APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Your access to PROLA is provided through the subscription of Central Research Institute

MyArticles: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 53, 1398–1412 (1996)

[Issue 3 – 15 January 1996 ]

Previous article | Next article | Issue 3 contents ]

Add to article collection View PDF (675 kB) or Figure Images


Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): Partially correlated roughness and diffuse x-ray scattering

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, and W. Press
Institut für Experimentalphysik, Christian-Albrechts-Universität Kiel, Leibnizstrasse 19, D-24098 Kiel, Federal Republic of Germany
C. Schwarz and H. v. Känel
Laboratorium für Festkörperphysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
Received 18 April 1995

The detailed interface structure of a CoSi2/Si/CoSi2/Si(111) layer system grown by molecular-beam epitaxy is investigated in this paper. Measurements of the diffuse scattering in the region of total external reflection were performed and analyzed within the distorted-wave Born approximation. The analysis of the specularly reflected and the diffusely scattered intensity leads to a consistent set of interface and layer parameters, which are compared with results of Rutherford backscattering/channeling, transmission electron microscopy, and scanning tunneling microscopy. Although the diffuse intensity is dominated by a very rough surface layer, the roughness distribution of the buried interfaces of the epitaxial layers was determined rather exactly. It was found that the roughnesses of the interfaces of all epitaxial layers are of the order of monolayer steps. Very good agreement between the measurements and the calculations is achieved, if conformal roughness of the adjacent interfaces of each CoSi2 layer is included. Furthermore, the interfaces of the sandwiched Si layer are partially correlated, which means that the step structure is partially transferred through all interfaces up to the surface of the upper CoSi2 layer.

©1996 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v53/p1398
DOI: 10.1103/PhysRevB.53.1398
PACS: 61.10.Dp, 61.10.Ht, 68.55.Jk


