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This article reviews the role of reparametrization invariance (the invariance of the properties of a
system with respect to the choice of the co-ordinate system used to describe it) in deriving stochastic
equations that describe the growth of surfaces. By imposing reparametrization invariance on a system,
the authors identify the physical origin of many of the terms in its growth equations. Both
continuum-growth equations for interfaces and equations for the coarse-grained evolution of
discrete-lattice models are derived with this method. A detailed analysis of the discrete-lattice case
and its small-gradient expansion provides a physical basis for terms found in commonly studied
growth equations. The reparametrization-invariant formulation of growth processes also has the
advantage of allowing one to model shadowing effects that are lost in the no-overhang approximation
and to conserve underlying symmetries of the system that are lost in a small-gradient expansion.
Finally, a knowledge of the full equation of motion, beyond the lowest-order gradient expansion, may

be relevant in problems where the
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perturbative renormalization methods fail.

There has been a great deal of recent work on the
formation, growth, and geometry of interfaces (Family
and Vicsek, 1991; Meakin, 1993; Barabasi and Stanley,
1995; Halpin-Healy and Zhang, 1995). These studies are
relevant to a variety of experimental situations including
biological growth (Eden, 1958), the propagation of flame
fronts (Sivashinsky, 1977, 1979), fluid flow in porous me-
dia (Cieplak and Robbins, 1988; Martys et al., 1991), and
atomic deposition processes (Messier and Yehoda, 1985;
Bales et al., 1990; Tang et al., 1990; Tu and Harris, 1991)
such as the technologically important molecular beam
epitaxy (MBE). On a more fundamental level, some of
these processes are prototypical of far-from-equilibrium
physics and do not have a Hamiltonian formulation
(Hohenberg and Halperin, 1977). Recent advances have
shown that it is nevertheless possible and useful to cat-
egorize the systems into universality classes. There have
been two principal approaches for the theoretical analy-
sis of such problems. The first (see, e.g., Meakin, 1993) is
based on computer simulations of discrete models, and
often it provides useful links between analytic theory
and experiments. The second approach (Krug and
Spohn, 1990; Kardar, 1994; Halpin-Healy and Zhang,
1995) is to describe the dynamical process by stochastic
differential equations. This procedure neglects the short
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length-scale details but provides a coarse-grained de-
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scription of the interface that is suitable for characteriz-
ing the asymptotic scaling behavior. There are two es-
sential steps to be carried out: first, one must deduce the
continuum equation and second, in order to obtain the
scaling behavior, the equation needs to be solved or ana-
lyzed by renormalization-group techniques (Ma and Ma-
zenko, 1975; Forster et al., 1977; Wolf, 1991; Frey and
Tauber, 1994; Sun and Plischke, 1994a, 1994b). The prin-
cipal theme of this paper is the derivation of the stochas-
tic partial differential equation appropriate to the differ-
ent physical processes responsible for the growth. We
shall show that the principle of reparametrization invari-
ance (R invariance) can be used in a straightforward yet
powerful manner to derive the continuum equation.
This approach may also be useful in other contexts, such
as the study of avalanche dynamics associated with an
interface moving in a random medium (Makse, 1995)
and interfaces in complex dynamical systems (Kapral
et al., 1994).

We restrict ourselves to local-growth processes in
which the growth rate is a function of the local proper-
ties of the interface. (Nonlocal effects are discussed in
the last section in terms of partial differential equations
for two coupled fields.) Traditionally, continuum equa-
tions have been derived in the no—overhang approxima-

tion (Monge representation). The height /(r,t) of the
interface on a reference substrate plane is assumed to be

a single-valued function of the lateral coordinates r and
time t. While this assumption is valid and yields the cor-
rect scaling behavior in many instances, it has been dem-
onstrated that some essential details are left out in this
approach (Keblinski ef al, 1994, 1995, 1996). For ex-
ample, in the columnar-growth regime of sputter depo-
sition of thin films, the merging and regeneration of col-
umns arises due to the presence of outward-flaring
columns. This phenomenon, observed even with nor-
mally incident depositing atoms, is not captured within
the no—overhang approximation. The R-invariance prin-
ciple will allow us to derive the continuum-growth equa-
tions without such restrictions—the no—overhang situa-
tion can then be obtained as a special case.

Previously, continuum-growth equations have been
derived either directly from discrete models by Vveden-
sky et al. (1993) or by using methods based on preserv-
ing the symmetries and conservation laws of the system
(see, e.g., Hwa and Kardar, 1989; Kardar, 1994). The
latter approach has been widely used to identify univer-
sality classes of discrete atomistic models (Das Sarma
and Tamborenea, 1991; Racz et al., 1991; Liu and Plis-
chke, 1988; Huse et al., 1990; Das Sarma and Ghaisas,
1992; Kotrla et al., 1992; Amar and Family, 1993; Krug
et al., 1993). While this method often unambiguously
yields the lowest-order terms in a gradient expansion of
the stochastic differential equation, physical consider-
ations have to be invoked to decide whether such terms
are indeed present or not.

In the next section we discuss previous work on the
derivation of the dynamical equations of surface growth.
Section III describes how the R-invariance principle can
be used to obtain the growth equations in a variety of
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physical situations. The last section summarizes our re-
sults.

The scope of our article is limited—the emphasis is on
the theoretical side of surface growth processes and con-
centrates on the derivation of continuum-growth equa-
tions and on the discussion of their geometrical and
physical content. We shall mention results which have
been obtained elsewhere for these equations and their
relationship to physical processes such as MBE or dis-
crete models. Our discussion will certainly fail to be
complete, since our primary goal is providing a selfcon-
tained exposition of the derivation of growth equations.
We apologize to the many authors whose work is not
appropriately mentioned in this article.

A more complete survey of this field can be found in
several review articles, each with its own focus. Among
the early reviews, the book by Family and Vicsek (1991)
and the contributions by Meakin (1988a) and Krug and
Spohn (1990) have become standard references. Specifi-
cally, the first contains a collection of important reprints
with a commentary, the second focuses mostly on the
phenomenology of simple models of growth, while the
third contains a discussion of analytical approaches. An-
other early review is the book by Pietronero and Tosatti
(1985), which describes fractal growth processes. The ef-
fects of a random substrate on wetting phenomena have
been considered by Pfeifer et al. (1989) and Giugliarelli
and Stella (1991, 1994) among others. The review by
Halpin-Healy and Zhang (1995) concentrates on the
Kardar-Parisi-Zhang (1986) equation and reviews the
efforts of the last decade to elucidate its scaling behav-
ior. From this central theme, it extends to cover the field
in a pedagogical manner with special emphasis on di-
rected polymers in random media. Numerical simula-
tions of discrete-growth models are nicely reviewed in
the work by Meakin (1993). Barabasi and Stanley (1995)
authored a quite complete elementary book with an ex-
tensive list of references. Therein, a lucid discussion of
interface growth in random media, including a summary
of recent developments, can be found. Finally, a detailed
discussion of the phenomenology and some theoretical
approaches for the study of MBE growth can be found
in the book by Tu and Harris (1991) (see also Tang and
Nattermann, 1991; Kessler ef al.,, 1992; Villain et al.,
1992; Das Sarma, 1994; Hunt et al., 1994; Pal and Lan-
dau, 1994; Siegert and Plischke, 1994; Das Sarma et al.,
1996).

Il. PREVIOUS APPROACHES

In this section we shall briefly review the traditional
method for deriving local-growth equations. With very
few exceptions (Meakin, Ramanlal, et al., 1986; Maritan
et al., 1992), this is accomplished within the familiar no—
overhang approximation (the Monge representation).

Denoting by h(x,t) the single-valued interface height
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function of the lateral coordinates x and time ¢, one may
generally write a growth equation in the form

Ih(x,1)
ot

=Glh(x,0)]+ n(x,1), (1)

where G is the deterministic growth term and # is the
noise. This is essentially Newton’s law of motion in
which the inertial term has been neglected in compari-
son with the dissipative force. The neglected term is ir-
relevant in determining the scaling behavior in the as-
ymptotic regime. This regime, in Fourier space, is
related to the behavior of the height-height correlation
function in the limit of small frequencies, w—0. While
the left-hand side of Eq. (1) is proportional to w, the
inertial term is of order w?, and hence it is irrelevant.

Consider a D-dimensional substrate of size L” (the
physical case corresponds to a LXL substrate with
D=2) and then define the mean height of the growing
film and its roughness W by

E(L,t):Ll—Df dPxh(x,1), (2a)

12
W(L,t)=<L1—Dfde[h(£,z)—ﬁ(L,t)]2> ., (2b)

where (---) denotes an average over different realiza-
tions of the noise (samples).

Starting from a flat interface (one of the possible ini-
tial conditions), it was conjectured by Family and Vicsek
(1985) (see also Plischke and Racz, 1985; Family and
Vicsek, 1991) that a scaling of space by a factor / and of
time by a factor /* (dynamic scaling), rescales the rough-
ness W by a factor /%, as appropriate for a self-affine
surface (Mandelbrot, 1986), i.e.,

W(IL,[*)=I"W(L,t), 3)
which implies that
W(L,t)=Lf(t/L*). 4

If, for large ¢ and fixed large L (t/L*—o), W saturates,
then f(x)—const as x—o. However, for fixed large L
and 1<r<< L7, one expects that correlations of the height
fluctuations are set up only within a distance ¢ and
thus W must be independent of L. This implies that, for
x<1,

f(x)~x# with B=a/z. 5)
Thus dynamic scaling postulates that

W(L,t)~tF 1<t<L?, (6a)

~L% >~ (6b)

The roughness exponent « and the dynamic exponent
z characterize the self-affine geometry of the surface
and its dynamics, respectively.

