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Abstract 

Within the Born approximation, a cumulant expansion is 
used for the formulation of X-ray or neutron reflectivity. 
Odd- (third-) order cumulants indicate asymmetric pro- 
files; they may only be detected in layer systems via a Q~ 
dependence of the oscillation period of Kiessig fringes. 
Fourth-order cumulants are also visible in the larger Q. 
regime for single interface systems. As an example of an 
asymmetric surface, a triangular height distribution 
function is discussed. 

1. Introduction 

When X-rays or neutrons are scattered from surfaces and 
interfaces, both a specular and a diffuse contribution are 
observed. In the past few years the scattering theory has 
been considerably advanced and now can deal with both 
contributions rather well. The major breakthrough for 
scattering in the small-angle regime came with the for- 
mulation of the scattering from rough surfaces within 
the distorted-wave Born approximation (Vineyard, 
1982) and the use of a fractal description of interfaces 
(Sinha, Sirota, Garoff & Stanley, 1988). Recently, this 
approach has been generalized for layer systems (Pynn, 
1992; Hol~,, Kub6na, Ohlidal, Lischka & Plotz, 1993; 
Hol~' & Baumbach, 1994). There are several applica- 
tions which make use of this theory (Bahr, Press, Jeba- 
sinski & Mantl, 1993; Schlomka et al., 1995; Schlomka 
et al., 1996; Jenichen, Stepanov, Brat & Kroemer, 1996; 
Stettner et al., 1996). In many cases, the best results are 
achieved and a more stable set of surface parameters is 
obtained when true specular and diffuse scattering are 
refined simultaneously. In this context, a problem has 
arisen: sometimes, but not always, a sizable difference 
between the r.m.s, roughness a obtained from the true 
specular reflectivity and that from the simultaneous fit 
(the a tends to be large) is found (Schlomka et al., 1995; 
Lfitt et al., 1997). This may be related to a premise in the 
scattering theories mentioned above: they all rely on a 
Gaussian height distribution p(z) of width a of a rough 
interface. An analysis of reflectivity data alone need not 
follow this restriction. 
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There are several ways of generating density profiles 
from reflectivity data, more precisely from true specular 
reflectivities, where the diffuse scattering has been 
subtracted from the measured reflectivity. It is a matter 
of fact that, in general, there is no way to reconstruct a 
density profile from a single reflectivity measurement. 
The measurement of intensities introduces the well 
known phase problem and leads to ambiguities in the 
reconstruction of profiles. Several efforts have been 
made in the past to overcome this problem, both theo- 
retically (Clinton, 1993; Lipperheide, Reiss, Fiedeldey, 
Sofianos & Leeb, 1993) and experimentally (Sivia, 
Hamilton, Smith, Rieker & Pynn, 1991; Felcher, Dozier, 
Huang & Zhou, 1992; Sanyal et al., 1993; Majkrzak & 
Berk, 1995). Anomalous dispersion (X-rays) or the 
magnetic contribution from a reference layer (neutrons) 
are used to give two prominent methods. 

We have looked into this problem again, with special 
emphasis on the description of interfaces beyond 
Gaussian height distributions and uniqueness of the 
determined profiles. A cumulant expansion of the 
amplitude of the field reflected from an interface with 
non-Gaussian roughness is used in kinematic calcula- 
tions. 

Simple model profiles which are non-Gaussian are 
studied within a Fresnel-type description (without 
approximations) using matrix methods (Abel6s, 1950; 
Parratt, 1954; Lekner, 1987). For angles of reflection 
~i > 3~c (with the critical angle ~c), these calculations 
agree with the kinematic approach. Several conclusions, 
pertaining both to surfaces and interfaces (we first 
restrict ourselves to a single layer), can be drawn. The 
loss of information when taking the modulus (squared) 
of Fourier-transformed distributions becomes quite 
obvious, particularly for a single interface. 

2. Cumulant expansion for describing rough 
surfaces 

Cumulant expansions (Kendall, 1994) are rather fre- 
quently used in crystallography. They describe the 
scattering from atoms and molecules performing large- 
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amplitude motions, both translational and orientational 
(Willis & Pryor, 1975; Johnson, 1969). Accounts of  this 
can be found in the International Tables of Crystal- 
lography (and references therein) and in a recent review 
(Kuhs, 1992). 

Cumulant  expansions can also be usefully applied to 
interfaces with non-Gaussian roughness. The reflection 
from interfaces is only sensitive to the corresponding 
projection of  the height function z ( r ) [ r  = (x,y) is a 
vector parallel to the surface] onto the interface normal 
z. Therefore, only a one-dimensional description is 
needed. The reflectivity within the kinematic theory can 
be written as (Als-Nielsen et al., 1994) 

1 ]" dp(z)  2. 
R ~- R F [~,~v. ~ e x p ( i Q z ) d z  (1) 

Here, R F is the Fresnel reflectivity (o~ Q-4 for large Q), 
p(z) is the density profile (with Pa,, the average density) 
and p(z)cx dp(z)/dz the height distribution function; 
Q - Q. is the momentum transfer perpendicular to the 
surface. Apparently,  the change in the density profile at 
an interface determines the contrast. To be more exact, 
'density profile' means the profile of  the refractive index 
n = 1 - 5 - i f l ,  where (5 is the dispersion and fl the 
absorption of  the respective material. For X-rays, the 
dispersion is almost proportional to the electron density; 
for neutrons it is proportional to the scattering length 
density. 

