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Domain-wall resonance in exchange-coupled magnetic films

R. L. Stamps* and A. S. Carric¸o
Departamento de Fisica, Centro de Ciencias Exatas, Universidade Federal do Rio Grande do Norte, 59072-970 Natal/RN, B

P. E. Wigen
Department of Physics, Ohio State University, Columbus, Ohio 43210

~Received 27 November 1995; revised manuscript received 9 July 1996!

Exchange coupling between magnetic films in multilayer geometries can strongly influence magnetization
behavior and spin-wave energies by correlating the motion of spins in one film with the motion of spins in
adjacent films. In a similar fashion correlations can be expected between domain walls existing in neighboring
exchange coupled films. In this paper we show that themotion of domain walls in neighboring films can
depend strongly on interfilm exchange coupling. A static equilibrium configuration exists for the domain walls,
and small amplitude oscillations about equilibrium can result in domain-wall resonances that involve interfilm
exchange energies. Frequencies for optic- and acoustic-type domain-wall resonances are calculated and effects
of a small static applied magnetic field are examined, revealing distinctly different behaviors for the acoustic
and optic domain-wall resonances. The possibility for sensitive measurements of the local coupling by study-
ing domain-wall resonance is discussed. Resonances with parallel and antiparallel coupling are considered and
the response to a small in-plane driving field is calculated.@S0163-1829~97!00206-3#
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I. INTRODUCTION

Numerous investigations of domain-wall motion and re
nance have been made in various systems in order to s
phenomena such as magnetization reversal, domain stab
and material homogeneity. In a similar vein, studies of d
main configurations and domain walls in magnetic multila
ers have provided valuable insights into the effects and c
acter of interactions within and between magnetic laye1

An interesting feature of multilayers are correlations betwe
domain walls in separated films.2

To date, domain walls in multilayers have only been stu
ied in terms of their static properties. Exchange coupl
between domain walls on adjacent films can however lea
interesting dynamic effects. Consider two antipara
coupled thin ferromagnetic films. The coupling energy w
be smallest if walls in each film are positioned directly b
neath one another as shown in Fig. 1~a! for two Néel walls.
In this figure, the arrows represent the local orientation of
magnetization in each film. Small deviations from this co
figuration, depicted in Fig. 1~b!, increase the energy of th
structure and result in torques on the spins in the walls
each film. We will show in this paper how harmonic osc
lations are possible with a natural frequency that depend
the magnitude and sign of the interfilm coupling.

Breathing oscillations of domain-wall pairs in single th
films have been predicted for certain wall configurations3,4

In this paper, we consider a very different kind of restori
force responsible for wall oscillations—interlayer exchan
coupling between magnetic films. In this regard it is usefu
note that a continuing experimental problem is the quant
tive measurement of interlayer magnetic coupling in laye
magnetic film structures.5–7 The sign and average strength
the coupling are usually found through magnetization m
surements, ferromagnetic resonance, light scattering,
magnetoresistance measurements.8–10 Coupled domain-wall
550163-1829/97/55~10!/6473~12!/$10.00
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resonance involving interlayer coupling as a restoring fo
thus offers interesting possibilities for new studies of int
layer exchange coupling.

In this paper we investigate the effect of coupling on d
namic correlations between domain walls in separate fi
and examine possibilities of using domain-wall resonance
study interlayer coupling on length scales the order of
width of a domain wall. In order to place the results for wa
resonance in perspective, it is useful to review known res
for spin-wave excitations in uniformly magnetized coupl

FIG. 1. Schematic illustration of relative motion and orientati
of the magnetizations for Ne´el walls in two antiparallel coupled
films. In ~a! the equilibrium configuration is shown and in~b! walls
are displaced a small amount with a corresponding increase in
ergy due to the coupling. The geometry is also defined with thy
axis normal to the film planes, thex axis normal to the domain
walls, and a static applied field in thez direction.
6473 © 1997 The American Physical Society
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layers. For a sufficiently thin ferromagnetic film, only th
lowest energy spin-wave branch is easily observed in B
louin light scattering or ferromagnetic resonance meas
ments. The energy of this branch at zero wave vector v
ishes in the limit of zero applied field unless anisotropies
present. A uniaxial in-plane anisotropy produces a gap ty
cally on the order of a few hundred Oe for ferromagnets s
as Fe or Co. Two such films coupled by an effective m
netic coupling will support combinations of spin-wav
modes where the spins in each film precess either togeth
phase or out of phase. These modes are usually referred
acoustic and optic. The difference in frequency between
optic and acoustic modes is determined by the effective
change field coupling the films, in addition to any differenc
between effective internal fields acting in each film.

Similar behavior can be expected for domain-wall re
nance in coupled multilayers. Domain-wall resonance diff
from spin-wave resonance, however, in that the precessio
spins in the domain walls results in a translation of the
main wall along the film. Wall resonance frequencies
therefore determined by inertia involved in the translat
and the nature of restoring ‘‘forces’’ incurred by the relati
motion of the walls. In multilayers, interfilm coupling can a
as a restoring force on each domain wall. The motion of
walls can then be thought of as similar to two masses c
nected by a spring. Acoustic- and optic-type oscillations
possible with an effective mass for each wall determined
interfilm coupling and magnetostatic energies. The osci
tion frequencies follow directly as a ratio of the restori
force to the effective mass. Because magnetic anisotropy
termines the wall profile, and walls are able to move witho
changing shape, a result is that the frequencies for wall re
nance do not contain the anisotropy gap of spin-wave re
nance and are usually much smaller than spin-wave freq
cies.

Since the domain-wall resonance is due to restoring for
localized to the region of the domain wall, the frequencies
the resonances are determined by coupling across areas
dimensions determined by the domain-wall widths. The
lengths are on the order of 100 Å in high anisotropy fer
magnetic metals. Observation of domain-wall resonan
would therefore allow for investigations of coupling mech
nisms on a much smaller length scale than possible w
ferromagnetic resonance or Brillouin light scattering. The
measurement techniques provide values for the interfilm c
pling averaged over lengths determined by the wavelengt
the probing microwave or optical field, which puts the leng
scales at 1000 Å lengths and more.