The above considerations do not include short-time
behavior. In that limit one may expect that the height
fluctuations are uncorrelated and therefore h()z,t)
—h(t) behaves as [(n(7)dr, where 5(7) is a white
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noise with zero average and (7n(7)7n(7'))xd(7—1").
This leads to W(L,t)~¢"? independent of L and is the
random-deposition regime. Note that this dynamic scal-
ing is not related to the standard dynamic scaling in criti-
cal phenomena. The latter involves correlations which
are space-time separated, whereas here they concern the
behavior at the same time. Furthermore, after the inter-
facial roughness has saturated (¢>L*%), one may expect
Sh(x,0)=h(x,1)

that correlations of fluctuations

—h(L,t), such as
Crx.nx’ ') =([8h(x,0)= Sh(x",t") ), (7)
show the more traditional dynamic scaling,

- - + s T |lx—x'|
Colx,t+mx',t)=|x—x'|**g| =——=—,

lx—x'|*

(8)
with z’ not necessarily equal to z. Note that the expo-
nent « must be the same as before, since

1 - -
LWJ dPxdPx'C,(x,t;x",t)=W?(L,t)~L?*“

(r>L7). (9)

The key idea behind the traditional derivation of G and
7 in Eq. (1) is the identification of the symmetries and
conservation laws of the system (Kardar, 1994). The de-
terministic term G is expanded in powers and combina-
tions of the & field, such that the relevant (in the
renormalization-group sense) lowest-order terms that
are consistent with the symmetries and conservation
laws are retained. The lowest-order contribution is a
constant G, which can always be set to zero by the
transformation 2—h + Gyt. This amounts to the use of a
reference frame that co-moves with the interface. Sym-
metries that need to be considered include invariance
under translation in time and space, and, along the
growth direction, rotational and inversion symmetry
about the growth direction. For example, translational
invariance in the growth direction, which holds in most
practical cases, rules out terms proportional to powers of

h. An explicit dependence of G on time or position x
contradicts time or space translational invariance, which
usually holds, and can therefore be neglected. In addi-
tion it is helpful to classify terms which might occur in
the expansion into two categories: those which conserve
the number of particles and those which do not. To de-
rive the equation of growth for a conservative dynamics,
the key observation (Villain, 1991; Kardar, 1994) is that
the deterministic part must have the form of a continuity
equation,

h(x,1)
a

—V-j(x,0), (10)

where the macroscopic current f (f ,t) describes the flux
of atoms on the surface. The current arises in general

from differences in the local chemical potential w(x,t).
The relation between j(x,7) and u(x,1),
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jer==Vu(x,0, (11)

describes the fact that atoms drift to regions of minimum
chemical potential. The simplest source of chemical po-
tential, gravitational energy with u o« 4, led Edwards and
Wilkinson (EW) (1982) to formulate the equation

oh(x,1)

= vV2h(x,t)+ n(x,1). (12)

(p(x,0)p(x'1"))=2D8"(x—x")8(t—1'),

(n(x.0)n(x"1"))y=(=D V2 +D,V*) P (x—x")8(1~1"),

We shall not consider the case where the statistics of 7 is
not Gaussian (see, e.g., Zhang 1990, and Horvath et al.,
1991; Krug, 1991; Lam and Sander, 1993) or where it is
long-range correlated in space or in time (see Medina
et al., 1989; Peng et al., 1991; Lam et al., 1992).

Usually the effect of gravity on deposition processes is
totally negligible with respect to other effects. However,
the Edwards—Wilkinson equation also applies to other
situations, for example, to the case where atoms are al-
lowed to evaporate from the surface. This effect, which
does not conserve the number of particles, is neverthe-
less described by a term, v¥V2A, in the growth equation.
We repeat here the derivation given by Villain (1991).
In general, if the deterministic growth term G describes
dynamics that minimizes a potential V[A] [which is a

functional of the interface configuration A (x,r)], it will
have the form
oV (h)
v - )
Oh(x,t)

(15)

where &/ 5h()z,t) denotes a functional derivative. The
effect of evaporation is to minimize the surface area.
Since the excess surface area due to roughness is given,
in a small-gradient expansion, by V[h]=[d%x(Vh)?
(Bruinsma and Aeppli, 1984), Eq. (15) directly gives the
first term on the right-hand side of Eq. (12). It is inter-
esting to note already how a relevant feature of the pro-
cess, i.e., whether the number of particles is conserved
or not, is lost in the small-gradient expansion of the
growth equation. A derivation of the growth equation
from the R-invariance principle avoids such ambiguities.

Let us return to conservative equations and look for
the simplest equation one gets by neglecting gravity.
From the above discussion, it is natural to expect that
the next term in the expansion of the chemical potential
will be a term proportional to the local curvature,
wxV2h. This term, via Egs. (10) and (11), will favor
again a flux of particles away from the local maxima
towards the local minima. Hereafter the resulting relax-
ation mechanism will be called surface diffusion (Villain,
1991; Siegert and Plischke, 1992, 1994; Das Sarma et al.,
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The noise here arises due to the stochastic nature of the
incoming flux of atoms, and, as such, it is nonconserva-
tive. The noise can also result from the probabilistic na-
ture of the diffusion process on the surface or from ther-
mal fluctuations. In the latter cases, the number of atoms
on the surface remains the same, and the noise will be
called conservative. The noise correlation functions are
different in the two cases and are given by

nonconservative, and (13)

conservative. (14)

1996). Since this dynamics constrains the atoms to stay
on the surface, this relaxation will be much slower than
the one provided by evaporation. The resulting linear
equation is

Oh(X,1)
ot

= —kV*h(x,0)+ 5(x,10), (16)

and the same considerations discussed previously apply
to the noise term here. The two equations can be com-
bined into one that accounts both for gravity and surface
diffusion. In experimental situations of MBE, however,
the typical coefficients v and « are such that the effects
of gravity are relevant only on length scales much bigger
than the typical sample size. Note that, while rotational
invariance in the substrate plane is satisfied by these
terms, the full space-rotational invariance is lost. This is
a consequence of the small-gradient expansion in #,
rather than a physical characteristic of the processes. For
example, atoms diffuse on the interface irrespective of
the direction we assign to the Z axis. Again, we will re-
cover the full space-rotational invariance and distinguish
terms that satisfy this symmetry and those that do not,
once the R-invariant form of the equation is derived.

Introducing the lowest-order nonlinear term which
one could include in G leads to the Kardar-Parisi-Zhang
(KPZ) equation (Kardar et al., 1986),

Oh(x,1)

R N - R
gy =vV2h(x,t)+E(Vh)z—kn(x,t). (17)

Here the mechanism of relaxation of surface fluctuations
is the same as that of the EW equation (12). The origin
of the nonlinear term lies in the driving force of the
deposition process that is perpendicular to the interface
(or lateral growth in the discrete ballistic deposition
model). (For a review of ballistic deposition, see Meakin
(1993). See also Ko and Seno (1994) for an off-lattice
simulation.) While the simplest growth term, a constant
G, can be eliminated by choosing a co-moving frame on
the interface (see above), the nonlinear term of the KPZ
equation cannot. The resulting dynamical process is in-
trinsically irreversible. Interesting generalizations of the
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KPZ equation to a multicomponent model have been
studied by Doherty et al. (1994).

Among the notable properties of the KPZ equation
are its relations to a large number of other problems,
including the statistics of directed polymers in random
media (Kardar and Zhang, 1987; Fisher and Huse, 1991;
Kim et al., 1991; Halpin-Healy and Zhang, 1995) and the
Burgers equation for fluid dynamics (Forster et al.,
1977). The Galilean invariance in the latter problem has
profound consequences on the properties of the KPZ
equation and leads to the exponent identity z +a=2
(Forster et al., 1977; Meakin, Ramanlal, et al., 1986). This
invariance translates the problem of interface growth
into an invariance of the equation for an infinitesimal tilt
of the substrate plane. This invariance can be seen as a
remnant of the full (D +1)-dimensional rotational in-
variance of a growth process occurring in the direction
normal to the interface. This feature can be fully appre-
ciated in the R-invariant form (Maritan et al., 1992) of
the equation, which describes an isotropic growth pro-
cess driven by a pressure or occurring from the conden-
sation of a vapor. In the gradient expansion leading to
Eq. (17), rotational invariance is retained only for infini-
tesimal transformations. However, as we shall see, there
are other mechanisms, which are not rotationally invari-
ant, that lead to a growth equation of the form of Eq.
(17) in the small-gradient expansion.

Note that in the KPZ equation the #— —h symmetry
is broken: there is a definite growth direction. Also, the
KPZ equation describes processes in which the number

of particles is not conserved. The (Vh)? term cannot
appear in a situation, such as MBE, where conservation
of the number of particles on the interface is expected to
hold.

One may invoke dynamic scaling to show that, in gen-
eral, an equation of the type

oh
—r = (DKL (V) h+

with
(n(x,0)n(x',t"))=2DT,, 8" (x—x")8(t—1"),

where m takes on the two values 0 or 1 with I'y=1 and
I'y=—V?2, has the exponents

2(n—m)—D
—2 .

Thus, for the Edwards—Wilkinson model (Eq. 12) and
for Eq. (16), one obtains (m=0 in both cases)

2D, L LAD
a=—— and z=4, a=——,

z=2n and a=

respectively. The situation with <0 corresponds to
W(t—o,L)~const (=0 leads to logarithmic correc-
tions). Since the continuum equation was derived in a
power series of gradients of 4 with only the linear term
being retained, the result «=1 is a matter of concern,
since local slopes on a distance of order / scale as
|[Vh|~1%"1. This suggests that neglected nonlinear terms
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need to be considered as well [for a discussion on self-
similar («=1) and self-affine surfaces, see Mandelbrot,
1986 and Meakin, Coniglio, et al. (1986)]. The require-
ments that the basic symmetries be obeyed and that, in
the surface diffusion dominated regime, the continuity
equation (10) be satisfied lead to [Lai and Das Sarma
(1991)]

Oh(X,1)

= vW2h(x,t)— kV*h(x,t)+ N, VZ(Vh)?

+N,V[VA(VR)2]+ 9(x,0), (18)

in which all the terms up to fourth order in the gradient
expansion of 4 have been retained. Physically, v is set to
zero since it arises from a gravitylike chemical potential,
which, as mentioned above and as we will discuss below,
is negligible. The requirement that the surface current

J results from a chemical potential would rule out the
N\, term, even though this term is more relevant, from a
renormalization-group point of view, than the \; term.
It will be clear from the R-invariant form of the equa-
tion that \; arises from the second order term in an
expansion of a gravity or a surface-tension term. It
is interesting to note that recently (Das Sarma and
Kotlyar, 1994; Kim and Das Sarma, 1995) it has been
proved that, even if the coefficient of the Laplacian is
zero in the starting equation, a »>0 is generated under
renormalization by the \, term, leading ultimately to the
EW behavior for surface fluctuations.

Recently, Vvedensky et al. (1993) have derived a mas-
ter equation for surface dynamics based on a micro-
scopic solid-on-solid model that includes deposition, de-
sorption, and diffusion. In the continuum limit, the
growth equation [(18)] is obtained—desorption leads to
nonzero v and N\ values while surface diffusion produces
the k term.

