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Linear spin waves in layered structures consisting of two ferromagnetic films coupled at the inter-
face by a biquadratic exchange interaction are analysed theoretically within the localized spin model
and in the low-temperature limit. Magnetizations of both films are assumed to be parallel to the
film plane, but perpendicular one to another. The limit of two semi-infinite ferromagnets is also
considered. In both cases interfacial modes have been found.

1. Introduction

Indirect exchange interaction between magnetic films separated by a nonmagnetic layer
has usually two components, bilinear and biquadratic ones [1]. The bilinear term origi-
nates from interference of electron waves reflected from interfaces between the magnetic
and nonmagnetic layers. The origin of the biquadratic term is more complex and several
different contributions have been proposed. Those include an intrinsic term [2], which is
of the same physical origin as then bilinear term mentioned above, and some extrinsic
terms which are either due to interfacial roughness [3] or due to loose spins in the non-
magnetic material separating the ferromagnetic films [4].

The biquadratic coupling in real systems usually favours perpendicular alignment of
the film magnetizations (negative value of the corresponding coupling parameter) [1],
while the bilinear one favours either parallel or antiparallel configuration. Interplay of
both terms can lead to a noncollinear orientation of the film magnetizations and to a
complex phase diagram in an external magnetic field [5 to 7]. In some cases the biqua-
dratic coupling is stronger than the bilinear one, leading to perpendicular orientation
of the film magnetizations. This was observed experimentally e.g. in Fe/Cr/Fe [1] or
Fe/Al/Fe [8] trilayers.

Spin waves in layered magnetic structures were usually analysed theoretically for bi-
linear interlayer coupling and for collinear (parallel and antiparallel) orientations of the
film magnetizations [9 to 18]. Also experimental analyses were restricted mostly to the
parallel and antiparallel configurations. This is due to the fact that the spin wave spec-
trum is then simpler and experimental data are easier for interpretation [10]. The discov-
ery of biquadratic interlayer coupling renewed the interest in spin-wave analysis, parti-
cularly for noncollinear configurations [6, 7]. Such an analysis can give important
information about the coupling parameters.

Spin waves in a system composed of two atomic planes coupled by bilinear and biqua-
dratic exchange interactions were considered in [6], where the authors analysed in detail
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the phase diagram of the system in an external magnetic field as well as the correspond-
ing spin-wave spectrum. Here we consider the case where the magnetic films have arbi-
trary thickness. However, the analysis is restricted to perpendicular alignment of the
film magnetizations. Such a configuration can occur when the biquadratic coupling is
strong enough to overcome the bilinear term (provided its sign favours perpendicular
alignment). The interplay of exchange terms and magnetic anisotropy can then lead to
perpendicular alignment of the magnetizations in the ground state configuration. In the
following we simplify the situation by assuming no bilinear interlayer coupling.

The system and model Hamiltonian are described in Section 2. Equations for Green's
functions and spin wave frequencies are derived in Section 3. The limit of two semi-
infinite ferromagnets coupled at the interface by a biquadratic interaction is considered
in Section 4. In Section 5 we present some numerical results for two exchange-coupled
thin films. Concluding remarks are given in Section 6.

2. Description of the Model

We consider two films consisting respectively of N1 and N2 (100) atomic planes of a
simple cubic lattice. The lattice sites are occupied by localized magnetic moments which
are coupled ferromagnetically within each film. Both films are coupled at the interface
by a biquadratic exchange interaction. The biquadratic coupling is assumed to be suffi-
ciently strong to neglect the bilinear term. To stabilize the film magnetization we in-
clude a single-ion cubic anisotropy in the ferromagnetic films. Thus, the Hamiltonian
corresponding to the system can be written in the form
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Here Jl is the exchange integral for nearest neighbours (NNs) within the l-th atomic
plane �l � 1; . . . ; N1 �N2 � N�, and Jl; l� 1 is the exchange integral for NNs lying in two
adjacent �l-th and �l� 1�-st) atomic planes. The prime at the sum over l in the second
term means that now l ranges from l � 1 to N ÿ 1. The vector r is the position vector
within the atomic planes, whereas Jb is the biquadratic exchange integral between the
planes corresponding to l � N1 and N1 � 1 (interlayer biquadratic coupling). Finally, Kl

is the anisotropy constant for the l-th atomic plane. Translational invariance in the film
plane is assumed in Eq. (1), while no such a symmetry exists along the normal direction.
All the intra-layer exchange integrals are assumed ferromagnetic, Jl; l� 1 > 0 (for l 6� N1�
and Jl > 0 (for all l�, while the interlayer bilinear term vanishes, JN1; N1 � 1 � 0. The
biquadratic constant Jb is negative, Jb < 0, so the biquadratic coupling favours config-
uration with perpendicular alignment of the film magnetizations. Finally, the anisotropy
constants Kl are assumed positive, so the magnetic easy axes are along the main crystal-
lographic directions. The above assumptions lead to the magnetic ground state, in which
the magnetizations of both layers are parallel to the film plane, but perpendicular to one
another.