A picture of domain-wall resonance is easily expressed
formulating the problem of domain-wall resonance in t
coupled film structure in terms of exchange, dipolar, a
magnetic anisotropy contributions to the domain-wall e
ergy. We do this in the next section where coupled equati
of motion for each wall are derived and solved for the
lowed frequencies. In Sec. III, we examine the effects o
small static applied magnetic field on the walls and w
resonance frequencies. Finally in Sec. IV, we describe
alternate formulation of the problem in order to provide
unified description of spin-wave and wall resonance exc
tions and derive response functions to an ac driving field
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II. DOMAIN-WALL RESONANCE FOR COUPLED FILMS

The geometry is shown in Fig. 1 with they direction
normal to the film planes. The films have identical magne
properties and are assumed to be very thin so that Ne´el-type
walls are preferred and the wall profile is assumed to dep
only onx. At equilibrium the spins lie in thexz plane and far
from the walls the magnetization of each film is colline
with the z axis. Anglesu and f are used to specify the
orientation of the magnetization as a function ofx in each
film. For the magnetizationm1 in film 1, the components are

m1x~x!5M sin„u1~x!…cos„f1~x!…, ~1!

m1y~x!5M sin„u1~x!…sin„f1~x!…, ~2!

m1z~x!5M cos„u1~x!…. ~3!

M is the magnitude of the magnetization vector and assum
to be the same in both films. A magnetizationm2(x) for the
second film is defined similarly usingu2(x) andf2(x).

The parameters entering into the wall energy are as
lows. A uniaxial anisotropyK with an easy axis along thez
direction is assumed for each film. The magnitude of
intrafilm exchange energy is specified with a constantA and
the interfilm coupling has strengthJ ~hereJ is averaged over
the film thickness and is in units energy per volume!. A
small magnetic fieldh is also applied in thez direction. The
energy per wall area of the two-film system in the continuu
limit is given by

E5E HAF S du1
dx D 21S du2

dx D 2G1K@sin2u11sin2u2#J dx
12pM2E @sin2u1sin

2f11sin2u2sin
2f2#dx

2pJE H sinu1 cosf1sinu2cosf2

1sinu1sinf1sinu2sinf21cosu1cosu2
J dx

2MhE @cosu11cosu2#dx. ~4!

Our notation is chosen so thatJ.0 always. We usep to
denote the type of coupling by definingp511 to mean par-
allel coupling andp521 to mean antiparallel coupling.

The first set of terms contain the intrafilm exchange a
uniaxial anisotropy that determine the shape and energ
the uncoupled domain walls in film. We note that magne
static energies due to the divergence of the magnetizatio
the film plane can be approximated by including a positio
dependent demagnetizing energy that varies as sin2 u. This
has the same functional form as the uniaxial anisotropy
is included in the definition ofK. The second set of terms i
Eq. ~4! are demagnetizing energies for out-of-plane fluctu
tions. The third and fourth integrals are the interfilm co
pling energy and the Zeeman energy in an applied fieldh.

The magnetostatic energies are assumed small in c
parison to an uncoupled domain-wall energy per areaso :

so54@AK#1/2. ~5!
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An approximate solution for the profiles specified byu1,
u2, f1, andf2 are found by using a variational method i
volving trial solutions for the coupled equations. The tr
solutions describe independent walls in uncoupled films.
parallel coupling these are given by

cosu15tanh@~x!/D# and f150, ~6!

cosu25tanh@~x!/D# and f250, ~7!

and for antiparallel coupling, by

cosu15tanh@~x!/D# and f150, ~8!

cosu252tanh@~x!/D# and f25p. ~9!

The wall widthD is used as the variational parameter. T
energy of the static coupled wall structure is then found
substituting the appropriate solutions from Eqs.~6!–~9!, as
determined by the sign ofp, into Eq. ~4! and minimizing
with respect to the wall widthD. This procedure assume
that the wall profile in the coupled film system is describ
by functions of the form used in Eqs.~6!–~9!. This is a good
approximation as long as the interfilm coupling and mag
tostatic interactions introduce only small corrections to
profile of the walls in the individual films.11 In the special
case of no applied field, for example, the interfilm exchan
coupling does not deform the wall profiles at all in the sta
configuration. In this case, the two walls are simply cente
over one another. The profiles are then given by Eqs.~6!–~9!
with D5Do where

Do5@A/K#1/2. ~10!

Wall motion involves translations ofu1 andu2 along thex
direction. Deviations of the walls from their equilibrium po
sitions perturb the wall profiles and change the wall width
that it is no longer given by Eq.~10!. If we know u1 andu2
at equilibrium, the effect of deviationsx1 andx2 away from
equilibrium can be written to first order inx1 andx2 as

u15u1o1x1u1x , ~11!

u25u2o1x2u2x . ~12!

The profile at equilibrium isuio andu ix5du i /dx is evaluated
in the equilibrium configuration of the wall pair.

Fluctuations out of the film plane are given by deviatio
of f1 andf2 from their equilibrium values. With the fluc
tuations denoted byC1 andC2, then in the case of paralle
coupling ~where the equilibrium values off1 and f2 are
zero! we have

f15C1 and f25C2 . ~13!

For antiparallel coupling the equilibrium values off1 andf2
are zero andp, so we use instead

f15C1 and f25p2C2 . ~14!

The approximations given by Eqs.~11!–~14! are substituted
into the energy of Eq.~4! and the cos and sin terms expand
to second order in the variablesx1, x2, C1, andC2. The
l
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-
e

e
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o

resulting integrals overx are then evaluated using the tri
wall profile solutions and treated as functions of the var
tional parameterD.

We consider first the case of zero applied fieldh. The
integrals are straightforward and so only the results are
sented. The energy per areas of the wall pair, quadratic in
the fluctuation variablesx andC, can be put in the form

s54@A/D1KD#14pM2D@~C1!
21~C2!

2#

1JD$2C1C22p@~C1!
21~C2!

2#%1J~x12x2!
2/D.

~15!

This energy is measured with respect to the total interfi
coupling energy for uniformly magnetized films,Jtot5J*dx.

