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We study analytic forms in Fourier space of one-dimensional height—
height correlation functions for self-affine rough surfaces. Comparisons
with complex systems suggest three alternative models. However, only the
model Cy(k) o« (1 -+ alk|§)—(1+2H) permits analytic calculation of important
surface roughness quantities (i.e. surface width) for roughness exponents in
range 0 <H = 1. Furthermore, the implications of the results to experi-
mental roughness studies by means of STM—AFM are discussed. Copy-
right © 1996 Published by Elsevier Science Ltd

In the context of relaxation phenomena, a specific corre-
lation function has been used widely to describe the
complex nature of various physical processes. This the
well known stretched exponential function Cg(x) =
C,(0) e=9™ (0< H =1). It was introduced in 1863
for the description of mechanical creep in glassy fibers,
as well as later to describe dielectric relaxation in
polymers [1]. Lately, it was used to fit miscellaneous
experimental data including NMR, dynamic light scat-
tering, quasi electric neutron scattering, kinetic reactions,
magnetic relaxation, etc. [2], as well as to describe
height—height correlation functions for self-affine fractal
surfaces [3-5].

The knowledge of one-dimensional height—height
correlation functions is required in real and/or Fourier
space in a wide spectrum of studies which involve
random rough surfaces. These studies include X-ray
scattering investigations of surface/interface roughness
in single and/or multilayer films [3, 4], surface sound
wave studies where the direct knowledge of the Fourier
transform C(k) of one-dimensional height—height cor-
relation function is required [6], and roughness studies by
means of Scanning Tunnelling Microscopy (STM) as
well as Atomic Force Microscopy (AFM) [7, 8].

Despite the simple analytic form of C,(x), its Fourier
transform (except H = 0.5, 1) is not known analytically
and has a rather trivial behaviour in the limit H — 0;
C,(x) = C,(0)e [9, 10]. Because of the non analytic
Fourier transform of Cy(x) and its accurate description
in many cases of real data in relaxation phenomena,
Alvarez et al. [11] attempted to connect its characteristic

parameters (H, £) with those of the Havriliak— Negam1
(HN) function in Fourier space, ®(k) « [1 + i(ck)" ]
(0<a,b<1), which has been used widely in glass-
forming-liquid studies [12].

In our study, we shall examine directly in Fourier
space height—height correlation functions C(k) for one-
dimensional self-affine rough profiles due to its necessity
in various physical systems and surface/interface rough-
ness studies [3~8]. Furthermore, extensive calculation of
other roughness quantities will be performed, with
emphasis on the surface width o(x) (as a function of
the lateral length scale x) because of its direct measure-
ment in roughness studies by means of STM and AFM
[7, 8].

We will denote by z(x) the surface height profile
function which is assumed a random variable with
zero mean (z(x)) = 0 over a segment of macroscopic
size L. The Fourier transform z(x) and the height—
height correlation function C(x) are defined respec-
tively by z(k)= (127 [2(x)e™®dx and C(x) =
(UL) [{z(x 4+ x")z(x")) dx', and their combination ylelds
the roughness spectrum (|z(k)[*) [13]; (z(b)P) =
[L/2m)*1C(k) with C(k) = [ C(x)e™* dx

For self-affine fractal surfaces the height—height
correlation function C(x) has the scaling behaviour [14]
C)~o® —Dx* if x<& and Cx) =0 if x> &
D(= 2/E ) is a constant, ¢ the in- plane roughness
correlation length and o = ([z(x)] Y2 the saturated
r.m.s. surface roughness. Thus, the Fourier transform
C(k) = F{C(x)} for self-affine fractals has the scaling
behaviour C(k) ~ kA gf k£ > 1, and C(k) ~ const. if
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Fig. 1. Log-log plots of the one-dimensional roughness spectra C(k)/o* vs k for & = 100nm, gy = 0.3nm and
roughness exponents H: H = 0.3 (dashes), H = 0.5 (solid), H = 0.8 (dots). The inset shows the change of the
parameter a = a(H, £) as a function of £/ay for H = 0 (squares), H = 0.3 (circles), H = 0.5 (up-triangles), and

H = 0.8 (down-triangles).

k& < 1. The intermediate behaviour at k£ ~1 will be
based upon suggestions from previous studies in com-
plex systems. The height-difference correlation function
g(x) is given by g(x) = 20° — 2C(x). The roughness
exponent H characterise the degree of surface irregular-
ity, and has values in the range 0 < H < 1. Small values
of H (H ~ 0) correspond to highly irregular surfaces, and
large values (H ~ 1) to surfaces with a smooth hill-valley
structure [9, 14, 15].

