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Effect of the vacancy interaction on antiphase domain growth in a two-dimensional binary alloy
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We have performed a Monte Carlo simulation of the influence of diffusing vacancies on the antiphase
domain growth process in a binary alloy after a quench through an order-disorder transition. The problem has
been modeled by means of a Blume-Emery-Griffiths Hamiltonian whose biquadratic coupling pardmeter
controls the microscopic interactions between vacancies. The asymmetrit teas been taken ds=0 and
the ordering dynamics has been studied at very low temperature as a functiénirgfide the range
—0.5<K/J=<1.40 (with J>0 being the ordering energyThe system evolves according to the Kawasaki
dynamics so that the alloy concentration is conserved while the order parameter is not. The simulations have
been performed on a two-dimensional square lattice and the concentration has been taken so that the system
corresponds to a stoichiometric alloy with a small concentration of vacancies. We find that, independently of
K, the vacancies exhibit a tendency to concentrate at the antiphase boundaries. This effect gives rise, via the
vacancy-vacancy interactigdescribed b¥), to an effective interaction between bulk diffusing vacancies and
moving interfaces that turns out to strongly influence the domain growth process. One distinguishes three
different behaviors(i) For K/J<1 the growth process of ordered domains is anisotropic and can be described
by algebraic laws with effective exponents lower than 1i2;K/J=1 corresponds to the standard Allen-Cahn
growth; (iii ) for K/J>1 we found that, although the motion of the interface is curvature driven, the repulsive
effective interaction between both the vacancies in the bulk and those at the interfaces slows down the growth.
[S0163-18207)06933-4

. INTRODUCTION merical simulation studié4™*° provide evidences for slow
growth, either logarithmic growth laws or algebraic laws
The dynamical evolution of a binary alloy after a quenchwith small exponents.
from a high-temperature disordered phase has been one of A general feature commonly observed during the early-
the prototypes in the study of relaxational processes towardéme evolution in systems with annealed defects is the ten-
equilibrium. It has been found that the late stages of thidlency to concentrate the disorder at the domain walls. In-
process obey dynamical scaling and the typical domain sizdeed, experiment$!® and numerical simulatiofi$?~1>%’
R(t) dominates all other lengtH<. In this regime, the do- reveal that the vacancies and the excess particles tend to
mains grow in time according to a power ldR{t) ~t* with accumulate at the domain walls. This is accompanied by a
the growth exponent satisfying a remarkable universality. depletion in the bulk defect concentration, which renders the
For the case of a pure, ideal system, the exporent/2 is  excess internal energy unsuitable to measure the total
associated with cases where the order parameter is namount of interfaces. Only at late times, as the interfaces
conserved, whereasx=1/3 describes systems with con- disappear and the system approaches equilibrium, the an-
served order parametéFor the nonconserved case a typical nealed defects may dissolve again into the bulk, provided
example is a binary alloy undergoing an order-disorder phasthat they display no cooperative phenomena. Simultaneously
transition. Most theoretical studies are limited to ideal con-an overshooting in the bulk order parameter is obsetéd.
ditions, that is, to a pure stoichiometric binary alloy. In suchVery recently it has been suggestetf1°that this is a ge-
conditions, theoryand numerical simulatioAs? definitively ~ neric effect in ordering dynamics, coming from a subtle
agree about the value of the kinetic exponestl/2. Much  competition between nonequilibrium internal energy and
less unanimity is obtained from the experiments. This is cernonequilibrium entropy.
tainly due to the imperfections always present in real mate- In previoug®**studies of the diluted square Ising model
rials. Some examples are vacancies, third-componemwith nearest-neighbor interactions, it was obtained that the
impurities? nonstoichiometr)},0 dislocations, etc. It is of effect of a small concentration of vacancies is dramatic, lead-
great interest to elucidate in which manner and to what exing to an extremely slow growth described by a logarithmic
tent the presence of these imperfections modifies the idegrowth-lawt* or even to a complete pinning of the procéss.
asymptotic growth law. This difference, obtained on the same model in the limit of
We shall not consider here the problem of guenchedow vacancy concentration, comes from special features in-
disordert! but concentrate on mobile punctual defects suctroduced in the coupled dynamics used; that is, the system
as vacancies, third-component impurities, and excess paevolves according to the nonconserved Glauber dynamics
ticles in off-stoichiometric binary alloys. These belong to thebut the vacancy concentration is forced to be constant. We
category commonly named annealed disorder. Despite theotice that in these studies, the vacancies exhibit a natural
theoretical suggestion that such a kind of disorder should ndendency to cluster. The results obtained in the present work
modify the asymptotic growth la#? experiments® and nu-  show that the true asymptotic growth behavior is definitively
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algebraic with effective exponents smaller than the Allen- TABLE I. Bond energies and the same measured with respect to

Cahn value. the A-B bond for the BEG model as a function of the paramelers
Concerning the present scenario for the effect of exces§. andL.