Since our main objective is the analysis of linear excitations in the low-temperature
limit, we perform the Hollstein-Primakoff transformation of the Hamiltonian (1), fol-
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lowed by the in-plane Fourier transformation. In the harmonic approximation the Ha-
miltonian (1) takes then the form
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where a constant term has been omitted. Here g and S are respectively the Land�e factor
and spin number, and the operators Â�lk and Âlk are the in-plane Fourier transforms of
the spin deviation operators. Han

l is the effective anisotropy field corresponding to the
single-ion anisotropy assumed here, while gk�k� is defined as

gk�k� � 1
2 �cos kxa� cos kza� ; �3�

with a and k being, respectively, the lattice parameter and in-plane wavevector. The
coordinate axes are along the main crystallographic directions, with the y-axis being
normal to the film plane.

3. Green's Functions and Spin Wave Modes

Let us define the following Green's functions hhAlk j A�nkiiE � Gn
l �k; E� and

hhA�lÿk j A�nkiiE � gnl �k; E�. For brevity of notation we drop in the following the argu-
ments k and E at Gn

l �k; E� and gnl �k; E�. Applying the equation of motion for the
above-defined Green's functions one arrives at the following set of coupled equations:
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The following definitions have been introduced in the above equations:
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For each value of n �n � 1; . . . ; N� equations (4) to (13) form a set of 2N equations
for 2N unknown Green's functions Gn

l and gnl . For Jb � 0 this system of equations re-
duces to two independent systems, for Gn

l and gnl . In the case of Jb 6� 0, however, all
equations are coupled.

Spin-wave excitations correspond to poles of the Green's functions. Those poles can be
found from the secular equation corresponding to the homogeneous part of the set of
equations (4) to (13).

In the following the spin-wave spectrum will be analysed quantitatively in the case
when both films are magnetically identical and spatially uniform (except the surface
and interface atomic planes). Accordingly, we assume that all exchange integrals are
the same except those between spins occupying the surface or interface atomic
planes, i.e., J1 � JN � Jsurf , JN1

� JN1 � 1 � J int; Jl � J for 2 � l � N1 ÿ 1 and for
N1 � 2 � l � N ÿ 1; Jl; l� 1 � J for 1 � l � N1 ÿ 1 or N1 � 1 � l � N ÿ 1. Similarly, we
assume Han

l � Han
surf for the two surface atomic planes �l � 1; N�; Han

l � Han
int for the

interface atomic planes �l � N1; N1 � 1� and Han
l � Han for the other atomic planes.

Two cases will be analysed in detail, (i) the case when the numbers N1 and N2 are very
large, so one can consider both films as semi-infinite systems �N1; N2 !1�, and (ii) the
case when the numbers N1 and N2 are rather small (films consisting of a few or few tens
of atomic planes).
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4. Limit of Semi-Infinite Ferromagnets

Consider now the situation when the films are thick enough to be treated as bulk sys-
tems. The corresponding spin-wave spectrum consists then of two parts, spin waves of
bulk character and modes which are exponentially localized at the interface. Consider
first briefly the bulk modes. Those are the modes which propagate across the ferromag-
nets as plane waves with real components of the corresponding wavevector. At the inter-
face they are usually partially reflected and transmitted. The corresponding dispersion
relation is the same as for spin waves in a single bulk ferromagnet,

E�k; k?� � 4SJ�1ÿ gk�k�� � 2SJ � gmBH
an ÿ 2SJ cos k?a

� 6SJ�1ÿ g�q�� � gmBH
an ; �19�

where k? is the wavevector component perpendicular to the interface, q is the three-
dimensional wavevector, q � �k; k?�, and g�q� � �1=3� �cos qxa� cos qya� cos qza�.
The upper band edge is determined by