Similar considerations have been used to derive
growth equations for interfaces in a disordered medium
(Jiang and Hentschel, 1992; Nattermann et al., 1992; Pa-
risi, 1992; Koplik and Levine, 1985; Jensen and Procac-
cia, 1991; Sneppen, 1992; Nolle et al., 1993; Olami et al.,
1994; Galluccio and Zhang, 1995), such as domain walls
in random-field Ising models (Nattermann, 1985; Fisher,
1986; Ji and Robbins, 1991; Narayan and Fisher, 1993)
and the invasion of one fluid into another within a
porous medium (Nittmann et al., 1985; Stokes et al.,
1988; Buldyrev et al., 1992; He et al., 1992; Tang and
Leschhorn, 1992, 1993; Leschhorn, 1993; Delker et al.,
1996). The disorder serves to pin parts of the interface.
This feature is captured by replacing the thermal noise
with a quenched random noise generated by the disor-

der 7(x,h) governed by correlations of the form
(n(x.h)p(x",h")=2Do8"(x=x")A(h=h"), (19)

where (- - -) represents an average over different realiza-
tions of the randomness and the function A character-
izes the nature of the quenched disorder. It is important
to note that disorder will break the translational invari-
ance in the £ direction. Hence a constant G term can
no longer be eliminated by choosing the co-moving
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frame, since, under the transformation Ah(X,t)
—h(x,t)+Gt, it will reappear in the argument of the
noise n(x,h)— n(x£,h+Gyt). Here, G plays the role of
the driving force: for small G the interface will eventu-
ally find a surface where the values of the pinning forces
are strong enough to inhibit further growth. In contrast,
if G is very large, A in the argument of the noise in the
co-moving frame can be neglected with respect to G,
and one expects to recover the behavior of the
corresponding dynamics without disorder, i.e.,
A(h—h'")«8(t—1t"). In practice the interface will move
fast enough to sample enough values of the disorder in a
small time interval, so that the overall effect is that of a
time-dependent noise with correlations of the form of
Eq. (13). Henceforth, we shall not deal with surface
growth in disordered media (for a good review, see
Barabasi and Stanley, 1995).

lll. REPARAMETRIZATION INVARIANCE AND EQUATIONS
FOR THE GROWTH OF SURFACES

The most general Langevin equation for the evolution
of a surface in a (D +1)-dimensional space has the form

0,7(s,t) =1 (s,0)GLF(s,1)]+ F(s,1), (20)

where the (D +1)-dimensional vector 7(s,t)
={r,(s,0)}2*] runs over the surface as s={s"}” |, var-
ies in a parameter space. (See Appendix A for a brief
summary of the elements of differential geometry.) In
Eq. (20) n stands for the versor normal to the surface at
7, while G contains a deterministic growth mechanism

that causes growth along the normal 7 to the surface and

is a functional of 7 itself. F is a random force acting on
the surface. Equation (20) derives from Newton’s laws
in the limit of a massless surface, where the inertial term
(9?7 can be ignored with respect to the dissipative force.
Note that the time derivative of 7 has to be parallel to
the normal to the surface. This is because r=s" can be
regarded as the D + 1th coordinate, and (s,s") is a cur-
vilinear coordinate system. If the growing surface in-
vades the (D +1)-dimensional space, this parametriza-
tion is legitimate, since the metric tensor is positive
definite. However, s° is the absolute time, and changes
of parametrization cannot involve this variable. This re-
quires that g,;=d,7-9;7/=0Vi, which implies that
d,7Lg;F for all i=1,...,D, and therefore J,7||n.
Independent of the physical mechanisms entering the
various terms of Eq. (20), which specify the form of G

and the properties of F, this equation has to satisfy the
fundamental requirement of reparametrization invari-
ance (R invariance). R invariance requires that only
quantities that are independent of the choice of the pa-
rametrization s, such as those referring to the local ge-
ometry of the surface, like the curvature, can appear in
the equation. As with any other symmetry, reparametri-
zation invariance poses constraints on the possible forms
that Eq. (20) can take.
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It will be convenient to express the deterministic part
of Eq. (20), as well as the noise, as a sum of different
terms,

G=G,+ Gyt

The derivation of the equation can then be split into
derivations of the individual terms that are expected to
appear in a given physical system.

It is often convenient and sufficient to describe the
interface in the Monge form, i.e., with 7= (x,h(x)).
Henceforth, at variance with Sec. II, we will use the no-
tation x instead of X to stress that the Monge form is one
of the many parametrizations one can use. /(x) is the
coordinate in the direction normal to the substrate, and,
since it must be a single valued function of x, the inter-
face cannot have overhangs. In this form Eq. (20) be-
comes

ah(x,0)=\g(G+ n), (21)

where g=1+ (Vh)? is the determinant of the metric ten-
sor and the relation 7= (—Vh,1)/\/g has been used (see
Appendix A). G and 5=F-#, as before, are the ampli-
tude of the deterministic force and the noise in the nor-
mal direction, respectively [note that 9,4 (x,r)/\/g is the
normal velocity 7n-d,F/—this is easy to prove using Eq.
(A14)]. The discussion of the noise term is presented in
Sec. III B.

and F=Fa+}7“b+-~.

A. Deterministic evolution

As stressed before, reparametrization invariance re-
quires that G depends only on intrinsic geometric prop-
erties of the interface such as the mean curvature H or,
when G is not rotationally invariant, on scalar products
of the normal 7 with some fixed vector o.

The physical meaning of G is particularly evident for
the case in which it can be derived from a potential:

57 (.0 1 SH[F(s)] 22)
r(S,0)|get= " 7— oz >
T

where H is an R-invariant functional of 7. The 1/\/g term
in Eq. (22) appears since

1 ofis)  Sls—s")
Vg(s) 9f(8)  g(s)

is the R-invariant Dirac’s delta function (see Appendix
A). In this case, the dynamics tends to minimize the
potential energy H of the surface. Moreover, if the ran-
dom force is properly chosen (this will be discussed in
Sec. IIL.B.), i.e., if it is not conservative, the system ap-
proaches a steady state whose distribution of 7 is given
by exp{—BH|[7]}, where B is related to the correlations
of the noise (Hohenberg and Halperin, 1977).

The R-invariance of H guarantees that the functional
derivative in Eq. (22) is a vector parallel to the normal
as required by Eq. (20), and the 1/\/g factor guarantees
R invariance of the functional derivative. Indeed R in-
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variance of H implies that H[7(s')]=H[7(s)] for any

reparametrization s’(s). For an infinitesimal transfor-

mation s’ =s + €(s),
F(s)=F(s")=F(s) + &(s) 97(s) + O(&),

so that

oH

or(s)
Since ¢,F is a vector in the tangent plane of the surface,
the second term in this equation vanishes for any func-
tion € only if the functional derivative is parallel to the
normal 7.

In the Monge form, if G derives from a potential H,
we find (see Appendix B)

1 oM oM
TR e

HF(s')]=H[F(s)]+ f dPsé€(s)d;F(s)-

(23)

We now proceed to consider the simplest possible
terms that can appear in Eq. (20). We first give the ex-
pression in a general parametrization and then discuss
the Monge form and the expansion in small gradients of
h(x,t).

1. Surface tension

The simplest physically motivated term in the Hamil-
tonian of a surface is proportional to the total area
A= [dPs /g and produces a force that tends to minimize
the surface area. This term is usually associated with
surface tension. The functional derivative yields (see
Appendix C)

1 & f 1 -
————| dPs\g=—9, 19)r(s)=AF(s),
7 7 Vg % (Vgg"9)7(s)= AF(s)
(24)
where A is the Beltrami-Laplace operator defined in
Eq. (A4). For H,=v,A, using Eq. (A7), one obtains:

Gi=vi-Ar=v.H, (25)

where H is the mean curvature.

Using Eqs. (23), (25), and H,=v,fdPx\1+(Vh)Z,
one finds, in a small-gradient expansion in the Monge
parametrization [Eq. (21)],

Vh 1
V8G=v,gV- === Vs[Vzh(J_CJH‘E V2h(Yh)?
8

7
1
_Ez.mh(z;z)zhm]. (26)

The main physical mechanism that produces a term
like this is evaporation. Following Villain (1991) we ob-
serve that the evaporation rate will be proportional to
the difference between the chemical potential of the
solid u, and the vapor u,. On the surface the former
will depend on the local geometry, and hence
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We can then expand u, in powers of the local curvature.
Along with the zero-order term, corresponding to the
chemical potential for a flat surface, there will appear a

term proportional to the curvature H as in the right-
hand side of Eq. (25).

2. Pressure

The second-simplest geometrical property on which
H may depend is the volume enclosed by
the  surface, which may be  written as
V=(D+1)"fdPs\Jg(s)7(s)-A(s). A linear depen-
dence of H on the volume physically represents a pres-
sure term. If H,=— AV, the pressure A>0 encourages an
increase in the volume, while, if A<<0, the force in Eq.
(22) acts to deflate the volume. The infinitesimal volume
variation on the surface element do=d’s /g is given by
don - 67, so the functional derivative of H, in Eq. (22)
gives

. 1 oK, 7

G,=—n- \/—(EW—?\ (27)
which in the Monge form becomes

V8G,=Mg=N[1+5(Yh)*+---]. (28)

Equation (20) with G=G,+G, is one of the
R-invariant forms (Maritan et al., 1992) of the KPZ
equation,

7 (s.0)|gee= A (v HAN), (29)
which in the Monge representation is given by

Vh
Ve

Indeed, to lowest order in the gradient expansion, Eq.
(17) is recovered (apart from the constant term \, which
can be absorbed by redefining #— A+ \t). The complete
R-invariant KPZ equation derives from the Hamiltonian

Ih(x,1)|ger= v VgV - ==+ Vg. (30)

H,,= f dPx(v\g—N\h), (31)

which, however, is unbounded as #—o. Thus, even with
a suitable noise term, Eq. (30) does not have
exp(—BH,,,) as the equilibrium distribution of 4. This

is not surprising and is related to the presence of a pres-
sure that makes the system grow forever. In a sense, the
interface growth is intrinsically irreversible. Note that
N\ couples only to the k=0 mode of & in a Fourier ex-
pansion. This would suggest that steady-state correlation
functions, such as ([h(x)—h(y)]?), are independent of
\. A derivation of the KPZ equation from the functional
derivative of a free energy with a volume and a surface
term was also obtained by Grossmann ef al. (1991) in a
more complex way. An alternative derivation was also
given in Keblinski ef al. (1996).
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3. Curvature energy

The potential H may also depend on the curvature
H of the interface. In general, this dependence can be
expressed in a power-series expansion (the zeroth-order
term has already been considered in Sec. I111.A.1.)

HCZJ dDS\/g(KlH-i- ko H?+ - - D=Heg+Hept -
(32)

The physics behind the first term reflects the difference
in the mechanical properties of the media divided by the
interface. Indeed, for «;>0, large negative curvatures
are encouraged while positive ones are depressed. The
functional derivative is carried out in Appendix D with
the result

D
gclz—iﬁ-m—f’lle(Hz—Z x%), (33)
’ N =1
where \; are the eigenvalues of the matrix of the coeffi-
cients of the second fundamental form and express the
principal curvatures of the surface. Since H=\; in
D=1, G, vanishes. This is a consequence of the Gauss-
Bonnet theorem, which states that the integral of the
Gaussian curvature K on a closed surface is a constant.
Since H=K in D=1, the variation of H, ; is zero.
In terms of h(x), Eq. (33) takes the form

VgGe1= | (V2h)?— 2 (Gi0h)2+ - - . (34)
In the small-gradient expansion no linear term in A
arises. The curvature term, as expected, breaks the sym-
metry A— —h in the growth equation.