2.1. Single surface 

Instead of  modelling the interface profile in direct 
space, the Fourier-transformed quantity J'[dp(z)/ 
dz] exp(iQz)dz is expanded. We obtain 

1 I dp(z) Pay ~ e x p ( i Q z ) d z  

"~ eiQze-l/2Q2~2e-l/6iQ~K(3)el/24Q4K(4'. (2) 

K (/) denotes the cumulant of  order l. With restriction to 
terms of  order l ~< 2 the usual (harmonic) D e b y e -  
Waller-like factor results. Higher-order terms (l > /3)  
describe anharmonic motions in crystallography. In our 
case, the term with l = 3 is related to the asymmetry  of  
the height distribution p(z) and l = 4 to symmetric 
deviations from the Gaussian shape [K (4) < 0 'flatter ' ,  
K (4) > 0 's teeper '  than a Gaussian]. A more quantitative 
formulation is provided by the relation to the moments  
M (l) = .[zlp(z)dz of  the distribution p(z). When taking 
M(~)=  0 (then zo = 0 marks the mean interface posi- 
tion), one obtains 

M (2) = K  (2) = 0 .2 

M (3) = K (3) (3) 

M (4) = K (4) + 3K (2)2 

The relation between moments  and cumulants up to the 
tenth order is given by Kendall (1994). Unfortunately, 
no unambiguous reconstruction of  the distribution p(z) 
from a finite number of  cumulants is possible. Realisti- 
cally, one may hope to determine the cumulants up to 
order l = 4 from a reflection experiment. 

Calculating the reflectivity makes it obvious that the 
situation is even worse. From equations (1) and (2), it is 
clear that only cumulants of  even order can be deter- 
mined. As le i~] = 1, odd-order terms do not affect the 
reflectivity R and, hence, the asymmetry  of  an interface 
(more precisely, the asymmetry  of  its height distribution 
function) cannot be determined from a simple reflection 
experiment. This is a demonstration of  the phase pro- 
blem already mentioned in the introduction. 

The resultant ambiguities are demonstrated with a 
triangle as model height distribution (Fig. 1), which 
corresponds to a parabolic interface profile. In compar- 
ison to a Gaussian distribution function, which has only 
a nonzero second-order cumulant, the triangular dis- 
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Fig. 1. The two triangular probability functions (top) result in the same 
reflectivity curve (bottom) in the case of a single interface. The 
third-order cumulant is negative for the 'triangle right' profile, 
positive in the other case. For the calculation of the reflectivity, a 
silicon substrate (refractive index n = 1 - 7.56 x 10 -6-  
il.73 x 10 -7) with roughness a = 5 A and an X-ray wavelength of 
1.54,~ (Cu K:O was assumed. 
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tribution also has nonzero cumulants of higher order. 
The two distributions 'triangle left' and 'triangle right' 
shown in Fig. 1 differ in the sign of the odd-order 
cumulants. Independently of the sign, the same reflec- 
tivity results. 

Since one obviously cannot determine asymmetric 
components, it may be advisable to adopt the symmetric 
solution/5(z) = l /2[p(z)+ p(-z)]  in the single interface 
case. 

To estimate roughly the effect of higher-order 
cumulants, we calculate the even-order cumulants for 
the profile in Fig. 1. [F is the full width at half-max- 
imum (FWHM) of the distribution] 

K (2) = 2/9/- `2  
(4) 

K 14) = - 4 / 1 3 5 F  4. 

One calculates from equation (2) that intensities I (Q) 
have to be measured up to Q ~_ 3 I F  ~_ 1.5/a to obtain a 
10% contribution from the fourth-order term. For a 
roughness a = 5 A, this requires a dynamic range of at 
least six orders of magnitude, which can be obtained 
with good laboratory sources. 

2.2. Two interjktces 

The reflectivity of a layer on a substrate (two inter- 
faces) reads as follows (always within the Born 
approximation) (Als-Nielsen et al., 1994) 

R ' ~  RFIF(Q)I 2 

c~ RFIApl  I-I exp[imOmK(lm)/m!] 
m 

+ Ap2 ]--I at exp [flQtK~l)/l!)12 (5) 

Here Apj refers to the change in electron density 
(or neutron scattering length density) at the respective 
interface and K~I m), ~2~ l) are the cumulants of the two 
interface profiles. Differences of odd-order cumulants 
now appear in the interference terms, proportional to 
(neglecting cumulants of order >3) 

cos[Q(z  2 - Zl) -- Q3(K~3) - K~13))/6]. (6) 