The last term of Eq.~15! shows how wall separation
involve interlayer exchange coupling. This means that
interlayer exchange restoring force can exist so that dom
wall resonance is possible without considering any other
ditional restoring forces. This is in contrast to domain-w
resonance in single films which requires some sort of ad
tional restoring force due, for example, to pinning by defec
Note however that an interlayer exchange coupling resto
force only makes sense when the walls overlap such
ux12x2u,D. For the remainder of the paper we consid
only cases where the amplitude of the wall oscillation
small so that this condition is fulfilled.

In order to calculate the allowed resonance frequencie
is useful to include terms in the energy that describe poss
additional restoring forces. Pinning effects due, for examp
to inhomogeneities in the films can result in effective rest
ing forces. We treat these effects in an approxim
manner11,12 by including terms in the wall energy propo
tional to x2. This approximation is only useful for displace
ments from a defect smaller than the wall width since
quadratic form is not an accurate representation of the
ning potential far from a point defect. This is acceptab
because our entire discussion is valid only for small am
tude oscillations of the walls.

Magnetostatic energies also enter the problem as a co
bution to the effective coupling between the two walls.13,14

The dipole interaction is long ranged and an accurate
scription of dipolar effects between coupled film doma
walls is quite involved. Qualitatively, antiparallel alignme
of the magnetization is preferred by stray magnetic fie
between the films due the divergence of the magnetiza
within each film. This acts as an additional attractive for
when the walls overlap. Parallel alignment, in contrast,
repulsive when the walls overlap. In order to represent th
effects, we restrict our calculations to structures where m
netostatic energies are weak compared to the interlayer
pling and consider only cases where the walls overlap.
cause the magnetostatic interaction between the walls
either add or subtract from the magnitude of the effect
coupling correlating the wall motion, we represent the av
age magnetostatic contribution by an additional small q
dratic dependence on wall separation (x12x2)

2.
Based on the above considerations, approximate effec

magnetostatic interactions and pinning potentials are
pressed by postulating an energyED of the form
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ED5~KD /D!@~x1!
21~x2!

2#2p~KD8 /D!~x12x2!
2,

~16!

whereKD controls the pinning potential~assumed for sim-
plicity to be the same in each film! andKD8 represents the
strength of the magnetostatic interaction between dom
wall pair. The signp on KD8 describes the relative orienta
tion of induced poles on the walls in the two films.
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The energy of Eq.~15! together with Eq.~16! is next
minimized with respect to the variational wall width. Firs
we set

d~s1ED!/dD50 ~17!

in order to determineD. The result is
D5$4A1~J2pKD8!~x12x2!
21KD~x1

21x2
2!%/$4K14pM2@C1

21C2
2#1J~C12pC2!

2%1/2. ~18!
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Equation~18! is then substituted into the wall energy p
areas1ED and terms to second order in the fluctuationsx
andC are kept. The resulting expression for the energy

s52so14pM2Do@~C1!
21~C2!

2#1JD0~C12pC2!
2

1~J2pKD8!~x12x2!
2/Do1~KD /D0!@~x1!

21~x2!
2#.

~19!

For the small displacements assumed here, the walls m
rigidly so that the wall widths are simply given byD0. Also
note that in the absence of fluctuations, the energy is sim
that of two unperturbed walls.

The equations of motion can now be formed using
methods of Ref. 11 from the wall energy per area, Eq.~4!,
and appropriate wall profiles, Eqs.~6! and~7! or ~8! and~9!.
We note that some care must be taken in determining
proper signs using the solutions in the different films. Withs
given in Eq.~19!, the results are

~2M /g!dxi /dt5ds/dC i , ~20!

~2M /g!dC i /dt52ds/dxi . ~21!

g is the gyromagnetic ratio and the subscript ‘‘i ’’ identifies
the film ~1 or 2!. In order to solve these equations, tim
varying solutions of the form exp~2ivt! are assumed forx1 ,
x2 , C1, andC2. Substitution into Eqs.~20! and ~21! results
in a set of four linear coupled equations. Four allowed re
nance frequenciesv can then be determined.

For parallel coupling, withp511, the frequencies are

~va /g!254pMHK ~22!

and

~vo /g!25~He14pM !~He1HK2HK8!. ~23!

The effective fields appearing in Eqs.~22! and ~23! are de-
fined as follows:

He52J/M , ~24!

HK52KD /M , ~25!

HK852KD8 /M . ~26!

The subscriptsa and o refer to acoustic and optic and de
scribe the relative phase between translations of the
walls. Note that the interfilm magnetostatic coupling rep
ve

ly

e

e

-

o
-

sented byKD8 reduces the optic mode frequency, as can
expected since in the parallel coupling configuration mag
tostatic energies acting between the films are presume
decrease the energy in Eq.~16!.

The frequencies for parallel coupling are shown in Fig
as functions ofHe for different values ofHK8. The results
are given in unitless frequency and field variables defined
v/g4pM andHe/4pM . In all casesHK/4pM50.01 which
allows for a nonzero acoustic mode. Note that the acou
mode is independent ofHe .

The main effect of magnetostatic interaction between
walls is to open a gap between the frequencies of the ac
tic and optic resonances forHe50. Also note that competi-
tion betweenHK8 and the parallelHe coupling can be seen in
Fig. 2. The magnetostatic repulsion lowers the frequency
the optic mode but leaves the acoustic mode unchange
He1HK2HK8,0, magnetostatic energies overcome the
tractive interlayer coupling and the domain walls repel ea
other. Thus we observe that the frequencies are nonzero
the structure is stable forHK8/4pM less than 0.01. The be
havior of the domain-wall resonance in antiparallel coup
films is similar but differs in that the gap introduced byHK8
increases the frequency of the optic mode relative to
acoustic.