Similarly, higher powers of H are easily worked out
(see Appendix D). For the pth term in Eq. (32) we find

1 . 6H,,
g(;’p:——n. 5_)
\@ 7
D
=K, bu’“—pgm*l—phﬂ’*i:}‘,l AL (35)

This equation generalizes Eq. (25), which is the p=0
case, and Eq. (33) with p =1. The effect of these terms is
more transparent in the Monge parametrization. Of par-
ticular interest is the x, term in the expansion of the
curvature potential,

VgGer=—21(V)) 2+ - - -. (36)

4. Rotational invariance

All the G’s we have considered so far are invariant
under rotations in the D +1 space. This implies (unless
the noise term breaks this invariance) that the evolution
equation in the form of Eq. (21) is invariant under the

following (infinitesimal) symmetry transformations,
x'=x—¢€h(x,1)

and
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h'(x",;t)=h(x,t)+ € x.

Indeed, it is straightforward to verify that the normal
velocities d,h(x,t)/\g(x,t) and d,h'(x',t)/\g'(x't) are
equal.

In the small-gradient expansion of Eq. (30), Eq. (17)
is obtained after redefining A—h+\f. As a conse-
quence, the above symmetry transformations become

x'=x—e\t
and
h'(x".;t)y=h(x,t)+ € x.

where — eh(x,t) has been omitted in the first equation,
since it contributes only to the higher-order powers ne-
glected in Eq. (30). These symmetry transformations are
exact for the KPZ equation and can also be deduced
from the Galilean invariance of the related Burgers’
equation (Forster et al., 1977; Halpin-Healy and Zhang,
1995).

5. External potentials

In the presence of an external potential, H depends
explicitly on 7. The simplest example is that of a gravi-
tational field. The variation dH, of the gravitational en-
ergy, when 7— 7+ &F, is proportional to the variation of
the mass pds\/gn - 57 (p is the mass density) multiplied
by the acceleration a, of the gravitational field and the
“height” Z-7, where Z is the direction of the gravita-
tional field. Then,

wgzvgf dPs\[g(7-2)ii- o7, (37)

where v,=pa, . It is easy to see that such a term breaks
translational invariance, i.e., the growth equation
changes if 7(s)—7(s)+7,. This generally applies to any
potential V(7) for which H=[dPs\gV(7), unless
V(F)=v,, which yields a surface-tension term (see Sec.
III A.1.), or V(¥)=—\n-7/(D+1), which is the case of
a pressure potential dealt with in Sec. III A.2. Since
translational invariance is expected to hold, these terms
are not considered. In the Monge parametrization, the
gravitational energy, which is proportional to
fdPxh?(x),leads to a linear term in 4 in the equation of
motion.

6. Orientational energy

The simplest translational-invariant term that breaks
rotational invariance results from considering a poten-
tial that depends on the local orientation of the surface:

H,=— f dPs\gx(n.), (38)

where n,=n-z, z is some fixed direction in the
(D +1)-dimensional space and y(x) is a generic func-
tion. Such a term would result, for example, by imposing
a constraint on the slopes of the surface with respect to
a reference substrate plane. This is often realized in re-
stricted solid-on-solid (RSOS) models for interface
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growth (Kim and Kosterlitz, 1989). These are lattice
models in which the height of the surface above the ref-
erence plane at two neighboring sites can differ only by
a discrete number of units, for example, £1. The effect
of such a constraint propagates at distances larger than
the lattice spacing by discouraging configurations with
large slopes (in view of their low ‘“‘entropic” weight).
Hence, at a coarse-grained level, the effect of the con-
straint can be expressed by a term derived from Eq. (38)
in a continuum description. The functional derivative of
Eq. (38) is performed in detail in Appendix E with the
result

1 . oH, dx(n,)
N T
d’x(n;) . .
+sz—o’?‘(z-7)ﬁinz. (39)
z

The first term in Eq. (39) is the one we would obtain
by assuming that d”s\/g#i - Z, the projection of an infini-
tesimal area onto the substrate plane, does not change
under the transformation 7—7+ 67. In the Monge pa-
rametrization [see Eq. (E6)] the growth equation be-
comes (n,=1/\g)

Vh dx(n;)
azh:\/ggz:\/gz Tg) n; an _X(nz))
d*x(n;) Vai-¥v 1
dn, g Vg
=(x;—x)[V*h+5V*h(Vh)*]
+3(x=x1— XDV A(VR))+ -, (40)

where the last line contains a small-gradient expansion
with x;=x(1),x;=dx(x)/dx|.-1, etc. Note that, even
though the first two terms in Eq. (40) are the same as
those in Eq. (26) for the surface tension, the latter equa-
tion is rotationally invariant while the former is not, due
to the presence of the other terms in Eq. (40). Equation
(40) also implies that the linear relaxation of the inter-
face (via the term V?2h) is related to the behavior of
x(n;) near n,=1. From our previous discussion, one
expects that the effect of the constraint in RSOS models
is negligible on flat regions, i.e., x;=0. It is also reason-
able to assume that y(#n,) is an increasing function of
n, that attains its maximum at n,=1. This would indeed
favor flat regions over inclined ones and would lead to a
positive coefficient, y; — x>0, in Eq. (40).

In principle one cannot exclude situations in which
X1~ x1<0. This would lead to a linear instability in the
growth equation of the same form as the one which has
been invoked by Mazor et al. (1988) to describe the co-
lumnar morphology of thin films (see below).

It is interesting to note that in D=1 the two nonlinear
terms in  Eq. (40) have the same form
[=(dhl/dx)*d*h/dx?] and the coefficient x;—x|—3x]
may assume both positive and negative values, while
X1— x1 remains greater than zero.
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Here and in the following, if not stated otherwise, we
assume that the direction Z is the same as that along
which /4 is measured. The case in which a different di-
rection is singled out can be dealt with similarly. A spe-
cific example of this will be discussed in the next section.

7. The flux of particles and geometric effects

Apart from forces that can be derived from a Hamil-
tonian, effective forces resulting from purely geometri-
cal effects may also appear in Eq. (20). The simplest
such nonconservative term derives from a flux of par-

ticles with velocity ® that reaches the surface and sticks
to it. The external flux of incoming particles is the basic
source of nonconservative noise in interface growth. For
this reason, we consider here only the effect of the av-

erage flux J=(®). The fluctuation term F=® —J will be
the subject of Sec. II1 B. The growth rate G, produced by

Jis proportional to the flux of J through the surface and
is exactly a measure of how many particles have been
added to the surface:

G=—n-J=Jn,, (41)

where 7, is the component of 7 in the —J direction,

J=|J|, and the negative sign recalls that 7 and J have
opposite directions. When growth occurs from a vapor,
the average of @ at the position 7 of the interface is
proportional to the normal 7 at 7, i.e., (CIS)= —\n, im-
plying Gy, =\. Thus growth in the presence of vapor has
the same effect as the pressure term in Sec. 2. On the
contrary, when particles arrive at the surface in a colli-
mated beam, this term can be eliminated by a Galilean
transformation. Indeed, in the framework of Monge pa-
rametrization one gets

ih|nux=gG=—J.+J,-Vh, (42)

with J, being the projection of J on the substrate plane.
The first term is absorbed into d,/ by the transformation
h—h—J,t, while the second disappears once
x—x+J,t.

Let us return to the height constraint used in some
discrete lattice models of the growth of interfaces. Apart
from producing a surface tension term, the constraint
also has an effect on the flux term. Let us consider a
vertical flux J||Z for simplicity (J, =0). On a microscopic
scale, deposition can only occur at local minima of the
discretized surface. In a coarse-grained picture, minima
are rare on steep portions of the interface and deposi-
tion would be less probable there. In other words, the
constraint should reduce the flux d ¢=n,dPs\/g through
the infinitesimal surface element dPs\fg, if n j=n, is
small. This is easily accounted for by multiplying Eq.
(41) by an increasing function of n,,Y (n,), which leads
to

gJ:anY(nz)' (43)

In the small-gradient expansion in /4, this term produces
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the nonlinear term of the KPZ equation for any choice
of the function Y (x), provided it is increasing. Indeed, if

J||Z, one has
3rh|ﬂux=1\/§nzY(nz)=JY[1—(zh)2/2+ ),

which, in a Taylor expansion, contains the nonlinear
term of the KPZ equation with a negative . This result
was also found by other means (Krug, 1989; Tang et al.,
1992). The effect of a constraint on height differences
thus produces both the surface tension, as seen in the
previous section, and the nonlinear term of the KPZ
equation.

Of course the applicability of Eq. (43) extends to any
situation where the probability for an incoming particle
to stick on the surface depends on the local inclination
of the surface. This can also account for the relation
between the ballistic deposition model and the KPZ
equation. In this model (Meakin, Ramanlal, et al. 1986),
particles travel in a straight line and attach at the first
site they reach in their trajectories that has a nearest
neighbor surface site. The result of this mechanism is a
noncompact cluster with a fixed density. Even though
overhangs are present in the surface, the description of
the process in terms of a single-valued function 4 (x,t) is
possible, at a mesoscopic level, by considering /(x,t) as
the z coordinate of the highest occupied site for each
x. An incoming particle may either stick at the surface
or penetrate into the voids of the structure. In the latter
case, the deposition process will not result in an increase
of h(x,t). Particles that arrive on a flat portion of the
interface have a higher probability of penetrating into
the structure than those arriving on steep ones. This
situation would also be modeled by Eq. (43), with a
function Y (n,), that, in contrast to the previous case,
should now be a decreasing function of 7, ; in the small-
gradient expansion, this would finally result in a nonlin-
ear term of the KPZ type with a positive coefficient A.

The flux term produces another interesting effect in
situations where the atoms cannot be approximated as
point particles. Mazor et al. (1988) have shown that the
finite size of particles plays an important role in MBE
experiments in which thin films are grown at intermedi-
ate temperatures. The basic observation is that, if the
atoms have a radius &, deposition does not actually oc-
cur on the surface but at a distance ¢ from it in the
normal direction. The growth rate is then proportional
to the flux of the beam through a surface
7'(s)=F(s)+ &n that is displaced by an amount & in the
normal direction from the actual surface. The growth
rate on a surface element do=d"s /g is proportional to
the flux d¢=—fz'-f\/?st of J through the surface
7'. Here the primes refer to the displaced surface. Since
n'=n, the only effect comes through the g factor. The
metric tensor g'; is obtained by observing that
o;r'=9;r+&dn, so that g'y=0,;7" 97 =g;—2&b;;
+0( &%) [see Appendix A, especially Eq. (A5)]. Evalu-
ating the determinant of g’;;, we find that Eq. (41) has
to be modified to

ij»
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dp . - |g’
QJ'ZQJ‘i”gg:%:—n.J i
=—A-J(1-EH)+O0(&). (44)
In the equation for A (x,t) a term,
Vh
VgGi=—vV=—==—vV2h+- -, (45)

s

must be included in the growth equation, with J|Z and
ve=J§, which is positive. Thus the finite size of the in-
cident particles gives rise to an effective antidiffusive
behavior in the growth equation.