particles in a nonstoichiometric binary alloy without vacan-

cies, very recently it was suggestethat the existence of Bond Energy Excess energy
effective interactions between diffusing excess particles ang g ~J+K 0

those localized at the antiphase domain boundaries is crucial_, J+K+2L 23+ 9L

in determining the essential time dependence of the growt B JLK—2L 23-2L

law. It was shown that when these specific interactions arg 0 J-K

not present the main assumptions underlying the AIIen-Cahg_ 0 J—K
theory are fulfilled. On the other hand there is experimenta 0 I-K

evidence that small deviations from the stoichiometric com-*~
position may provoke drastic modifications in the growth
law. It has been reported that the ordering kinetics in
Cug 70AU o 10 shows a crossover from the standard Allen-
Cahn growth law, for stoichiometric GAu,'*?°to a loga-
rithmic growth law. In Ref. 8 it was suggested that to ac- n.n. n.n. n.n.
count for such behavior, additional interactions to the ones ~ H=J2, SSj+K>, S’S+L>, (SS+SS), (1)
present in the(nearest neighbordsing model are needed. ) 'l t
Indeed, the authors showed how this can be accomplished therej stands for the atom-atom Ordering interactiknis a
simply extending the interactions to next nearest neighborsiquadratic coupling parameter accounting for the energy
Our main interest here will be to incorporate the effect ofgifference between atom-atom pairs and those involving va-
such interactions between annealed impurities in a more gera;ancieS, and is an asymmetry term accounting for the en-
eral framework. ergy difference betweeA-A and B-B pairs. When the pa-
The three-state Blume-Emery-Griffitt8EG) model is  rameterk promotes the formation of atom-atom pairs, the
especially adequate for our purpodésor given values of yacancies tend to cluster, whereas if the vacancy-atom pairs
the model parameter&(andL), the third value of the spin  are preferred, cooperative effects for the vacancies are not
variable may represent either a vacancy or an impufity  expected, at least in the limit of low vacancy concentration.
particular an excess partiglén the present work we neglect  Although the hypothesis of a rigid lattice is crude, since
the asymmetric terml(=0) and restrict ourselves to the |attice deformations have a strong influence on the atom dy-
case of vacancies in a stoichiometric binary alloy, so that th@amics around the vacancies, this effect is partially taken
additional coupling coming from the interplay between theinto account in the phenomenological character of the con-
diffusive motion of both vacancies and excess partiCIeS is n%tantK_ We also expect that the assumption of pair interac-
considered here. tions only, disregarding many-body effects, only introduces
The influence of mobile vacancies on the kinetics of or-quantitative but not qualitative changes concerning the order-
dering arises from the coupling between their diffusive dy-ing dynamics.
namics and the motion of the domain walis this case, We have restricted the present study to concentrations so
antiphase-domain boundari@sPB)]. This intercoupling de-  that the system corresponds to a stoichiometric binary alloy
pends on the two following facts concerning the behavior ofyith small concentration of vacancies. Since we have taken
the vacancies: their tendency to precipitate at the APBs angl> 0, the ordered phase will be antiferromagneticlike, with
their tendency to cluster. Whereas the former is encounteregimost all the bonds of thA-B kind.
for all values of the model parameters studied in this work, as we have mentioned in the Introduction our goal here is
the interaction among vacancies, and furthermore their teny study the influence of annealed vacancies on the kinetics
dency to cluster, depends df. The combination of both of domain growth. This influence originates in the interplay
effects gives rise to an effective interacti@ontrolled byK) between the two following specific interactioné) the
between bulk diffusing vacancies and those localized at th@acancy-APB interactioithere the APB is thought as a se-
interfaces that turns out to be crucial in determining the esguence ofA-A andB-B bonds and (i) the vacancy-vacancy
sential time dependence of the growth law. interaction. When the the vacancy-APB interaction is attrac-
The organization of this paper is the following. We starttjye, the vacancies tend to concentrate at the APBs and there-
by defining the model and the region of parameters of interfore the vacancy-vacancy interaction introduces an effective
est here(Sec. I). In Sec. Ill we provide the details of the interaction between bulk vacancies and APBs.
simulations and describe the algorithms used. In Sec. IV we The next step is to calculate these specific interactions for
present the results and discuss them in Sec. V. Finally, ifhe different values of the model parameters. They are ob-
Sec. VI we summarize our main conclusions. tained from the bond energies, expressed with respect to the
energy of theA-B bond, summarized in Table I. For notation
we introduce the following reduced parameté&s=K/J,
L*=L/J, with J>0. It follows thatK* =1 separates the
We assume an underlying rigid square lattice withtendency for the vacancies to clusteK*(<1) or not
i=1,... N=IXI sites that can be occupied either Ayat-  (K*>1). Moreover, forlL*|<1 the specific interaction be-
oms (S=1),B atoms §=—1), or vacancies$=0). Fol-  tween vacancies and APBs is attractive, favoring the absorp-
lowing standard procedures, the interactions are taken to k#n of vacancies at the interfaces. For value$ldf|>1 the

pair wise and restricted to nearest neighbors.) only. The
spin-1 BEG Hamiltonian is