E�k; k? � p=a� � 4SJ�1ÿ gk�k�� � 4SJ � gmBH
an ; �20�

while the lower band edge is described by the expression

E�k; k? � 0� � 4SJ�1ÿ gk�k�� � gmBH
an : �21�

The band of bulk modes is represented in Fig. 1 by the shaded area. The spin-wave
spectrum is shown there as a function of the parameter L, which is defined as

L � 1ÿ gk�k� : �22�
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Fig. 1. Spectrum of bulk (shaded region) and interfacial (solid line) modes in the case of two identi-
cal semi-infinite ferromagnets, plotted as a function of the parameter L � 1ÿ gk�k�. The param-
eters assumed here are J � J int � 2:5 cmÿ1, Jb � ÿ1 cmÿ1, Han

int � Han � 2:5 T, S � 2:5 and g � 2



The system can also support modes which are localized exponentially at the interface.
One can show that those modes correspond to solutions of the following equation:

�E2 ÿ �Eint ÿ SJx�2�2 � 2�S3Jb�2 �E2 ÿ �Eint ÿ SJx�2�
ÿ 4�S3Jb�2 �Eint ÿ SJx� S3Jb�2 � �S3Jb�4 � 0 ; �23�

where x�jxj < 1� is the decay coefficient,

x � 1

2SJ
�E0 ÿ E � ��E0 ÿ E�2 ÿ �2SJ�2�1=2� : �24�

In the above equations Eint and E0 are defined as

Eint � 4SJ int�1ÿ gk�k�� � SJ ÿ S3Jb � gmBH
an
int ; �25�

E0 � 4SJ �1ÿ gk�k�� � 2SJ � gmBH
an : �26�

Equations (23) and (24) have been solved numerically. Only those solutions which
correspond to jxj < 1 can describe real interfacial modes. When x > 0, the interfacial
modes are of acoustic type, while for x < 0 they are of optical type. The appropriate
numerical results are shown in Fig. 1 by the solid line. For the parameters assumed in
Fig. 1 there is only one interfacial mode which is of optical type.
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Fig. 2. Spin-wave spectrum as a function of the parameter L � 1ÿ gk�k� for two identical films
consisting of N1 � N2 � 5 atomic planes. The other parameters are J � J int � J surf � 2:5 cmÿ1,
Jb � ÿ1 cmÿ1, Han

int � Han
surf � Han � 2:5 T, S � 2:5 and g � 2. The dashed curves correspond to the

upper and lower band edges of the corresponding spectrum of bulk modes (see Fig. 1)



5. Thin Exchange-Coupled Bilayers

Consider now the case of two thin films which are coupled at the interface by the biqua-
dratic exchange. The corresponding spin-wave spectrum was obtained by numerical solu-
tion of the corresponding secular equation. In Fig. 2 we show the spectrum in the case of
two identical films, each consisting of five atomic planes, N1 � N2 � 5. As in Fig. 1, the
spin-wave spectrum is shown there as a function of the parameter L defined by Eq.
(22). The dashed curves in Fig. 2 represent the lower and upper band edges of the corre-
sponding spectrum of bulk modes (see the shaded region in Fig. 1). For the parameters
assumed in Fig. 2 one of the ten modes turns into an interfacial mode, which is above
the spectrum of bulk modes. In Fig. 3 we see the same spin-wave spectrum, but shown
as a function of the absolute value of the parameter Jb (we recall that Jb is negative,
Jb < 0�. For Jb � 0 both thin films are decoupled and therefore each mode is doubly
degenerate. This degeneration is lifted by the interlayer coupling �jJbj > 0�.

6. Summary

We have analysed bulk and interfacial spin waves in a system composed of two semi-
infinite ferromagnets, as well as in a structure consisting of two thin ferromagnetic films.
The semi-infinite ferromagnets (and also the thin films) were coupled at the interface by
a biquadratic exchange interaction. In the ground state configuration the magnetizations
of both ferromagnetic systems were assumed to be parallel to the interface, but perpen-
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Fig. 3. Spin-wave spectrum for a bilayer, plotted as a function of the absolute value jJbj of the
interlayer coupling parameter Jb and calculated for L � 1. The other parameters are the same as in
Fig. 2. The dashed curves correspond to the upper and lower band edges of the corresponding bulk
spectrum



dicular to one another. In the case of two semi-infinite systems the spin-wave spectrum
consists of interfacial modes and a band of bulk modes. For thin bilayers, the number of
different modes is equal to the number of atomic planes. Those modes usually have bulk
character. However, for some values of the interfacial parameters, interface modes can
also occur.
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