We will perform the construction of self-affine
height-height correlations in Fourier space, since it is
of primary importance to investigate analytic forms for
C(k). Thus, we will suggest and investigate the following
three models in Fourier space

Cw=— Tl gy
T G takptR T H -
(1)
(0°¢lg) T
—_ e . _ 14-2H\~1
CZ(x)—l—%-(lk!S)l*ZH’ g_2J(1+V ) dU,
)

Ve
(e*£ly) Fyi
C = =2 d
0 =T e !m‘”) v

(uf =1+ 2H), ©)

where V, = k.§. The parameters {a,y, g} are calculated
from the normalisation condition chi(k) dk = ¢°
O<k<k, i=1,2,3) with k.= nlag, and ay the
atomic spacing. The existence of the finite bound £, is
related with the fact that any notion of continuum
treatment at length scales lower than a; becomes mean-
ingless. Expressions in the limit # — 0 can be obtained
from those at H >0, if we consider the identity
H—0: UH)[X" = 1]—In(x) [9, 10]. Thus, we have
a=2In(l1+aV,)forH =0.

In equation (1) for V,>1 and H >0, we obtain
a~ 1/H (inset of Fig. 1). The model C,(k) has already
been used for the calculation of eigenwave spectrums [6].
It originates from similar studies of two-dimensional
self-affine correlation models of the form C(k)~
a1+ akzéz)‘l'H {10]. However, C(k) does not
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reproduce the behaviour of the Fourier transform of Cy(x)
at H=0.5or Cy(k,H = 0.5)~ (1 + k*£H)71,

On the other hand, C,(k,H =0.5) suggests the
generalisation for H # 0.5 that is given by C,(k). In
equation (2) for H=0, we have gH=0)=
2In(1+V,). While for 0<H <1 and V,>» 1, the
integral identity [v°7'[1 417" dv = w/[asin (nc/a)]
(0<v <+, 0<c<a)yields g(H > 0) = 2x[(1 + 2H)
sin (/1 + 2H)] ™! — (UH)[k.£17% . Finally, the correla-
tion function C;(k) is suggested according to the form of
the HN-function or ®(k)~ [1 + i(ck)®]™® [12] whose
connection with the Cy(x) was established in the past
[11]. The constraint uf = 1 + 2H is imposed the require-
ment that at large k& (k& > 1); C3(k) ~fimH

In former studies, a model similar to C.(k) =
eI + a kD)2 was introduced by Church
and Takacs [16]. This is based again on the two-
dimensional aralogue of C(k)~ (1 + akzéz)_l‘H [10],
and ‘‘a,” is obtained from the normalisation of
C.(k), however, only in an integral form:
2[A+a®y Ry =1 (0<v< V).

Direct measurements of one-dimensional integrated
C(k) spectra have been performed in roughness studies
by Mitchell and Bonnell [7]. Besides the roughness
exponent H that we obtain in a In[C(k)] vs In (k) plot
(linear regime with slope —1 — 2H), the knee regime
~27/4¢ (01 Xjpee ~4€ on a surface width In[o(x)] vs
In (x) plot as in Fig. 2) where a turning occurs from the
linear behaviour with slope —(1 -+ 2H) to a saturated
regime ~In (6>£) (plateu, see Fig. 1) is important experi-
mentally. This is because it provides a sufficient means to
determine the correlation length £, and its dynamic
evolution with film thickness in growth studies [10,
17, 18].

As we shall see in the following section, the Cy(k)
model will also be preferable to investigate more, since it
allows analytic calculation of surface quantities, i.e.
surface width, which are of crucial importance in rough-
ness studies [8]. In the continuum limit, the surface width
(r.m.s.-roughness) of one-dimensional rough profile over
a lateral size x is given by [19]

*x) =2
ke<k, k' <ke

(2(k)2(k")) de dk';
)

(z(k)z(k")) = 8(k + k")C(k),

where k, = 2n/x, and (z(k)z(k')) = 6(k + k')C(k) since
the surfaces we consider here are assumed statistically
stationary up to second order (translation invariance).
Analytic calculation of o(x) can be performed in terms of
the correlation function C, (k) for all values of the rough-
ness exponent H in the range 0 = H = 1.

After substitution in equation (4) of Ci(k), we
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obtain
2
G0 = —[(1+ aket) 2 — (1 + ak,£)™]
aH

(0<H<1), 5)
2 208 [1+akk 3
agi(x) = TIn L —}-akxé} (H =0). (6)

The asymptotic behaviour of equations (5) and (6) is
given by oy (x) = [6*/(Ha)*(2ar£)? ¥ (0 <H < 1) and
01(x) = [6%/a¥] [In (lag)]V?* (H = 0) for ay € x < &
and oy(x) = o if x> £ The asymptotic behaviour for
o(x) obeys the general scaling behaviour attributed to
o(x) for self-affine fractal roughness or o(x) ~x for
x < &, and o(x) = o for x> £ [14]. Figure 2 depicts
plots of o;(x) vs x where the knee regime occurs at
KXinee ~4E.

Measurements of ¢(x) vs x have been performed from
Salvarezza et al., Vazquez et al., Herrasti ef al. for Au-
films by means of STM, and by Tong et al. on CuCl/
CaF,-films by means of AFM [8], in an effort to measure
the roughness exponent H. Our schematics in Fig. 2 for
o1(x) compare significantly well to the surface width
measurements of Tong ez al. on CuCl/CaF, films (Fig. 3
in [8]). They compare also with part of the measurements
by Herrasti et al. for Au-films (i.e. Fig. 6 and Fig. 11
in [8]), and Vazquez et al. for Au-films (Fig. 3, Surf. Sci.,
in [8]). The inset of Fig. 2 is plotted according to
parameters observed in Fig. 3 (Surf Sci.) of Vazquez et
al. (¢~4nm, ¢ =38.9nm, H = 0.83) [8] in terms of
equation (5).