An interesting extension of the results of this section
arises when considering a beam of particles that is not
perpendicular to the substrate. This setting has also been
considered by Meakin (1988b) and Krug and Meakin
(1989, 1991) for ballistic deposition processes. In this
situation one generally expects that a coupling between
the interface fluctuations and the flux term arises. Let us
consider, for example, how an oblique flux modifies the
effect of the nonzero radius of particles just discussed. It
is straightforward to derive the small-gradient expansion
of Eq. (44) in the case J=(J, ,J .), where the z direction
is normal to the substrate:

VgGe=J.~J, -Vh—&I V?h+ &, - VRV h+ - - -

(46)
As already mentioned, the first two terms are eliminated
by an appropriate choice of the reference frame. The
third term in Eq. (46) has just been discussed. The last
one is new, and it represents the coupling of interface
fluctuations with the transverse component of the ob-
lique flux. It has been argued by Marsili et al. (1996),
applying dynamical renormalization-group techniques
(see, e.g., Ma and Mazenko, 1975; Forster et al., 1977,
Frey and Tauber, 1994) that this term, in competition
with surface diffusion, is responsible for a new scaling
behavior of interface fluctuations at intermediate scales.
This approach predicts a roughness exponent a=1/3
that is in very good agreement with experiments of
MBE, where a value @=0.30-0.33 was measured (Her-
rasti et al., 1992; Salvarezza et al., 1992).

One can imagine other effects arising from an inclined
flux. For example, if J, #0, a new term would also arise
from the effect of a constraint on height differences
on the flux term described in Eq. (43). Indeed,
if A-J=n,J,+n,-J,, one would expect a term
(J.-Vh)(Vh)? in the gradient expansion. Common wis-
dom (i.e., power counting), however, suggests that this
term will not modify the leading-order scaling behavior
of interface fluctuations in the presence of the KPZ non-
linearity (V)2

8. Surface diffusion

In cases in which the binding energy of particles on
the surface is large compared to thermal-energy fluctua-
tions, the motion of the particles is constrained to be
along the surface. This is actually the case in many ex-
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perimental realizations of MBE. A force acting in a di-
rection normal to the surface cannot displace the par-
ticles. Its effect is to change the local chemical potential
. Differences in chemical potential on the surface, in
turn, produce a current proportional to the gradient of
p on the surface (Villain, 1991). The evolution of the
surface is governed by the continuity equation relating
the particle density p and this current d,p%n-d,7. This
yields the left-hand side of Eq. (20), while the diver-
gence of the current gives the right-hand side.

The mathematical translation of this argument is as
follows. The constraint that the motion of particles oc-
curs on the surface implies that the volume V it encloses
cannot change. Since

av—de id 9,
V=] S S AT

:f dPs\gh-[AG+ E(x,0], (47)

the condition J,V=0 for the deterministic part of Eq.
(20) implies

a,V=0¢ f dPs\gG=0. (48)

A sufficient condition for this to hold is
g=—AF=-divg (49)

In other words volume conservation requires G to be the
(covariant) divergence of a (contravariant) current J'
[see Eq. A3]. Here J is the surface current of particles,
and F is proportional to the chemical potential. This
relaxation mechanism is known as surface diffusion. If
this force F derives from a potential, then

1 F Lo (50)
nfF=—-—-—-.
Jg oF
In the previous section we derived forces coming from
easily modeled contributions to the potential energy of
an interface. It is straightforward to find the appropriate
G ¢ term in the equation for d,7 under surface diffusion
by applying the Beltrami-Laplace operator to these pre-
viously derived terms. In the Monge form the term ap-
pearing in Eq. (21) has the form
oH
\/EQCZ—\/(EA]::\/gég—h, (1)

where the second equality holds for growth mechanisms
that can be derived from a potential (using the result of
Appendix B). When surface diffusion occurs to mini-
mize the surface area, the corresponding term in Eq.
(20) reads

ggz_ﬂsé(ﬁ'AF)Z_MsAH' (52)
This follows from the two previous equations and Eq.
(25). This term has been widely used in numerical and

analytical studies (Mazor ef al, 1988; Golubovi¢ and
Karunasiri, 1991; Siegert and Plischke, 1992; Sun and
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Plischke, 1993; Sun and Plischke, 1994a, 1994b). Its ex-
pression, in terms of 4 (x,t), is

vh
Vggs = —p,JgAV- 5 —u(VPht - (53)

A pressure term does not produce any surface diffu-
sion, since surface diffusion entails the conservation of
the volume. External potentials that depend on 7 can
produce surface diffusion. In the simplest case of the
gravitational potential (along the Z direction) we have

G =v,Z-iiH, (54)

where v,=pa, is the mass density times the gravita-
tional acceleration. The explicit 7 - Z factor indicates that
this term breaks rotational invariance. G¢ has the same
form as G; in Eqs. (44) and (45) but has the opposite
sign. In actual experimental situations, however, the
gravitational energy is negligible with respect to the
binding energy. It can be estimated, for example, that in
MBE growth of thin films v, is of the order of 107 of
the corresponding coefficient in the G, term. However,
terms of the form

Vh
V8G, =v Vg Ah=v, Y —==v,V2h+. .. (55)
Vg
with a positive v, have often been used in recent publi-
cations (see, e.g., Golubovi¢ and Karunasiri, 1991). This
is principally justified by renormalization-group consid-
erations. Even if this term is not present at a microscopic
level, it may be generated in the iteration of the
renormalization-group equations from the nonlinear
terms.

Surface diffusion can also be induced by a curvature-
dependent Hamiltonian or by orientation-dependent po-
tentials in the same manner. The explicit expression is
simply given by that for the nonconserved case with the
additional Beltrami-Laplace operator.

B. Stochastic evolution

As already mentioned, the principal source of ran-
domness in interface growth comes from a flux of par-
ticles that deposit on the surface. Another kind of noise
is produced by thermal fluctuations of the surface. The
main difference is that the latter conserves the total vol-
ume enclosed by the surface. As discussed previously,

the random force F=n 7 is in the normal direction, and
we can take (7)=0. The properties of z will now be
discussed for the two different cases of nonconservative
and conservative noise. Our main concern is the correla-
tor (n(s,)7(s',t")). In cases when the statistics of the
noise is Gaussian, as is almost always assumed, this cor-
relator specifies the entire distribution of #(s,t). [Non-
Gaussian statistics for the noise, especially with long
tails, has been shown by Zhang (1990) and Krug (1991)
to affect the scaling properties of the interface.]

1. Nonconservative noise

For a flux of particles arriving at the surface with ve-
locity @, the noise term is given by n=5-F, where
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F=®—] and J=(®). It describes the fluctuation in the
number of particles arriving at the surface. The correla-
tor of 7 is then given by

(n(s,0)n(s" 1)) =n,(s,00ng(s" t" )(F(s,t)FE(s" "))

S(s—s")
Vg
X8(t—t'). (56)

=n,(s,0)ng(s’' t" ) [P

Here we choose F to be delta correlated both in space
and time. The more general choice of

(F(s,0)FF(s' t"))=T*FC(s—s',t—1"),

where C(s,t) is a R-invariant function, involves no fur-
ther complication, so we will use the explicit expression
of Eq. (56). The coefficients I'*? are symmetric in the
indices and specify the geometric properties of the noise.
We may distinguish two extreme cases: (i) deposition
processes that occur from the condensation of an isotro-
pic vapor, and (ii) deposition that occurs from a colli-
mated beam of particles. The difference between these
two possibilities is apparent in the Monge parametriza-
tion. In order to discuss this, it is useful to introduce the
random field

n(x,0)="gn(x,0), (57)

which is the quantity that appears explicitly in the equa-

tion for 9,h. The correlation properties of 7(x,t) are

derived directly from those of 7(x,t) discussed above.
From Eq. (56) one easily sees that

) _ . TFE-29nT 4 g;hahTY
(n(x,0)p(x',t"))=
Vg

Xo(x—x")o(t—1t"). (58)
If growth occurs from the condensation of an isotropic

vapor, we expect that F is a random vector with uncor-
related components and I'*#=T§*.! In Eq. (58) we find

(.0 7’1y =T g dx—x") 8(1=1"). (59)
For growth occurring from a directed flux, one may

assume that all components of F are independent ran-
dom variables, so that ['**=T"_,§* (no summation on
«a is assumed here). If rotational invariance is expected
for rotations in the substrate plane, we have I';=I") and

y . I +T(Vh)?
(n(x,)p(x',t"))= Tﬁ(z—z’)ﬁ(t—t').
g
(60)

Note that in-plane correlations are enhanced in regions
where /1 has steep derivatives. For a collimated beam
perpendicular to the interface, we have I'|<T", and

"Here we use the Kronecker symbol with both upper indices,
which coincides with the metric tensor g in the
(D +1)-dimensional space.
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r
7,0 7(x’ t))y=—=8(x—x")8(t—1t"), 61
(m(x,0) n(x >@(££( (61)

while, if I'=T", , we recover Eq. (59). If the randomness
only affects the intensity of the beam, [*#=TJ*J# and
Eq. (58) becomes

8 8 (J.=Vh-1,)’
<77(£J)7l(£,,t,)>:rﬁ 'E_)ﬁ,)
X8(t—t"), (62)

where J, is the component of J in the substrate plane
F=x. In the case of vertical rain, J,>|J |, and we re-
cover the previous result of Eq. (61).

The physical meaning of the prefactors of the delta
functions is evident if we introduce 7,(x,f) such that
(7(x.0)7,(x,1"))=T8(x—x")8(r—1'). In condensa-
tion from a vapor, [see Eq. (59)], we find that
7(x,t)=g"n,(x,t) in Eq. (21). [Since g contains sto-
chastic variables, this is also the correct mathematical
interpretation of the correlation in Eq. (59).] The noise
is enhanced in regions where 4 has steep derivatives
since the exposed surface area in the substrate element
dPx is larger by a factor of \/g. The opposite case is that
of growth from a perpendicular beam J=J .2, in which
case 7(x,t)=g "*#,(x,t). This is because the flux of J
through the surface is proportional to i-Z=1/\/g and

regions with high slopes receive less particles than those
that are flatter.