Il. THE MODEL AND PARAMETERS
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FIG. 1. Regions in the space of the parameté’s and L*
where different dynamics are expected. The solid Krfe=1 sepa-
rates the region of vacancy attractioki*(<1) from the region of 0.0 .
vacancy repulsionK* >1). The solid lined* =+ 1 separate the 0.0 0.5 1.0

region where the vacancies tend to precipitate at the antiphase K*
boundaries |L*|<1) from the region of vacancy-antiphase bound-
ary repulsion [L*|>1). Solid circles indicate the points studiedin "7, < * )
the present work. The square corresponds to the kK&selL* =0 =L*=0.(b) kgT/J vsK* phase diagram of the BEG model for

. 7 :
and the diamonds are the points where the model is formall;" _IO anhd CV_O'S& TP§|p0|nts corrbesporzidfto the Mor;FeldCar:o
equivalent to a nonstoichiometric binary alloy. results whereas the solid lines are obtained from mean-field calcu-

lations. Dashed lines are just guides to the eyes. In the inset, we
show the region of interest. The arrows indicate the working tem-
perature and vacancy concentration

FIG. 2. (a) kgT/J vs cy phase diagram of the BEG model for

behavior is more complex, in particular,K* <1 a compe-
tition betweenK* and the asymmetric terin* appears.

The results of the above analysis are illustrated in Fig. .1factor width. It is known that the structure factor provides an

i_gfm’e lgdlcated, In Wh'tel' the rer?lozgvé\e?r:h%/acinmegvera" description of the ordering process. In particular, the
exhibit tendency to accumulate at the S. The Hrie= study of its time evolution will provide information about the
separates the regions W.'th vacancy attraction and V.acan(aﬁlnamical scaling properties. This second group of simula-
repulsion. Black circles indicate the points studied in theyq g constitutes the major part of results presented and, con-

present work, all sitting along the line* =0. The point at i to the equilibrium simulations, is very time consum-
K* =0 andL* =0 (indicated by a squayehas been previ- ing. y q ’ y

ously studied if* and corresponds to a diluted Ising model.
The points withK* =1 and L*==*1, indicated by dia-
monds, correspond to a nonstoichiometric binary alloy with-
out vacancie§. In order to obtain the phase diagram of mo@Blin the

It is worth mentioning that the BEG model, witk=0,  particular case of * =0, we have performed Monte Carlo
L=0, andJ>0, has also been used for the study of thesimulations in the grand canonical ensemble using the Leg-
ordering dynamics via vacancies with<4x 10 “. Such a endre transformation
restricted dynamics, only allowing exchanges between atoms
and vacancies, may strongly modify the dynanifcdhis 5
mechanism is not considered in the present study. Hoc=H—pn> S, 2

A. Equilibrium simulations: Phase diagram

whereu stands for the chemical potential difference between
atoms (either A or B) and vacancies. This is because we
We have performed different Monte Carlo simulations ofrestrict our study to the case of stoichiometric composition
the model defined in Sec. Il with* =0, J>0, andK* in-  (Na=Ng) and the chemical potentials &f andB are then
side the range- 0.5<K* <1.4. First we need to know, in the equal. The simulations have been performed on a system of
region of vacancy attractionK* <1), the temperature at linear sizel =128 using the Glauber dynamics implemented
which the system separates into two phases. This is impointo the Metropolis algorithm. The different runs are ex-
tant in order to characterize the equilibrium state at the pointended up to 1500 Monte Carlo steps per 6i€s), our unit
to which quenches have been performed. Next, in order tof time.
characterize the time evolution of the ordering process sub- Figures 2a) and 2b) show two different sections of the
sequent to the quench, we focus on the study of the structugghase diagram obtained by Monte Carlo simulations. In the

IIl. MONTE CARLO SIMULATIONS
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same figure we also show the results obtained by using stathave been averaged over equivalent directions. The size and
dard mean-field techniqueself-consistent field method®  shape of the ordered domains has been obtained by fitting the
This has been done for completeness and in order to redu@eraged profiles to a Lorentzian function powered to 3/2 in
the range of model parameters to be explored numericallyorder to reproduce the Porod’s law for the decay of the tail at
Figure Z2a) (temperature versus vacancy concentratioor- long q’s:24
responds to a section with fixd¢* =0, and Fig. 2b) (tem-

* . I 312
perature versuk*) to a section with fixed vacancy concen- a(t)
tration c¢,=0.06. Phase | corresponds to an atomic S(q,t):{ﬁ]
disordered phase with randomly diluted vacancies; phase Il 1+la/o(v]
corresponds to an atomic order@d phase with randomly where q is the distance to the superstructure peak
diluted vacancies, which exhibit only short-range order;qz“z_(l 1

