6, at each
case of parallel coupling, the optic-mode resonance will onlyother segment in the interval are then adjusted according to
be visible if the effective internal fields acting in one film Egs.(A3) and (A4) iteratively. The values in each segment
differ from those acting in the other film. Finally, we note relax toward a solution of EqA1) and (A2) relatively
that the theory presented in this paper applies to any layereguickly.
magnetic system capable of supporting hard domain walls as The solutions shown in Fig. 3 where obtained with 1000
long as the interlayer coupling is weak compared to intraiterations withN=800 andAx/A,=1/20. The angles in this
layer coupling. example converged within 10 radians andN was chosen so

that finite-size effects were negligible. The wall separation
ACKNOWLEDGMENTS and width were determined by calculating the position and

, , i , i slope of the wall profiles wheré,=#/2 and 6,=37/2.
We acknowledge stimulating discussions with A. Dantas
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the CNPg. R.L.S. also thanks the UFRN for support. APPENDIX B: EQUATIONS OF MOTION

sin26,(x)]

. (A3

Sin26,(x)]

. (A4)

The torque equations Eq&5) and (56), using the effec-
tive fields given in Eqs(49)—(52), are shown below. When
solutions of the form presented in Eq87)—(60) are used,

Consider the case of antiparallel couplifg=—1). The  equations of motion for spin-wave excitations on coupled
energy per area given in E@l) can be minimized by solving domain walls result:

APPENDIX A: NUMERICAL SOLUTION
FOR STATIC CONFIGURATION
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When solutions of the form given in Eq&7)—(70) are used to construct the torque equations, one obtains equations of motion

for domain-wall oscillations:

iwly 2
2 M[Kgﬁ+p~]a]
_M[KD+p‘]a] |(1)/'}/
0 Jp
Jp “Pw
I PM 0

Ja

M
iwly

2
~P iy [KotPdp]

2 b
Py [Kerit PJb]
iwly

*Permanent address: Dept. of Physics, Ohio State University, Co- Lett. 73, 336(1994.
8p. Kabos, C. E. Patton, M. O. Dima, D. B. Church, R. L. Stamps,

lumbus, OH 43210.

IM. Rihrig, R. Schiger, A. Hubert, R. Mosler, J. A. Wolf, S.

Demokritov, and P. Gmberg, Phys. Status Solidi
(1991.

J. Magn. Magn. Mater96, 125 (1991).
3J. C. Slonczewski, J. Appl. Phys5, 2536(1984).

4H. Braun and O. Brodbeck, Phys. Rev. Latf), 3335(1993.
5P. Grinberg, R. Schreiber, Y. Pang, M. B. Brodsky,

ers, Phys. Rev. Let67, 2442(1986.
6S. S. P. Parkin, Phys. Rev. Le67, 3598(1991).

A24 635

o W > >

<

Mh
(B2)

Mh

and R. E. Camley, J. Appl. Phyg5, 3553(1994).
9B. Heinrich, Z. Celinski, J. F. Cochran, A. S. Arrott, K. Myrtle,

) _ and S. T. Purcell, Phys. Rev. 87, 5077(1993.
L. J. Heyderman, H. Niedoba, H. O. Gupta, and I. B. Puchalskalog | Stamps, Phys. Rev. B9, 339 (1994.
LA, P. Malozemoff and J. C. Slonczewski, Applied Solid State
Scienceedited R. Wolfe(Academic, London, 1979

123, M. Winter, Phys. Revl24 452 (1961).

and H. Sow-135 \tiqdelhoek, J. Appl. PhyS7, 1276(1966.
143. C. Slonczewski and S. Middelhoek, Appl. Phys. Lét139

(1965.

7. Zhang, L. Zhou, P. E. Wigen, and K. Ounadjela, Phys. Rev.