2. Conservative noise

Another source of noise comes from thermal fluctua-
tions and from internal degrees of freedom of the inter-
face. In this case the noise is called conservative because
it causes no increase of the volume enclosed by the in-
terface. From Eq. (47), this requirement is translated
into the condition

atvlnoise:f dDS g7]209 (63)

where again we have taken F=n 7. This imposes a con-
dition on 7. A general way to let the noise contribution
in Eq. (63) vanish is to take

n=div,
where div is the covariant divergence acting on the vec-
tor ¢, which is a delta-correlated noise both in space and
time:

. (s —sh)
(L’(i,l)(’({',l')):Fﬂ-?5(t—l')-
8

Here reparametrization invariance has been satisfied,

and the delta function allows the use of g'=g(s’) in-
stead of g(s). The correlations of % readily follow:
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1 ) .
(n(s,0)m(s' ")) = @a,-{ Vga![Ng (L(s,) (st N}

1 .
=T =0 \gg9] 8(s—s")&(t—1")]

vgg'

1 o O(s—s')
=-T—| d;\ggo,——=—o(t—1")
N
S(s—s')
=—TA——68(t—1"), (64)

Vg’

where the primed quantities refer to s’ and the presence
of the delta function has been used repeatedly to change
from primed to unprimed quantities (note that the op-
erator A does not act on g'). This is the natural gener-
alization in reparametrization-invariant form of the cor-
relator often used in dealing with conserved noise that
contains the Laplacian operator acting on a delta func-
tion. The expression of the correlator in the Monge pa-
rametrization is readily derived from the above expres-
sion.

3. Approach to equilibrium

In previous sections we have frequently dealt with
terms in the deterministic part of the growth equation of
the form

7 )= Vgl L 65
ot ()ﬁvt)_ g 5h(.£,l) 77(&1), ( )
where I'=1 for nonconservative dynamics and I'=—A

for conservative dynamics. If the noise is Gaussian with
correlation [see Eq. (59)]
(M) p(x’ 1) =2TVgl8(x—x")8(t=1").  (66)

one can write the associated Fokker—Planck equation in
the form

) o
Sh(x.0) | | Sh(xD)

J
EP[h(Jﬁ),t]zf dPx\gT

+ W Plh(x),t]. (67)

Equation (67) holds if a suitable regularization has
been chosen such that §/8h(x,t) commutes with \/§1".
This is fulfilled, e.g., in the dimensional-regularization
scheme commonly used in field-theoretical treatments
(see, e.g., Zinn-Justin, 1993).

In Eq. (67) P[h(x),t] is the probability functional
that yields the probability of the interface configuration
h(x) at time . It is easy to see that the stationary distri-
bution, obtained by setting the right-hand side to zero, is
given by

H[h(ﬁ)]] 68)

P[h()ﬁ),t—wo]meXI)[ i
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The equality of the coefficient in front of the functional
derivative and of that in front of the noise correlation is
often referred to as the fluctuation-dissipation theorem
(see, e.g., Deker and Haake, 1975). When this theorem
holds, the stationary distribution is given by Eq. (68). It
is interesting to note that the R-invariant form of the
functional derivative, with the R-invariant form of the
correlator deriving from an isotropic-growth mechanism
(I'=1), yields a dynamics that leads to the equilibrium
distribution of Eq. (68). This was first noted by Bausch
et al. (1981). One may apply these considerations to the
R-invariant form of the KPZ equation describing
growth from condensation of a vapor as discussed by
Maritan et al. (1992). However, as already pointed out,
Hxpz of Eq. (31) is unbounded as 41—, and therefore
Eq. (68), not being normalizable, is meaningless.

Note also that, if the flux term breaks rotational in-
variance, as in the case of a collimated vertical beam
[see Eq. (62)], the fluctuation-dissipation relation does
not hold even if the deterministic part derives from a
potential.

Furthermore, we note that, for I'=— A, the determin-
istic part has the same form discussed in Sec. III A.8 and
the correlation of the noise is exactly that derived in Eq.
(64). Therefore we can conclude that a deterministic
conservative dynamics with a conservative noise leads to
the stationary state described by Eq. (68) (provided
P[h,t] is normalizable).

IV. DISCUSSION

We have seen that there are four different mecha-
nisms producing a Laplacian term »V2A in the small-
gradient expansion of Eq. (21). Three of them, the sur-
face tension, an orientation-dependent potential (or a
constraint on 7,), and surface diffusion induced by grav-
ity, lead to a positive v coefficient that drives the evolu-
tion towards flatter and flatter surfaces. Note that one
can distinguish between these effects only through
higher-order terms in the gradient expansion, which
may, however, be irrelevant in the renormalization-
group sense. The fourth mechanism, related to the finite
size of the aggregating particles, gives a negative contri-
bution to the coefficient in front of the Laplacian, so it
would produce an instability if acting alone. This is evi-
dent since Eq. (45) can formally be derived as a surface
diffusion induced by a negative gravitational field
[vy=—v¢ in Eq. (55)]. This term also strictly conserves
the volume enclosed by the surface [while surface ten-
sion, Eq. (26), does not] even though it was not derived
from conservation considerations.

Secondly, we note that the nonlinear term of the KPZ
equation can be derived in one of three ways: from a
pressure term in a potential that gives a positive \ for a
growing surface, from growth due to condensation of a
vapor, or from an inclination-dependent factor in the
flux term. The latter may result from the effect of a con-
straint on n,, yielding a negative \, in agreement with
known results on restricted solid-on-solid models
(Meakin, 1993). It has also been argued that such a term
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is expected in ballistic deposition but with the opposite
effect, i.e., inhibiting growth on flat portions of the sur-
face. A positive \ is expected in this case. The change of
sign in this coefficient does not change the character of
the process dramatically as it does for v. The value of
N\, however, is a directly measurable quantity (Krug,
1989) since it is related to the inclination dependence of
the average velocity of growth. In this way Krug (1989)
was able to predict the presence of the nonlinear term of
the KPZ equation in various models. Note that this is a
criterion based on the global behavior, while our analy-
sis is based on the local properties of the growth process.
Another derivation of the KPZ equation for restricted
solid-on-solid models is based on its relation with the
directed-polymer problem (Kardar and Zhang, 1987;
Fisher and Huse, 1991) in a random environment as
shown, e.g., by Tang et al. (1992).

Equation (36) provides a further physical derivation
of a term (V?)2h, which has usually been associated with
surface diffusion, in the equation for a growing inter-
face. This extends the validity of the results derived in
the presence of this term to situations in which the re-
storing force is derived from a potential corresponding
to a surface energy proportional to H?. The expansion
of the potential energy of the interface in powers of H
will, in general, also contain a constant term H° propor-
tional to the surface area. Straightforward analysis
shows that, in the presence of this term, all higher pow-
ers are irrelevant from a renormalization-group point of
view. There are situations, as in the dynamics of fluid
membranes, where this term is known to be absent. The
leading terms would then result from the terms linear
and quadratic in H. An interesting point for future in-
vestigation is an analysis of the effects of the term re-
sulting from a potential linear in H, Eq. (34).

Sun et al. (1989) have studied an equation with a lin-
ear term proportional to (V?)?4 and a nonlinear term
proportional to V2(VA)? and conservative noise. The
same equation was studied by Lai and Das Sarma (1991)
and Kim and Das Sarma (1994) (see also Das Sarma
et al., 1996) but with a nonconservative noise, as appro-
priate to MBE. [Lai and Das Sarma (1991) were the first
to introduce the nonlinear A, term of (18).] We note
here that, while the first term could be derived from
surface diffusion or from a potential proportional to
H?, the nonlinear one is not related to one of the simple
mechanisms discussed here. In particular, a derivation of
the conserved KPZ equation cannot follow the same
lines described above. In one case, the KPZ equation
comes out as a result of a process that does not conserve
the volume. In the second, it derives from the effect of a
constraint on height gradients, and one needs to moti-
vate the rather odd choice Y(nz)=—AY(nz). There

are no R-invariant potentials that would lead to such a
term in the gradient expansion, either for conservative
or nonconservative dynamics. It is still possible, how-
ever, that such a term is generated dynamically in a
renormalization-group procedure.
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Note also that, in the noise term, there are prefactors
in front of the random field. In a small-gradient expan-
sion these yield a nonlinear term of the KPZ type with a
random-valued A. It is also important to note that the
occurrence of multiplicative noise could significantly
change the scaling properties of growing interfaces.

We also discussed the generalization of the
fluctuation-dissipation theorem to the R-invariant form
of the growth equation. We recovered the observation
of Bausch er al. (1981) that R invariance and rotational
invariance are enough to establish fluctuation-
dissipation relations for nonconserved dynamics. We
also found that this observation generalizes to conserved
dynamics (both the noise and the deterministic part be-
ing conservative).

Recently, Keblinski, Maritan, Toigo, Koplik, and Ba-
navar (1994) and Keblinski ez al. (1996) have introduced
a simple continuum model that allows for overhangs and
an arbitrary topology of the growing interface. The
model captures surface diffusion in a natural manner,
and, with an appropriate aggregation mechanism, it pro-
duces growth normal to the interface. The model equa-
tion consists of two parts: the first is conserved order-
parameter dynamics that allows for the definition of a
topologically unrestricted interface and builds the cor-
rect physics of surface diffusion, whereas the second
term provides for growth and roughening at the inter-
face.

In the simplest version, their equations are

#ﬁ’”:rvz%ﬂ, (69)
where

F=j {—%ﬁﬂ;m(v]ﬁz dv, (70)
and

1=C\[¥f1+D V|V A 7(r.0), (71)

where f is an order parameter field, » is a Gaussian
noise uncorrelated in time and space with a width equal
to 1 and mean value 0.

Equation (69) without the I term has a simple
interpretation—it is merely the deterministic part of the
standard model—B dynamics (Hohenberg and Halp-
erin, 1977) that conserves the order parameter.

The choice of the sign of the coefficient of f2 in the
expansion for the free energy [Eq. (70)] corresponds to
a temperature lower than 7., so that the two values
+1 of the order parameter f(7,t) minimizing the free
energy describe the two equilibrium phases of the sys-
tem.

An interface can naturally be defined as the crossover
region between the f=—1 and f=+1 regions, and, op-
erationally, a point 7; is defined to be on the interface
when f(7;,t)=0.

a>0 is the surface-diffusion coefficient and sets the
intrinsic length in the system. Indeed the width of the
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interface is proportional to \a. Also, the effective
strength of the surface tension turns out to be propor-
tional to \/E .

The I term allows for the growth and fluctuation of
the interface. The V f factor ensures that the growth and
fluctuations are operative only in the vicinity of the
interface—away from the interface Vf is effectively zero.
The positive coefficients C; and D; are the magnitudes
of the growth and noise, respectively. The Vf factor pro-
duces growth normal to the interface.

Numerical results (Keblinski, Maritan, Toigo, Koplik,
and Banavar, 1994; Keblinski et al., 1994, 1995, 1996)
show that this model is in the same universality class as
the KPZ equation. The I/ growth mechanism not only
gives growth normal to the interface, but also makes the
rate of the growth per unit length constant along the

interface. The constant is equal to C,f im?x|€f| ds=2Cq,

where the integral is performed across the interface and
Smin and  sp.., are defined by f(spn)=—1 and
f(smax) =1 (note that the integral is independent of the

shape of the Vf profile as long as f increases monotoni-
cally from f=—1 to f=+1). This feature leads to KPZ-
like behavior.