It is interesting to interpret the optic- and acoustic-mo

FIG. 2. Frequencies in zero applied field as a function of int
film coupling strength. Frequencies for parallel coupling are sho
for different values ofHK8, which approximately represents a ma
netostatic restoring force.HK/4pM50.01 in all cases. The fre
quency of the optic mode~solid line! is strongly dependent on th
interlayer coupling.
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55 6477DOMAIN-WALL RESONANCE IN EXCHANGE-COUPLED . . .
frequencies in terms of the harmonic oscillator analogy. T
resonance frequency can be interpreted as a ratio betwe
restoring force and an effective mass. The effective mas
Eqs. ~22! and ~23! is the inverse of 4pM for the acoustic
mode and the inverse ofHe14pM for the optic mode. The
restoring forces areHK andHK2HK81He for the acoustic
and optic modes, respectively. The acoustic-mode freque
is identical to the resonance mode frequency of a single
coupled wall given by [4pMHK]

1/2, with an effective mass
that depends only onM and a restoring force that depen
only on restoring forces from pinning centers. The op
mode involves relative displacements of the walls with
spect to one another, so that the restoring force includes
tributions to the interlayer magnetic couplingHe in addition
to effective forces due toKD andKD8. Note that when the
films are uncoupled (HK85He50) all frequencies reduce t
the uncoupled single wall resonance frequency.

Two different modes also exist for antiparallel couplin
with p521. These have frequencies:

~va /g!25~He14pM !HK ~27!

and

~vo /g!254pM ~He1HK1HK8!. ~28!

The acoustic-mode vanishes for both the parallel and anti
allel coupling if the only restoring force is interfilm coupling
When the interfilm coupling is zero and the films are u
coupled, both frequencies reduce to the single uncoup
wall resonance frequency. We also note that the effec
masses are different for the two modes, as in the cas
parallel coupling. In the present case, the acoustic-mode
fective mass contains contributions from interlayer magn
coupling whereas the optic-mode effective mass depe
only onM .

III. DOMAIN-WALL RESONANCE IN AN APPLIED
STATIC FIELD

We now consider domain-wall resonance for two antip
allel interlayer exchange coupled films in the presence o
small static applied field,h5hs . For simplicity we neglect
other energies represented byKD or KD8. The static applied
field creates pressure on the walls and causes them to m
apart. This is countered by antiparallel coupling that inste
tries to bring the walls together. A static equilibrium exis
with the walls positioned atd1 andd2 when the correspond
ing torques balance. The equilibrium positionsd1 andd2 are
found by minimizing the wall energy with respect to th
position variablesx1, x2, C1, andC2.

The frequencies of the wall resonance modes are
changed when this is done using the energy per area of
~4! expanded to second order in thex andC variables. Field
effects in the energies only appear for higher-order corr
tions to u and f in the energy. To see this, consider t
expansion of the last term in Eq.~4! using Eqs.~11! and~12!
with antiparallel coupling:
e
n a
in

cy
n-

-
n-

r-

-
d
e
of
f-
ic
ds

-
a

ve
d

n-
q.

c-

MhsE @cosu11cosu2#dx'2MhsE @~x12x2!uxsinuo

1~1/2!~x1
22x2

2!ux
2cosuo2~1/6!

3~x1
32x2

3!ux
3sinuo#dx. ~29!

The x2 terms vanish when the integrals in Eq.~29! are
evaluated. The term linear inx1 andx2 determines the equi
librium position of the walls but does not enter the resona
frequencies. Only thex3 terms enter into the frequencies b
disturbing the wall profile and changing the wall widt
Evaluation of integrals in Eq.~29! give the result

MhsE @cosu11cosu2#dx'22hs@~x12x2!

2~x1
32x2

3!/~3D!2#. ~30!

Only the third-order term involves the wall widthD. This, as
will be shown below, leads to a field dependence of the w
width and consequently, the resonance frequencies.

The equilibrium separation between the walls is ag
found by settingds/dx1 andds/dx2 to zero. When the in-
terfilm coupling is antiparallel, the equilibriumx values are
x152x25d with

d/D5~3J/Mhs!$16@12~1/3!~Mhs /J!2#1/2%. ~31!

Our discussion assumes thatd is less thanD, and so we are
only interested in the behavior for smallh. The2 root gives
the proper behavior ofd for small hs whereas the1 root
gives unphysical answers for vanishinghs . We also note that
the equilibrium values forC1 and C2, determined by
ds/dC1,250, are still zero even to third order in the expa
sion.

The separation is nearly linear inhs for a wide range of
fieldshs . For J much larger thanMhs ,

d/D'Mhs/2J. ~32!

This relationship is exactly what one finds when solving
the equilibrium position of the walls keeping only terms
second order in the energy.

We next transform the position variables ins according
to x1→x11d and x2→x22d. Minimizing the result with
respect toD as before, we arrive at an expression for the w
energy

s52sh1Dh$~J14pM2!@~C1!
21~C2!

2#12JC1C2%

1~1/Dh!$~J1M2hs
2/3J!@~x1!

21~x2!
2#22Jx1x2%,

~33!

where

sh52@so
224~A/J!~Mhs!

2#1/2, ~34!

Dh5Do /@12~Mhs!
2/~4JK!#1/2. ~35!

The field dependence of the wall width and energy
clearly shown in Eqs.~34! and ~35! and are due entirely to
the third-order term appearing in Eq.~29!. Competition be-
tween the applied field and the antiparallel interfilm coupli
causes a distortion of the wall, leading to the field dep
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6478 55R. L. STAMPS, A. S. CARRIC¸O, AND P. E. WIGEN
dence of the wall width. As long as the walls overlap, t
distortion of the walls increases as the separation increa

It is interesting to examine the severity of the approxim
tions made in deriving these equations. In Appendix A
description is given of a numerical solution for the sta
configuration of two antiparallel coupled walls in an appli
field. The results are shown in Fig. 3 along with the analy
cal approximation of Eqs.~31! and ~35!. The solid lines are
the analytic results and the dots are the numerical result
Fig. 3~a! the separationd/Do is shown as a function o
Mhs/J. The wall width Dh/Do is shown as a function o
Mhs/J in Fig. 3~b!. In both cases,J/K50.5 andA/K5400.
The agreement is very good for smallhs , and only deterio-
rates for largerhs .

The equations of motion are next constructed from
energy in Eq.~33! according to Eqs.~20! and~21!. Solution
of these give the following acoustic- and optic-mode f
quencies:

~va /g!25~Mhs
2/3J!~He14pM ! ~36!

and

~vo /g!254pM ~He1Mhs
2/3J!. ~37!