According to the scaling theory approach, during
film growth [20], the normal roughness ¢ and the in-
plane correlation length £ evolve with film thickness A
as o~h” and £ ~1"" (b and z = H/b are respectively
the growth and the dynamic exponent), as well as the
surface width scales as o(x, k) = X F(hix"H) (F(y) ~y°
if y> 1, and F(y)~const. if y < 1) with lateral size
x and film time evolution ~h. The scaling properties
of o(x, k) during growth on one-dimensional substrates
are fundamentally important, since they give strong
physical insight in complex continuum growth models
(i.e. KPZ-equation [20-23]) where exact knowledge of
scaling exponents is feasible only in (1 -+ 1)-dimensions.
Equation (5) for x and &>»ap yields o(x) =
oxt! [x + Qwé)H ]_H , where after substitution of the
scaling relations o = vh® and & = gh®" we obtain for
o106 h) = A YOI + A, YY) with Y = i,
Ai=v and A, =2ng/H. oi(x,h) is similar in form
with the one that was developed for the two-dimensional
case [24].

The correlation function in real space is given by
Cilx)y=2 f C,(k) dk (0 < k < k,), which re-generates in
real space the power law behaviour C(x) = o? — Dx*™
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Fig. 2. Log-log plots of the one-dimensional surface width ¢ (x)/o vs x for £ = 100 nm, a2y = 0.3 nm and roughness
exponents H: H = 0.3 (dashes), H = 0.5 (solid-line), H = 0.8 (dots). The inset shows a plot (for comparison
purposes) of the surface width for parameter values ¢ = 4 nm and £ = 39.8 nm observed in Au-films by Vazquez et al.

(Fig. 3, Surf. Sci. [8]) for H = 0.83.

or gi(x) = Dx* forx < ¢. In fact recently, there was a
discussion about violation of the asymptotic power law
behaviour g(x) ~ Dx* or C(k) = k=420 in the non-
self-affine regime H =1 (more precisely for H > 0.9)
[26]. These values are observed in MBE growth modsls
with linear diffusion dynamics [27], and diffusion
induced instabilities [28]. The C;-model extended in
the nomn-self-affine regime H =1, however, does not
display this type of inconsistency. Figure 3 depicts
plots gi(x) vs x for H =0.5, 1, 1.5 [29]. The power
law behaviour (linear regime) is conserved from Fourier
to real space and vice versa for 0 < H = 1.

The semi-log plot in the inset for A =0 shows
that the C;-model has logarithmic behaviour; g(x)~
In(x) at x < § [29]. The latter is related with growth
model predictions of the non-equilibrium analogue
[10, 30], of the equilibrium roughening transition [31].
Finally, we point out that the C;-model does not
reverse its decay rate at x = £ as H increases from 0 to
1 (self-affine regime, see Fig. 3). In contrast, this

un-natural reversibility is inherent to the Cy(x) [or
gs(x)] correlation function as pointed out in earlier
studies [4, 32].

In conclusion, we convoluted known information for
one-dimensional correlation functions with general con-
cepts of self-affine fractals in order to suggest one-
dimensional analytic correlation models [C{1,2,3}(k)]
in Fourier space. Our conjectures for the models
C{1,2,3}(k) have an ad-hoc nature, However, compari-
sons with studies in other complex systems suggest the
assumed generalisations for one dimensional self-affine
fractal morphologies. We studied models in Fourier
space since in a wide variety of roughness studies,
the knowledge of the Fourier transform of C(x) is
needed {3-8]. Moreover, analytic calculation of other
important roughness quantities (i.e. surface width) which
can be directly useful in roughness studies, became
feasible especially in terms of the C; (k) model [equation
(1)]. More precisely, in STM~AFM measurements of
the surface width o(x), the knowledge of analytic forms
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Fig. 3. Log-log plots of the height-difference correlation function g;(x) = 2¢% — 2C;(x) vs x for £ = 100nm and
H = 0.5 (dots), H = 1 (solid-line) and H = 1.5 (dashes). The inset shows a semi-log plot of g (x) vs In (x) for H = 0,
where the linear behaviour reveal the logarithmic behaviour of the C;-model.

of o(x) can be useful to estimate roughness parameters
(o and £) when the appropriate length scales cannot be
probed due to system scan-head limitations [10].

Finally, as a general comment on the importance of
one-dimensional correlation functions C(k), we point
out the following. In eigenwave spectrum [w(k)] studies
of surface sound waves on rough surfaces, the roughness
effect is proportional to an integral of the correlation
function C(k); w(k) ~ [f fUC(k) dk}? [6]. In X-ray scat-
tering studies, the integrated (in the direction perpen-
dicular to the scattering plane) diffuse cross section I(k)
for incidence angles close to the angle of total external
reflection, is directly proportional to C(k); 1(k) ~C(k)
[3, 25].
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