The model presented above has a local conservation
law to avoid the formation of islands with f=—1 in a
region that has predominantly f=+1, and vice versa.
However, the conserved and nonconserved model
should exhibit interfaces with the same behavior. When
the interface is sharp, i.e., a is small, it can be shown
(Keblinski ez al., 1996) that the non-conserved version of
this model is equivalent to Eq. (30) with a noise term of
the form of Eq. (57) and a variance given by Eq. (59).
Thus this model may be interpreted as a continuum ver-
sion of the Eden growth model with redistribution of the
aggregated particles via surface diffusion. The Eden
(1958) model is known to be in the KPZ universality
class—the surface diffusion in the limit of large length
scales does not change the geometrical properties of the
interface but introduces a short-range smoothing mecha-
nism.

The growth of real surfaces is often influenced by non-
local effects such as screening or shadowing. When the
aggregating particles follow linear trajectories, one can
expect that, if the roughness is large enough, some parts
of the interface are shadowed and therefore do not grow
(Tang and Liang, 1993). In order to accommodate this
phenomenon, the previous model can be extended (Ke-
blinski et al., 1995, 1996) to incorporate the dynamics of
the depositing vapor and nonlocal effects.

The extended model involves two fields f and ¢ and is
governed by the equations

af(F.1) SF .
gy =V? ) +B(V)?¢(F,t)
+CN(VN (7,0, (72)
ap(r,t)

=V[DV ¢(#t)— A ¢(7,t)1— B(VH2 p(7,1),
(73)

ot
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with F again given by Eq. (70). While the first part of
Eq. (72) is identical to that described earlier, the growth
mechanism is different. Now the growth of the f field
occurs at the expense of the ¢ field. The ¢ field repre-
sents the local density of the incoming particles towards
the interface, and Eq. (73) describes the dynamics of the
depositing vapor. The first part of Eq. (73) is simply the
diffusion equation in the presence of an external force
A. In order to analyze the growth arising from ballistic
trajectories, D has to be chosen much smaller than A, SO

the fid) flux is the primary mechanism for ¢ field
transport.” The aggregation relies on the conversion of
the ¢ field into the f field as described by the coupling
term B in Egs. (72) and (73). The Vf factor in the B
term makes the aggregation operative only within an
interfacial “‘skin” region of the aggregate with a width
proportional to a. The ¢ factor in the aggregation term
ensures that the growth occurs only if ¢>0. The B term
acts as a sink for the diffusive field ¢, and its magnitude
is chosen to be sufficiently large to convert all of the ¢
into f within the interfacial region, which effectively
leads to ¢~0 below the interface (f~ +1). Shadowing
effects are naturally incorporated in the equations.
When the ¢ field trajectory intercepts the skin, the ¢
field is converted into f, and any subsequent intercep-
tion occurs with ¢=0 and therefore does not lead to the
growth of the shadowed part of the interface. Note that
nonlocal effects are incorporated in a local way in Eqgs.
(72) and (73). One does not need to monitor the geom-
etry of the interface to incorporate shadowing—it is
implemented dynamically by the ¢ field. The conversion
of the ¢ field into the f field at the vicinity of the inter-
face does not depend crucially on the particular func-
tional form of the coupling chosen. The rate of growth is
effectively equal to the intensity of the incoming ¢ field
flux. In addition to the growth term, there is a fluctua-
tion term C in Eq. (72). The Gaussian #(7,t) factor is
the same as was introduced previously. In this manner
the fluctuations in the strength of the incoming ¢ flux
are incorporated, since the aggregation rate is equal to
the intensity of the incoming ¢ flux.

Strikingly, the model presented in Egs. (72) and (73)
can be straightforwardly modified (Keblinski et al.,
1996) to model diffusion-limited—aggregation type of
phenomena (Witten and Sander, 1981; Niemeyer et al..
1984; see also Pietronero and Tosatti, 1985). One just
needs to replace the ballistic flux with a diffusive flux
that is responsible for the transport of the aggregating
field.

The equations are modified to

If(F,t) OoF .
~ =v25f(7’t) +J(F,1), (74)
ad’;:’t) = DV2h(F.t)—J(F.1), (75)

2Here D is not to be confused with the spatial dimension.
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with
J(F,)=—=Vf-DV - n(F.1), (76)

where #7(7,t) is a Gaussian noise with nonzero average
value V>0 and width W.

The first part of Eq. (74) and the free energy F is the
same as described previously. The interaction term
J>0, leads to the growth of f and decay of ¢ such that
f+ ¢ is a conserved quantity and changes only due to the
sources of the ¢ field at the boundary. The R-invariant
form of the growth equation provides an interesting al-
ternative approach to avoid the no-overhang approxi-
mation, even though it cannot describe nonlocal effects
like shadowing in ballistic aggregation and screening in
the diffusion-limited-aggregation models.

The inadequacy of the no—overhang approximation is
just one of the reasons why one may want to rely on the
R-invariant formulation of growth problems. For ex-
ample, the R-invariant form of the equation displays the
full invariance properties with respect to space transla-
tions and rotations and the conservation laws which the
process satisfies. These are lost, for any but infinitesimal
transformations, once one restricts attention to the
lowest-order terms in the gradient expansion. These in-
variances play a crucial role in the implementation of
renormalization-group approaches around the lower
critical dimension [see, e.g., Bausch et al. (1981)] be-
cause they provide conditions for the renormalizability
of the theory.

A second situation in which a full R-invariant form of
the growth equation would be preferable to the lowest-
order gradient expansion arises when the scaling behav-
ior is determined by a strong-coupling fixed point. In
order to appreciate this situation it is preferable to
sketch briefly the standard approach of the perturbative
dynamical renormalization group (Ma and Mazenko,
1975). Let us consider the Langevin equation

F7th(£,f):2h(£,f)+)\-&/[h()_fat)]+ n(x,1),

where L is a linear differential operator in the x variable
and Nis a nonlinear combination of /# and gradients. As
an example, in the KPZ equation one has L=V? and
MAh]=(Vh)?. The noise is Gaussian with zero mean,
and (n(x.0)p(x'.0))=2T8"(x—x")5(t—1"). It =0,
the equation can easily be solved in Fourier space. It is
therefore easy to find the exponents «, and z that char-
acterize the scaling in the linear theory: under a rescal-
ing of length by a factor of /, the time will scale by a
factor /%0, and & will acquire a factor /*0. One can then
analyze the effect of a small nonlinearity (A<<1) on the
dynamics. If the above discussed change of scale in the
linear theory affects the nonlinearity with a factor /”
(i.e., if M[A]—=PMAhA] as x—Ix, t—1%0t, and h—I"h)
and y <0, one can conclude that the nonlinearity is irrel-
evant. On the other hand, if y>0, one concludes that the
effect of the nonlinearity will increase as the scale in-
creases and will eventually dominate the large-scale be-
havior of interface fluctuations. It usually happens that
y is a decreasing function of D, the dimensionality of the
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substrate and there is a dimension D, below which the
nonlinearity is relevant. In this case, the full program of
the dynamic renormalization group becomes necessary.
Since the method, beding based on a perturbation ex-
pansion, can in principle treat only small nonlinearities,
it usually provides estimates of the exponents close to
the dimension D ., where one can assume that, since y is
small, the fixed point is accessible within the expansion.
If this procedure works, i.e., if one finds a stable fixed
point whose distance from the fixed point of the linear
theory is small when D .— D is small, one can also con-
clude that all higher-order terms that have been ne-
glected in the gradient expansion are irrelevant (if
a(<1). This whole program, which is a very powerful
tool to estimate critical exponents, fails if one finds no
stable fixed point or if the nonlinearity turns out to be
relevant only if N is bigger than a critical value A.. The
nature of the phase for A> N\, turns out to be outside the
range of perturbative methods, and in this situation one
has no reason to neglect the higher-order terms in the
gradient expansion.

This situation is realized in the most-studied model of
growth, namely the KPZ equation, for which, above the
substrate dimension D=2 (which is also the physical
dimension in which one is interested), the nonlinearity
becomes relevant only if A>\ ..

There is a general consensus that different models for
nonequilibrium dynamics, such as restricted solid-on-
solid models (Meakin, 1993), the Eden model (Eden,
1958), and directed polymers in random media (Halpin-
Healy and Zhang, 1995), fall in the same universality
class. Such an expectation is mainly based on the obser-
vation that the small-gradient expansion of these models
contains the terms in the KPZ equation. While analyti-
cal and numerical results in D =1 almost unambiguously
support this expectation, there is no reason, in principle,
to believe that in D=2 the strong coupling regime of
these models is described by the same exponents. In
fact, as we have shown, the continuum equations for the
Eden model, for RSOS models, and for ballistic aggre-
gation differ in the higher-order terms of the gradient
expansion. A yet different gradient expansion can be
obtained for the free energy of directed polymers. Going
one step further than the usual KPZ truncation, Marsili
and Bray (1996) studied the equation

dh 2 51 \292 AP T
E=VV h+k(Vh) Vh+)\+§(Vh) +.ot 77)
This derives from the small-gradient expansion in the
case of RSOS growth, as described in Sec. III.A.6. This
equation indeed coincides with Eq. (40) with x;=0 and
X1=—x1>0. Note that here both surface diffusion and
the growth term have been expanded to the same (sec-
ond) order. It turns out that a mean-field, infinite-
dimensional limit of Eq. (77) can be meaningful only for
x>0 (Marsili and Bray, 1996). This analysis reveals that
steps or bumps of a finite height develop on the surface
and that dynamical scaling (Family and Vicsek, 1991) is
not satisfied. These results, which differ substantially



M. Marsili et al.: Stochastic growth equations 979

from those obtained in the same limit for directed poly-
mers by Derrida and Spohn (1988) (see also Cook and
Derrida, 1991), raise doubts on the existence of a single
universality class for all these processes. In high dimen-
sion the x term turns out to be necessary in order to
avoid finite-time singularities that occur in the simpler
KPZ equation (k=0). These finite-time singularities be-
come even worse in the case of the Eden model or bal-
listic aggregation. Indeed, the model of Eq. (77) can be
generalized to these processes with «<<0, which de-
scribes the suppression of surface tension on steep por-
tions of the interface discussed by Maritan et al. (1992).
These instabilities suggest that the Monge representa-
tion of the interface may not be adequate to describe
these processes (Maritan et al., 1992).

Anomalous dynamic scaling has also been reported
(Das Sarma et al., 1996) for various models proposed to
describe MBE. More precisely, numerical results show
that the local-scaling properties, defined in terms of the
correlation function, identify an exponent «,,., which is
different from the one that describes the behavior of the
global surface thickness W(L,t) with the size L of the
sample at saturation. This anomalous behavior has been
related by Schroeder efal (1993), Das Sarma et al.
(1994) and Krug (1994) to the peculiar statistics of steps
(i.e., height differences between neighboring points).
The broadness of this distribution which diverges for in-
finite times and infinite L, again raises doubts of the
validity of the small-gradient expansion.