We again emphasize that these results are valid in the
parallel configuration and only for small wall separatio
less than a wall width. The striking feature is the existence
the acoustic mode for a small applied field. Reference to
~27! shows that in the absence of an external applied fi
the acoustic mode has zero frequency. This is becaus
takes no energy for the walls to translate equal amount
the same direction so the acoustic-mode motion does
incur a restoring force. In the antiparallel configuration w
a nonzero applied field, acoustic-mode motion always co

FIG. 3. Field dependence of~a! wall separation and~b! wall
width. The solid lines are calculated using the analytical results
Eqs.~31! and ~35! and the dots are from the numerical calculati
described in Appendix A. Field dependence of the wall width ent
through higher-order terms in the wall energy expansion.
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Zeeman energy for translation of one of the walls. Trans
tion of the other wall in the acoustic mode gains Zeem
energy. This means that the two walls experience uneq
forces with the result of a nonzero frequency for the acou
mode, thus giving rise to the nonzero frequency of Eq.~36!.

The optic-mode frequency is increased by the appl
field, as can be seen by comparing Eqs.~28! and ~37!. The
quadratic dependence on field is interesting because it m
that field effects on the optic mode are only visible for lar
hs . This is illustrated in Fig. 4 where wall resonance fr
quencies in the antiparallel configuration are shown a
function of fieldhs . The dotted lines are the acoustic mode
va , and the solid lines are optic modes,vo . The frequencies
are given in dimensionless units as before with the field v
ablehs/4pM . Coupling parametersHe/4pM between 0 and
0.1 are used. Note the linear dependence onhs for the
acoustic-mode frequency whereas for small fields the op
mode frequency is insensitive tohs . Also note that the sen
sitivity to changes inhs becomes less as the interlayer co
pling He is made stronger.

IV. RELATION TO SPIN WAVES
AND DYNAMIC RESPONSE

The theory presented in the previous sections was
equate for describing domain-wall profiles and motions
exchange-coupled films. In this section we construct a the
based on a discrete spin Hamiltonian capable of describ
spin waves as well as domain-wall dynamics. This will allo
a comparison of spin-wave frequencies and domain-w
resonances obtained using the same theory, and will
provide a general framework for constructing dynamic s
ceptibilities. Being a different approach, the theory of t
present section can also be used as a check on the pre
results.

We will see that a comparison of the frequencies
coupled film spin waves and domain-wall resonances p
vides a surprising result. As noted in the Introductio
anisotropies usually cause spin-wave frequencies to be la

f

s

FIG. 4. Frequencies for antiparallel coupling as a function
applied field. The static applied fieldhs pushes the walls apart an
the frequencies represent small oscillations about the equilibr
position. Note that the acoustic modes~dotted lines! increase lin-
early with field unlike the optic modes at small field strengths.



w
pt
io
u
g-

i

-
ne
b
e

e

as
w
e

re

x-
con-
e
lls
spin
ne
nner
total
n-

ts
in

is

55 6479DOMAIN-WALL RESONANCE IN EXCHANGE-COUPLED . . .
than domain-wall resonance frequencies. In this section
show how interfilm exchange coupling can increase the o
domain-wall resonance frequency into the spin-wave reg
The theory of this section will also be applied in the calc
lation of susceptibilities for small applied time varying ma
netic fields.

Our approach is an extension of that used by Winter
describing wall waves in single Bloch walls.12 Because the
formulation will begin with discrete variables, slightly differ
ent notations and geometry are used. To begin, the mag
moments are not described by a continuous variable as
fore, but instead are assigned positions on a thr
dimensional periodic lattice with the indexi . Spins in the top
film 1 have amplitudeai and spins in the bottom film 2 hav
amplitudebi .

The saturation magnetization in both films isM and the
anisotropy and exchange constants in each film are also
sumed identical. The anisotropyK is uniaxial as before with
an easy axis in thez direction. The geometry is the same
in Fig. 1 and the parameters and notation are as follo
Unlike the previous treatment, here a small time-depend
magnetic field h is applied along thez direction. The
strength of the intrafilm exchange coupling between nea
rs
p
so

s
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s
e
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neighbors is represented by the stiffness constantD. The two
films are allowed to have different thicknesses;ta for the top
film and tb for the bottom film.

Film thickness effects the strength of the interfilm e
change coupling experienced by the spins and can also
trol the strength of anisotropies in thin films. Out-of-plan
anisotropies do not affect the profile of the in-plane wa
assumed here, but they do influence the energies of
wave and wall resonance excitations. The out-of-pla
anisotropies enter the energy equations in the same ma
as dipolar demagnetizing energies. We represent the
out-of-plane anisotropy with an effective perpendicular a
isotropy,Keff , defined for each film as

Keff
a 52pM21Kp /ta ~38!

and

Keff
b 52pM21Kp /tb , ~39!

whereKp is an out-of-plane uniaxial anisotropy with uni
energy per area. Anisotropies of this form often appear
thin films as a surface or interface anisotropy.

The energy per wall area for the system in this notation
E52
D

M2 (
^ i , j &

@ taai•aj1tbbi•bj #1
K

M2 (
i

H taF ~ai ,x!
21S 11

Keff
a

K D ~ai ,y!
2G1tbF ~bi ,x!

21S 11
Keff
b

K D ~bi ,y!
2G J

2h(
i

@ taai ,z1tbb1,z#2p
J

M2 (
i
ai•bi . ~40!
o-

m.
n-
the
di-

ua-

the

s in
The sums over̂ i , j & indicate sums over nearest neighbo
The first two sets of terms contain the exchange, anisotro
and demagnetizing energies. Note that the uniaxial ani
ropyK is written here in terms of thex andy components of
the magnetization rather than thez component. This is more
convenient for the present representation using variable
Cartesian coordinates. The third term represents the inte
tion energy with a driving fieldh. The last term represent
the interfilm coupling which has the form of an effectiv
Heisenberg interfilm exchange interaction. Note that the
terfilm coupling has not been averaged over the film as
fore and has units energy per area. The parameter ‘‘p’’ is
used to specify parallel~p51! or antiparallel~p521! cou-
pling as before. Note also that the films are assumed to
very thin such that the magnetization is uniform across
film thickness. This is a reasonable approximation for stro
ferromagnets such as Fe and Co for film thicknesses
than 50 Å.