Add to article collection View PDF (675 kB) or Figure Images

Previous article | Next article | Issue 3 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. D. E. Savage, J. Kleiner, N. Schimke, Y.-H. Phang, T. Jankowski, J. Jacobs, R. Kariotis and M. G. Lagally, J. Appl. Phys. 69, 1411 (1991) [ADS][CAS][dot SPIN][dot INSPEC].
  2. Y. H. Phang, R. Kariotis, D. E. Savage and M. G. Lagally, J. Appl. Phys. 72, 4627 (1992) [ADS][CAS][dot SPIN][dot INSPEC].
  3. D. G. Stearns, J. Appl. Phys. 71, 4286 (1992) [ADS][CAS][dot SPIN][dot INSPEC].
  4. D. E. Savage, Y.-H. Phang, J. J. Rownd, J. F. MacKay and M. G. Lagally, J. Appl. Phys. 74, 6158 (1993) [ADS][CAS][dot SPIN][dot INSPEC].
  5. A. P. Payne and B. M. Clemens, Phys. Rev. B 47, 2289 (1993). .
  6. E. E. Fullerton, J. Pearson, C. H. Sowers, S. D. Bader, X. Z. Wu and S. K. Sinha, Phys. Rev. B 48, 17t432 (1993).
  7. Z. H. Ming, A. Krol, Y. L. Soo, Y. H. Kao, J. S. Park and K. L. Wang, Phys. Rev. B 47, 16t373 (1993).
  8. Y. H. Phang, D. E. Savage, R. Kariotis and M. G. Lagally, J. Appl. Phys. 74, 3181 (1993) [ADS][CAS][dot SPIN][dot INSPEC].
  9. E. Spiller, D. Stearns and M. Krumrey, J. Appl. Phys. 74, 107 (1993) [ADS][dot SPIN][dot INSPEC].
  10. S. K. Sinha, M. K. Sanyal, S. K. Satija, C. F. Majkrzak, D. A. Neumann, H. Homma, S. Szpala, A. Gibaud and H. Morkoc, Physica B 198, 72 (1994) [dot INSPEC].
  11. J. D. Shindler, E. A. L. Mol, A. Shalaginov, and W. H. de Jeu, Phys. Rev. Lett. 74, 722 (1995). .
  12. D. E. Savage, N. Schimke, Y.-H. Phang and M. G. Lagally, J. Appl. Phys. 71, 3283 (1992) [ADS][CAS][dot SPIN][dot INSPEC].
  13. D. Calecki and G. Fishman, Surf. Sci. 229, 110 (1990) [dot INSPEC].
  14. G. Fishman and D. Calecki, Phys. Rev. B 43, 11t581 (1991).
  15. M. Kardar, G. Parisi and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).  [SPIRES].
  16. P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A 34, 5091 (1986). .
  17. D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990) [CAS][dot INSPEC].
  18. Z.-W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991). .
  19. J. Villain, J. Phys. (France) I 1, 19 (1991) [dot INSPEC].
  20. D. A. Kessler, H. Levine and L. M. Sander, Phys. Rev. Lett. 69, 100 (1992). .
  21. H. Yan, Phys. Rev. Lett. 68, 3048 (1992). .
  22. C. Thompson, G. Palasantzas, Y. P. Feng, S. K. Sinha and J. Krim, Phys. Rev. B 49, 4902 (1994). .
  23. D. K. G. de Boer, Phys. Rev. B 49, 5817 (1994).
  24. D. K. G. de Boer, A. J. G. Leenaers, and W. W. van den Hoogenhof, J. Phys. (France) III 4, 1559 (1994) [dot INSPEC].
  25. In the papers of de Boer (Refs. 23 and 24) the specular reflectivity is calculated by using the second-order distorted-wave Born approximation. The resulting expression for the reflectivity now depends not only on the rms roughness, but also on the lateral structure of the rough interface.
  26. L. G. Parrat, Phys. Rev. 95, 359 (1954). .
  27. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).
  28. L. Névot and P. Croce, Rev. Phys. Appl. 15, 761 (1980) [dot INSPEC].
  29. B. Vidal and P. Vincent, Appl. Opt. 23, 1794 (1984) [ADS][CAS][dot SPIN][dot INSPEC].
  30. J. Lekner, Theory of Reflection (Nijhoff, Dordrecht, 1987).
  31. J. Lekner, Physica B 173, 99 (1991) [dot INSPEC].
  32. S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297 (1988). .
  33. R. Pynn, Phys. Rev. B 45, 602 (1992). .
  34. V. Holý, J. Kubena, I. Ohlídal, K. Lischka and W. Plotz, Phys. Rev. B 47, 15t896 (1993).
  35. V. Holý and T. Baumbach, Phys. Rev. B 49, 10t668 (1994).
  36. D. Bahr, W. Press, R. Jebasinski and S. Mantl, Phys. Rev. B 47, 4385 (1993). .
  37. J.-P. Schlomka, M. Tolan, L. Schwalowsky, O. H. Seeck, J. Stettner and W. Press, Phys. Rev. B 51, 2311 (1995). .
  38. A. V. Andreev, A. G. Michette and A. Renwick, J. Mod. Opt. 35, 1667 (1988) [CAS][dot INSPEC].
  39. W. A. Hamilton and R. Pynn, Physica B 173, 71 (1991) [dot INSPEC].
  40. A. Messiah, Quantenmechanik, 2nd ed. (de Gruyter, Berlin, 1985), Chap. 2.
  41. M. K. Sanyal, S. K. Sinha, A. Gibaud, S. K. Satija, C. F. Majkrzak, and H. Homa in Surface X-Ray and Neutron Scattering, edited by H. Zabel and I. K. Robinson, Springer Proceedings in Physics Vol. 61 (Springer-Verlag, Berlin, 1992), pp. 91–94.
  42. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York 1982).
  43. M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, and R. F. Voss, The Science of Fractal Images (Springer-Verlag, Berlin, 1988).
  44. G. Palasantzas and J. Krim, Phys. Rev. B 48, 2873 (1993). .
  45. Omitted end note.
  46. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London Ser. A 381, 17 (1981) [dot INSPEC].
  47. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions (Springer-Verlag, New York, 1987).
  48. M. K. Sanyal, S. K. Sinha, A. Gibaud, S. K. Satija, C. F. Majkrzak, and H. Homa, in Interface Dynamics and Growth, edited by K. S. Liang, M. P. Anderson, R. F. Bruinsma, and G. Scoles, MRS Symposia Proceedings No. 237 (Materials Research Society, Pittsburgh, 1992), p. 393.
  49. R. T. Tung, J. M. Gibson and J. M. Poate, Phys. Rev. Lett. 50, 429 (1983). .
  50. H. v. Känel, Mater. Sci. Rep. 8, 193 (1992) [dot INSPEC].
  51. M. Müller, D. Bahr, W. Press, R. Jebasinski and S. Mantl, J. Appl. Phys. 74, 1590 (1993) [ADS][dot SPIN][dot INSPEC].
  52. D. Bahr, W. Press, R. Jebasinski and S. Mantl, Phys. Rev. B 51, 12t223 (1995).
  53. R. Feidenhans'l, Surf. Sci. Rep. 10, 105 (1989) [dot INSPEC].
  54. A. Gibaud, G. Vignaud and S. K. Sinha, Acta Crystallogr. Sect. A 49, 642 (1993).
  55. S. K. Sinha, J. Phys. (France) III 4, 1543 (1994) [CAS][dot INSPEC].
  56. S. R. Andrews and R. A. Cowley, J. Phys. C 18, 6427 (1985) [CAS][dot INSPEC].
  57. I. K. Robinson, Phys. Rev. B 33, 3830 (1986). .
  58. For the measurements carried out at the rotating anode the angle between the x axis and the steps was 90°. However, additional measurements performed for various sample orientations in the respective (qx,qz) region show no significant influence of the orientation of the diffuse scattering.
  59. Y. Yoneda, Phys. Rev. 131, 2010 (1963). .
  60. H. Dosch, Phys. Rev. B 35, 2137 (1987). .
  61. The kinematical calculation of the diffuse scattering of stepped interfaces (considering explicitly meandering steps in contrast to a fractal shape) is performed by Sinha et al. (Ref. 10).
  62. The average terrace width L=1700 Å has been determined by the analysis of the STM micrograph as described above. The value is in accordance with the miscut µ=0.21° listed in Table II, if the orientation of the sample ( gamma =30°) is taken into account.
  63. A kinematical calculation based on a model which explicitly includes islands is given by Sinha (Ref. 55) and Satija et al. (Ref. 64).
  64. S. K. Satija, S. K. Sinha, E. B. Sirota, G. J. Hughes, and T. P. Russel (unpublished).


Add to article collection View PDF (675 kB) or Figure Images

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 3 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org