The dominant contribution, at least at small Q, is the 
modulation of the intensity with a period AQ--2re~d, 
sometimes called Kiessig fringes, with the layer 
thickness d = z 2 - z  1. After introducing the difference 
AK (3) = K~ 3 ) -  K/l 3), one can redefine an effective per- 
iodicity AQ = 2rc/d(Q) with d(Q)  -- d - Q2AKC3)/6. 
Apparently, the modulation period becomes Q depen- 
dent in this case. An example is given in Fig. 2. The 
asymmetric triangular probability distributions (Fig. 1) 
now describe the surface of a 100 A, layer with half of 
the substrate electron density on top of a silicon sub- 
strate. The substrate/film interface has the usual hyper- 
bolic tangent or error-function shape. The difference 
between an error-function-shaped and a hyperbolic 

tangent-shaped profile is very small. [See also Bahr, 
Press, Jebasinski & Mantl (1993).] In the calculations 
the latter is used. Because of the interference between 
the refected waves from the two interfaces [equation 
(6)] a Q-dependent oscillation period occurs and then 
the two parabolic density profiles shown in Fig. 2 
become distinguishable. For the 'triangle right' profile 
[K (3) < 0], the period decreases with Q; for the 'triangle 
left' profile it increases. 

None of the two Gaussian interface roughnesses 
should be too large, otherwise the contribution of one 
interface as well as that of the interference term decays 
rapidly and AK 13) cannot be determined. 

Here one may also note the following aspect. When 
dealing with wetting problems, it is customary first to 
characterize the dry substrate, in order to minimize the 
number of surface parameters in subsequent refinements. 
As only even-order cumulants can be determined in a 
measurement with a single surface, a problem may 
result. A possible asymmetry of the substrate surface, 
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Fig. 2. The density profiles of  a 100 .~, film on a silicon substrate (top). 
The asymmetric probability distributions from Fig. 1 were used to 
model the film surface; the substrate/film interface is tanh-shaped. 
The asymmetry leads to an increasing or decreasing 'effective per- 
iodicity' (see text) for the calculated reflectivities (bottom). The film 
was assumed to have half of  the electron density of  the substrate; the 
roughness of  each interface is a = 5 ,~. 
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which is invisible to the dry case, can indeed affect the 
measured reflectivity when the wetting film is present. 
This may result in a wrong interpretation of the data, e.g. 
by introducing an additional layer in the refinement 
which is in fact only a manifestation of the asymmetry 
of the substrate. 

Using the cumulant expansion and non-Gaussian 
density profiles may help to limit the number of free 
parameters in the refinement procedure. For example, if  
one measures the reflectivity of Fig. 1, which cannot be 
refined using the model of  a single Gaussian-shaped 
interface, the next assumption would be the presence of 
a thin surface layer. In fact, the 'data' can also be refined 
using a model of  a single layer with tanh-shaped sym- 
metric interfaces as shown in Fig. 3. (For a thin layer 
with roughnesses of the order of  the film thickness the 
height distributions of the two interfaces overlap. The 
refinement routine used in this example adds the two 
contributions numerically, obtains the density profile by 
integration and calculates the reflectivity of that profile.) 
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Fig. 3. The reflectivity from Fig. 1 was refined using a model of a 
single layer with two tanh-shaped interfaces. The resulting prob- 
ability distribution (top) and the refined reflectivity are shown 
(bottom). The refined parameters of the film are: asub~t,~t e = 4.0,A,, 
cr~t m =02.9,~,, nfil m = 1 - 5.0 x 10 -6 - i1.14 x 10 - 7 ,  film thickness 
= 8.0 A. The model has four free parameters in comparison to only 
two for the triangular profile (width and asymmetry). 

That system has four free parameters (thickness, elec- 
tron density and roughness of the layer and substrate 
roughness) compared to only two parameters for the 
triangular profile [width ( = roughness) and asymmetry]. 

3 .  C o n c l u s i o n s  

At present, we cannot provide an experiment in which 
odd-order cumulants (note: change of modulation period 
of Kiessig fringes) apparently contribute. There are, 
however, examples where the fourth-order cumulant 
K (4) obviously plays a role. In these it is referred to as 
polymer interdiffusion in the near-surface regime, e.g. 
Kunz & Stamm (1994, 1996). For modelling the inter- 
face profile it became necessary to introduce two 
Gaussians of different widths. The underlying reptation 
model for polymer diffusion requires at least two dif- 
ferent diffusion constants. In this case, the introduction 
of a cumulant K (4) would represent an alternative 
approach. 

It would also be extremely interesting to calculate the 
diffuse scattering of non-Gaussian profiles. Dietrich & 
Haase (1995) give solutions for the diffuse scattering 
cross section of various profiles. Unfortunately, the 
given formulae require very time-consuming numeric 
calculations. Using the cumulant expansion may be a 
simple, alternative approach which could more easily be 
included into a z2-minimization algorithm. 

Note added in proo f  After acceptance of our manuscript 
we became aware of the fact that similar work has been 
published by Rieutord, Braslau, Simon, Lauter & Pasyuk 
(1996). 

We thank U. R6sler, J. Stettner, O. H. Seeck and M. 
Liitt for very helpful discussions. 
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