The orientation of a magnetic moment at sitei is specified
by an angleai in the top film and the anglebi in the bottom
film. Both angles are referenced from thez axis as shown in
Fig. 5. The equilibrium positions of the magnetic mome
are always assumed to be in thexz plane because of demag
netizing fields in a thin-film geometry. The energy per ar
@Eq. ~40!# is then written with the magnetic moments at ea
positioni rotated into a local coordinate system. The localz8
.
y,
t-

in
c-

-
e-

be
e
g
ss

s

a

axis defines the equilibrium orientation of the magnetic m
ment at sitei . For example,ai is rotated intoai8 via

ai ,x8 5ai ,x cosa i2ai ,z sin a i , ~41!

ai ,y8 5ai ,y , ~42!

ai ,z8 5ai ,x sin a i1ai ,z sin a i . ~43!

In our convention, primed variables are in the local syste
Before continuing, we also include a description of pi

ning effects as in previous sections. This is done in
present notation by including into the total energy an ad
tional uniaxial anisotropy energy

Eu5KD~ax8
21bx8

2!/M2. ~44!

This can be shown to result in a restoring force in the eq
tions of motion of the same form used in Eq.~16!.12 Magne-
tostatic effects, discussed in Sec. II, are ignored in
present calculation.

The next step in the calculation is to expand thez com-
ponents of the moments in terms of transverse fluctuation
the localx andy directions:

ai ,z8 'M2@ai ,x8
21ai ,y82#/~2M !, ~45!
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bi ,z8 'M2@bi ,x8
21bi ,y82#/~2M !. ~46!

The resulting energy describes second-order fluctuat
in the spin variables that are discrete functions of positi
Effective fields at a given site are next determined us
H i
a52¹a

i8
(E1Eu) andH i

b52¹b
i8
(E1Eu). We are prima-

rily concerned with long wavelength excitations and mate
als with wide domain walls so thata8, b8, a, andb vary little
between neighboring lattice sites. We therefore transform
effective fields from a discrete form to a continuum lim
with ai8→a8(x) andbi8→b8(x) in the usual manner. We not
that in order to convert the discrete variablesai and bi to
continuous functionsa(x) and b(x) we expand quantities
such asa~x1d!, whered is a nearest-neighbor distance, in
Taylor’s expansion under the assumption that there i
domain-wall structure in the films. In particular, we use t
relations

da/dx5sina/D0 , ~47!

db/dx5sinb/D0 . ~48!

In the followingD is contained in the exchange parameterA
which includes lattice constants and coordination numbe

The final effective fieldsHa andHb are

Hx
a5F 2AM2 ¹22

2K

M2 ~cos2a2sin2a!2
2KD

M2 1p
Ja
M2Gax8

2
Ja
M2 bx81h sina, ~49!

Hy
a5F 2AM2 ¹22

2K

M2 ~cos2a2sin2a!2
2Keff

a

M2 1p
Ja
M2Gay8

2
Ja
M2 by8 , ~50!

Hx
b5F 2AM2 ¹22

2K

M2 ~cos2b2sin2b!2
2KD

M2 1p
Jb
M2Gbx8

2
Jb
M2 ax81h sinb, ~51!

Hy
a5F 2AM2 ¹22

2K

M2 ~cos2b2sin2b!2
2Keff

b

M2 1p
Jb
M2Gby8

2
Jb
M2 ay8 , ~52!

The different film thicknesses scale the interfilm exchan
appearing in each film and is represented by the quantit

Ja5J/ta , ~53!

Jb5J/tb , ~54!

in the expressions for the effective fields. We note that th
expressions also agree with those of Winter in the cas
zero interfilm coupling.12

Equations of motion are found with the usual torque eq
tions
ns
.
g

-

e

a

.

e
s

e
of

-

da8
dt

5ga83Ha, ~55!

db8

dt
5gb83Hb. ~56!

The equations of motion given in Eq.~55! and ~56! to-
gether with the effective fields given in Eqs.~49!–~52! are
capable of describing both spin-wave and domain-wall
namics in the coupled system. We consider zero wave-ve
excitations for both spin-wave excitations and domain-w
translations. In each case we first calculate the frequen
for parallel and antiparallel coupling and then discuss
results in terms of response to the driving fieldh. The thick-
nessesta and tb are set equal in the following discussio
unless otherwise specified.

Zero wave-vector spin waves

In order to compare with results for spin waves in un
formly magnetized films, we setKD to zero. A time depen-
dence fora8, b8, andh of the form exp~2ivt! is assumed.
Zero wave-vector spin-wave resonance solutions to
torque equations are

ax85Axtanh~x/D!exp~2 ivt !, ~57!

ay85Aytanh~x/D!exp~2 ivt !, ~58!

bx85Bxtanh~x/D!exp~2 ivt !, ~59!

by85Bytanh~x/D!exp~2 ivt !. ~60!

Substitution of these solutions into the equations of mot
@Eqs. ~55! and ~56!# give a set of four coupled equation
These equations are shown in Appendix B, Eqs.~B1!.

We setp511 for parallel coupling. The allowed frequen
cies are found by setting the determinate of the correspo

FIG. 5. In the discrete spin formulation, the coordinates
rotated locally in each film about they axis in order to place the
primedx8 andz8 axes along the equilibrium directions of the loc
magnetizations.
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ing homogeneous~with h50! set of equations to zero. De
fining an effective exchange fieldHe as in Eq. ~24!, and
effective anisotropy fieldsHa andHeff with

Ha52K/M , ~61!

Heff52Keff /M , ~62!

the allowed frequencies are

vo
25g2~Ha1He!~Ha1He1Heff! ~63!

and

va
25g2Ha~Ha1Heff!. ~64!

The subscriptso anda refer to ‘‘optic’’ and ‘‘acoustic’’ re-
spectively, as before.