In all these situations we believe the concept of re-
parametrization invariance may prove to be an invalu-
able starting point for elucidating the correct physics.
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APPENDIX A: DIFFERENTIAL GEOMETRY

An orthonormal basis is assumed in (D+1)-
dimensional space, and Greek letters are used for the
vector components. Latin letters used as an index refer
to the components of vectors in the D-dimensional pa-
rametrization space. s’ are general curvilinear coordi-
nates that label points on the D-dimensional surface.
The notation d,=4d/ds’ is used for covariant derivatives.’
Summation over repeated indices is always assumed.
Lastly, for the scalar product in both spaces, a dot is
used whereas X denotes the vector product.

3We have avoided introducing covariant derivatives in order
to maintain as simple as possible an exposition. Thus J; and
& introduced here behave like tensors only when applied to
scalar quantities.
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The distance between infinitesimally close points on
the surface is given by the first fundamental quadratic
form,

|dF|*=g;7ds"- 9;Fds’ =g ;ds'ds’. (A1)
This defines the metric tensor g;;=d,r-d;r.
g= det{g;;} denotes its determinant, while g” is the
inverse,* g;.g"'=6 ’ . The metric tensor and its inverse
are also used in the usual way to lower and raise indices,
Le., v;=g;v’ or v —g”v, We also use the notation
d'=g"9;.
The only restriction on the choice of the parametrlza-

tion is that g # 0, i.e., that g;; is invertible, and this im-
plies also that 8,? £0. The vectors d;r lie in the tangent

hyperplane so that the normal versor is given by
n=g ]/2&1r>< (92r>< X&Dr where g ~12 ensures nor-
malization (vl ><vD Eagay ... apUla, -+ UDap
where ¢, 02 - ap is the completely antisymmetric Levi-

Civita tensor and is equal to (—1)7, with P being the
order of permutation of «gpa;...ap with respect to
12,...,D+1).

A quantity 7; /- (s) is said to be a tensor if, under
the change of parametrization s’(s), it transforms as

. . dsk ds'l - .
T! (s ):W”'TT"“' o (s).

From Eq. (Al) one sees that g;; and its inverse g” are
tensors.

A quantity ¢(s) is said to be a scalar if
¢'(s')=¢(s). In particular r,(s) and n,(s), with
a=12,...,D+1, are scalar quantities, while ;¢ and
d'¢ are particular cases of tensors called covector and
vector, respectively.

The invariant surface element is given by
do=dPs\/g, and this implies that the invariant form of
the delta function in parameter space is

S(s—s’)
\/g b
where 8(s) is the usual delta function in D dimensional
space. Thus [do f(s)8y(s—s")=f(s").
For differential calculus, invariant forms of the gradl-
ent, divergence, and curl are obtained, which require
that the transformation properties of tensors apply. The

gradient of a scalar S is simply given by 4,5, while the
divergence of a vector is

1 ‘
—=d,(gv).
Vg

Taking the divergence of the contravariant gradient,
one finds the reparametrization-invariant generalization
of the Laplacian operator in curved space

dp(s—s")= (A2)

div v = (A3)

*The symbol & is used here for the Kronecker delta. It will
also be used for the Dirac delta function and for functional
differentiation.

SIndeed, if ¢ and v’ are a scalar and a contravariant field,
respectively, Eq. (A3) follows from  requiring

JdPs\gv'g,p=—[dPs\ge divv.
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1 o1
—oJed=—
R
which is known as the Beltrami-Laplace operator.®

The curvature k of the surface along a curve s([) is
given by 7-d*7(s(1))/al*> (I is the arc length). Since
n-9;7=0, x may be written in terms of the second fun-
damental quadratic form,

ds' ds’
=bigr ar
where b;;=n-9;0;7 = —a,-ﬁ-ajf.7 This defines the princi-
pal curvatures (directions) as the eigenvalues \; (vec-
tors) of b}. These are invariant under reparametrization.
The mean curvature H is the sum of these and thus
equals® the trace of b/,
D
H=bf=21 N;=—d;n-JF.
=

A= 9i(\gg"a,), (A4)

K

(AS)

(A6)

Another useful definition of H comes from observing
that, since 7-d'7=0, 0,(\gn-dF)=\g(o;n)- I'F
+1-9;(\gd'7)=0. This implies:

H=—0n-d'F=n-AF. (A7)

The Gaussian curvature is defined as K=det{b]}

=1II;\;. Furthermore, it is easy to see that

Indeed daln and o;(n-9;7)=0 implies d;2-9;7

1. The Monge form

A particular choice of parametrization is the Monge
form,

F=(x,h(x)), (A9)

where x is a vector in the D-dimensional substrate plane
and h(x) is the height of the surface in the direction Z
perpendicular to this plane. Use of this parametrization
implies that no overhangs are present in the surface,
since otherwise /(x) would not be single valued. In this
parametrization the metric tensor has the form’

y 1
8ij= 5”"‘ 071]’1 &]h and gl]: 51]_ g&lh 0"]1’1, (AlO)

®Equation (Ad4) can easily be deduced by requiring
[dodi@d;pg’=—[dopA ¢ for any scalar field ¢.

"The first form shows that b is a symmetric matrix, whereas
the second shows that it is a tensor; hence its eigenvalues are
R invariant.

8Actually the mean curvature should contain a factor 1/D
that we disregard for convenience.

In the Monge form, it is convenient to use derivatives,
d;=0ldx", with respect to the physical coordinates. Even
though the upper and lower indices in some of the equations in
the Monge form do not match, the summation over repeated
(lower) indices is still assumed.
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where
L1
g=1+(Vh)?, 7n=—=(—Vh,1), (A11)
Vg
and
b —gikb, =g, " (A12)
i—8 Dkj=0i—=-
i j Jz
Finally, the mean curvature is given by
_ Vh(x)
H=b'=V—F—. (A13)

R

The equation for 4 (x,t) is obtained from Eq. (20) by

considering the various components of 7. On defining
F(s.1)=(x(s5.1),h(s,1)), we get

aih(s,0)=n°G,

atxi(‘i’t):nig»
where n' and n® are the components of the normal in
the directions x' and Z, respectively. These derivatives
are evaluated at constant s, whereas we are interested in
the derivative of & at constant x,

oh .

ath(‘iat):ath(ivt)—i_ ﬁatxl(ivt)a (A14)
where h(x,t)=h(s(x,t),t). From the above equations
and /i=(—Vh,1)/ /g, one readily finds the deterministic
part of Eq. (21).

APPENDIX B: EQUATIONS DERIVED FROM A POTENTIAL
IN THE MONGE REPRESENTATION

The property that the functional derivative §H/ 57 is
orthogonal to the vector ;7 translates into

h+ =0.

ot
This allows one to eliminate the functional derivative
with respect to x' in

o i

SH  6H SoH _oH
—_ - —— =pf—— [— —_—
Ngg=n: E=nt gt i =NEy

and to find Eq. (23).

APPENDIX C: DERIVATION OF THE GROWTH TERM DUE
TO SURFACE ENERGY

In the functional derivative of g with respect to 7 in

Eq. (24) we use the fact that g is a determinant and the
property
SlndetM=68trIn M=trM~'5M (C1)

that holds for variations of a matrix M. This allows one
to write
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1 ,
5f dPs\g= Ef st\/gg”égﬁ

-~ f dPso,(\ggo;F)- &7
——des@M-(sf

for a variation &7 of 7, which readily yields

[ avs Ve

\/gT& (s)

9i(Ng(s)g(5)d)i(s)= AF(s), (C2)

1
)

where Eq. (A4) has been used.

APPENDIX D: CURVATURE-DEPENDENT POTENTIAL

For a variation &7 in F,n changes to n+ én. Since
8(n-n)=0, the variation én is normal to n. Consider
Eq. (A7) for H. In

SH=6h-AF+h-S8(AF),

the first term on the right-hand side vanishes since A7 is
parallel to 7i. The variation of A7, by simple arithmetic,

is
d,(\gg"a,)7

5Vg\ 1
= ( a,.ig) P+ A S+ —
Vg Vg

The first term in the last line, being proportional to
#'F, vanishes once a scalar product with 7 is taken. For
the same reason, the only contribution that survives in
the last term is obtained when the derivative J; acts on
7. The variation &g i 1s expressed in terms of 87 by tak-
ing the variation of g’ gk] 5’ so that finally

SH=1-A 57 —2(8 87 9F) (- 3:0;F).

il \g(5g")a;1F.

The variation of H,,=«,[dPs\jgH with respect to &7
involves the variation §H and the variation of \/_ which
is evaluated as before. The functional derivative of the
first term is evaluated from the above equation with a

partial integration,
1 57_{6 1
\/§ COF

1 ) )
+2—0,[\g(A-daF)IF]}.
\/§ ]

On multiplying the above equation by 7 to find G, ;, the
property 71-9;7=0 can be used again to show that the
second term gives no contribution and the last term be-
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comes Zb;:b{:. This is twice the trace of the square of the
matrix of the coefficients of the second fundamental
form. Finally, we have to compute 7-An. Using the

facts that 71 ¢'7i and that 9,71 =— b]& 7, we easily find

E A2,
i=1

Collecting the various terms, we get the result displayed
in Eq. (33), which is clearly fully R-invariant.

The chain rule of differentiation, applied to
H.,=k,[d"s JgHP?, also gives Eq. (35), where the sec-
ond term as before, comes from the variation of \/_
while the others come from §H?=pH?~'5H. This also
needs the straightforward generalization of Eq. (D1) to

n-A(FR) ( E

A-AR=—a-9'A=—blbi= (D1)

for a generic R-invariant function F(s).

APPENDIX E: ORIENTATIONAL ENERGY

The variation of Eq. (38) for a change F—7+ F can
be obtained as soon as we know Syg and én. The
former has already been obtained in Appendix C, and it
is 5\g= \/Egijalf -d;0F, whereas the latter is derived as
follows. Since énl n and

one has
Sn=—dF(n-9,;5F). (E1)
The variation of Eq. (38) is then
5H2=f dPs\g| —g(a,7- 4;6F) x(n)
dx(n Z)( F'F)(A-9;6F) |, (E2)
dn, “

from which it follows that

1 6H, 1 . x(ng) . .
: 0)| Vg8 airx(n )= g= 0 == i(Z- IF)
Ve

Jg o g

d’x(ny) .
=xX(n)AF— ——5—A(Z-IF)dn,
d z
dx(ng) . .
" dn. n(z-Ar)
dx(n . ‘
~ XD G g, (. 7o), (E3)
Z
The last two terms sum to zero since 9;2= — b{ﬁajf and

from the symmetry of b;;. Finally, using Eq. (A7) (i.e.,

AF=nH), we get

1 oH, .
nG (E4)

B A
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with

d*x(n,)
dnﬁ

dzon,,
(E5)

dX(nz)) N

GZIH( —x(n,)+n, an

Z

where z=7-F.
Using the Monge parametrization,

dx(n) d*x(n.) diha,g~ "
=H - n
GZ nZ l’.lz X(nz) dni g s

(E6)
with n,=g "2 and H=V(Vhi\g).
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