. ) ) 3,3)|, a(t) is the height of the peak, and(t) its
phase Ill corresponds to a phase separation region with CQuidith. Only data withS(q,t) > S,=2.5x 105 has been con-

. . . §idered for the fitsS, has been obtained from a completely

cancies and vacancy clusters with a low concentration %isordered ith th . f il

disordered atoms. The inset in FigaR shows an enlarged Isordered system with the same concentration of particles
) and vacancies. The quantitie¢t) and o(t) provide infor-

portion of the coexistence region in the limit of very low . .
. ST .. mation about the square order parameter growth and the in-
vacancy concentration. In this limit both phase transitions

(I—11 and ll—Ill) are very separated, so that they occur VT3¢ domains size, respectively.
almost independently. This is reflected in the straight-line-
shaped boundaries in Figlf). One obtains that the order-
disorder transition temperature-¢lll) is independent oK* For the particular case &* =0 andL* =0 we have used
while the temperature for the phase separation transitiofheN-fold algorithn® in order to reach very long times (10
(1—11) depends linearly ork*. We expect that for higher MCs) in the evolution of a system of linear site- 200. The
values ofcy the coupling between both phase transitionsPossible exchanges have been classified into 11 different
makes the boundaries become curved. In any case noti€dasses, according to their energy change. A class including
that, whenK* >1, the coexistence regiofill) disappears, those exchanges not modifying the system configuration has

and that theAB ordered phasél) extends down ta =0. also been taken into account. This is done in order to com-
pare with the standard dynamical simulations in which such

exchanges are considered. The time elapsed after each ex-
) change has been taken as the average time needed, in a stan-
~ Although most of the results, presented in the next seCyard Monte Carlo simulation, for the acceptance of a useful
tion, have been obtained following the standard Kawasakhroposed exchange. In this case, the structure factor evolu-

dynamics, alternative optimized algorithms have been usefion has also been studied. The averages have been per-

when specially long simulations were needed. This subsegprmed over~ 30 independent runs.

tion is devoted to a description of the different algorithms

used in the study of the time evoluti_on of the process that 3. Optimized multigrid algorithm

follows a thermal quench from very high temperat(aesor-

dered phaseto T=0.1)/kg performed on a stoichiometric  PU€ to the very large number of classes ot #0 the

binary alloy with a small concentration of vacancies fixed at\\-f0ld algorithm becomes difficult to construct. Therefore, a

cy=0.06 (beingc,=cg=0.47). The different values df* simpler but less optlmlzeq aIgonthm_ has been constructed in

studied correspond to final states into the ordered phases &rder to reach very long times. Starting from a standard mul-

ther Il and 111 tigrid algorithn®'* we have made, for each sublattice, a list

of the exchanges whose probability of being accepted is not

1. Standard dynamical simulations negligible. When a sublattice is chosen, only the exchanges

present in the list are attempted. The method turns out to be

These are simulations performed using the standard M&;ery efficient when the number of attempted exchanges is
tropolis algorithm together with the Kawasaki dynamics. The,q," |4 particular, for the cask* =0.6 andL* =0, we have

linear system size k=200 even though some initial studies performed simulations up to 1MCs with no major diffi-
were performed on systems bf 100. Starting from an ini- culties (the system size was=200).

tial disordered configuration, the runs have bégmpically)
extended up to 20 000 MCs. Moreover, averages over about

20 independent realizations have been performed. From each IV. DOMAIN GROWTH RESULTS

simulation we have extracted the time evolution of the struc-  Figyre 3 shows snapshots of the microconfigurations as

4

existing orderedAB domains with low concentration of va-

2. N-fold way algorithm

B. Nonequilibrium simulations

ture factor defined as they evolve with time after the quench for three different

1 o 2 values of the paramet&* (=0.6, 1.0, and 1.4). The system

S(ﬁ):’_ > Sﬁexp{i—IZﬂ} , (3)  size isl=200 and the quench temperature-0.1)/kg. In