For antiparallel coupling,p521. The frequencies are

vo
25g2~Ha1He!~Ha1Heff!, ~65!

va
25g2Ha~Ha1He1Heff!. ~66!

The results of Eqs.~63!–~66! agree with those of previou
spin-wave and ferromagnetic resonance calculations
coupled films.8–10

The main points we now wish to emphasize are the
ference in the optic-mode frequencies between parallel
antiparallel coupled cases and the existence of an en
‘‘gap’’ which increases the frequencies of the excitation
The difference in frequencies between parallel and antipa
lel is due to demagnetizing fields and the gap is due to
uniaxial in-plane anisotropy.

Domain-wall resonance

Solutions of the form

ax85Axsinaexp~2 ivt !, ~67!

ay85Aysinaexp~2 ivt !, ~68!

bx85Bxsinbexp~2 ivt !, ~69!

by85Bysinbexp~2 ivt !, ~70!

correspond to translation of the domain wall in thex direc-
tion. The corresponding equations of motion are shown
Appendix B in Eqs.~B2!.

We allow KD to be nonzero and define a correspond
field HK as before. The frequencies found by setting
determinate of homogeneous~h50! set of equations to zero
agree exactly with theHK850 form of Eqs.~22! and~23!, for
p511 and with Eqs.~27! and ~28! for p521. Comparison
of the spin-wave and domain-wall resonance frequen
show that the wall resonance frequencies are lower bec
of the absence of anisotropy terms in the frequencies.

Spin-wave resonance and wall resonance frequencies
shown in Figs. 6~a! and 6~b! as functions of exchange cou
pling. In both cases a small additional restoring forceKD is
included~KD/2pM250.05! with frequencies for antiparalle
coupling shown in~a! and frequencies for parallel couplin
shown in ~b!. The other parameters are:ta5tb ,
K/2pM251.5.
n

-
nd
gy
.
l-
e

n

e

s
se

re

The difference in spin-wave resonance and wall re
nance frequencies for both the parallel and antiparallel ca
is due mostly to the in-plane uniaxial anisotropyK with a
small contribution fromKD . The acoustic modes are les
sensitive to the interfilm exchange than the optic modes
antiparallel coupling and independent of the exchange
parallel coupling. Interestingly, a large interfilm exchan
can cause the optic wall resonance mode to have a frequ
greater than the acoustic spin-wave branch. This occurs f
smaller value of the exchange in the parallel case than in
antiparallel case.

As a final comment, we note that it is a simple matter
generalize the equations of motion in Eq.~B2! to describe
domain-wall resonance in multilayers consisting of seve
coupled films. A band of wall resonances would appe
analogous to collective excitations in multilayers.

Dynamic response

As in ferromagnetic resonance on coupled films, stand
techniques for observing domain-wall resonances in mu

FIG. 6. Frequencies of the spin-wave and domain-wall re
nances for the~a! antiparallel coupled and~b! parallel coupled con-
figurations as functions of coupling strengthHe . The solid lines are
acoustic~a! and optic~o! domain-wall resonances and the dott
lines are the acoustic and optic spin-wave resonances. The film
identical with anisotropiesK/2pM251.5 andKp50. A restoring
force for the wall resonances is included withKD/2pM250.05.
Note that the optic resonance mode has a frequency greater tha
acoustic spin-wave mode for largeHe .
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layers require a net fluctuating magnetic moment for
coupled film structure. This is the situation for the optic w
resonance mode in antiparallel coupled films since out
phase translations lead to a change in the magnetizatio
thez direction averaged over both films. This is not the ca
however for parallel coupled films since optic wall resonan
translations lead to zero average change in the total ma
tization.

This difficulty can be overcome by allowingKeff to be
different for each film. This can be accomplished using d
ferent film thicknesses, i.e.,taÞtb , as done by Zhanget al.,

7

in measurements of the acoustic and optic spin-wave r
nances in multilayers with thickness dependent anisotrop
In order to gain a feeling for how the intensities of the w
resonance modes depend on unequal anisotropies in the
ence of small rf driving fields, we calculate the response
the coupled wall structure to the time-dependent driving fi
h. The results are presented as averaged susceptibilitiexzz
andxyz that measure fluctuations in thez andy directions in
the film geometry due to a driving field in thez direction.

The susceptibilities are defined as averages over a film
lengthL:

xzz5
1

hL E ~Az1Bz!dx, ~71!

xyz5
1

hL E ~Ay1By!dx. ~72!

The susceptibilities are found by solving the equations
motion@Eq. ~B2!# for the amplitudesA andB. For simplicity
we present results withKD50. The general expressions a
not particularly illuminating so it is useful instead to exami
the susceptibilities for equal film thicknesses but with diffe
entKeff . For antiparallel coupling the susceptibilities are

xzz5
pD

L

M ~Heff
a 1Heff

b !

He~Heff
a 1Heff

b !/22~v/g!2
, ~73!

xyz50. ~74!

In this case thez susceptibility still has a pole at the wa
resonances whenKeff

a 5Keff
b . Note that the total response d

fined bya1b is only in thez direction.
For parallel coupling we find

xzz5
pD

L

2M ~Heff
a 1Heff

b !

~v/g!2@He
21He~Heff

a 1Heff
b !/22~v/g!2#

3FHe
21

2HeHeff
a Heff

b

Heff
a 1Heff

b 2~v/g!2G , ~75!

xyz5
2iM

v/g
. ~76!
e
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Here again the resonance is only visible for the in-plane fl
tuations of the magnetization. WhenKeff

a 5Keff
b , then

xzz5
22pDMHeff

L~v/g!2
, ~77!

and there is no longer a pole at the wall resonance in ei
component. This can be understood by considering the
plitude of precession for the magnetic moments in each fi
When the effective fields acting within each film are t
same, the precession amplitudes are the same. The walls
move equal amounts in the same direction, which takes
energy ifKD50. There is then also no fluctuation in the n
magnetization. When the effective internal fields are diff
ent for the two films, the two precession amplitudes are d
ferent and fluctuations in the net magnetization are possi

The behavior ofxzz for parallel coupling is illustrated in
Fig. 7 for taÞtb . Here the susceptibility is found by solvin
the equations of motion for the sum of the in-plane fluctu
tionsAz1Bz . A small imaginary part was added to the fr
quency to give a width to the peaks in simulation of dam
ing. We note that this should not be understood as prop
representing actual damping processes.