Ni<TN a this case we have used the standard dynamical algorithm
- . . . described before. The vacancies are indicated in black while
wherek are th? reciprocal space vectoss,is the lattice ordered regions are indicated in white. Due to the tendency
parameter, and; is the vector position of site. We have  exhibited by the vacancies to concentrate at the interfaces,
focused on the profiles along tH&0) and (11) directions  the antiphase domain structure naturally shows up. The pro-
around the superstructure peakkat (%%). Moreover, they cess of absorption of vacancies at the interfaces starts at very
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early times and follows until the whole interface network For the cas&™* =1 the algebraic growth breaks down before
saturates. This initial regime was studied previotisty the ~ ~10* MCs due to finite-size effects. This is consistent with
case of a nonstoichiometric binary alloy. Simultaneously, itthe snapshots shown in Fig. 3. Inde&d,= 1 corresponds to
was discussed in a more general context and suggested to the fastest evolution and, thus, finite-size effects appear be-
a generic effect in ordering dynamits®1°In any case, this fore. For the other two cases the algebraic regime extends for
is a transient, prior to the long-time domain growth regime ofmuch longer times, and finite-size effects are not found. We
interest here. Nevertheless, we remark that this phenomenabtain that while forK* =1 and K*=1.4 both o(;5, and
of vacancy precipitation at the interfaces results in crucialr;, evolve with the same exponent, f&* =0.6 the two
importance in the subsequent evolutiglictated by interface  exponents are clearly different. This is indicative of the ex-
reduction) specially when the interaction between vacanciesstence of anisotropic growth and, as we shall discuss below,
is switched on K* #1). We now come back to Fig. 3. Clear it is related to the local accumulation of vacancies at the
differences can be observed in relation to both the orientation
of the the antiphase boundaries and the speed of the evolu 1¢g™ . .
tion towards equilibrium. FoK* =0.6 (vacancy attraction
the domains appear squarelike with the interfaces preferably
directed along th€10) direction. In the cas&* =1.4 (va- ? . K*=1.4
cancy repulsio)y although the domains are also square
shaped, the interfaces are directed along(ftie direction. ° o e 025
Moreover, in both cases, the interfaces tend to be (Bat o g T
almost fla}, at least in the regime depicted in Fig. 3. As we ; o 026 o °
shall discuss below, this is a consequence of the vacancy- . . >
vacancy interaction that introduces energy barriers for the ... ~~.0.19
motion of the vacancies localized at the interfaces favoring, b ~~ R
in each case, the different orientation of the APBs. Contrar-b 107> | e
ily, no preferred orientation for the boundaries is observed W
whenK* =1. Remember that in this case there is no specific -\
interaction between vacancies. Concerning the speed of the 2046
different evolutions, the fastest process occursKér=1, NS
whereas for the other two cases it is clearly slower, appar- 047 "<\
ently even more foK*=1.4. The introduction of specific L
interactions between vacancies seems to be behind the K=1.0
slower evolutions, although the underlying physics is, in ° (
both cases, different. * (1)
Before proceeding further it is interesting to look at the 3
guantitative results obtained from structure factor calcula- 10 10 10° 10° 10°
tions. In Fig. 4 we show the time evolution of the peak width MCs
o(t) of the structure factor along the two relevant directions,
(10) (open circlesand (11)(filled circles for the same three FIG. 4. Width of the structure factor vs time for K* =0.6,
selected values d{* as in Fig. 3. Dashed lines indicate the K* =1.0, andk* =1.4. Open circles correspond to the (10) direc-
regimes of algebraic domain growth and the numbers on topon and filled circles to the (11) direction. Dashed lines indicate the
are the corresponding fitted values of the kinetic exponentgegions where the growth exponents, written on top, are fitted.

[sX }
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E=B(K*1)
1 1 L
10' 10° 10° 10’
t (MCs)
0 L L 1 f
-05 0.0 05 1.0 1.5 2.0 FIG. 6. Structure factor widtho vs time for K*=0. Open
K* (filled) symbols correspond to tH&0) [(11)] direction. The end of

. . . the plateauis taken to be at the inflection point, as indicated by the

. FIG. 5. T_|me needed to reach the algebraic regimk ¥gblack arrow. The results shown by circles have been obtained following
circles. Stralght. lines are the predicted slopes of these curves fro"étandard simulations whereas the long time results, indicated by
the energy barriers obtained from the model. squares, have been obtained by using Khéold algorithm. The

system size is 200200, c,=0.06, andT=0.1J/kg .

vertices of the interface&ee Fig. 3. Moreover, while the .
values of the exponents fé¢* = 1.4 andk* =0.6 are defini- '€N9thS.o(10) and o1y, evolve with the same power law.
tively smaller than 1/2, fok* =1 it is perfectly consistent |MiS happens to be the case f&*=1 and K*=1.4,

e ; .
with the standard Allen-Cahn value. Notice the Iquigteau whereas forK. =06 b.Oth sets Of. profl'les spale indepen-
obtained in the cas&* =1.4. One needs to perform very dently according to widths evolving with different power

long simulations before reaching the algebraic growth re-IaWS'

gime. In fact, we have also obtained such behavior for some (a)°" Sootme
values ofK* <1 inside the region-0.5<K* <0. In addi- _4
tion, the extension of thplateaudepends ofK* , suggesting 107 -
that it is related to the existence of an activated process with L
energy barriers depending df*. These energies increase
(but not symmetricallyas one varieK* from K* =1, either | K*=06
to K*<1 ortoK*>1, and in both cases hinder the motion
of the vacancies at the vertices of the interfaces. The expres:
sions for the associated energy barrieE: €E,/J) are (b) ©° %o
Ef =1-K* for K*<1 andEj =3(K* —1) for K¥*>1. In -4
Fig. 5 black dots are the times needed to reach the algebraic

o A
regime for the different values &f*. These have been esti- NU) p o ome (1,1) |
mated from the simulations as the ending points ofptze © 40 | T
teau Simultaneously we have plottéstraight lines the bar- K*=1.0
rier passing time, defined as-expE;/ksT). As an example, (1,0)

to illustrate how black dots in Fig. 5 have been obtained, we Q) o | : }

show the case dk* =0 (Fig. 6). The evolution up to~10’ © 100
MCs has been obtained by following first the standard dy- 10 | 2200
namical simulationgcircles and next, by using thé&l-fold | coowen , Z?ggo ]

| 4 !
T

way algorithm(squares The arrow indicates the estimated " (1,1 2000
time for the ending point of thelateau 10° K*=1.4 v 5000
We have tested the existence of dynamical scaling. Fig- ) > 10000
ures 7a), 7(b), and 7c) show the scaled structure factor 1 . (1,.0) . 20000
profiles. Those along the (10) direction have been shifted 107" 10° 10" 10

downwards four decades in order to clarify the picture. Pro- go
files along each direction have been conveniently scaled with

the corresponding. The overlap of the data is satisfactory  FIG. 7. log-log plot of the scaled structure factor profiles in the
except for the tails at largg’s. Nevertheless, to prove the (10) and (11) directions fok* =0.6, K* =1.0, andK* =1.4. The
existence of dynamical scaling it is necessary to have noprofiles in the(10) direction have been shifted four decades below
only the collapse of the curves but also one requires that botim order to clarify the picture.
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FIG. 9. Growth exponent v&K* obtained from the structure
0.6 ) ) ) factor width o. Open(filled) circles correspond to the evolution of
. 2 3 6 . . .
10 10 10° 10 oag (0@y). All the simulations are performed in a 28@00

10
MCS square lattice witte,=0.06 atT=0.1J/kg .
FIG. 8. Ration= o010 /01 Vs time for different values of the

parametei*. All these simulations are performed in a 20000  of the intercoupling between bulk diffusing vacancies and
square lattice witfe,=0.06 atT=0.11/kg. the interface motion. FOK* # 1 the intercoupling proceeds
via an effective interaction originated from the vacancy-
vacancy specific interaction. Moreover, this introduces dif-
‘ferences in the internal structure of the interface. In the par-
ticular case oK* =1, this intercoupling reduces to a simple
C P ; - encounter between curvature-driven interfaces and mobile
of the ratio n=o /01y for different values ofK*. For 5ancjes that mutually cross their respective trajectories.
K* <0.8, n definitively increases with time, showing that the This does not make the curvature ineffective but may slow
shape of the ordered domains becomes more and more spikgsy, the domain growth. It has been shown &hhe effect
like. For 0.8<K*<1.0 the ratio remains constant around ¢ his simple intercoupling does not modify the essential
n=1, indicating that the domains are circular during all the(jme gependence of the growth law but modifies the growth
evolution. ForK* >1 after an initial decrease; reaches the rate(prefactoy that decreases as the mobile impurity concen-
value 14/2, indicating that, at long times, the domains aretration increases.
squarelike and grow isotropically. Figure 9 shows the growth \we next discuss separately the other two cases. We start
exponents obtained by fitting an algebraic growth lawyith the case of vacancy attractio{ =0.6) and point out
o(t)~t" to the evolution of botho(,0) (o0pen circles and  some other relevant features present in Fig. 3. Notice the
oy (filed circles. Note that the Allen-Cahn value increasing concentration of vacancies at the interfaces as
(n=0.5) is only reached for values &*=1. they evolve with time. This is premonitory of the phase sepa-
We have also studied the behavior of the structure factofation process, eventually reachable at longer times. During
at largeqg’s. It is affected by two different phenomen@)  the regime shown in Fig. 3 one is mainly concerned with a
Along the direction (1,1) fog>0.5 the structure factor is nonhomogeneous distribution of vacancies along the inter-
distorted due to the existence of the nonscaling fundamentgices. The local accumulation at the vertices deserves special
peak atk=(00) [strictly speaking the value of the structure mention. This is the signature of a previous fast process of
factor atk=(00) is always zero, but the peak exhibits someinterface reductioidue to the high curvature of the vertiges
finite width due to the existence of disorder in the system The further evolution is hindered until the vacancies diffuse
(i) For the cases in which the vacancies dissolve into th@long the interfaces. This involves activated processes. In-
bulk, there is a homogeneous nonscaling background that, i#e€ed, in our simulations we have observed how the temporal
turn, may evolve in time. pinning of the high-curvature portion of the interfaces pro-
vokes that the further evolution of the interconnecting inter-
faces (with lower curvaturg¢ does not fulfill the main as-
sumptions underlying the Allen-Cahn theory. The
The differences in the values obtained for the kinetic eximportance of this temporal pinning depends Kh, since
ponent of the growth law lie on the different characteristicsthe energy barriersg} = 1—K*) hindering the motion of a

In the following two figures we present a complete study,
of both the anisotropic character of the growth and the ki
netic growth exponefd) for a wide range of values of the
interaction parametedf* . Figure 8 shows the time evolution

V. DISCUSSION
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t(MCs) 10° 5x10° FIG. 10. Sn.apsho.ts of some
evolving domains directly ex-
tracted from our simulations for
K*=0. Vacancies A andB par-
ticles) are shown as blaclwhite).
The simulations are performed in
a 200<200 square lattice with
cy=0.06 atT=0.1)/Kg.