The parameters for Fig. 7 areKp/2pM250.5,
Ja/2pM250.1, and ta held constant. The imaginary pa
xzz9 of the responsexzz is shown for three values ofr5tb/ta
indicated on the plot with the dotted line calculated forr51.
As expected, the response to the optic wall resonance
becomes larger asr is increased. However the frequency
which the peak occurs decreases with increasingr . This de-
crease is due to the reduction of the internal fields astb
becomes larger, which weakens the interfilm coupling a
anisotropies. Note also the large values ofxzz9 for small driv-
ing field frequencies due to the second-order pole atv50.

V. CONCLUSIONS

We have examined spin-wave and domain-wall resona
in two thin ferromagnetic films coupled either parallel

FIG. 7. Imaginary partxx9 of the in-plane responsexx as a func-
tion of driving field frequency for the parallel coupling configur
tion. The ratior controls the magnitude of the internal fields actin
in film b relative to those in filma and the response is shown fo
four different r . The dotted line is the response forr51. The pa-
rameters areJ/2pM250.1, K/2pM251.5, Kp/2pM250.5, and
KD/2pM250. The response becomes larger with increasingr while
the peak response shifts lower in frequency as explained in the
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antiparallel with an effective Heisenberg exchange inter
tion. The coupling acts as a restoring force correlating
wall motion in the separate films and only one wall res
nance appears in the absence of other restoring forces.
resonance corresponds to an optic-type oscillation involv
opposing motion of the walls. An acoustic-type oscillati
appears when other restoring forces within the individ
films exist.

For small interfilm coupling, the frequencies of the wa
resonances lie below the frequencies for spin-wave re
nance in the domain walls by an amount dependent on
in-plane anisotropy of the films. A feeling for the frequenci
can be obtained by estimating the resonances for cou
ferromagnetic films such as Fe. With 4pM521 kG,K5106

erg/cm3, Kp50, andHex50.1 kG and in the absence of oth
restoring forces, the spin-wave resonance fields are 5.2
5.4 kG for the acoustic and optic modes, respectively, in
antiparallel configuration. The optic wall resonance mode
at 1.45 kG. Domain-wall resonances in coupled transiti
metal magnetic structures should then occur in a range be
5 GHz for weak to moderate coupling.

We also find that for larger interfilm coupling it is pos
sible for the optic wall resonance to have a frequency co
parable or even larger than the acoustic spin-wave resona
This is interesting because it offers the possibility for lar
interactions between spin-wave and domain-wall excitati
in strongly coupled films.

The effects of a small static applied magnetic field we
examined for antiparallel coupling. The walls on the separ
films separate until the pressure on the walls due to the fi
balances the pressure due to the antiparallel coupling. B
the acoustic- and the optic-mode oscillations about the e
librium position of the walls are then possible. The acous
mode increases linearly with field unlike the optic mode
small field strengths.

The possibility of observing domain-wall resonances
coupled film structures may allow the study of coupli
mechanisms across regions with dimensions on the order
domain-wall width. With experiments of this type in min
we have examined the response of the domain-wall re
nances to a small driving field. The optic wall resonan
should be visible by looking at in-plane fluctuations of t
magnetization if the films are antiparallel coupled. In t
case of parallel coupling, the optic-mode resonance will o
be visible if the effective internal fields acting in one fil
differ from those acting in the other film. Finally, we no
that the theory presented in this paper applies to any lay
magnetic system capable of supporting hard domain wall
long as the interlayer coupling is weak compared to int
layer coupling.
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APPENDIX A: NUMERICAL SOLUTION
FOR STATIC CONFIGURATION

Consider the case of antiparallel coupling~p521!. The
energy per area given in Eq.~4! can be minimized by solving
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the corresponding Euler equations:

2A
]2u1
]x2

2K sin~2u1!1Mhssin~u1!1J sin~u12u2!50,

~A1!

2A
]2u2
]x2

2K sin~2u2!1Mhssin~u2!2J sin~u12u2!50.

~A2!

These can be written as two coupled finite difference eq
tions where the value ofu at positionx is determined by
values at neighboring positions a distanceDx away atx1Dx
andx2Dx. These equations are

u1~x!5
1

2
@u1~x1Dx!1u1~x2Dx!#2S Dx

2D0
D 2Fsin@2u1~x!#

2
Mhs
K

sin@u1~x!#2
J

K
sin@u1~x!2u2~x!#G , ~A3!

u2~x!5
1

2
@u2~x1Dx!1u2~x2Dx!#2S Dx

2D0
D 2Fsin@2u2~x!#

2
Mhs
K

sin@u2~x!#1
J

K
sin@u1~x!2u2~x!#G . ~A4!

Numerical solution of these two equations is done by
viding a long interval in positionx into N segments each o
lengthDx. Fixed values foru1 andu2 at the ends determine
the boundary conditions. In this problem, the boundary c
ditions areu150, u25p in the first segment, andu15p,
u252p in the last segment. The values ofu1 andu2 at each
other segment in the interval are then adjusted accordin
Eqs. ~A3! and ~A4! iteratively. The values in each segme
relax toward a solution of Eqs.~A1! and ~A2! relatively
quickly.

The solutions shown in Fig. 3 where obtained with 10
iterations withN5800 andDx/D051/20. The angles in this
example converged within 1024 radians andN was chosen so
that finite-size effects were negligible. The wall separat
and width were determined by calculating the position a
slope of the wall profiles whereu15p/2 andu253p/2.

APPENDIX B: EQUATIONS OF MOTION

The torque equations Eqs.~55! and ~56!, using the effec-
tive fields given in Eqs.~49!–~52!, are shown below. When
solutions of the form presented in Eqs.~57!–~60! are used,
equations of motion for spin-wave excitations on coup
domain walls result:
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When solutions of the form given in Eqs.~67!–~70! are used to construct the torque equations, one obtains equations of m
for domain-wall oscillations:
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