K*=0 |

vacancy at the corner of the interface increaseKdsde-  (in the limit of low vacancy concentratipnOther studies
creases fronK* =1. In Fig. 10 we show this effect for the on the diluted ferromagnetic Ising model, encountered that,
caseK* =0. In particular, one observes how the sin@lect- by coupling both dynamics differentlythe simultaneous
angulay domains evolve so that they become more and morgacancy-spin exchange and spin flip is not allojved that
platelike. This is because the longer interfa¢eith a lower  the vacancy at the corner is effectively pinned, the growth
concentration of vacancigare the only ones able to evolve. stops. In the case of the alloy, the dynamics implemented
Moreover, they remairialmos) flat and parallel to th€10)  follows directly from the requirement of the conservation
direction. This feature is not observed in previous studies ofaw for the number of particles and we found that the order-
the diluted antiferromagnetic Ising modl(notice that it ing process is definitively described by a growth law that,
corresponds to the BEG witK* =0) so that it cannot be although slower than the Allen-Cahn law, is definitively al-
attributed exclusively to the interactiofwhich favors the gebraic. For some values & this algebraic regime is pre-
vacancies to be nearest neighbors at the intexfacd=ig. 11  ceded by glateauwhose extension in time depends I§f.

we schematically illustrate this mechanism of evolution. ThisMore precisely, it is longer the bigger the energy barriers are.
represents a typical domain in the regime under discussiom particular, we found that foK* =0 this algebraic regime
here, that is, the regime characterized because the width @ visible only after~10° MCs (see Fig. 6. We notice that
the interface is small and the only relevant length is the sizéhe BEG model, in the particular case kf=L=0, corre-

of the AB ordered domains. Two facts have to be taken intsponds to a diluted Ising model. In view of this, we believe
account: the attractive vacancy-vacancy interaction definethat the growth law for the diluted antiferromagnet is alge-
by the Hamiltonian and the conserved character of the implebraic. In fact, the authors ¢fl4] did not exclude this possi-
mented dynamic¢Kawasak). The combination of both in- bility in their discussion. Concerning the complete pinning of
troduces energy barriers hindering the motion of the vacanthe process reported Hy3], it is certainly due to the ex-
cies(circles at the interfaces, which hinders the shrinkage oftremely low value of the temperature.

the domain. In Fig. 11 we have indicated in bldgkite) the Later on, as the width of the interface increases, this pin-
vacancies with associated energy barriers so that they areng effect, localized at the corner, becomes less important
induced to go outwardinward). The vacancies in gray do and one expects the system to cross over to a completely
not have any preference. The crucial point is that the inwardslifferent regime. In this asymptotic regime, not reached in
motion of the vacancies at the corner is strongly hindereaur simulations, discussing the interface, as formed by the
whereas for its neighbors, it is favored. This provokes thaincreasing accumulation of vacancies, is meaningless.
the shrinkage of the domains proceeds by displacing the flaRather, one would deal with a phase-separation process,
interfaces and accumulating the excess vacancies at thehich is not studied in the present work.

vertices?® The domains then become spikelike along (th® We now focus on the discussion fi§* =1.4. In this case,
direction, breaking down the single-length dynamical scalinghe repulsive interaction between vacancies favors them to be
so that the growth becomes anisotropic.[Ref. 14}, the  next nearest neighbors at the interfaces. As previously, the
authors coupled the Glauber dynamics for the spins to thdriving force is contained in the corner but its motion is
conserved dynamics for the number of vacancies in such hindered by a barrier of energy Rt —1). The interface
way that the vacancy at the corner is not pinned. Neverthesonnecting two vertices is directed along ttigl) direction

less they found that the dynamical evolution of the orderingand evolves so that it displaces in a parallel manner. The
process is effectively described by a logarithmic growth lawenergy barrier associated to this mechanism is

(a) (b) (C) (d) FIG. 11. Schematic represen-
tation of the evolution of a square
E0OeEOcOsE0OROEO®D SED0Ds0sOEROEOSEO e 00O ENEOBNOBNOS0 sEDsCcCwWODEO®ONRD domalntyplca”)/ObservedIn'[he
89 osoweow( K*<1 simulations. The circles
som0OR0® 08 .
OmomOmoE represent vacancies whereas the
oQeosomomn white (black squares represet
a . .
tdsomoaoen (B) particles. The mechanism of
tpoeomeoeon evolution is emphasized by show-
a B ORDOBO0OS@0C . . .
OO0 ing in black (white) those vacan-
OBROBBO0OMUBSORO

cies that have the tendency to
move outward(inwardg. The va-
cancies painted in grey are the
ones that are, in this sense, indif-
ferent.
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20 order-disorder transition. The study is performed by Monte
] Carlo simulations in the limit of low vacancy concentration
for a wide range of values of the biquadratic coupling pa-
................ rameterK*, which controls the specific vacancy-vacancy in-
e teraction. For all values ofK* inside the range
T —0.5=K*=<1.4 we found that the vacancies tend to concen-
[ trate at the interfaces. This feature introduces, via the param-
50 100 150 200 eterK*, an intercoupling between diffusing bulk vacancies
time (1000 MCs) and moving interfaces. In the particular casekdf=1 this
intercoupling does not take place via any specific interaction
and the ordering process is consistent with the Allen-Cahn
law. In fact we find thain~1/2 for K* ~1 whereas the ex-
ponent is clearly smaller when such interaction is present, no
matter if it is attractive K* <1) or repulsive K* >1). Nev-
P e e NS ertheless, our results clearly show that the growth is defini-
0 50 100 150 200 250 tively algebraic. WherikK* <1 the attractive vacancy interac-
time (1000 MCs) tion favors the increasing accumulation of vacancies at the
_ _ ) _ interfaces as the system evolves. The regime of interest here
FIG. 12. Domain area vs time of a single domain Kt=1.2  corresponds to the very initial stages of a phase separation
(solid and dotted lingsandK* =1.4 (dashed ling The solid(dot-  yrocess when the width of the interfaces is small and the
ted line corresponds t@,=0.06 (cy=0.04. We simultaneously oy relevant length is the size of theB ordered domains.
show, in the inset, the time evolution of the total amount of bulk &5, . main finding is that for quenches inside the coexistence
vacancies in the 'system. The simulations are performed in a 20 bgion the growth for the binary alloy is, in this regime,
X 200 square lattice ai=0.1J/kg . . - . . :
anisotropic. This is related to the existence of energy barriers
(depending orK*) that hinder the motion of the vacancies at

EX =3(K*—1). The vacancies, in excess as a consequenc;[ge vertices of the(10) squarelike domains and simulta-

of the interface reduction. are in this ¢ cancy repul- neously provoke local accumulations of vacancies along the
) ’ aBE.l cy rep (11) directions. Furthermore, these barriers may delay the
sion) expelled to the bulk. Moreover, the migrating interface

has to cope with the effective repulsive interaction due to th%é’fyaqg'tgnti?; etf;e g(l)%iberr?]'icn gr;et%lreneur(]) (; etrr;; nggr Ox;/g::ﬁ ;%:Sens]sf(t)(:

bulk vacancies, whose concentration increases as the SVSt%HIe motion of the interfaces, it is not purely curvature driven

evolves. Indeed, one expects this should interfere with the v o ceective exponents needed to describe the pro-

dynamics. At th'? point, It Is interesting to dlscr|m|ngte cess are lower than the Allen-Cahn value. Nevertheless, both
whether or not this interference makes the curvature-driven d —1 * % h ii
mechanism become ineffective. In this sense, we have Ve”t_en ton—_l 2 as_K H.l' ForK_ ~1the sheclic vacancy-
fied that the interface evolves é:overin a dor’nain area con.ocancy interaction is repulsive and the interfaces of the
stant in time. This is shown if Fi 12g for single domains square-like domains are in this case directed along(1fip
directl extra.cted from our simulagt.ions Theseg caIcuIationsdireCtions' As in the previous case, the motion of the vacan-
y . g - cies at the vertices is an activated process. The associated
have been performed using the optimized multigrid algo- . . :
. . : . . energy barriers depend df* and the algebraic growth re-
rithm discussed previously. A linear time dependence for the . . )
) o . L gime shows up only after the time needed for surpassing the
domain area evolution is obtained. This is commonly ac-’_ - . ; . :
SO . . : barrier. Since the interface motion has to cope with the re-
cepted as indicative that the motion of the interface is curva-

ture driven?’ It then follows that the effect of the intercou- pulsive interaction with diffusing vacancies, we found that

pling between mobile bulk vacancies and the evolvingthe ordering process clearly slows down. Nevertheless, this

! SR repulsion does not make the curvature ineffective. The effec-
interfaces is, in this case, to slow down the global process aR

it is revealed by a decreasing in the effective growth expo—'ve exponent is lower than the Allen-Cahn value but ap-
nent but it does not make ineffective the curvature driverf®
mechanism, which remains as the underlying mechanism for
the motion of the interfaces. Moreover the effective exponent ACKNOWLEDGMENTS
tends to the ideal 1/2 Allen-Cahn value le3— 1.
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